

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

LAGEOS 1/2

Low Earth Orbiter

Realization of reference frames based on integrated SLR measurements to LEO and LAGEOS satellites

Dariusz Strugarek¹, Krzysztof Sośnica¹, Daniel Arnold², Adrian Jäggi^{2,} Grzegorz Bury¹, Radosław Zajdel¹ ¹ Institute of Geodesy and Geoinformatics, WUELS, Poland ² Astronomical Institute, University of Bern, Switzerland

Motivation

Satellite Laser Ranging (SLR) measurements to passive geodetic satellites (LAGEOS & Etalon) are used for the realization of reference frames (e.g. ITRF2014)

GNSS or active Low Earth orbit (LEO) satellites are equipped with retroreflctors, which allow for SLR measurements

Motivation

International Laser Ranging Service (ILRS) initiates a series of intense tracking campaigns for GNSS and LEO satellites

PERCENTAGE OF SLR OBSERVATIONS (NORMAL POINTS) TO PARTICULAR SATELLITE TYPES IN 2017

Only 9% of all SLR measurements are used currently for the reference frames realization, determination of Earth rotation parameters (ERP), and geocenter coordinates

SLR measurements

SWARM-A/B/C

GRACE-A/B

Jason-2

SLR

TerraSAR-X

SENTINEL-3A

orbit validation

- ESA, NASA, EUMETSAT, GFZ DLR, CNES
- active Low Earth Orbit satellites
- GNSS receivers onboard
- satellites with different weight, shape, equipment, orbit parameters
- precise GPS-based orbits and attitude data

Active satellites

LAGEOS-1, LAGEOS-2

- NASA and ASI
- used for relativistic effects, gravity field, geodynamics, ERP, geocenter coordinates
 research by SLR measurements
- passive, spherical, geodetic satellites, with low area-to-mass ratio
 - eqiupped with 426 retroreflectors dedicated for SLR technique

station coordinates, geocenter coordinates, ERP, scale, relativistic effects validation

LEOs GNSS- and SLR- based analysis

Solution tests– SLR to LEOs

Solution tests: different network and parameters constraining ^{(II}) and a different number of accumulated 1-day orbit combination

Test1: network constraining: nonet-translation (NNT) no-netrotation (NNR) with estimation of parameters

Test2: network constraining: nonet-translation (NNT) no-netrotation (NNR) without estimation of parameters

SLR station coordinates

Test3: no network constraining and without estimation of parameters

SLR station coordinates

Time span: 2016-2017

LEO satellites (fixed GPS-based orbits)

The issue of the reference frame differences

Test 1 with NNT/NNR constraints

GNSS – IGS14 integrated around Center-of-Figure (CoF)

SLR sites in <u>SLRF2014</u> (CoF by NNT/NNR)

LEO – IGS14, but pseudostochastic orbit parameters are estimated –> larger flexibility, close representation of the Earth's Center-of-Mass (CoM)

Test 3 no network constraints

GNSS – IGS14 integrated around Center-of-Figure (CoF)

SLR sites IGS14 (reference frame transferred through LEO orbits)

LEO – IGS14, reduced

In SLR-PPP (test3) SLR station coord. are in <u>IGS14</u>

CoM vector w.r.t. CoF represents geocenter motion, but to what extent IGS14 and SLRF2014 are consistent

VIRONMENTAL AND LIFE SCIENCES

Importance of proper SLR station bias calibration for LEOs

Example of SLR residuals to Sentinel-3A GPS based orbits without and with bias calibration

Each satellite requires different bias correction

TEST 1: A different constraining for LEOs

25 NNT/NNR, parameters est. median values for all (36) SLR stations NNT/NNR, no parameters est. 20 no NNT/NNR, no parameters est. [mm] 15 NOI 10 5 0 Up East North 25 NNT/NNR, parameters est. median values for core SLR stations NNT/NNR, no parameters est. 20 no NNT/NNR, no parameters est. QR [mm] 15 10 5 0 Up East North

Station coordinates (w.r.t ITRF2014)

The positioning of **all SLR stations** with the accuracy at the level of **less than 22 mm**, even without network constraining

The positioning of **core SLR stations** with the accuracy at the level of **10 mm is possible!** Even without network constraining (blue) provides proper station coordinates (8-12mm-top sites)

Core stations: Yarragadee, Greenbelt, Matera, Hartebeesthoek, Haleakala, Zimmerwald, Mt Stromlo, Graz, Herstmonceux, Potsdam

TEST 2: A different number of accumulated 1-day orbits- LEO

Different number of accumulated orbits median values for all (36) stations

Combined solution results and comparision

Station coordinates (w.r.t ITRF2014)

Determination strategy:

- NNT/NNR with estimation of parameters
- 7-day accumulated orbits
- Introduction of annual range bias for LEOs in all solutions
- Weighting of observations in LAG+LEO solution (σ =10mm for LAG, σ =20mm for LEOs)

SLR sites statistics

- LEOs are slightly better for the Up component
- LAGEOS is better for the horizontal components
- Best results for all components in the combined solution

Number of obs. increase

LEO
LAG
LAG+LEO

LEOs-only solutions when LAGEOS not trackednumber of obs. increase

Station coordinate repeatability for Yarragadee falls between 5 and 11 (IQR) mm for individual components.

SLR stations have been providing **observations to a large number** of new active **LEOs and GNSS**

SLR observations to active LEO satellite require a proper station bias calibration

SLR data and high-quality GPS-based orbits of LEOs allow for the determination of **station coordinates with the accuracy of 10 mm** (core sites), even without network constraining

Reference frame realization based on SLR measurements to LEOs is possible Best results are obtained from the combined LAGEOS+LEOs solution

WROCŁAW UNIVERSITY OF ENVIRONMENTAL **AND LIFE SCIENCES**

BERN

Dariusz Strugarek e-mail: dariusz.strugarek@upwr.edu.pl