

27.12.2020

downloaded:

https://doi.org/10.7892/boris.137780

source:

Surgical Treatment of Periimplantitis With Augmentative Techniques

Ausra Ramanauskaite, DDS,* Karina Obreja, DDS, Dr. med.dent.,† Robert Sader, Prof., Dr.med.dent.mult,‡ Fouad Khoury, DDS; Dr. med. dent, PhD, Georgios Romanos, DDS, Dr. med.dent., PhD, Ki Tae Koo, DDS, MS, PhD, # Philip Leander Keeve, DMD, Dr. med.dent,** Anton Sculean, DMD, Dr. med. dent, MS, PhD,†† and Frank Schwarz. Prof., Dr. med. dent. ± ±

he diagnosis of periimplantitis describes a pathological condition occurring in tissues around dental implants, characterized by inflammation in the periimplant connective tissue and the progressive loss of supportive bone.1 As substantial evidence supports the bacterial etiology of periimplantitis,2 the treatment of the disease should include anti-infective measures.

Based on the current evidence, nonsurgical treatments, including mechanical debridement with or without adjunctive (ie, local antibiotics, antimicrobial photodynamic therapy) or alternative measures (eg, air abrasive devices, Er:YAG laser monotherapy), have demonstrated

*Research Associate, Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany, Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.
†Oral Surgeon, Department of Oral Surgery and Implantology, Carolinum, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany.

Carolinum, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany.

‡Professor, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt Am Main, Germany,

§Director, Private Dental Clinic Schloss Schellenstein, Olsberg, Germany, Professor, Department of Oral and Maxillofacial Surgery, University of Muenster, Gemany,

¶Professor, Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY.

#Professor, Department of Periodontology, Dental Research Institute, School of Dentistry, Seoul, Republic of Korea.

*Head, Department of Periodontology, Private Dental Clinic Schloss Schellenstein, Olsberg, Germany,

††Professor, Chairman, Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.

of Dental Medicine, University of Bern, Bern, Switzerland. ‡‡Professor, Chairman, Department of Oral Surgery and Implantology, Carolinum, Johann Wolfgang Goethe-University Frankfurt, Frankfurt, Germany.

Reprint requests and correspondence to: Ausra Ramanauskaite, DDS, Department of Oral Surgery and Implantology, Carolinum, Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany, Phone:+49 69 6301 7924, Fax: +49 69 6301 3829, E-mail: Ramanauskaite@med.uni-frankfurt.de

ISSN 1056-6163/19/02802-187 Implant Dentistry
Volume 28 • Number 2
Copyright © 2019 Wolters Kluwer Health, Inc. All rights

DOI: 10.1097/ID.00000000000000839

Objectives: To address the focused question: "In patients with osseointegrated implants diagnosed with periimplantitis, what are the clinical and radiographic outcomes of augmentative surgical interventions compared with nonaugmentative surgical measures"?

Material and Methods: Literature screening was performed in MEDLINE through the PubMed database, for articles published until January 1, 2018. Human studies reporting on the clinical (ie, bleeding on probing [BOP] and probing depth [PD] changes) and/or radiographic (ie, periimplant defect reduction and/ or fill) treatment outcomes after surgical augmentative periimplantitis therapy, and/or comparing augmentative and nonaugmentative surgical approaches were searched.

Results: Thirteen comparative and 11 observational clinical studies

were included. Surgical augmentative periimplantitis therapy resulted in mean BOP and PD reduction ranging from 26% to 91%, and 0.74 to 5.4 mm, respectively. The reported mean radiographic fill of intrabony defects ranged between 57% and 93.3%, and defect vertical reduction varied from 0.2 to 3.77 mm. Three randomized controlled clinical studies failed to demonstrate the superiority of augmentative therapy compared with nonaugmentative approach in terms of PD and BOP reduction.

Conclusions: The available evidence to support superiority of augmentative surgical techniques for periimplantitis management on the treatment outcomes over nonaugmentative methods is limited. (Implant Dent 2019;28:187-209)

Key Words: periimplant disease, regeneration, management, augmentation

limited efficacy for the management of periimplantitis and were particularly compromised at advanced defect sites.^{3,4} These findings may be mainly attributed to the limit access of nonsurgical measures to advanced pockets and the inability to completely remove bacterial deposits from structured implant surfaces.

In contrast, surgical interventions have been shown to improve the efficacy of periimplantitis treatment.⁴ They provide better access to the periimplant defect, which, in turn, allows for a more effective implant surface decontamination.⁴ Although nonaugmentative surgical treatment approaches including open-flap debridement (OFD) alone or with adjunctive resective therapy (eg, pocket eliminabone recontouring, implantoplasty) primarily aims at resolving inflammation and arresting the further progression of the disease, augmentative treatments additionally seek to reconstruct the osseous defect compartment.⁵

Numerous augmentation protocols using various methods for surface decontamination, along with autogenous bone and various bone replacement materials with or without barrier membranes, have been proposed for the management of periimplantitis. Until now, it remains difficult to draw conclusions concerning which augmentative protocol is superior as well as to evaluate its clinical efficacy over nonaugmentative treatments.^{6,7}

Therefore, the aim of the present review is to evaluate the existing evidence regarding the effectiveness of surgical augmentative therapy for periimplantitis management and to compare it with nonaugmentative therapy alone.

MATERIALS AND METHODS

The reporting of this systematic analysis adhered to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement.⁸

Focus Questions

The following questions were developed according to the population, intervention, comparison, and outcome (PICO) study design:

"In patients with osseointegrated implants diagnosed with periimplantitis, what are the clinical and radiographic outcomes of augmentative surgical interventions compared with nonaugmentative surgical measures?"

Population: Patients diagnosed with periimplantitis based on case definitions used in respective publications;

Intervention: Surgical augmentative periimplantitis measures;

Comparison: Surgical nonaugmentative measures.

Outcomes: *primary*: changes in clinical parameters (ie, bleeding on probing [BOP %] and periimplant probing depth [PD {mm}]; *secondary*: radiographic defect fill [%] and/or defect reduction (mm).

Search Strategy

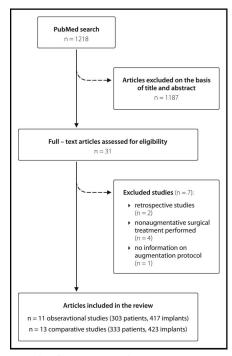
A literature search was performed in MEDLINE through the PubMed database of the US National Library of Medicine, for articles published until January 1, 2018. The combination of

Medical Subject Heading search terms (ie, MeSH) and free-text terms included:

"peri-implant disease" OR "peri-implant disease" OR "peri-implant infection" OR "peri-implant infection" OR "peri-implantitis" OR "Peri-implantitis (MeSH)"

AND

"treatment" OR "surgical treatment" OR "regenerative treatment" OR "augmentative treatment" OR "augmentative therapy" OR "surgical therapy" OR "regenerative therapy" OR "reconstructive treatment" OR "reconstructive therapy" OR "augmentative therapy" OR "augmentative treatment".


Selection of Studies

Two independent reviewers (A.R. and K.O.) conducted the literature search. Disagreements regarding inclusion during the first and second stages of the study selection were resolved by discussion.

During the first stage of study selection, the titles and abstracts were screened and evaluated according to the following inclusion criteria:

- 1. Prospective, randomized, controlled clinical trials (RCTs), case-control studies, prospective cohort studies, cross-sectional studies, and case series in humans reporting changes in clinical parameters (ie, BOP and PD), and/or presenting radiographic data (defect reduction [mm] and/or defect fill) after surgical augmentative treatment and/or comparing augmentative and nonaugmentative surgical approaches with a follow-up of at least 3 months;
- 2. Studies that include patients with at least one osseointegrated implant affected by periimplantitis;
- 3. Studies describing the definition of periimplantitis;
- 4. Studies presenting a surgical augmentative intervention aimed at the treatment of periimplantitis;
- 5. Publications in English language in an international, peer-reviewed journal.

At the second stage of selection, all full-text articles identified during the first stage were acquired and evaluated according to the following exclusion criteria:

Fig. 1. The flowchart presenting literature search.

Table 1. Study and Patient Chara	cteristics: Comparative Studies			
Author	Ctudu Docion	Coop Definition (Defeat Time)	Fallow up Davied	No. of Patients/
Khoury and Buchmann	Study Design Controlled clinical study	Case Definition (Defect Type) Bone loss >50% of implant length +	Follow-up Period 3 y	Implants 25/41
2001 ³⁴	Softe once on near study	intrabony crater-form defect	O y	Test 1: 20 implants Test 2: 9 implants Control: 12 implants
2. Deppe et al, ³⁹ 2007	Controlled clinical study	PD ≥5 mm + BOP + progressive vertical bone loss	5 y	16/32 Test: 9/17 Control: 7/15
3. Schwarz et al, ^{23,41,42} 2006, 2008, 2009	RCT	PD >6 mm, BOP/pus + intrabony component >3 mm	4 y	20/21 Test: 9/9 Control: 10/11
4. Schwarz et al, ²⁶ 2010	Controlled clinical study	PD >6 mm + BOP/pus + intrabony defect component >3 mm + supracrestal component ≤1 mm	12 mo	27/27 Test lb: 9/9 lc: 9/9 Control: 9/9
5. Aghazadeh et al, ²² 2012	RCT	PD ≥5 mm + BOP/Pus + radiographic bone loss ≥2 mm + angular periimplant bone defect ≥3 mm	12 mo	45/71 Test: 23/37 Control: 22/34
6. Wohlfahrt et al, ¹⁸ 2012	RCT	PD ≥5 mm + BOP + 1-, 2-, 3-wall intrabony defects ≥4 mm depth	12 mo	32/32 Test: 16/16 Control: 16/16
7. Andersen et al, ¹⁹ 2017	RCT (Wohlfahrt et al Continuum)		7 y	12/12 Test: 6/6 Control: 6/6
8. Roos-Jansaker et al, ^{32,33,43} 2007, 2011, 2014	Controlled clinical study	Bone loss >3 threads (≥1.8 mm) 1-4 intrabony defect + BOP and/or pus	5 y	25/45 Test: 13/23 Control: 12/22
9. Jepsen et al, ²⁰ 2016	RCT	PD ≥5 mm + BOP/pus + intraosseous circumferential 3-wall defects ≥3 mm depth, defect angle ≤35°	12 mo	63/63 Test: 33/33 Control: 30/30
10. Guler et al, ²⁵ 2016	Controlled clinical study	PD >5 mm + BOP/pus Class lb defects (vestibular dehiscence +	6 mo	24/35 Test: 18/19 Control: 6/16
		circumferential bone resorption) Class Ic defects (vestibular dehiscence + circumferential bone resorption) Class Id defects (circumferential bone resorption)		Control. 6/16
11. Isehed et al, ³⁷ 2016	RCT	$PD \ge 5 \text{ mm} + BOP/pus + angular bone loss}$ $\ge 3 \text{ mm}$	12 mo	29/29 Test: 15/15 Control: 14/14

Table 1. (Continued)					
Author	Study Design	Case Definition (Defect	Type)	Follow-up Period	No. of Patients/ Implants
12. Schwarz et al, ^{21,44–46} 2011, 2012, 2013, 2017	RCT F	PD ≥6 mm + BOP/pus intrabo component > 3 mm + supr component >1 mm		7 y	15/15 Test: 6/6 Control: 9/9
13. Roccuzzo et al, ^{38,47} 2011, 2017	Controlled clinical study F	$PD \ge 6 \text{ mm} + \text{crater-like intral}$	oony defects	7 y	26/26 Test: 12/12 Control: 14/14
		Age Mean ± SD,			
Author	Implant Type	(Range), y	Sex, Female/Ma	ale Patient S	moking Status
1. Khoury and Buchmann 2001 ³⁴	IMZ and F2 implants (Friadent GmbH, Mannheim, Germany)	48.2 ± 6.3	22/3	No information	
2. Deppe et al, ³⁹ 2007	IMZ; Frialit-2, Brånemark implants, Nobe Biocare, Straumann		No information	No information	
2008, 2009	Brånemark, Camlog, ITI (TPS and SLA), MTX, TSV, ZL	54.4 ± 12.5 y	14/8	1 patient light smol	ker (<10 cig./d)
4. Schwarz et al, ²⁶ 2010	Brånemark, Camlog, ITI, TSV (Tapered Screw Vent)	48.5 ± 14.6	No information	Included nonsmoke (<10 cig./d)	ers and light smokers
5. Aghazadeh et al, ²² 2012	Implamed, Nobel Biocare, Straumann, TlUnite, nonidentified.	Test: 67.0 ± 7.5	27/18	Smokers: Test: 69.6%	
		Control: 70.1 ± 6.2		Control: 40.9%	
6. Wohlfahrt et al, 18 2012	Astra Tech, Nobel Biocare (Nobel Mark Nobel Replace), Straumann, Frialit	III, Test: 65.0 ± 10.0	13/19	Smokers: Test: 6 (37.5%)	
	(Dentsply Friadent)	Control: 57.2 ± 12.3		Control: 10 (58.8%)
7. Andersen et al, 19 2017		Test: 67 ± 12.9 Control: 67.2 ± 11.8	5/7	Smokers or former patients (83%)	smokers: 10/12
8. Roos-Jansaker et al, ^{32,33,43} 2007, 2011, 2014	Brånemark implants	Test: 64.9 ± 7.5	14/11	Current smokers: Test: 10 (76.9%)	
		Control: 65.7 ± 7.4		Control: 8 (66.7%) Former smokers: Test: 2 (15.4%)	
				Control: 3 (25%) Never smoked:	
				Test: 1 (7.7%) Control: 1 (8.3%)	

		Age Mean ± SD,		
Author	Implant Type	(Range), y	Sex, Female/Male	Patient Smoking Status
9. Jepsen et al, ²⁰ 2016	Ankylos, Astra, Dyna, Friadent Xive, Nobel Biocare, SIC Invent, Straumann, Tri-Max, TMI; Zimmer, Biomet 3i	Test: 57.5 ± 12.6 Control: 59.1 ± 12.2	27/36	Current smokers: Test: 11 (33.3%) Control: 7 (23.3%) Former smokers: Test: 9 (27.3%) Control: 11 (36.7%) Nonsmokers: Test: 13 (39.4%) Control: 12 (40.0%)
10. Guler et al, ²⁵ 2016	Zimmer, Adin Global, MIS-Implants, ITI, Ankylos, Dentsply Friadent, Xive (Dentsply), nonidentified	45.36 ± 14.1	9/15	Light smokers included (<10 cig.7 d): Test: 3 (18.75%) Control: 3 (50%)
11. Isehed et al, ³⁷ 2016	Nobel turned, Nobel TiUnite, Astra, Straumann SLA, 3i	Test: median 70.0 (61-81)	Test: 9/6 Control: 9/5	Current smokers: Test: 4 (26.7%) Control: 6 (42.9%)
12. Schwarz et al, ^{21,44–46} 2011, 2012, 2013, 2017	Astra Tech, Brånemark, Nobel Biocare, Camlog, ITI, KSI Bauer Schraube, REP Nobel Replace, Tapered Screw Vent, Zimmer, Dentsply Friadent, nonidentified	Control: median 73.5 (67–83) Median: 63	11/4	No information
13. Roccuzzo et al, ^{38,47} 2011, 2017		60 ± 7.9	14/10	4 smokers (33%)

SLA, sandblasted and acid-etched; TPS, titanium plasma-sprayed.

Copyright © 2019 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

2019

Table 2. Study and Patient Cha	aracteristics: Observational St					
A calle a ca	Otrock Decim	,	D D-fi-H (D-f+ T-	\	Fallers and Deviced	No. of Patients
Author	Study Design		Case Definition (Defect Ty	. ,	Follow-up Period	Implants
1. Behneke et al, ³⁵ 2000	Prospective study	bone defect	essive crater-like or sauce		6 mo-3 y	17/25
2. Haas et al, ³⁶ 2000	Observational study		n (redness, swelling, secr bone loss. Narrow vertic		9.5 mo	17/24
3. Roos-Jansaker et al, ³² 2007	Case series	Progressive bone los year of healing + E	ss of 3 threads (1.8 mm) BOP/pus	or more after the first	12 mo	12/16
4. Romanos et al, ²⁹ 2008	Case series	Deep periimplant intr	abony defects followed b	by bleeding and	27.10 (17.83) mo	15/19
5. Wiltfang et al, ⁴⁰ 2010	Prospective case series		4 mm + circumferential c	rater defect with loss of	f 12 mo	22/36
6. Froum et al, ¹⁷ 2012	Case series		+ bone loss ≥ 3 mm		2–10 y	100/170
7. Matarasso et al, ³⁰ 2013	Prospective case series		$+ \ge 2$ mm of marginal bo	one loss or exposure o		11/11
8. Schwarz et al, ²⁸ 2014	Case series	PD >6 mm + intrabo	ony component > 3 mm	+ radiographic	6 mo	10/13
		middle of the impl	one resorption under ma			
9. Roccuzzo et al, ³¹ 2016	Prospective case series	Crater-like lesion + F	•		12 mo	75/75
10. Rotenberg et al, ²⁴ 2016	Retrospective case series		pus + radiographic bone	loss	12 mo	11/11
11. Nart et al, ²⁷ 2017	Case series	PD > 5 mm + BOP/F	Pus + 2-wall or 3—wall int intraoral radiographs		12 mo	13/17
			Age, Mean ± SD,			
Author	Implan	t Type	(Range), y	Sex, Female/Male	Patient Smok	ing Status
1. Behneke et al, ³⁵ 2000	ITI screw implants		51.7	11/6	No information	
2. Haas et al, ³⁶ 2000	IMZ implants (Friadent,	Mannheim, Germany)	No information	13/4	No information	
3. Roos-Jansaker et al, ³² 2007	Brånemark implants		64.4 ± 6.0, (56–75)		Current smokers: 8 Former smokers: 2 (
					Never smoked: 2 (16	6.7%)
4. Romanos et al, ²⁹ 2008	Ankylos, ITI, IMZ impla		57.21 ± 12.14		No information	
5. Wiltfang et al, ⁴⁰ 2010	Implant type not indica		Range (24–83)		No information	
6. Froum et al, ¹⁷ 2012	Implant type not indica		58.08, (20–83)		19 implants placed i patients, 151—no	nsmokers
7. Matarasso et al, ³⁰ 2013	Tissue-level sandblaste surface implants (St		63.6 ± 8.9	5/6	5 smokers (45%)/6 (55%)	nonsmokers

Table 2. (Continued)				
Author	Implant Type	Age, Mean ± SD, (Range), y	Sex, Female/Male	Patient Smoking Status
8. Schwarz et al, ²⁸ 2014	Brånemark, Camlog, ITI, Nobel Biocare, TSV 55.8 ± 16.6 (Tapered Screw Vent), Zimmer and nonidentified implants	55.8 ± 16.6	5/5	Only nonsmokers or light smokers (<10 cig./d) included
9. Roccuzzo et al, ³¹ 2016	Sandblasted, acid-etched surface implants (Straumann)	57.8 ± 8.5	36/39	11 smokers (15%)
10. Rotenberg et al, ²⁴ 2016	cid-etched surface implants	$61 \pm 5.8, (51-70)$	9/9	Included only nonsmokers
11. Nart et al, ²⁷ 2017	TiUnite (Nobel Biocare), Shot blasting (Klockner), Biomimetics (Avinent), and Laser-lok (Biohorizons).	57.76 ± 6.21, (51–67)	8/5	5 patients (38.5%) light smokers (<10 cig./d)

- 1. Review papers, case reports, letters, editorials, and abstracts on *in vitro* and animal studies;
- Studies not providing data on clinical and/or radiographic data or treatment protocols;
- 3. Studies not providing a definition of periimplantitis;
- 4. Studies published not in international peer-reviewed journal.

The initial electronic search resulted in the identification of 1218 titles (Fig. 1). At the first stage, 1187 publications were excluded based on the title and abstract. At the second stage, the remaining 31 full-text articles were evaluated. The reasons for excluding studies after full-text assessment were as follows: retrospective studies, 8,9 nonaugmentative surgical treatment was performed (n = 4), $^{10-13}$ and information on the augmentation protocol was lacking (n = 1). 14 Finally, 24 studies were identified for inclusion in the review.

Data Collection

Data extraction templates were used to retrieve general information on the study design, periimplantitis case definitions, follow-up periods, number of implants and patients, implant type, patient sex, age, and smoking status (Tables 1 and 2). The treatment methods applied in the test and control groups, the mode of healing (ie, submerged or nonsubmerged), information on the use of systemic antibiotics, and clinical and/or radiographic treatment outcomes are presented in Tables 3 and 4. The mean values and SDs of BOP, PD values, radiographic bone defect fill, or defect reduction after the respective treatment were extracted for the data analysis.

Information on further disease progression/treatment complications and treatment success based on the criteria that the authors used is presented in Tables 3–5.

Quality Assessment

The Cochrane Collaboration's tool for assessing risk of bias was used in the case of controlled clinical trials. ¹⁵ Methodological quality assessment of the observational studies was based on

the Newcastle-Ottawa Quality Assessment Scale for Cohort studies ¹⁶ (Table 6 and 7).

Data Synthesis

Due to the heterogeneity among the studies regarding study designs, treatment protocols applied, and outcome variables, no quantitative analysis was performed.

RESULTS

Presented in Tables 1–4 are 13 comparative and 11 observational clinical studies that reported on the surgical treatment of periimplantitis by using augmentative therapies. The follow-up time ranged from 6 months to 7 years for comparative studies and from 6 months to up to 2 to 10¹⁷ years for observational studies. Out of the 12 comparative clinical studies included, 7 appeared to be randomized controlled clinical trials. 18-23 All controlled clinical studies were judged to have high to unclear risk of bias (Table 6). The included observational studies scored between 5 and 7 stars (out of 9) based on the Newcastle-Ottawa Scale (Table 7).

Patient Characteristics

Five hundred and ninety patients were treated with the augmentative surgical approach. The mean age of the patients ranged from 45.36 to 70.1 years. Seventeen studies (10 controlled and 7 observational studies) reported on the smoking statuses of the patients. Particularly, although one observational study included only nonsmoking patients,²⁴ 5 investigations (3 controlled^{23,25,26} and 2 observational^{27,28}) involved both nonsmokers and light smokers (<10 cig./d). In the rest of the controlled and observational studies, the number of smokers ranged from 23.3% to 76.9%, and from 15% to 66.7%, respectively (Tables 1 and 2).

Implant Characteristics

In total, 840 implants of various surfaces (379 in controlled and 417 in observational studies) were included in the review. Although the majority of the implants had moderately rough surfaces (5 controlled^{18–20,22,25} and 5 observational^{24,27,29–31} studies), 2 studies were conducted with smooth-surface implants

			Treatment			
Author	Presurgical Therapy	Decontamination of Implant Surface	Grafting Material	Membrane	Submerged/ Nonsubmerged Healing	Systemic Antibiotics
1. Khoury and Buchmann 2001	6 mo before surgery nonsurgical implant scaling + irrigation with chlorhexidine (0.2%)	Test 1: 0.2% chlorhexidine digluconate, citric acid (pH = 1) (1 min) and rinsed with H_2O_2 and 0.9% saline	Autogenous bone	Nonresorbable membrane	Submerged	Antibiotics administered 4 w before surgery (for 1 wk), and later starting 1 d and finishing 7 d after surgery
		Test 2: 0.2% chlorhexidine digluconate, citric acid (pH = 1) (1 min) and rinsed with H_2O_2 and 0.9% saline		Resorbable membrane		according to the individua susceptibility test results
		Control: 0.2% chlorhexidine digluconate, citric acid (pH = 1) (1 min) and rinsed with H ₂ O ₂ and 0.9% saline		No membrane		
2. Deppe et al, 2007	Presurgical chlorhexidine application (0.3%) for 3 wk	Test: air polishing + $\mathrm{CO_2}$ laser (cw mode, 2.5 W, 12 \times 5 s) Control: air polishing	Beta tricalcium phosphate combined with autogenous bone chips harvested from the retromolar area (50:50)	Nonresorbable membrane	4 mo submerged	No
3. Schwarz et al, 2006, 2008, 2009	OHI + nonsurgical therapy	Test: mechanical debridement (plastic curettes)	Nanocrystalline hydroxyapatite paste	No membrane	Non-submerged	No
		Control: mechanical debridement (plastic curettes)	Bovine-derived xenograft	Native collagen barrier membrane		
4. Schwarz et al, 2010	Er:YAG laser 4 wk before surgery	Mechanical debridement (carbon curettes) + decontamination with cotton pellets soaked in the sterile saline	Bovine-derived xenograft	Native collagen barrier membrane	Non-submerged	No
	Test: Class Ib°, Class Ic°° Control: Class Ie°°°					
5. Aghazadeh et al, 2012	OHI	Test: mechanical debridement (titanium instruments) + decontamination using H ₂ O ₂ (1 min)	Bovine-derived xenograft	Resorbable synthetic barrier membrane	Non-submerged	Postoperative antibiotics Azithromycin 2 × 250 mg 1 d, 1 × 250 mg 2–4 d
		Control: mechanical debridement (titanium instruments) + decontamination using H ₂ O ₂ (1 min)	Autogenous bone chips harvested from the mandibular ramus region			

Table 3. (Cont	inued)					
			Treatmen	t		
Author	Presurgical Therapy	Decontamination of Implant Surface	Grafting Material	Membrane	Submerged/ Nonsubmerged Healing	Systemic Antibiotics
6. Wohlfahrt et al, 2012	NR	Test: titanium curettes and 24% ethylenediaminetetraacetic acid gel (2 min)	Titanium granules	No membrane	6 mo submerged	Amoxicillin (500 mg 3 times/d) and metronidazole (400 mg 2 times/d) starting 3 d before surgery and continuing 7 d after the surgery
		Control: titanium curettes and 24% ethylenediaminetetraacetic acid gel (2 min)	Open-flap surgery			
7. Andersen et al, 2017 (Continuum Wohlfahrt et al, 2012)	NR	Test: titanium curettes and 24% ethylendiaminetetraacetic acid gel (2 min)	Titanium granules	No membrane		Amoxicillin (500 mg 3 times/d) and metronidazole (400 mg 2 times/d) starting 3 d before surgery and continuing 7 d after the surgery
		Control: titanium curettes and 24% ethylenediaminetetraacetic acid gel (EDTA) (2 min)	Open-flap surgery		6 mo submerged	0 7
8. Roos- Jansaker et al, 2007, 2011, 2014	NR	Test: H ₂ O ₂ (3 min)	Algae-derived xenograft	Resorbable synthetic membrane	Non-submerged	Amoxicillin 375 mg x 3 per d + metronidazole 400 mg x 2 per d, 10 d after the surgery
9. Jepsen et al, 2016	1 mo before surgery OHI ^x + nonsurgical periodontal/periimplant cleaning	Control: H ₂ O ₂ (3 min) Test: rotary titanium brush and 3% H ₂ O ₂ (1 min) followed by rinsing with saline (60 s)	Titanium granules	No membrane No membrane	Non-submerged	Amoxicillin 500 mg 3 times/d + metronidazole 400 mg 2 times/d, 8 d, starting 1 d before surgery
		Control: rotary titanium brush and $3\% H_2O_2$ (1 min) followed by rinsing with saline (60 s)	Open-flap surgery			

Copyright © 2019

Wolters

Kluwer Health,

Inc.

Unauthorized reproduction of this article

is prohibited

Table 3. (Continued)				
		Treatment	Outcomes	
Author	PD Changes (mm) (SD); (Range)	BOP Changes (%) (SD); (Range)	Radiographic Outcomes	Further Disease Progression/ Complications
1. Khoury and Buchmann 2001	Implant level Test 1: 5.4 (3.0) Test 2: 2.6 (1.6) Control: 5.1 (2.7) Significant improvement compared to baseline in all groups (P > 0.001). Significantly less improvement in test 2 group compared to test 1 and the control (P ≤ 0.05)	NR	Radiographic vertical intrabony defect height reduction (mm): 2.8 (3.1) 1.9 (3.2) 2.4 (2.7) Significantly less improvement in test 2 group compared to baseline (P = 0.102). No difference among the groups (P ≤ 0.05).	17 out of 29 barrier-treated implants (58.6%) were compromised by early posttherapy complication (eg, dehiscence, exposure, fistula, or sequester formation)
2. Deppe et al, 2007	Implant level Test: baseline: 5.0 (1.3), after 5 y: 2.5 (1.4). Control: baseline: 4.8 (1.4), after 5 y: 2.5 (1.1). No significant difference between the groups	NR	Radiographic DIB (distance from the implant shoulder to the first bone contact): 4.5 (1.2) mm 4.7 (1.1) mm No significant difference between the groups	Test group: 4 implants were lost due to a chronic inflammation Control group: 4 implants were lost due to a severe infection developed within first weeks after surgery
3. Schwarz et al, 2006, 2008, 2009	Subject level Test: 1.1 (0.3) Control: 2.5 (0.9) Significantly higher at control sites	32 51 Significantly higher at control sites	NR	After 12 mo, 2 patients had to be discontinued due to severe pus formation.
4. Schwarz et al, 2010	lb: 1.6 (0.9) lc: 1.6 (0.7) le: 2.7 (16.7) Significant improvement compared to baseline (P < 0.001) le group tended to reveal higher mean PD reduction	lb: 38.9 (16.6) lc: 25.9 (16.7) le: 61.1 (16.7) Significant improvement compared to baseline (P < 0.001) Significantly higher BOP reduction in le group	NR	None
5. Aghazadeh et al, 2012	Test: 3.1 (0.2) Control: 2.0 (0.2) Significantly higher in the test group (P < 0.01)	50.4 (5.3) 44.8 (6.3) No significant difference between the groups	Mean radiographic bone defect fill (mm): 1.1 (0.3) 0.2 (0.3) Significantly higher in test group (P < 0.05)	None

is prohibited

Table 3. (Continued)				
		Treatment	Outcomes	
Author	PD Changes (mm) (SD); (Range)	BOP Changes (%) (SD); (Range)	Radiographic Outcomes	Further Disease Progression/ Complications
9. Jepsen et al, 2016	Implant level		Radiographic defect height reduction (mm):	None
	Test: 2.8 (1.3)	56.1 (30.5)	Mesial/distal: 3.61 (1.96)/3.56 (2.07) Mean radiographic intrabony defect fill (%): Mesial/distal: 79.00 (29.85)/74.22 (36.33)	
	Control: 2.6 (1.4)	44.9 (38.2)	Radiographic defect height reduction (mm): Mesial/distal: 1.05 (1.42)/1.04 (1.34) Significantly higher in test group Mean radiographic intrabony defect fill (%):mesial/distal:	
	Significant reduction compared to baseline (P < 0.001) No significant difference between	Significant reduction compared to baseline (P < 0.001) No significant difference between	23.11 (46.28)/21.89 (30.16) Significantly higher in test group.	
	groups	groups	Significantly higher in test group.	
10. Guler et al, 2016	Implant level Test: baseline: 5.28 (1.06), after 6 mo: 3.34 (0.82)	Baseline: 50.17 (25.19)%, after 6 mo: 24.32 (11.22) %	Mean radiographic bone defect fill (mm): 1.74 (0.65)	In control group, collagen membrane was exposed in 2 patients
	Control: baseline: 4.72 (1.02), after 6 mo: 3.18 (0.54)	Baseline: 63.51 (24.38)%, after 6 mo: 33.00 (15.51)%	1.05 (0.54)	
11. Isehed et al, 2016	Test: 2.8 Control: 3.00	BOP decreased from approximately 90% to 30%, but relapsed to nearly 70% at 12-mo.	Marginal bone level changes (mm): Test: increased: 0.9 Control: decreased: 0.1	Two patients were treated with systemic antibiotics at 3-mo follow-up due to severe infection. One implant disintegrated in the control group.
	Did not differ from baseline to 12 mo between the groups.	Did not differ from baseline to 12 mo between the groups.		

Table 3. (Continued)				
		Treatment Outcomes	Jutcomes	
Author	PD Changes (mm) (SD); (Range)	BOP Changes (%) (SD); (Range)	Radiographic Outcomes	Further Disease Progression/ Complications
12. Schwarz et al, 2011, 2012, 2013, 2017	Subject level Test: 0.74 (1.89) Control: 2.55 (1.67) Significant improvement compared to baseline (P < 0.001)	86.66 (18.26) 89.99 (11.65) Significant improvement compared to baseline (P < 0.001)	£	In a 7-y period, 2 patients in test groups and 2 in the control group had to be discontinued due to pus formation and progressive radiographic bone loss.
13. Roccuzzo et al, 2011, 2017	Subject level Baseline: 75.0 (31.2), after 7 y: 7.5 (12.1) Test: baseline: 6.6 (1.3), after 7 y: 3.2 (0.7)		Mean bone level decrease: Baseline: 2.9 (0.9) mm, after 7 y: 0.8 (1.0) mm	In 7 y, antibiotic and/or surgical therapy was necessary in 8 implants (2 in the test group and 6 in the control group)
	Control: baseline: 7.3 (1.5), after 7 y: 3.4 (0.6) Significantly higher reduction in test group (P = 0.01)	Baseline: 90.0 (12.9), after 7 y: 30.0 (19.7) Significant improvement compared to baseline (P < 0.001)	Baseline: 3.7 (1.6) mm, after 7 y: 1.7 (0.9) mm	
	Significant improvement compared to baseline (P < 0.001)		Significantly higher reduction in the control group.	

Class Ib°—buccal dehiscence + semicircular bone resorption to the middle of the implant body. Class Ic°°—buccal dehiscence + circular bone resorption under maintenance of the lingual compacta. Class Ie°°°—circular bone resorption under maintenance of the buccal and oral compacta. NR, not reported; OHI, oral hygiene instruction; SLA, sandblasted and acid-etched; TPS, titanium plasma-sprayed.

(one observational³² and one comparative study³³), and 3 studies (one comparative³⁴ and 2 observational^{35,36} studies) focused on rough-surface implants only. Seven investigations included both smooth, rough, and moderately rough,^{21,23,26,28,37} or rough and moderately rough^{38,39} implants. Two observational studies did not provide information on the surfaces of the implants.^{17,40}

Case Definitions

Definitions of the periimplantitis cases selected for the augmentative treatment varied widely among the included studies (Tables 1–4). Except for the 2 studies, where periimplantitis diagnosis was based only on radiographical evaluation, ^{34,40} the rest of the investigations defined periimplantitis by the presence of BOP and/or PD >5 mm, and radiographic bone loss. In addition, the majority of the cases presented intrabony periimplant defect configurations. ^{18–23,25–29,31,33–40}

Comparison of Augmentative and Nonaugmentative Approaches

Three RCTs assessed the clinical efficacy of augmentative therapy over the OFD approach alone. 18-20 Two studies included the same patient sample and reported the treatment outcomes at 12 months and 7 years of followup. 18,19 At 12 months after the treatment, two 1-year clinical investigations demonstrated a significantly higher percentage of radiographic fill of the intrabony defect treated with titanium granules when compared to nonaugmentative treatment. 18,20 However, the clinical treatment outcomes, in terms of PD and BOP reduction, did not differ between the 2 treatment approaches at both 12-month and 7-year followup. 18-20 In the 7-year investigation, due to the small number of the patients (6 test and 6 control), statistical analysis between the groups was not performed.¹⁹ Nevertheless, the results indicated a minimal difference in osseous defect depth changes between the groups. 19

Characteristics of Interventions

Decontamination. Methods to decontaminate the implant surface included mechanical, ^{17,20,21,23–25,30,35,37,39} chemical, ^{17–19,22,31–34,38,40} laser

				Author Treatment		
	Presurgical Therapy	Decontamination of Implant Surface	Grafting Material	Membrane	Submerged/ Nonsubmerged Healing	Systemic Antibiotics
1. Behneke et al, 2000	1-mo before surgery local-disinfecting treatment using weekly submarginal irrigation with iodine solution	Air-powder abrasive with sodium carbonate (30 s) + rinse with sterile saline	Autogenous block-shape (18 implants) or particulate bone grafts (7 implants)	No membrane	Nonsubmerged	Metronidazole 400 × 2 for 7 d
2. Haas et al, 2000	NR	Toluidine blue O (1 min) and soft laser light (wave length 906 nm)	Particulate autogenous bone	Nonresorbable e-PTFE membrane	Submerged	Augmentin (5 d)
3. Roos-Jansaker et al, 2007	NR	H ₂ O ₂ (3%)	Nonbovine-derived bone substitute	Resorbable membrane	Submerged	Amoxicillin (375 mg x 3) + metronidazole (400 mg x 2) for 10 d, starting 1 d before surgery
4. Romanos et al, 2008	NR	CO ₂ laser decontamination	Particulate autogenous bone (10 implants)/or bovine-derived xenograft (9 implants)	Resorbable collagen membrane	12 submerged, 7 nonsubmerged, 12 submerged	No
5. Wiltfang et al, 2010	Mechanical implant cleaning + periimplant pocket irrigation with chlorhexidine (0.12%) (3 times a week)	Etching gel (Gluma Etch 20 Gel)	Autogenous bone and demineralized xenograft (1:1) containing native bone morphogenetic protein (BMPs) and vascular endothelial growth factor	No membrane	Non-submerged	Prophylactic antibiotics (amoxicillin/sulbactam) were given perioperatively
6. Froum et al, 2012	1 mo before surgery full- mouth debridement + OHI	Pellets soaked in minocycline (50 mg/ml) and 0.12% chlorhexidine gluconate (CHX) (for 45–60 s) + air-powder abrasive + saline spray + application of EMD (Emdogain) or PDGF (platelet-derived growth factor)	Mineralized freeze-dried bone allograft	Resorbable membrane and/or subepithelial connective tissue graft	Non-submerged	No
7. Matarasso et al, 2013	OHI + motivation + nonsurgical mechanical cleaning and polishing 8–10 wk before the surgery	Implantoplasty at suprabony exposed implant parts + airabrasive with glycine powder for intrabony defect (30 s) + rinsed with saline solution (30 s)	Deproteinized bovine bone mineral	Resorbable membrane	Non-submerged	Amoxicillin 875 mg + clavulanic acid 125 mg, 5 d.

Table 4. (Continued))					
				Author Treatment		
	Presurgical Therapy	Decontamination of Implant Surface	Grafting Material	Membrane	Submerged/ Nonsubmerged Healin	g Systemic Antibiotics
8. Schwarz et al, 2014	Nonsurgical therapy using Er:YAG laser 2 wk before surgery	Implantoplasty at buccally and supracrestally exposed implant parts + decontamination of unmodified surface with plastic curettes and cotton pellets soaked in saline	Bovine-derived xenograft	Native collagen membrane at intrabony components + connective tissue graft on the buccal aspect	Non-submerged	Amoxicillin 2 × 1000 mg/d (in case of allergy: Clindamycin 2 × 600 mg/d) 1 h before and 5 d postoperatively
9. Roccuzzo et al, 2016	OHI + scaling and root planning of teeth and cleaning of implant shoulders	Mechanical decontamination with titanium curettes and titanium brush in deep narrow pockets + EDTA 24% (2 min) + CHX gel (1%) (2 min)	Deproteinized bovine bone mineral with 10% collagen	+/- in case of no keratinized tissue, connective tissue graft from the tuberosity are	Non-submerged	1 g of amoxicillin + clavulanic acid x 2, starting 1 h before surgery, 6 d
10. Rotenberg et al, 2016	NR	Mechanical debridement with titanium-coated curettes and plastic- tipped ultrasonic instrument + CHX (0.12%) soaked gauze applied (2 min)	Collagen-coated bovine bone	No membrane	Non-submerged	Amoxicillin 500 mg x 3 or 300 mg clindamycin x 4
11. Nart et al, 2017	OHI + supragingival and subgingival mechanical debridement 6 wk before surgery	Mechanical debridement with stainless steel curette + implantoplasty supracrestally + intrabony defect debrided with ultrasonic device + 3% H ₂ O ₂ (1 min) + rinsed with saline	50% particulated mineralized cancellous allograft impregnated with trombomycine and 50% impregnated with vancomycin	Collagen membrane	Non-submerged	No
			Treatment Outcomes			
	PD Ch	anges (mm) (SD); (Range)	BOP Changes (%) (SD (Range)); Radiographic		urther Disease Progression/ Complications
1. Behneke et al, 20		el duction: 3.3 mm	NR	Radiographic me fill (mm): 3.7		eatment failure (explanation) in 6 patients
				Median defect de (mm) at re-ent 6.9-0.7 Bone repair: 90%	ry surgery:	

Table 4. (Continued)				
		Treatment Outcomes		
	PD Changes (mm) (SD); (Range)	BOP Changes (%) (SD); (Range)	Radiographic Outcomes	Further Disease Progression/ Complications
2. Haas et al, 2000	NR	NR	Radiographic mean defect fill (implant level): 2 (1.9) mm, (36.4%)	Exposure of the membrane occurred un all patients after a mean of 3 wk postoperative. 2 implants failed and had to be
3. Roos-Jansaker et al, 2007	Implant level 4.2 (1.5); (2-7)	NR	Radiographic mean bone defect fill (mm): 2.3 (1.2); (0.6–5.1)	removed 2 wk after postoperative membrane exposure occurred in 31.3% of implant areas
4. Romanos et al, 2008	Implant level Baseline PD (mm): 6.00 (2.03), After treatment: 2.48 (0.63) Reduced significantly compared to baseline (P > 0.01)	Baseline bleeding index: 2.76 (0.35), after treatment: 1.03 (0.85) Reduced significantly compared to baseline (P > 0.01)	Complete radiographic bone fill found in all defects after the xenogenic bone graft, in sites treated with autogenous bone graft, at least 2/3 of the defect was filled.	None reported
5. Wiltfang et al, 2010	Implant level Reduction of PD (mm): 4 (95% CI: 3.3–4.6)	Baseline: 61%, after 12 mo: 25%	Radiographic mean bone defect fill (mm): 3.5 (95% Cl: 2.7, 4.3)	1 implant (3%) was lost due to mobility
6. Froum et al, 2012	Implant level: 5.10 (2.20): 2–12	91.1%	Mean radiographic bone gain (mm): 1.77 (1.99)	2 implants were lost due to a disease progression 18 implants required 1 additional surgery and 10 implants required 2 additional surgeries to achieve the desired
7. Matarasso et al, 2013	Implant level Baseline: 8.1 (1.8), after 12 mo: 4.0 (1.3).	Baseline: 19.7 (40.1), after 12 mo: 6.1 (24.0)	Radiographic marginal bone level changes (mm): Baseline: 8.0 (3.7), after 12 mo: 5.2 (3.0). Significant decrease (P < 0.001). Radiographic mean bone defect fill: 93.3 (13.0) %	outcome 2 implants displayed early membrane exposure
	Significant reduction compared to baseline ($P=0.032$).	Significant reduction compared to baseline ($P = 0.001$).	Radiographic depth of intrabony defect (mm): Baseline: 3.5 (3.5), after 12 mo: 0.5 (13.0) Significant reduction (<i>P</i> < 0.001)	
8. Schwarz et al, 2014	Implant level	74.39 (28.52)	NR	None reported

204

Table 4. (Continued)				
		Treatment Outcomes		
	PD Changes (mm) (SD); (Range)	BOP Changes (%) (SD); (Range)	Radiographic Outcomes	Further Disease Progression/ Complications
	2.53 (1.80) Significant improvement compared to baseline (P = 0.001)	Significant improvement compared to baseline (P = 0.001)		
9. Roccuzzo et al, 2016	Implant level 2.92 (1.73)	53.2 (39.4)%	N. S.	12 mo after the treatment, 6 implants were removed due to
	Significant reduction compared to baseline (P < 0.0001)	Significant reduction compared to baseline (P < 0.0001)		a progression of periimplantitis
10. Rotenberg et al, 2016	Implant level	2 implants remained BOP positive (18%).	N. S.	None
	3.3 (0.4) Significant compared to baseline (P < 0.002)			
11. Nart et al, 2017	Implant level Initial deepest PD: 7.88 \pm 1.22 After 12 mo: 4.23 \pm 1.62 ($P=0.001$).	$70.6\% \ (P=0.001),$	Mean radiographic intrabony defect at baseline (mm): 4.33 ± 1.62, after 12 mo: 0.56 ± 0.88 ($P = 0.001$). Bone defect fill: 86,99 ± 18.2%.	None

not reported; OHI, oral hygiene instruction

therapy, 21,26,28,29,39 or their combinations (Tables 3 and 4). In addition, one comparative and 3 observational studies, in adjunct to mechanical, 21,27,28 airpowder abrasive,³⁰ or laser (Er:YAG)²¹ decontamination methods, involved the performance of implantoplasty to supracrestally and buccally exposed implant parts.

Comparative studies

When considering the effectiveness of different implant surface decontamination protocols after augmentative periimplantitis surgery, Deppe et al³⁹ did not find a difference between the use of a carbon dioxide laser and air polishing on a longterm basis (5 years) in terms of the clinical attachment, PD, and radiographic marginal bone level changes. Moreover, clinical outcomes (eg, clinical attachment gain and BOP reduction) obtained by using laser decontamination (Er:YAG) were comparable with the conventional decontamination (plastic curettes + cotton pellets soaked in saline) approaches as demonstrated in the findings of the 7-year investigation.21

Augmentation protocols.

Bone substitutes alone

Four observational^{24,31,35,40} and one controlled clinical study³⁸ reported on augmentative periimplantitis treatment using bone substitute materials without a barrier membrane. Besides, 3 comparative studies included control groups treated with bone filler alone. ^{23,33,34} A variety of bone replacement materials were applied (autogenous bone, 34,35 alloplastic bone filler,²³ and xenograft^{24,31,33,38}). Moreover, in 4 controlled clinical studies, intrabony periimplant defects were filled using titanium granules. 18-20,25

Guided bone regeneration

The guided bone regeneration concept including the application of a bone substitute material and a barrier membrane was performed in 7 observational^{17,27–30,32,36} and 8 comparative studies.^{21–23,25,26,33,34,39} Resorbable^{17,21–23,25–30,32–34} and nonresorbable^{34,36,39} membranes were used. In addition to the use of a collagen membrane, in one observational study, connective tissue graft was placed on

Table 5. Success of the Surgical Augmentative Treatment Indicated in the Studies							
Author	Definition of Treatment Success	Treatment Success					
Jepsen et al, ²⁰ 2016	Complete disease resolution: PD ≤4 mm, no BOP at 6 implant sites and no further bone loss	30% (10/33) of implants					
Schwarz	Absence of BOP	Test: 4 out of 6 patients					
et al, ²¹ 2017		Control: 5 out of 9 patients					
		Total: 9/15 patients (60%)					
Roccuzzo	PD < 5 mm, no BOP or pus, no further bone loss	Test: 7/12 (58.3%) implants					
et al, ³⁸ 2017		Control: 2/14 (14.3%) implants					
		Significantly higher success in the test group $(P = 0.04)$					
Aghazadeh	Successful treatment outcome PD ≤5 mm,	Test: 38.5% implants					
et al, ²² 2012	allowing for one site with BOP, no pus, and gain or no loss of alveolar bone	Control: 13.9% implants					
	Successful treatment outcome defined by	The likelihood of treatment success was					
	$PD \le 5$ mm, no BOP, no pus (at any	higher in the test group (LR: 3.2, 95%					
	implant surface), and gain or no loss of	CI: 1.0–10.6, <i>P</i> < 0.05)					
	alveolar bone	Test: 8 implants (20.5%)					
		Control: 4 implants (11.1%)					
Roos-Jansaker	Successful treatment:						
et al, ³³ 2014	radiographic evidence of ≥25% bone fill, but independent of PD or BOP	66.7% (30/45) implants					
	radiographic evidence of ≥25% bone fill, PD ≤5 mm, but independent of bleeding score	62.2% (28/45) implants					
	radiographic evidence of ≥25% bone fill, PD ≤5 mm, bleeding of probing score ≤1	51.1% (23/45) implants					

the buccal aspect of the implant, which at the 6-month follow-up was associated with minimal mucosal height changes.²⁸

Addition of biologically active materials

Addition of biologically active ma-

terials were applied in 2 observational (enamel matrix derivative [EMD] or

platelet-derived growth factor,¹⁷ and xenograft containing native bone morphogenetic protein and vascular endothelial growth factor⁴⁰) and 2

Table 6. Assessment of the Risk		Random						
		Sequence	Allocation		Incomplete	Selective	Other	Summary
Author		Generation		Blinding	Outcome Data		Bias	Assessment
Khoury and Buchmann, 2001 ³⁴	†		†	†	†	*	*	Unclear
Deppe et al,39 2007	†		†	†	*	†	*	Unclear
Schwarz et al, ^{23,41,42} 2006,	*		†	*	‡	†	*	Unclear
2008, 2009								
Schwarz et al, ²⁶ 2010	†		†	†	*	*	*	Unclear
Aghazadeh et al, ²² 2012	†		*	‡	*	*	*	Unclear
Wohlfahrt et al, 18 2012	†		*	*	*	*	*	Unclear
Andersen et al, ¹⁹ 2017	†		*	*	‡	‡	‡	Unclear
Roos-Jansaker et al,32,33,43	†		†	†	‡	†	*	Unclear
2007, 2011, 2014								
Jepsen et al, ²⁰ 2016	*		*	*	‡	*	*	High risk
Guler et al, ²⁵ 2016	†		†	‡	*	*	*	Unclear
Isehed et al,37 2016	‡		*	*	*	*	*	High risk
Schwarz et al,44-46,21 2011,	‡		†	†	†	†	*	Unclear
2012, 2013, 2017								
Roccuzzo et al,38,47 2011, 2017	†		†	‡	‡	†	*	Unclear

*Low risk. †Unclear risk. ‡High risk.

Table 7. Assessment of the Risk of Bias for Included Observational Studies								
		Selection (Max 4*)						
Author	Representativeness of the Sample	Selection of Nonexposed Cohort	Ascertainment of Exposure	Demonstration of the Outcomes of Interest was Not Present at Start of the Study				
1. Behneke et al, 2000	or the earnpie	COHOIT	*	*				
2. Haas et al, 2000			*	*				
3. Roos-Jansaker et al, 2007			*	*				
4. Romanos et al, 2008			*	*				
5. Wiltfang et al, 2010			*	*				
6. Froum et al, 2012			*	*				
7. Matarasso et al, 2013			*	*				
8. Schwarz et al, 2014			*	*				
9. Roccuzzo et al, 2016			*	*				
10. Rotenberg et al, 2016			*	*				
11. Nart et al, 2017			*	*				

	Comparability (max 2*)		Outcome (max 3*)		
Author	Comparability of Cohorts on the Basis of the Design or Analysis	Ascertainment of Outcome	Was Follow-up Long Enough for Outcomes to Occur?	Adequacy of Follow-up of Cohorts	Total
1. Behneke et al, 2000		*	*	*	5*
2. Haas et al, 2000		*	*	*	5*
3. Roos-Jansaker et al, 2007	**	*	*	*	7*
4. Romanos et al, 2008	*	*	*	*	6*
5. Wiltfang et al, 2010	*	*	*	*	6*
6. Froum et al, 2012	**	*	*	*	7*
7. Matarasso et al, 2013	**	*	*	*	7*
8. Schwarz et al, 2014	**	*	*	*	7*
9. Roccuzzo et al, 2016	**	*	*	*	7*
10. Rotenberg et al, 2016	**	*	*	*	7*
11. Nart et al, 2017	**	*	*	*	7*

Newcastle-Ottawa Quality Assessment Scale (Max 9^*).

controlled clinical trials (platelet-rich fibrin [PRF] membranes²⁵ and EMD³⁷). In addition, one observational study used allogenic bone substitutes impregnated in antibiotics.²⁷

Comparative studies

Type of bone filler. Surgical treatment outcomes using different bone filler materials were compared in the 3 clinical studies.^{22,23,25} Accordingly, after 12 months of healing, significantly higher radiographic bone level gain and mean BOP and PD reduction were obtained with the use of xenograft in comparison to autogenous bone.²² However, when interpreting these results it should be taken into consideration that xenogenic bone is more radiopaque than autogenolus bone. Furthermore, improved clinical outcomes, in terms of BOP and PD reduction, were noted for slowly resorbing bovine-derived minerals over hydroxyapatite particles.²³ Increased radiographic bone defect fill was detected in the sites treated with the porous titanium granules compared to xenograft, while the clinical outcomes (ie, PD reduction and clinical attachment changes [CAL]) did not differ between the groups.²⁵

Adjunctive use of barrier membrane. Augmentative periimplantitis treatments with and without a barrier membrane were evaluated in 3 comparative studies. ^{23,33,34} The mean radiographic fill of an intrabony defect obtained by the use of autogenous bone and a nonresorbable membrane was indicated to be 2.8 mm, followed by the use of autogenous bone alone (2.4 mm), and amounted to 1.1 mm when autogenous bone particles were applied in conjunction

with a resorbable membrane.³⁴ The comparison among the 3 investigated groups did not reach a significant difference.³⁴ These findings corroborate the data presented in the 5-year investigation, where the additional use of a resorbable membrane did not improve the treatment outcome.³³ On the contrary, a 4-year clinical study revealed better clinical outcomes when a combination of bonegrafting material and a membrane were used in comparison to the use of grafting material alone.²³

Addition of biologically active materials. The results of RCT, that attempted to evaluate the effect of EMD for the management of periimplantitis compared to OFD, showed that the use of EMD did not result in improved PD and BOP after 12 months, but was associated with increased marginal bone level

and increased prevalence of Gram +/aerobic bacteria.³⁷

Healing Mode and Systemic Antibiotics

Submerged postoperative healing was performed in 4 controlled 18,19,34,39 and 2 observational studies. 32,36 One observational study included both healing modes. 29

Systemic antibiotics were prescribed in 15 studies, except 5 controlled^{21,23,26,37,39} and 3 observational studies.^{17,29,40} Preoperative prophylactic antibiotics were used in one observational study.⁴⁰ None of the included studies compared neither the potential influence of modes of healing (ie, nonsubmerged vs submerged) nor the effect of additional systemic antibiotics after periimplantitis augmentative therapy.

Clinical and Radiographic Treatment Outcomes

Augmentative periimplantitis therapy was shown to result in significant improvements in BOP $^{20-23,26-28,30,31,38}$ and PD values $^{18,20-31,33,34,38}$ in comparison to the baseline. In particular, the mean BOP reduction ranged from $25.9\%^{25}$ to $89.99\%^{21}$ and $91\%^{17}$ in 1-to 7-year period, and the mean PD reduction ranged from 0.74^{21} to 5.4 mm. 34

The reported mean radiographic fill of the intrabony defect ranged between 57%¹⁸ and 93.3%.³⁰ In addition, the radiographic reduction of the intrabony defect height varied from 0.2²² and 2.8 mm,³⁴ up to 3.70³⁵ and 3.77 mm.²⁷

Success of Augmentative Therapy

Composite outcomes for the treatment success were indicated in 5 of the studies (Table 5). Depending on the criteria that was applied, treatment success ranged between 11% and 38.5% of the implants in a 1-year period^{20,22} and between 14.3% ³⁸ and 66.7%³³ of the implants, and 60% of the patients,²¹ in the long-term investigations (5–7 years).

Further Disease Progression and Other Complications

Despite the successful clinical and radiographic clinical performance of augmentative therapies, cases of implant loss, disease recurrence, and further progression were reported 17–19,21,23,31,33,35,37–40 (Tables 3 and 4). Exposure of the barrier

membrane (nonresorbable^{34,36} and resorbable^{25,30,32}), fistula, or sequester formation were reported in 58.6% of the cases when barrier membrane (resorbable and nonresorbable) was used.³⁴.

Factors Influencing Augmentative Treatment Outcomes

The clinical outcomes of surgical augmentative therapy were reported to be influenced by the implant surface characteristics, ³⁸ as well as by the periimplant defect configuration. ²⁶ Particularly, moderately rough surface implants demonstrated superior clinical treatment outcomes in comparison to rough surface implants, ³⁸ and circumferential-type defects were shown to perform in a superior manner in conjunction with a dehiscence-type defect. ²⁶

CONCLUSIONS/RECOMMENDATIONS

- Surgical augmentative periimplantitis therapy resulted in improved clinical and radiographic treatment outcomes compared to the baseline in the majority of studies with 6 months to 7 to 10 years of follow-up.
- Augmentative surgical techniques with the application of the titanium granules did not demonstrate superior clinical treatment outcomes when compared to a nonaugmentative approach (3 RCTs).
- There is no evidence to support the superiority of a specific material, product, or membrane in terms of long-term clinical treatment benefits.
- The method of implant surface decontamination did not influence the clinical outcomes of surgical augmentative periimplantitis therapy (1 RCT and 1 controlled comparative study).
- Clinical augmentative treatment outcomes were shown to be influenced by factors such as periimplant bone defect morphology and implant surface characteristics (2 controlled clinical studies).
- Due to the lack of comparative studies, no clinical recommendations can be given for the mode of healing (ie, nonsubmerged vs submerged) as well as for the adjunctive use of systemic antibiotics.

• Periimplantitis recurrence requiring retreatment or leading to implant loss was reported.

DISCLOSURE

The authors claim to have no financial interest, either directly or indirectly, in the products or information listed in the article.

ROLES/CONTRIBUTIONS BY AUTHORS

A. Ramanauskaite made substantial contribution to the data collection, conception, and interpretation of data as well as manuscript writing. K. Obreja contributed to the data collection, interpretation and data discussion. R. Sader contributed to critical evaluation of the manuscript and data discussion. F. Khoury contributed to critical evaluation of the manuscript and data discussion. G. Romanos contributed to critical evaluation of the manuscript and data discussion. K. T. Koo contributed to critical evaluation of the manuscript and data discussion. P. L. Keeve contributed to critical evaluation of the manuscript and data discussion. A. Sculean contributed to critical evaluation of the manuscript and data discussion. S. Frank made substantial contribution to the interpretation of data and manuscript writing.

ACKNOWLEDGMENTS

Ausra Ramanauskaite and Karina Obreja equally contributed to the present work and share the first authorship.

REFERENCES

- 1. Schwarz F, Derks J, Monje A, et al. Peri-implant diseases and conditions: Peri-implantitis. *J Periodontol.* 2018 [epub ahead of print].
- 2. Lang NP, Berglundh T. Periimplant diseases: Where are we now? Consensus of the seventh European Workshop on Periodontology. *J Clin Periodontol.* 2011; 38:178–181.
- 3. Klinge B, Meyle J. Peri-implant tissue destruction. The third EAO consensus conference 2012. *Clin Oral Implants Res.* 2012;23:108–110.
- 4. Schwarz F, Schmucker A, Becker J. Efficacy of alternative or adjunctive measures to conventional treatment of

- peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. *Int J Implant Dent.* 2015;1:22–56.
- 5. Renvert S, Polyzois IN. Clinical approaches to treat peri-implant mucositis and peri-implantitis. *Periodontol 2000.* 2015;68:369–404.
- 6. Khoshkam V, Chan HL, Lin GH, et al. Reconstructive procedures for treating perimplantitis: A systematic review. *J Dent Res.* 2013;92:131s–138s.
- 7. Esposito M, Grusovin MG, Worthington HV. Interventions for replacing missing teeth: Treatment of peri-implantitis. *Cochrane Database Syst Rev.* 2012;1: Cd004970
- 8. Mijiritsky E, Yatzkaier G, Mazor Z, et al. The use of porous titanium granules for treatment of peri-implantitis lesions: Preliminary clinical and radiographic results in humans. *Br Dent J.* 2013;214: E13.
- 9. Lagervall M, Jansson LE. Treatment outcome in patients with peri-implantitis in a periodontal clinic: A retrospective study. *J Periodontol.* 2013;84:1365–1373.
- 10. Serino G, Turri A. Outcome of surgical treatment of peri-implantitis: Results from a 2-year prospective clinical study in humans. *Clin Oral Implants Res.* 2011;22:1214–1220.
- 11. De Angelis N, Felice P, Grusovin MG, et al. The effectiveness of adjunctive light-activated disinfection (LAD) in the treatment of peri-implantitis: 4-month results from a multicentre pragmatic randomised controlled trial. *Eur J Oral Implantol.* 2012;5:321–331.
- 12. Carcuac O, Derks J, Abrahamsson I, et al. Surgical treatment of peri-implantitis. 3-year results from a randomized controlled clinical trial. *J Clin Periodontol.* 2017;44: 1294–1303.
- 13. Toma S, Lasserre JF, Taieb J, et al. Evaluation of an air-abrasive device with amino acid glycine-powder during surgical treatment of peri-implantitis. *Quintessence Int.* 2014;45:209–219.
- 14. Caccianiga G, Rey G, Baldoni M, et al. Clinical, radiographic and microbiological evaluation of high level laser therapy, a new photodynamic therapy protocol, in peri-implantitis treatment; a Pilot Experience. *Biomed Res Int.* 2016;2016:6321906.
- 15. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *J Clin Epidemiol.* 2009;62:1006–1012.
- 16. Wells GA, Schea B, O'Connell D, et al. The Newcastle—Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-analyses; 2009. Available at: http://

- wwwohrica/programs/clinical_epidemiology/oxfordhtm.
- 17. Froum SJ, Froum SH, Rosen PS. A regenerative approach to the successful treatment of peri-implantitis: A consecutive series of 170 implants in 100 patients with 2- to 10-year follow-up. *Int J Periodontics Restorative Dent.* 2015;35:857–863.
- 18. Wohlfahrt JC, Lyngstadaas SP, Ronold HJ, et al. Porous titanium granules in the surgical treatment of perimplant osseous defects: A randomized clinical trial. *Int J Oral Maxillofac Implants*. 2012;27:401–410.
- 19. Andersen H, Aass AM, Wohlfahrt JC. Porous titanium granules in the treatment of peri-implant osseous defects-a 7-year follow-up study. *Int J Implant Dent.* 2017;3:50–57.
- 20. Jepsen K, Jepsen S, Laine ML, et al. Reconstruction of peri-implant osseous defects: A multicenter randomized trial. *J Dent Res.* 2016;95:58–66.
- 21. Schwarz F, John G, Schmucker A, et al. Combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination: A 7-year follow-up observation. *J Clin Periodontol.* 2017;44:337–342.
- 22. Aghazadeh A, Rutger Persson G, Renvert S. A single-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: Results after 12 months. *J Clin Periodontol.* 2012;39:666–673.
- 23. Schwarz F, Sahm N, Bieling K, et al. Surgical regenerative treatment of perimplantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane: A four-year clinical follow-up report. *J Clin Periodontol.* 2009;36:807–814.
- 24. Rotenberg SA, Steiner R, Tatakis DN. Collagen-coated bovine bone in perimplantitis defects: A Pilot study on a novel approach. *Int J Oral Maxillofac Implants*. 2016;31:701–707.
- 25. Guler B, Uraz A, Yalim M, et al. The comparison of porous titanium granule and xenograft in the surgical treatment of peri-implantitis: A prospective clinical study. *Clin Implant Dent Relat Res.* 2017; 19:316–327.
- 26. Schwarz F, Sahm N, Schwarz K, et al. Impact of defect configuration on the clinical outcome following surgical regenerative therapy of peri-implantitis. *J Clin Periodontol.* 2010;37:449–455.
- 27. Nart J, de Tapia B, Pujol A, et al. Vancomycin and tobramycin impregnated mineralized allograft for the surgical regenerative treatment of perimplantitis: A 1-year follow-up case series. *Clin Oral Investig.* 2017;22:2199–2207.
- 28. Schwarz F, Sahm N, Becker J. Combined surgical therapy of advanced

- peri-implantitis lesions with concomitant soft tissue volume augmentation. A case series. *Clin Oral Implants Res.* 2014;25: 132–136.
- 29. Romanos GE, Nentwig GH. Regenerative therapy of deep perimplant infrabony defects after CO2 laser implant surface decontamination. *Int J Periodontics Restorative Dent.* 2008;28: 245–255.
- 30. Matarasso S, Iorio Siciliano V, Aglietta M, et al. Clinical and radiographic outcomes of a combined resective and regenerative approach in the treatment of peri-implantitis: A prospective case series. *Clin Oral Implants Res.* 2014;25:761–767.
- 31. Roccuzzo M, Gaudioso L, Lungo M, et al. Surgical therapy of single perimplantitis intrabony defects, by means of deproteinized bovine bone mineral with 10% collagen. *J Clin Periodontol.* 2016; 43:311–318.
- 32. Roos-Jansaker AM, Renvert H, Lindahl C, et al. Submerged healing following surgical treatment of perimplantitis: A case series. *J Clin Periodontol.* 2007;34:723–727.
- 33. Roos-Jansaker AM, Persson GR, Lindahl C, et al. Surgical treatment of peri-implantitis using a bone substitute with or without a resorbable membrane: A 5-year follow-up. *J Clin Periodontol*. 2014;41:1108–1114.
- 34. Khoury F, Buchmann R. Surgical therapy of peri-implant disease: A 3-year follow-up study of cases treated with 3 different techniques of bone regeneration. *J Periodontol.* 2001;72:1498–1508.
- 35. Behneke A, Behneke N, d'Hoedt B. Treatment of peri-implantitis defects with autogenous bone grafts: Six-month to 3-year results of a prospective study in 17 patients. *Int J Oral Maxillofac Implants*. 2000;15:125–138.
- 36. Haas R, Baron M, Dortbudak O, et al. Lethal photosensitization, autogenous bone, and e-PTFE membrane for the treatment of peri-implantitis: Preliminary results. *Int J Oral Maxillofac Implants*. 2000; 15:374–382.
- 37. Isehed C, Holmlund A, Renvert S, et al. Effectiveness of enamel matrix derivative on the clinical and microbiological outcomes following surgical regenerative treatment of perimplantitis: A randomized controlled trial. *J Clin Periodontol.* 2016;43:863–873.
- 38. Roccuzzo M, Pittoni D, Roccuzzo A, et al. Surgical treatment of perimplantitis intrabony lesions by means of deproteinized bovine bone mineral with 10% collagen: 7-year-results. *Clin Oral Implants Res.* 2017;28:1577–1583.
- 39. Deppe H, Horch HH, Neff A. Conventional versus CO2 laser-assisted

treatment of peri-implant defects with the concomitant use of pure-phase beta-tricalcium phosphate: A 5-year clinical report. *Int J Oral Maxillofac Implants*. 2007;22:79–86.

- 40. Wiltfang J, Zernial O, Behrens E, et al. Regenerative treatment of perimplantitis bone defects with a combination of autologous bone and a demineralized xenogenic bone graft: A series of 36 defects. Clin Implant Dent Relat Res. 2012; 14:421–427.
- 41. Schwarz F, Sculean A, Bieling K, et al. Two-year clinical results following treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane. *J Clin Periodontol.* 2008; 35:80–87.
- 42. Schwarz F, Bieling K, Latz T, et al. Healing of intrabony peri-implantitis defects

- following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide). A case series. *J Clin Periodontol.* 2006;33:491–499.
- 43. Roos-Jansaker AM, Lindahl C, Persson GR, et al. Long-term stability of surgical bone regenerative procedures of peri-implantitis lesions in a prospective case-control study over 3 years. *J Clin Periodontol*. 2011;38:590–597.
- 44. Schwarz F, Hegewald A, John G, et al. Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. *J Clin Periodontol.* 2013;40: 962–967.
- 45. Schwarz F, John G, Mainusch S, et al. Combined surgical therapy of

- peri-implantitis evaluating two methods of surface debridement and decontamination. A two-year clinical follow up report. *J Clin Periodontol.* 2012;39: 789–797.
- 46. Schwarz F, Sahm N, Iglhaut G, et al. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: A randomized controlled clinical study. *J Clin Periodontol.* 2011;38:276–284.
- 47. Roccuzzo M, Bonino F, Bonino L, et al. Surgical therapy of peri-implantitis lesions by means of a bovine-derived xenograft: Comparative results of a prospective study on two different implant surfaces. *J Clin Periodontol.* 2011;38: 738–745.