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Abstract

A variety of methods have been developed to demultiplex pooled samples in a single cell RNA sequencing
(scRNA-seq) experiment which either require hashtag barcodes or sample genotypes prior to pooling. We introduce
scSplit which utilizes genetic differences inferred from scRNA-seq data alone to demultiplex pooled samples. scSplit
also enables mapping clusters to original samples. Using simulated, merged, and pooled multi-individual datasets,
we show that scSplit prediction is highly concordant with demuxlet predictions and is highly consistent with the
known truth in cell-hashing dataset. scSplit is ideally suited to samples without external genotype information and is
available at: https://github.com/jon-xu/scSplit
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Background
Using single-cell RNA sequencing (scRNA-seq) to cell
biology at cellular level provides greater resolution than
“bulk” level analyses, thus allowing more refined under-
standing of cellular heterogeneity. For example, it can be
used to cluster cells into sub-populations based on their
differential gene expression, so that different fates of cells
during development can be discovered. Droplet-based
scRNA-seq (for example Drop-Seq [1] or 10X Genomics
Systems [2]) allows profiling large numbers of cells for
sequencing by dispersing liquid droplets in a continuous
oil phase [3]s in an automatedmicrofluidics system, and as
a result is currently the most popular approach to scRNA-
seq despite a high cost per run. Methods that lower the
per sample cost of running scRNA-seq are required in
order to scale this approach up to a population scale. An
effective method for lowering scRNA-seq cost is to pool

*Correspondence: lachlan.coin@unimelb.edu.au
1Genome Innovation Hub, The University of Queensland, 306 Carmody Road,
St Lucia, QLD 4072 Brisbane, Australia
2Institute for Molecular Bioscience, The University of Queensland, 306
Carmody Road, St Lucia, QLD 4072 Brisbane, Australia
Full list of author information is available at the end of the article

samples prior to droplet-based barcoding with subsequent
demultiplexing of sequence reads.
Cell hashing [4] based on Cite-seq [5] is one such exper-

imental approach to demultiplex pooled samples. This
approach uses oligo-tagged antibodies to label cells prior
to mixing, but use of these antibodies increases both
the cost and sample preparation time per run. More-
over, it requires access to universal antibodies for organ-
ism of interest, thus limiting applicability at this stage to
human and mouse. Alternatively, computational tools like
demuxlet [6] have been developed to demultiplex cells
from multiple individuals, although this requires addi-
tional genotyping information to assign individual cells
back to their samples of origin. This limits the utility of
demuxlet, as genotype data might not be available for dif-
ferent species; biological material may not be available to
extract DNA; or the genetic differences between samples
might be somatic in origin.
Another issue for droplet-based scRNA-seq protocols is

the presence of doublets, which occurs when two cells are
encapsulated in same droplet and acquire the same bar-
code. The proportion of doublets increases with increas-
ing number of cells barcoded in a run. It is imperative that
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these are flagged and removed prior to downstream anal-
ysis. Demuxlet [6] uses external genotype information to
address this issue, and other tools have been developed to
solve this issue based on expression data alone, including
Scrublet [7] and Doubletfinder [8].
Here we introduce a simple, accurate, and effi-

cient tool, mainly for droplet-based scRNA-seq, called
"scSplit", which uses a hidden state model approach
to demultiplex individual samples from mixed scRNA-
seq data with high accuracy. Our approach does not
require genotype information from the individual sam-
ples to demultiplex them, which also makes it suit-
able for applications where genotypes are unavailable
or difficult to obtain. scSplit uses existing bioinfor-
matics tools to identify putative variant sites from
scRNA-seq data, then models the allelic counts to
assign cells to clusters using an expectation-maximisation
framework.

Results
Our new tool, scSplit for demultiplexing pooled sam-
ples from scRNA-seq data, only requires the FASTQ files
obtained from single cell sequencing, together with a
white-list of barcodes, while it does not require genotype
data, nor a list of common variants if not available. Result
data are available in https://github.com/jon-xu/scSplit_
paper_data.

Simulation run showed high accuracy and efficiency of
scSplit
We used a single scRNA-seq BAM file from Zheng
et al. [2] as a template for simulation. Additionally, we took
32 samples from genoptype information used in figure
2 supplementary data of Kang et al. [6], as the source
of multi-sample genotype likelihoods for simulation (see
“Data simulation” in Methods). We ran simulation tests
using our scSplit tool and used the distinguishing vari-
ants to identify the individual donor for each cluster.
In order to assess the accuracy of the method, we cal-
culated both the proportion of cells from each cluster
which were correctly assigned to it among the true cor-
rect number of cells in each cluster (True Positive Rate
or TPR), as well as the proportion of cells assigned to
a cluster which were incorrect against the total assigned
cells (false discovery rate or FDR). We also report the
average TPR and average FDR. We obtained very high
overall TPR (0.97) and low FDR (less than 1e−4) for
from 2- to 32-mixed samples, with very accurate dou-
blet predictions (Table 1, Fig. 1a). To test the limit of
our tool on genotype difference, we downloaded three
pairs of full sibling genotypes from the UK Biobank and
simulated pooled samples by mixing one pair at a time,
the average singlet TPR was beyond 0.87 (Table S2 in
Additional file 2).

scSplit performed similarly well to demuxlet in
demultiplexing merged individually sequenced three
stromal samples
We then tried running scSplit on a manual merging of
three individually sequenced samples. We merged the
BAM files from three individual samples (Methods). In
order to create synthetic doublets, we randomly chose
500 barcodes whose reads were merged with another
500 barcodes. We ended up with 9067 singlets and 500
doublets, knowing their sample origins prior to merging.
Both scSplit and demuxlet [6] pipelines were run on the
merged samples, and the results were compared with the
known individual sample data. We observed high concor-
dance of singlet prediction between both tools (TPR/FDR:
0.94/0.02 vs 0.93/0.02), and a better doublet prediction
from scSplit compared to demuxlet (TPR/FDR: 0.65/0.04
vs 0.66/0.47) (Fig. 1b and Table 2). We then downsampled
the mixed sample to 2800 reads per cell in order to test the
performance under low sequencing depth and the over-
all result was still good (TPR = 0.91, FDR = 0.03), which
indicated that scSplit can work under shallow read depth.

scSplit predictions highly consistent with known source of
hashtagged and pooled eight PBMC samples
Next, we tested scSplit on a published scRNA-seq dataset
(GSE108313) which used cell-hashing technology to mark
samples of the cells before multiplexing [4]. We ran
through the scSplit pipeline with the SNVs filtered by
common SNVs provided on The International Genome
Sample Resource (IGSR) [9].
According to the scSplit pipeline, distinguishing vari-

ants were identified, and the P/A matrix was generated to
assign the cells to clusters (Methods). We then extracted
the reference and alternative allele absence information at
these distinguishing variants from the sample genotypes
and generated a similar P/A matrix. Both matrices were
compared so that clusters weremapped to samples (Figure
S1 in Additional file 1).
Our results were highly consistent with the known cell

hashing tags (Table 3). We saw higher TPR for singlets
in scSplit (0.98) than demuxlet (0.79) and similar singlet
FDRs (0.10 vs 0.13). Although the doublet TPR of scSplit
(0.35) was lower than for demuxlet (0.65), the doublet FDR
(0.28) was better than demuxlet (0.46). If the expected
number of doublets was selected higher, cells with largest
read depth could be moved from singlet clusters to the
doublet cluster to increase the TPR for doublets with a
decrease of TPR for singlets.
We also compared the performance of overall P/A

genotyping matrices generated based on scSplit and
demuxlet predictions against that from the known geno-
types (“Alternative allele presence/absence genotyping for
clusters” section of Methods). The results show that geno-
types inferred from both scSplit and demuxlet predictions

https://github.com/jon-xu/scSplit_paper_data
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Table 1 Overview of accuracy and performance of scSplit on simulated mixed samples, with one CPU and 30GB RAM

Simulation sim2 sim3 sim4 sim8 sim12 sim16 sim24 sim32

Mixed samples 2 3 4 8 12 16 24 32

Number of cells 12 383 12 383 12 383 12 383 12 383 12 383 12 383 12 383

Reads per cell 4 973 4 973 4 973 4 973 4 973 4 973 4 973 4 973

Informative SNVs 34 116 34 116 34 116 34 116 34 116 34 116 34 116 34 116

Assigning cells 41 min 41 min 46 min 47 min 1h54m 2h11 2h33 2h55

Singlet TPR 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96

Singlet FDR 0 9E−5 9E−5 9E−5 0 0 5E−3 8E−3

Doublet TPR 0.997 0.997 0.997 0.997 0.997 0.997 0.995 0.997

Doublet FDR 0 0 0 0 0 0 0 0

Cohen’s Kappa 1.0 1.0 1.0 1.0 1.0 1.0 0.97 0.98

We used PBMC donor B [2] and genotype data from demuxlet [6] as simulation templates

have good concordance with sample genotypes (Table S1
in Additional file 2).

Comparing scSplit with demuxlet on more pooled
scRNA-seq samples
We ran scSplit with common SNV filtering on published
data from the demuxlet paper [6]. By taking demuxlet pre-
dictions as ground truth, we achieved high singlet TPR
(0.80), although the doublet prediction of the two tools
were quite distinct to each other (Fig. 2a and Table 4).
We also ran our tool on a set of genotyped and then

pooled fibroblast scRNA-seq datasets. Predictions from
scSplit and demuxlet showed high concordance in singlet
prediction (TPR: 0.93–0.94, FDR: 0.06–0.07), although
not on doublets (TPR: 0.08–0.52, FDR: 0.45–0.92) when
demuxlet was treated as gold standard (Fig. 2b and
Table 5). Mapping between clusters and samples were
recorded (Figure S2 in Additional file 1).

Pooling samples together showed similar effects as
normalizing individually sequenced samples
We further checked the gene expression profiles of the
previously illustrated three individual stromal samples
(Fig. 1b and Table 2). We plotted Uniform Manifold
Approximation and Projection for Dimension Reduction
(UMAP) [10] for non-pooled and pooled scenarios with
and without normalization. The samples were more sepa-
rated from each other in non-pooled and non-normalized
scenario (Fig. 3a), and got less distant for other scenar-
ios including non-pooled but normalized (Fig. 3b), pooled
and non-normalized (Fig. 3c), and pooled and normalized
(Fig. 3d). We calculated Silhouette values for each of the
UMAPs and got 0.28 for Fig. 3a, 0.12 for Fig. 3b, 0.14 for
Fig. 3c, and 0.19 for Fig. 3d. As bigger Silhouette values
indicate larger difference between samples, we could say
both normalization and pooling could reduce the batch
effects between individually sequenced samples. However,

by pooling samples together for sequencing could mini-
mize the potential information loss during normalization.

Discussion
We developed the scSplit toolset to facilitate accurate,
cheap, and fast demultiplexing of mixed scRNA samples,
without needing sample genotypes prior tomixing. scSplit
also generates a minimum set of alleles (as few as the
sample numbers), enabling researchers to link the result-
ing clusters with the actual samples by comparing the
allele presence at these distinguishing loci. When prede-
fined individual genotypes are not available as a reference,
this can be achieved by designing a simple assay focused
on these distinguishing variants (such as a Massarray or
multiplexed PCR assay). Although the tool was mainly
designed for droplet-based scRNA-seq, it can also be
used for scRNA-seq data generated from other types of
scRNA-seq protocols.
We filtered out indels, MNPs, and complex rearrange-

ments when building themodel andwere able to show that
SNVs alone provide adequate information to delineate
the differences between multiple samples. As an alterna-
tive to using allele fractions to model multiple samples,
genotype likelihoods could also be used for the same pur-
pose; however, more memory and running time would
likely be needed, especially when barcode numbers in
mixed sample experiments increase. Our tests showed
no discernable difference in accuracy between these two
methods.
The current version of scSplit assumes that the number

of mixed samples is known. It is possible to run the scSplit
tool for different sample numbers and compare the model
log-likelihoods to select themost likely number of samples
being modeled, but this would require significant com-
putational resources and time. Alternatively, the reference
and alternative allele counts in different samples and the
size of the doublet cluster could be used to determine the
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Fig. 1 Results on simulated, merged hash-tagged scRNA-seq datasets confirmed scSplit a useful tool to demultiplex pooled single cells. a Confusion
matrix showing scSplit demultiplexing results on simulated 2-, 3-, 4- and 8-mix; b TPR and FDR of for singlets and doublets predicted by scSplit and
demuxlet compared to known truth before merging; c TPR and FDR of for singlets and doublets predicted by scSplit and demuxlet compared to cell
hashing tags

sample number. Further optimization of the tool would be
needed to effectively implement these options.
Although scSplit was mainly tested on human samples,

it can also be applied to other organisms and is espe-
cially useful for those species without dense genotyping
chips available. We also expect the application of scSplit
in cancer -related studies, to distinguish tumor cells from
healthy cells, as well as to distinguish tumor sub-clones.

Conclusions
scSplit is an accurate, fast, and computationally efficient
method with which to conduct demultiplexing of individ-
ual cells from pooled samples of scRNA-seq. In the next
version, we plan to enable auto-detection of the mixed
sample number, which will help to broaden the applica-
tion of our tool to more biological and medical research
areas, including but not limited to, distinguishing mixed
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Table 2 Comparison of scSplit and demuxlet performance in
demultiplexing merged three individually genotyped stromal
samples (TPR true positive rate, FDR false discovery rate); Total cell
numbers: 9567; Reads per cell: 14,495; Informative SNVs: 63,129;
Runtime for matrices building: 67 min, Runtime for cell
assignment: 55 min

Predictions vs Truth TPR FDR Cohen’s Kappa

scSplit Singlet 0.94 0.02 0.95
Doublet 0.65 0.04

demuxlet Singlet 0.93 0.02 0.77
Doublet 0.66 0.47

infections, delineating tumor sub-clones and sequence
analysis in non-model organisms.

Methods
All relevant source code is available at https://github.com/
jon-xu/scSplit/.

Overview
The overall pipeline for the scSplit tool includes seven
major steps (Fig. 4):

1 Data quality control and filtering: The mixed sample
BAM file is first filtered to keep only the reads with a
list of valid barcodes to reduce technical noise.
Additional filtering is then performed to remove
reads that meet any of the following: mapping quality
score less than 10, unmapped, failing quality checks,
secondary or supplementary alignment, or PCR or
optical duplicate. The BAM file is then marked for
duplication, sorted and indexed.

2 SNV calling (Fig. 4a): Freebayes v1.2 [11] is used to
call SNVs on the filtered BAM file, set to ignore
insertions and deletions (indels), multi-nucleotide
polymorphisms (MNPs), and complex events. A
minimum base quality score of one and minimum
allele count of two is required to call a variant. The
output VCF file is further filtered to keep only SNVs
with quality scores greater than 30.

Table 3 Comparison of scSplit and demuxlet performance in
demultiplexing hashtagged and multiplexed eight individually
genotyped PBMC samples (TPR true positive rate, FDR false
discovery rate); total cell numbers: 7932; reads per cell: 5835;
informative SNVs: 16,058; runtime for matrices building: 35 min,
runtime for cell assignment: 20 min

Predictions vs Truth TPR FDR Cohen’s Kappa

scSplit Singlet 0.98 0.13 0.75

Doublet 0.35 0.28

demuxlet Singlet 0.79 0.10 0.74

Doublet 0.65 0.46

3 Building allele count matrices (Fig. 4b): The
“matrices.py” script is run which produces two .csv
files, one for each of reference and alternate allele
counts as output.

4 Model initialization (Fig. 4c): find the distinct groups
of cells in the scRNA-seq and use them to initialize
the Allele Fraction Model (SNVs by samples).

5 E-M iterations till convergence (Fig. 4d): Initialized
allele fraction model and the two allele count
matrices are used together to calculate the probability
of each cell belonging to the clusters. After each
round, allele fraction model is updated based on the
probability of cell assignment and this is iterated until
overall likelihood of the model reaches convergence.

6 Alternative presence/absence genotypes (Fig. 4e):
matrix indicating cluster genotypes at each SNV is
built in this step.

7 Find distinguishing variants for clusters and use to
assign samples to clusters (Fig. 4f): In order to assign
each model cluster back to the specific sample,
distinguishing variants are identified so that
genotyping of the least number of loci using the a
suitable platform may be performed. Gram-Schmidt
orthogonalization [12] is used to get the minimum
set of informative P/A genotypes.

Data quality control
Samtools was used to filter the reads with verified bar-
codes for mapping and alignment status, mapping quality,
and duplication (samtools view -S -bh -q 10 -F 3844
[input] >[output]). Duplicates were removed (samtools
rmdup [input] [output]) followed by sorting and indexing.

SNV calling on scRNA-seq dataset
SNVs were called on the scRNA-seq mixed sample BAM
file with freebayes [11], a widely used variant calling
tool. The freebayes arguments “-iXu -q 1” were set to
ignore indels and MNPs and exclude alleles with support-
ing base quality scores of less than one. This generated
a VCF file containing all SNVs from the mixed sample
BAM file. Common SNPs of a population (for example
results from The international Genome Sample Resource
[9]) were recommended be used to filter out noisy
SNVs.

Building allele count matrices
Allele count matrices were then built from (1) the pro-
vided mixed sample BAM file and (2) the VCF file
obtained from the SNV calling program. Two allele count
matrices were generated, one for the reference alleles and
one for the alternate alleles, each with SNVs in rows and
barcodes in columns. Each data element in the matrix
indicated either the number of reference or alternate alle-
les detected in one cell barcode at that specific SNV

https://github.com/jon-xu/scSplit/
https://github.com/jon-xu/scSplit/
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Fig. 2 Results of scSplit on pooled PBMC scRNA-seq and that on a set of pooled fibroblast samples. a Singlet TPR and FDR compared to demuxlet
predictions on pooled PBMC scRNA-seq. b Violin plot of singlet TPR and FDR for five 7- or 8-mixed samples based on scSplit vs demuxlet

position. This provided a full map of the distribution of
reference and alternate alleles across all barcodes at each
SNV.
The allele count matrices captured information from

all reads overlapping SNVs to reflect the different allele
fraction patterns from different barcodes or samples. To
build the allele count matrices, pysam fetch [13] was used
to extract reads from the BAM file. The reads overlap-
ping each SNV position were fetched and counted for
the presence of the reference or alternate allele. In order
to increase overall accuracy and efficiency, SNVs whose
GL(RA) (likelihood of heterozygous genotypes) was lower

Table 4 Comparison of scSplit and demuxlet performance in
demultiplexing multiplexed eight individually genotyped PBMC
samples (TPR true positive rate, FDR false discovery rate); total cell
numbers: 6145; reads per cell: 33,119; informative SNVs: 22,757;
runtime for matrices building: 45 min; runtime for cell
assignment: 35 min

scSplit vs demuxlet TPR FDR Cohen’s Kappa

Singlets 0.80 0.18 0.63

Doublets 0.12 0.92

than log10(1 − error) where error = 0.01 were filtered
out. These were more homozygous and thus less infor-
mative for detecting the differences between the multiple
samples. The generated matrices were exported

Table 5 Overview of accuracy and performance running scSplit
on five multiplexed scRNA-seq datasets, with one CPU and 30 GB
RAM

scSplit vs demuxlet Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

Mixed samples 7 8 8 8 7

Number of cells 914 8 137 5 165 6 977 7 428

Reads per cell 86 148 16 386 21 265 18 572 19 657

informative SNVs 15 848 26 830 26 162 23 224 41 993

Build matrices 10 min 23 min 18 min 21 min 35 min

Assign cells 4 min 47 min 23 min 45 min 50 min

Singlet TPR 0.94 0.93 0.94 0.93 0.93

Singlet FDR 0.06 0.07 0.06 0.07 0.07

Doublet TPR 0.52 0.17 0.15 0.17 0.08

Doublet FDR 0.48 0.83 0.85 0.83 0.92

Cohen’s Kappa 0.86 0.78 0.68 0.77 0.76

(TPR: True Positive Rate; FDR: False Discovery Rate)
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Fig. 3 Batch effect during sequencing runs found in comparison of individual runs was obvious compared to that in pooled scRNA-seq data. a
UMAP for three individually sequenced samples. b UMAP for three individually sequenced and normalized samples. c UMAP for pooled sequencing
of same three individual samples, samples marked based on demultiplexing results using scSplit. d UMAP for pooled sequencing of same three
individual samples, normalized by total sample reads

Model initialization by using maximally informative cluster
representatives
To initialize the model, initial probabilities of observing
an alternative allele on each SNV position in each clus-
ter were calculated. The overall matrix was sparse and a
dense sub-matrix with a small number of zero count cells
was generated. To do that, cells were first sorted accord-
ing to their number of zero allele counts (sum of reference
and alternative alleles) at all SNVs and SNVs were simi-
larly sorted according to their number of zero allele counts
(sum of reference and alternative alleles) across all cells.
Next, we selected and filtered out 10% of the cells among
those with the most number of zero expressed SNVs and
10% of the SNVs among those where the most number
cells had zero counts. This was repeated until all remain-
ing cells had more than 90% of their SNVs with non-zero
allele counts and all SNVs had non-zero counts in more
than 90% of cells. This subset of matrices was the basis
for the seed barcodes to initialize the whole model. The

sub-matrix was transformed using PCA with reduced
dimensions and then K-means clustering was performed
to split the cell subset into expected number of clusters.
By using the allele fractions on the subset of SNVs in these
initially assigned cells, each cluster of the model could
be initialized. Let N(Ac,v) and N(Rc,v) be the Alternative
and Reference allele counts on SNV v and cell c accord-
ingly, and let pseudoAR be the pseudo allele count for
both Alternative and Reference alleles, and pseudoA be the
pseudo allele count for Alternative alleles, we calculated
P(Av|Sn), the probability of observing Alternative allele on
SNV v in Sample n, according to below equation:

P(Av|Sn) =

[∑
c
N(Ac,v) + pseudoA)

]
[∑

c
N(Ac,v) + ∑

c
N(Rc,v) + pseudoAR

]

(1)
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Fig. 4 The overall pipeline of scSplit tool. a SNV identified based on reads from all cells which have similar or different genotypes. b Alternative and
reference allele count matrices built from each read in the pooled-sequenced BAM at the identified informative SNVs. c Initial allele fraction model
constructed from the initial cell seeds and their allele counts. d Expectation-maximization process to find the most optimized allele fraction model,
based on which the cells are assigned to clusters. e Presence/Absence matrix of alternative alleles generated from the cell assignments. fMinimum
set of distinguishing variants found to be used to map clusters with samples

We also initiated the probability of seeing the nth sam-
ple as evenly distributed across all samples. Let P(Sn) be
the probability of seeing the n-th sample, and N(S) be the
number of samples to be demultiplexed:

P(Sn) = 1
N(S)

(2)

Expectation–maximization approach
The expectation-maximization (EM) algorithm [14] was
used to conduct iterations using the full allele countmatri-
ces (Fig. 4). Each iteration consisted of an E-step to cal-
culated the probability of seeing cells in all clusters, based
on the allele fraction model, and an M-step to use the
new probability of seeing cells in all clusters to update
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the allele fraction model. EM iterations stopped when
convergence was reached, so that the overall probability
of observing the cells, or the reference/alternative alleles
count matrices, was maximized.
During the E-step, the tool first calculated P(Ci|Sn),

the likelihood of observing a cell Ci in sample Sn, which
was equal to the product of the probability of observing
the allele fraction pattern over each SNV, which in turn
equaled to the product of probability of having observed
the count of alternative alleles and probability of having
observed the count of reference alleles. Let ci be the i-th
cell, Sn be the n-th sample, Av be the Alternative allele on
SNV v, and N(A), N(R) be the quantity of Alternative and
Reference alleles:

P(Ci|Sn) = P(Aci ,Rci |Sn)
=

∏
v

[
P(Av|Sn)N(Aci ,v)[ 1−P(Av|Sn)]N(Rci ,v)

]

(3)

And then P(Ci|Sn) was transformed to P(Sn|Ci), the
cell-sample probability, i.e. the probability of a cell Ci
belonging to sample Sn, using Bayes’ theorem, assuming
equal sample prior probabilities (P(S1) = P(S2) = ... =
P(Sn)):

P(Sn|Ci) = P(Ci|Sn)
N∑
x=1

P(Ci|Sx)
(4)

Next, weighted allele counts were distributed to the dif-
ferent cluster models according to the cell-sample prob-
ability, followed by the M-step, where the allele fraction
model represented by the alternative allele fractions was
updated using the newly distributed allele counts, so that
allele fractions at all SNV positions in each sample model
were recalculated:

P(Av|Sn) =
∑
i
N(Ac,v)P(Sn|Ci) + pseudoA∑

i
N(Tc,v)P(Sn|Ci) + pseudoAR

(5)

And the sample probability P(Sn) was also updated by
the newly calculated cell likelihoods:

P(Sn) =
∑
i
P(Sn|Ci)

∑
n

∑
i
P(Sn|Ci)

(6)

The overall log-likelihood of the whole model [15] was
calculated as:

Lmodel =
∑
i
log

∑
n

P(Ci|Sn)

=
∑
i
log

∑
n

∏
v

[
P(Ci,v|Sn,v)P(Sn)

] (7)

Multiple runs to avoid local maximum likelihood
The entire process was repeated for 30 rounds with the
addition of randomness during model initialization and
the round with the largest sum of log likelihood was taken
as the final result. Randomness was introduced by ran-
domly selecting the 10% of cells and SNVs to be removed
from the matrices during initialization from a range of the
lowest ranked cells and SNVs as detailed previously.

Cell cluster assignment
Next, probability of a cell belonging to a cluster P(Sn|Ci)
was calculated. Cells were assigned to a cluster based
on a minimum threshold of P > 0.99. Those cells with
no P(Sn|Ci) larger than the threshold were regarded as
unassigned.

Handling of doublets
During scRNA-seq experiments, a small proportion of
droplets can contain cells from more than one sample.
These so called doublets, contain cells from same or dif-
ferent samples sharing the same barcode, which if not
addressed would cause bias. Our model took these dou-
blets into consideration. During our hidden state based
demultiplexing approach, we included an additional clus-
ter so that doublets could be captured. To identify which
cluster in the model was the doublet cluster in each
round, the sum of log-likelihood of cross assignments was
checked:

P(c is doublet) =
∑
i/∈c

∏
v

[
P(Ci,v|Sc,v)P(Sc)

]
(8)

The sum log-likelihood of cells from all other clusters
being assigned to a specific cluster was calculated for each
cluster in turn and compared. The cluster with the largest
sum log-likelihood of cross assignment was designated as
the doublet cluster. We allow user input on the expected
proportion of doublets. If the expected number of dou-
blets was larger than those detected in the doublet cluster,
cells with largest read depthweremoved from singlet clus-
ters to doublet cluster, so that the total number of doublets
meet expectation as input.

Alternative allele presence/absence genotyping for
clusters
To identify a minimum set of variants, which can distin-
guish between sample clusters, we generated alternative
allele P/A genotype matrix (SNVs by clusters). To do that,
sum of reference and alternate allele counts across all cells
assigned to each cluster were calculated. And for each
SNV and each cluster, “P” was marked if there were more
than 10 alternative allele counts, and “A” for more than 10
reference allele counts but no alternative allele count. "NA"
was set if neither criterion was met.
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Mapping clusters back to individual samples usingminimal
set of P/A genotypes
Based on the P/A matrix, we started from informative
SNVs which had variations of “P” or “A” across clusters
and avoid picking those with “NAs”. Then, unique patterns
involved in those SNVs were derived and for each unique
P/A pattern, one allele was selected to subset the whole
matrix. Next, Gram-Schmidt orthogonalization [12] was
applied on the subset of P/A matrix, in order to find the
variants which can be basis vectors to effectively distin-
guish the clusters. If not enough SNVs were found to
distinguish all the clusters, the clusters were split into
smaller groups so that for each group there was enough
variants to distinguish the clusters within that group. And
to distinguish clusters from different smaller groups, if
the selected variants could not be used to distinguish any
pair of clusters, additional variants were selected from the
whole list of variants where noNAswere involved and P/A
was different between the pair of clusters. Ideal situation
was N variants for N clusters, but it was possible that >N
variants were needed to distinguish N clusters.
As such, the P/A genotyping of each cluster, on the

minimum set of distinguishing variants, could be used
as a reference to map samples to clusters. After run-
ning genotyping on this minimum set of loci for each of
the individual samples, a similar matrix based on sample
genotypes could be generated, by setting the alternative
presence flag when genotype probability (GP) was larger
than 0.9 for RA or AA, or absence flag when GP was
larger than 0.9 for RR. By comparing both P/A matrices,
we could link the identified clusters in scSplit results to
the actual individual samples.
In practice, samples can be genotyped only on the few

distinguishing variants, so that scSplit-predicted clusters
can be mapped with individual samples, while the whole
genotyping is not needed. When the whole genotyping
is available, we also provide an option for users to gen-
erate distinguishing variants only from variants with R2
>0.9, so that they can compare the distinguishing matrix
from scSplit with that from known genotypes on more
confident variants.

Data simulation
To test the consistency of the model, and the perfor-
mance of our demultiplexing tool, reference/alternative
count matrices were simulated from a randomly selected
scRNA-seq BAM file from Zheng et al. [2] and a 32-
sample VCF file used in Fig. 2 supplementary data of Kang
et al. [6]. We assume the randomly selected BAM file had
a representative gene expression profile.
First, data quality was checked and the BAM and VCF

files were filtered. Second, barcodes contained in the
BAM file were randomly assigned to samples in the
VCF file, which gave us the gold-standard of cell-sample

assignments to check against after demultiplexing. Then,
all the reads in the BAM file were processed, that if
a read overlapped with any SNV position contained in
the merged VCF file, its barcode was checked to get its
assigned sample and the probability P(Ac,v) of having the
alternative allele for that sample was calculated using the
logarithm-transformed genotype likelihood (GL) or geno-
type probability (GP) contained in the VCF file. The prob-
ability of an allele being present at that position could then
be derived so that the ALT/REF count at the SNV/barcode
in thematrices could be simulated based on the alternative
allele probability. Let L(AA) and L(RA) be the likelihood
of seeing AA and RA of a certain cell c on a certain SNV v:

P(Ac,v) = 1
2
10[log10 L(RA)] + 10[log10 L(AA)] (9)

Finally, doublets were simulated by merging randomly
chosen 3% barcodes with another 3% without overlap-
ping in the matrix. This was repeated for every single read
in the BAM file. This simulation modeled the number
of reads mapped to the reference and alternative alleles
directly. In our simulations, there were 61 576 853 reads
in the template BAM file for 12 383 cells, which was
equivalent to 4973 rpc.
With the simulated allele fraction matrices, the bar-

codes were demultiplexed using scSplit and the results
were compared with the original random barcode sample
assignments to validate.

Result evaluation
We used both TPR/FDR and Cohen’s Kappa [16] to eval-
uate the demultiplexing results against ground truth. R
package “cluster” [17] was used in evaluating the clusters
on UMAPs in Fig. 3.

Single cell RNA-seq data used in testing scSplit
In Tables 3 and 4, we used published hashtagged data from
GSE108313 and PBMC data from GSE96583. For Tables 2
and 5, endometrial stromal cells cultured from 3 women
and fibroblast cells cultured from 38 healthy donors over
the age of 18 years respectively were run through the
10x Genomics Chromium 3’ scRNA-seq protocol. The
libraries were sequenced on the Illumina Nextseq 500.
FASTQ files were generated and aligned to Homo sapiens
GRCh38p10 using Cell Ranger. Individuals were geno-
typed prior to pooling using the Infinium PsychArray.

Full sibling data from UK biobank used in simulation
In Table S2 in Additional file 2, we used genotype data
of three pairs of full siblings from UK Biobank, which
contained 564 981 SNVs, from which we used 258 077
SNVs within gene ranges, provided on the resource web-
site of plink [18]: https://www.cog-genomics.org/plink/1.
9/resources.

https://www.cog-genomics.org/plink/1.9/resources
https://www.cog-genomics.org/plink/1.9/resources
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