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Key messages.

 BMP7 instructs proliferating LCs with a psoriatidlammation-associated phenotype
» The psoriatic epidermal niche is characterized By 7/phospho-Smad1/5/8 signature

* In psoriatic patients reduction in epidermal BMRpression is associated with clinical

improvement, and BMP signalling promotes psoriksion formation in mice

Capsule summary: BMP signaling is functionally involved in the gp@ssion of psoriatic epidermal

thickening, and serves as an instructive factosal-renewal and differentiation of inflammation-

associated LCs.
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Abbreviations

BG
BMP7
DCs
IDECs
KCs
LCs
Nog
PASI
PGN
TGF1
TLR

Birbeck granules

bone morphogenetic protein 7
dendritic cells

inflammatory dendritic epidermal cells
keratinocytes

Langerhans cells

noggin

psoriasis area and severity index
peptidoglycan

transforming growth factor beta 1

tool-like receptor
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Abstract

Backaround: Epidermal hyperplasia represents a morphologitmiaak of psoriatic skin lesions.
Langerhans cells (LCs) in the psoriatic epidernmnigagie with keratinocytes (KCs) in tight physical
interactions; moreover, they induce T cell-mediatechune responses critical to psoriasis.

Objective: Epidermal factors in psoriasis pathogenesis rempadanly understood.

Methods: We phenotypically characterized BMP7-LCs vs. TEFECs and analyzed their functional
properties using flow cytometry, cell kinetic stesli co-culture with CD4 T-cells and cytokine
measurements. Furthermore, immunohistology of hgakind psoriatic skin was performed.
Additionally, in vivo experiments with JdhlunB"K5cré™® mice were carried out to assess the role of
BMP signaling in psoriatic skin inflammation.

Results: Here we identified a KC-derived signal, i.e. banerphogenetic protein (BMP) signaling, to
promote epidermal changes in psoriasis. WhereasBBtrictly confined to the basal KC layer in
the healthy skin, it is expressed at high level®ughout the lesional psoriatic epidermiMvP7
instructs precursor cells to differentiate into Ltbat phenotypically resemble psoriatic LCs. These
BMP7-LCs exhibit proliferative activity and incress sensitivity to bacterial stimulation. Moreover,
aberrant high BMP signaling in the lesional epidermm mediated by a KC intrinsic mechanism, as
suggested from murine data and clinical outcomer afbpical anti-psoriatic treatment in human
patients.

Conclusion: Our data indicate that available T@Family members within the lesional psoriatic
epidermis preferentially signal through the canahBMP signaling cascade to instruct inflammatory-
type LCs and to promote psoriatic epidermal chandesgeting BMP signaling might allow to

therapeutically interfere with cutaneous psoriatanifestations.
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I ntroduction

Langerhans cells (LCs) are a subset of dendritis ¢©Cs) populating the epidermis and other
squamous epithelia (1). They protect keratinocykgss) from UV light-induced apoptosis (2) and
contribute to skin homeostasis by maintaining pecdition of skin resident regulatory T cells (Tregs
(3,4). Psoriatic lesions are marked by epidermakéming (acanthosis) due to impaired differenbiati
and enhanced proliferation of KCs (5). The hunesmonal psoriatic epidermis harbors two subsets of
DCs: LCs and epithelial dendritic cells (DCs) tleathibit certain LC characteristics (6). These
epidermal DCs are in physical contact with KCs #metefore might play critical roles in psoriasis-
associated epidermal changes, as suggested fromenstudies (7,8)Vice versa, psoriatic KCs might
instruct precursors to adopt a disease-associdleghienotype. Nevertheless, the functional roles of
epidermal DCs and LCs remain poorly characterizzohast published studies focused on dermal DCs
(9). Following an inflammatory insult, endogenousd egress from the epidermis and are
subsequently replenished from circulating monocyl€s-13), which acquire LC characteristics, but
retain certain monocyte features (11). They seedis@ppear after the resolution of inflammation and
are subsequently replaced by proliferation of neslidbcal LCs (14) or by immigrating non-monocyte,
bone marrow-derived precursors (15). The epidemialoenvironment plays a key role in instructing
LC differentiation (16), as highlighted by the obssions that subsets of LCs from oral mucosa vs
epidermis arise from distinct precursors; neveeb®l they exhibit a similar gene expression profile
(17). In vitro studies revealed that besides monocytes, also runead CD1¢ DCs and CD14
dermal cells can differentiate into LCs (18-2@)vitro, keratinocyte-derived factors such as Tf@EF-
and BMP7 in cooperation with thymic stromal lympbggtin (TSLP) and Notch ligands promate
vitro LC differentiation from human monocytes or moneegommitted intermediates (21-23).
However, unlike monocytes, CD1blood DCs do not require exogenous Notch ligand L6
differentiation (19). Belonging to the T@rFfamily, TGF$1 and BMP7 both signal via BMP type-I
receptor ALK3 to induce LC differentiatiam vitro (24), and TGFB1 can be replaced by BMP7 for
instructing LC differentiation from CDicblood DCs and hematopoietic progenitor cells (19).
Conversely, deletion of either TGH,, TGF1RII (25-27) or TG type | receptor ALK5 (28,29) in

differentiated CD207cells results in their emigration from the epidiarto the lymph nodes shortly
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after birth. Moreover, ALK5 is dispensable for humiaC differentiationin vitro (24). Whether or
how local expression of TGFligands in the healthy and diseased epidermalaaiorironment affect

LC phenotype and function remains poorly understo@dnsidering the suspected functional
importance of LCs in the maintenance of epidernmahéostasis, a better characterization of PGF-
family signaling in the psoriatic epidermis is afnsiderable medical relevance. Therefore, we here
asked: What are the phenotypic and functional ateratics of BMP7-instructed LCs, and can we
find such celldn vivo under pathophysiological conditions? We here ifledtBMP signaling to be
functionally involved in the progression of psaddaepidermal thickening, and to serve as an

instructive factor in self-renewal and differentat of inflammation-associated LCs.
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Materials and M ethods

In vitro generation of CD34" progenitor cell-derived L Cs, CD14" monocyte-derived DCs

(moDCs) and L Cs (moL Cs), and CD1c" blood DCs-derived L Cs (CD1c-L Cs).

CD34 cord blood HSCs were expanded for 3 days in serem-K-vivd"“15 medium (Lonza,
Switzerland) supplemented with: 50ng/ml SCF, FLT3FPO eachlin vitro LCs were generated as
previously described (30). In brief, expanded CD@dlls (4x1G/ml) were cultured for 7 days in
serum-free CellGenix® GMP DC medium (CellGenix, @any) supplemented with: 100ng/ml GM-
CSF, 50ng/ml FLT3-L, 20ng/ml SCF, 2.5ng/ml T&NFand 1ng/ml TGHB1 or 200ng/ml BMP7. For
moDC generation, CDI4nonocytes (1x10ml) were cultured for 6 days in RPMI-1640 + 10%SB
(Sigma-Aldrich, USA) supplemented with: 35ng/ml 4Land 100ng/ml GM-CSF. For CD1c-LC
generation, peripheral blood CODCs (5x16/ml) were cultured for 3-4 days in RPMI-1640 + 10%
FBS supplemented with: 100ng/ml GM-CSF, and 10ngi@F{1 or 200ng/ml BMP7. For moLC
generation, CD14monocytes (1x1%ml) were cultured for 5 days in Delta-1 coatedtesa(31) in
RPMI-1640 + 10% FBS supplemented with: 100ng/ml GBIF, and 10ng/ml TGE1 or 200ng/ml

BMP7.

Flow cytometry

Flow cytometry staining (extracellular epitopes)swaerformed as previously described (32). Data
were acquired with LSRII instrument (BD Bioscienti§A) and analyzed with FlowJo software (Tree
Star, Inc. USA). For the FACS sorting the BD FACBaAlow cytometer (BD Bioscience, USA) was

used. Monoclonal antibodies are listed in the sepphtary table 1.

Cytokine measurements

Day 7 CD207LCs were MACS sorted (purity90%) and activated withy§/ml PGN. After 48h
supernatants were collected. The proteome prdiilenan cytokine array kit (R&D Systems, USA)
was used according to the manufacturer’s instrosti§pot intensity was quantified with Imagel’ab
software (BioRad). For the guantitative measurenméntytokines in the supernatants from MLRs

Luminex system was used.
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Dithranol clinical trial

Paraffin-embedded materials from pre- and postrireat (4 weeks after therapy completion) biopsy
samples were available from six patients (5 mempfian; age range 21-77 years) of a clinical study
investigating the effect of topical dithranol in gpssis. Dithranol study Clinical Trials.gov

no.NCT02752672; approval number A23/15, Ethical @uttee of the State of Carinthia, Austria.

Statistics
Statistical analysis was performed using 2-tati¢elst or one-way ANOVA (corrected with Tukey
multiple comparison test) with GraphPad Prisméveafe (GraphPad Software Inc.). p-valug€s05

were considered significant.

Detailed description of cytokines and reagents, iselation, preparation of single cell suspension
from psoriatic skin biopsies, RNA isolation and gegxpression analysis, cytokine measurements,
transmission electron microscopgnmunofluorescence and immunohistochemistry, mitteadermal

noggin injections in mice, dorsomorphin treatmentjrine skin thickness measurement, and T-cell

proliferation assay can be found in the supplentendgerial.
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BMP7-LCsareresponsive to TLR2 stimulation

We recently found that BMP7 replaces T@FE-in instructing LC differentiation from CD34
hematopoietic progenitor cells (24). Adding eithi&@F{31 or BMP7 to a mix of cytokines in serum-
free medium promotes the formation of E-cadherimtiated clustering CDI&D207 LCs (Fig. 1A).
TGF{1- and BMP7-generated LCs (termed TEFLCs and BMP7-LCs, respectively) both exhibit
phenotypic characteristics of LCs (CDC®207CD324 (24)). However, genome-wide microarray
analyses of sorted CD1@D207 cells revealed several differentially expressedegein BMP7-LCs
vs. TGFB1-LCs (Fig. 1B). Subsequent gRT-PCR analyses shoadoth TGH1-LCs and BMP7-
LCs lack detectable expression of several toll-likeeptors (i.e. TLRs 3, 4, 5, 7, 8, 9), as also
observed forex vivo isolated LCs (33). However, BMP7-LCs express higleeels of bacterial
recognition receptor TLR2 (Fig. 1C, 1D) and lowevdls of TLR1, TLR6, as well as lower levels of
anti-inflammatory TLR10 (34,35) than TGR-LCs (Fig. 1C). Moreover, TLR2 positivity by BMP7-
LCs is correlated with reduced CD207 expressioq.(ED). Bacterial ligand peptidoglycan (PGN)
was added to TGB1-LCs vs. BMP7-LCs to analyze their cytokine/chemekresponse to TLR2-
mediated stimulation (Fig. 1E). Analyzing a limit@dnel of cytokines, we previously found that
BMP7-LCs indeed exceed TGR-LCs in PGN-induced cytokine production (24). Wadhconfirmed
and extended on these observations. BMP7-LCs rdsplaio PGN with increased synthesis of several
cytokines (i.e. TNE, IL6, and GM-CSF) and chemokines (CXCL1, CCL3/dd &CL1) relative to
TGF{1-LCs (Fig. 1E). Moreover, TGB1-LCs equaled BMP7-LCs in their basal and PGN-irduc
production of IL-8, IL-21, CCL2, ICAM1 and CCL5 (@i 1E). To further investigate functional
aspects of BMP7-LCs, we performed a mixed lymphecghaction (MLR). This analysis showed that
BMP7-LCs are not only more potent stimulators at€ll proliferation than TGB1-LCs (Fig. S1A),
but they also primed naive CD4 T cells towards hpgbduction of GM-CSF, TN, IL-1B, and IL-2.
Inversely, TGR31-LCs stimulated CD4 T cells to secrete high lewélanti-inflammatory IL-10 (Fig.

S1B).
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BMP7 promotes the generation of L Cs exhibiting CD1c*CD206" phenotype

Above-mentioned gene array profiling (Fig. 1B) raleel differential expression of several mRNAs
encoding cell surface molecules. Subsequent flawnegtry showed that BMP7-LCs express higher
levels of CD11c, CD1c, CD206, CD36, CD80, CXCR1 #&¥3CR1, and lower levels of Trop2
(TACSTD2) than TGH1-LCs (Fig. 2A). Therefore, BMP7-LCs differ from than vitro generated
TGF1-LCs andex vivo isolated LCs in that they are CO'2D206"CD36"TROPZ'™% Moreover,
BMP7-LCs exhibit constitutively active canonical B\signaling, as evidenced by their significantly
higher expression level of pSmad1/5/8, when contpdoe TGFf1-LCs (Fig. S2). Given their
inflammation-associated characteristics (Fig.1, St), we phenotypically compared BMP7-LCs to
monocyte-derived DCs (moDCs) known to resembleaimfhatory dendritic epidermal cells (IDECs)
in eczema/atopic dermatitis lesions (36-39). BMIE&Lclearly differed from moDCs in parallel
analyses (compare Fig. S3 with Fig. 2A). First, r@sDlack LC-associated CD207, CD324/E-
cadherin, EpCAM and TACSTD2/TROP2; Second, unlikgFF-LCs, moDCs express high levels of

CD209/DC-SIGN and CD11b (Fig. S3 (40,41)).

L Cs generated from peripheral blood precursors are CD206'CD1c”

Murine studies showed that during inflammation Ldevelop from monocytes (10,11,13). Recently,
human CD1t blood DCs were identified as candidate LC preas;ssince they rapidly (within 72h)
differentiate into CD20TD1aLCs (19). Whether LCs generated from these cellsnptypically
resemble inflammation-associated LCs remains unkndMe purified CD1¢tblood DCs from MNCs
by first depleting monocytes and B cells, followky anti-CD1c positive selection. Importantly,
CD1c¢ blood DCs were resolved as a distinct populatimmf CD14 monocytes (Fig. 2B). Both
CD1c blood DCs and CDI4monocytes differentiated into CDZ@ED1¢'CD36 CD207CD1aLCs

in both TGFB1/GM-CSF and BMP7/GM-CSF cultures (Fig. 2C, 2D)efidfore, LCs generated from
CD14" monocytes or CDZIchlood DCs exhibit a CD206D1c¢ phenotype, irrespective of whether

they are generated in response to T5&fer BMP7.
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BMP7-LCslack detectable Birbeck granules

Birbeck granules (BG) represent a hallmark ulttadtiral characteristic of LCs. It was previously
shown that a subset of lesional psoriatic epiderh@@s lack detectable BG (37). Moreover, LC
maturation has been associated with depletion of @@ to reduction of the intracellular langerin
pool (42). Duplicating previous findings (30,43)GF{$1-LCs contained numerous intracytoplasmic

BG. Conversely, BMP7-LCs lacked BG, despite poiytitor CD207.

BMP7-LCsresemble psoriatic LCs and the psoriatic epidermisis marked by BMP7 induction

CD207 cells from healthy skin are CD1¥¢CD206"™% Conversely, the psoriatic epidermis harbors
CD207 cells with phenotypical resemblance to BMP7-LCsh&y are also CDIED206 (Fig. 3A,

3B). Flow cytometry analysis of cells from lesiorabpsies confirmed that CD20¢ells found in
psoriatic skin co-express CD1c, CD206 and TLR2jlamto BMP7-LCs (Fig. 3C). We also detected
dermal CD20&CDI1c cells; however these cells lack CD207 (Fig. 3BMHM receptors and
downstream effectors can be analyredtu. BMPs bind to the type-Il receptor (BMPRII), leagito

the recruitment and phosphorylation of a BMP typedeptor and downstreamad1/5/8. Strikingly,
CD207LCs in healthy and psoriatic skin are marked byrang BMPRII expression (Fig. 3D, 3E).
As described previously by our group (24), BMP7 respion is confined to the basal/germinal
keratinocyte layers, a predominant site of LC resay in healthy human skin (Fig. 4A). In marked
contrast, BMP7 is expressed throughout the acantbpitdermis, and LCs occur scattered in psoriatic
lesions (Fig. 4B). Whereas the healthy epidermisléts a weak phospho-Smad1/5/8 staining pattern
(Fig. 4C), psoriatic LCs and KCs show a strong earclaccumulation of phospho-Smad1/5/8 (Fig.
4D). JunB is a known psoriasis risk associated ¢meaed on the PSORG6 locus, and JunB expression
is downregulated in psoriatic lesional skin (449n€ersely c-Jun expression is enhanced in the basal
layer potentially regulating keratinocyte prolifeoa (45). Tamoxifen (Tx)-induced, epidermal
deletion of Jun/JunB in thaun”JunB™ K5cre-ER" mouse model causes a psoriasis-like disease (44),
marked by strong lesional epidermal BMP7/phospha®irb/8 expression (Fig. 4E), duplicating
findings in human. Thus, a genetic defect induceadult KCs (i.e. Jun/Jundiletion) drives psoriatic

lesion formation (44) associated with high BMP7 reggion. Injection of the BMP antagonist noggin
10
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(nog) is an establisheith vivo experimental approach to study the importance MPBsignaling in
skin biology (46—49). Thus, we injected intraderdsndleads-adsorbed nog (nog) into the ears of
Jun”JunB™ K5cre-ER" mice 24 h prior to Jun/JunB deletion, and monidoear swelling for 12
consecutive days (Fig. 4F). Expectedly, as a restilhoggin treatment we found diminished
pSmad1/5/8 staining intensity in the epidermis (B4A). While control mice exhibited progressive
ear thickening from days 5 onwards, nog injectedenshowed significantly reduced ear swelling over
the course of the experiment (Fig. 4G, 4H). Higalal analysis confirmed decreased epidermal
thickening in nog-injected compared to control-atgel animals (Fig. 41, 4J). Furthermore, treatment
of developed lesions with topical application of BMP pathway inhibitor dorsomorphin (targeting
type 1 receptors Alk2, 3 and 6) resulted in de@dasar swelling in comparison to the control treéate
mice (Fig. S4B). In aggregate, these murine andamudata demonstrate that the lesional psoriatic
epidermis is characterized by aberrant high BMPRY¥8pho-Smad1/5/8 expression, and that BMP7-

LCs phenotypically resemble lesional LCs (CD20B206 CD1c).

BMP7 supplementation is associated with proliferation of CD207" LCs

LC numbers gradually increase during skin develogmeand CD2071.Cs undergo self
-renewalin vivo (14). However, the epidermal factors promoting LC pmtition remain unknown.
Interestingly, BMP7-supplemented cultures showepbnaus proliferation, increased total cellularity
and elevated numbers of LCs, relative to TFsupplemented cultures (Fig. 5A, 5B); We detected
mitotic Ki67" cells among CD20TCs, with percentages Ki6Zells being much higher for BMP7-
LC than for TGFB-LCs (Fig. 5C, 5D). Therefore, BMP7 signaling alkwactive cycling ofn vitro
generated LCs. In the healthy adult epidermis, BMRGression is confined to basal KCs (Fig. 4A;
5E, left; (24)). We analysed whether KIGTs, known to occur in the healthy epidermis (let);
localize with BMP7KCs in situ. Indeed, Ki67LCs and Ki67KCs are confined to the BMP7
epidermal layers (Fig. 5E, left, 5G). In comparisdrigher numbers of Ki6ZD207LCs and
Ki67*KC are observed in the lesional BMPsoriatic epidermis (Fig. 5E right, 5F). In inflachskin
the confinement of proliferating cells to the basgidermal layer was lost, and proliferating LCs an

KCs could be found throughout the enlarged BM&idermis (Fig. 5E, right; model in Fig. S5).

11
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Canonical TGF-g1-ALKS5 signaling inhibits phenotypic characteristics of BMP7-LCs

In healthy human epidermis, TGH-is expressed in supra-basal/outer KC layers; esely, BMP7

is confined to basal KCs (Fig. 4A; 5E (24)). CamahiTGF$1-ALKS5 signaling is required to retain
LCs in a non-activated staie situ (27). TGF1 co-activates both ALK5 and ALK3 (Fig. 6A), the
latter being required for TGB1-dependent LC differentiatian vitro (24); conversely, BMP7 signals
through ALK3 but not ALKS5 (Fig. 6A; (24,50,51)). BRFV-LCs and lesional psoriatic LCs are
CD1c'/CD206, whereas TGPB1-LCs and steady-state LCs lack these markers @Ag.3A). We
therefore investigated whether active ALK5 signgliepresses CD1c and CD206. Indeed, short-term
(48 h) stimulation of BMP7-LCs with TGF1 downregulated both CD1c and CD206 (Fig. 6B, lower
panel). We performed an inversed experiment talatdi these findings. Pharmacological inhibition of
the ALKS5 receptor in TGHB1-LC cultures dose-dependently led to the re-estailent of the
CD1c'CD206 LC phenotype (Fig. 6C). Together these data redetlat selective ALK3 activation
by BMP7 induces a CDI€D206 LC phenotype, whereas co-activation of the caranlcGFS1-

ALKS5 cascade represses CD1c and CD206.

Topical treatment of psoriatic lesions diminishes BMP7 expression

Topical treatment of psoriatic lesions with dithwhtanthralin) inhibits KC proliferation (52), aralr
murine data indicate a KC-intrinsic mechanism of BMinduction during the onset of psoriatic-like
epidermal hyperplasia (Fig. 4E). We monitored BM&Xpression in serial lesional skin biopsies
before and after dithranol treatment of psoriatitignts (n=6). Expectedly, before treatment BMP7
was expressed throughout the lesional epidermig {R). Four weeks after treatment initiation,
BMP7 staining intensity was markedly reduced wittycdasal KC layers staining positive for BMP7
(Fig. 7A), similarly as observed in the healthyrsirig. 4A). The clinical status of the patientsswa
monitored using the psoriasis area and severigxr{BASI) score. Out of six analysed patients rafte
treatment, four exhibited a substantial reductionBMP7 staining intensity. (Fig. 7A, diagram).
Correlation analysis revealed a positive corretatletween BMP7 reduction and PASI score

reduction (Fig. 7B). All four patients with stro®MP7 reduction also had strong reduction in PASI

12



334 score. Conversely, the patient who had no BMP7edeser also had no PASI score improvement after
335 the completion of the therapy (Fig. 7B).
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
13



363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

Discussion

Cutaneous psoriatic lesions are characterized lweepal hyperplasia and are populated by
bone marrow-derived epidermal LC-like cells (6,33hwever, the epidermal factors instructing LC
differentiation under normal and diseased conditiare poorly defined. While we previously showed
that BMP7 is confined to the basal KC layer in llgalthy epidermis (24), we here demonstrated that
BMP7 and associated downstream BMP signaling coemisn(i.e. phospho-SMAD1/5/8) are highly
expressed throughout the enlarged psoriatic epidetdsing gene profiling, we further showed that
BMP7 induces the generation of CDEZH206LCs in vitro, phenotypically mimicking psoriasis-
associated LC-like cells. Moreover, a substantiattion ofin vitro generated BMP7-LCs exhibited
mitotic activity, similarly as observed for psoitat.Csin situ. We previously showed that ~40% of
CD207LCs in murine psoriatic lesions are of bone marangin, and these cells exceeded host-
derived LCs in mitotic activity (7). Extending oheise analyses we here showed that induction of
psoriatic lesions by genetic targeting of adult Ki@sJuf"JunB" K5cre-ER mice also causes a
BMP7"/phospho-SMAD1/5/8 phenotype, indicating a KC-intrinsic mechanism BMP7 induction.
Together these data suggest a key role for epidek@derived BMP7 in instructing LC
differentiation from bone marrow-derived precursorgsoriatic lesions (see hypothetical model in
Fig. S5). Furthermore, we demonstrated that lesiBMP7 is strongly diminished upon dithranol
treatment of psoriatic patients, and that epiderB&P7 reduction correlates with clinical
improvement. Moreover, injection of BMP antagomisggin in JulfJunB" K5cre-ER mice led to
the reduction in epidermal thickening, indicatimydlvement of BMP signaling in psoriatic lesion
formation.

Our phospho-Smad1/5/8 stainings support that the® Bisthway is aberrantly activated in the
psoriatic epidermis. However, despite high expogssif BMP7 protein throughout the lesional KCs,
BMP7 might not be the only BMP family member expgezsin the psoriatic epidermimterestingly,
psoriatic epidermal lesions were previously showmexhibit diminished canonical TGFsignaling,
as evidenced by decreased levels of TGlype-I receptor ALK5, TGEBR type-ll and phospho-
SMADZ2/3 (54,55). Moreover, TGB2 and TGH3 (54,56) are downregulated and inhibitory SMAD7

is induced in the psoriatic epidermis (57). We henewed that the inhibition of ALKS5 signaling
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(canonical TGRB1 signaling) in TGH1-LC cultures results in the generation of CBaB206" LCs
(mimicking lesional LCs). Inversely, adding T@E-to BMP7-LC cultures led to the repression of
CD1c and CD206. In line with impairment of canohi€&F-1 signaling in inflammation, Bobr et.
al. demonstrated that a portion of murine LCs spasitive for phospho-SMAD2/3 (downstream of
TGF{1-ALK5) in normal but not in inflamed skin (27).

A side-by-side comparison revealed that BMP7-supplged LC cultures give rise to much
higher numbers of human LCs compared to T&Fsupplemented cultures. Our data suggest a
sequential protocol for the generation of high narstof LCs from human progenitor cells (i.e. BMP7
followed by TGFB1) in defined serum-free media for cell therapyented studies. We showed that
high percentages ah vitro generated CD20BMP7-LCs are Ki67, indicating that BMP7-ALK3
signaling facilitates LC cycling. In line with thighe type-Il BMP receptor BMPR2 is strongly
expressed by LCk stu, and marks LCs in epidermal immunohistology. Cstesit with a role of
BMP7 in facilitating LC cycling, we observed thati6R'LCs, known to reside in the healthy
epidermis (14,58), are confined to the BMIRZ layers. Moreover, Ki-61.Cs occurred abundantly
and spatially scattered throughout the BMR@man psoriatic epidermis. Since lesional psarias
undergo physical clustering with T cells (9), BMRight be critically involved in this process.

During ontogeny LC precursors within the epidermathe are first exposed to BMP7
followed by TGFB1 (24,59). TGH31-ALKS5 signaling enables LCs to remain in their ramtivated
state, a model directly supported by murine ALK®)(zand TGHRII (26) knock-out studies.
Moreover, sequential BMP7/TGFE signaling was shown to instruct murine mucosals LC
differentiation (60); reviewed in: (61). Notablyernatants of cultured keratinocytes (pre-stineaat
or not with IL-17 and TNE) failed to replace exogenous BMP7 for the prommotiof LC
differentiation from CD34 cells (unpublished observation). Therefore, cedintact-dependent
mechanisms might be required for these effects eaapling BMP7 processing.

Freshly isolated human LCs were shown to lack daide TLR4 and to express low or
undetectable TLR5 and TLR2 (46,62,63). Van der Aaral. (63) previously showed that these
bacterial recognition receptors are repressed UpBR-{31 stimulation of monocytes undergoing
moLC differentiation and that dermal DCs expresssénTLRs. Consistently, we here showed that

TGFB1-LCs lack detectable TLR4, TLR5 and TLR2. Moregvier vitro generated CD34cell-
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derived LCs in our study resembled vivo isolated LCs in detectable expression of TLR1, LR
(33,63) and TLR10O (33), as well as in low/non-d&ble TLR7 and TLR8 (33). However,
inconsistent data have been published regardedxghrssion of TLR7/9/10 bgx vivo isolated LCs
(33,62,63). Notably, whil&LR3 is expressed by LCs and moL(@&3), we failed to detect TLR®
CD34" cell-derived LCs. Whether these differences aterient to the specific culture models studied
remains to be analyzetVe showed here using flow cytometry that BMP7-L@s BLRZ, whereas
TGF$1-LCs lack detectable TLR2. Moreover, TBE-LCs exceeded BMP7-LCs in levels of
TLR10OMRNA expression. Interestingly, TLR10 is retgd as the only known inhibitory receptor
within the TLR family (recently reviewed in: (64))TLR10 is able to homodimerize and
heterodimerize with TLR1 and TLR2. Elevated TLR2 aiminished TLR10, observed in BMP7-LCs
relative to TGH31-LCs, might thus contribute to the here observedenpotent cytokine production
of the former in response to PGN stimulation. Il e interesting to further analyze whether TLR10
is expressed byn vivo LCs and if so, whether lesional psoriatic LCs ekhdiminished levels of
TLR10. It is interesting to speculate that an iseeexpression of TLR2/TLR10 might sensitize LCs
from lesional psoriatic skin to gram positive baietesuch as Staphylococcus aureus. In line with thi
possibility, we detected substantial levels of TL&®PLCs from lesional psoriatic ski@onsistently,
PGN-stimulated BMP7-LCs produced higher levels efesal inflammatory mediators (e.g.: IL6,
TNFa, CXCL1, CCL3/4) relative to TGBi-LCs. Our observations are consistent with the
demonstration that TLR2 stimulated LCs are potaducers of Th1l7 polarization, highlighting the
importance of TLR2 in immune responses in inflarskith (65). Future studies are required to analyze
in vitro generated LCs for additional cytokines such a22lLand IL-23 known to be involved in
psoriasis. Moreover, intracellular cytokine stagnimeeds to be performed to determine the cellular
origin of the cytokines measured in the supernataht.C-T cells co-cultures.

CD207 BMP7-LCs phenotypically resemble LCs found indesil psoriatic skin in that these
cells are also CDIED206. Similarly, LCs generateth vitro from monocytes or from peripheral
blood CD1¢ DCs express CD1c and CD206, consistent with tineegat that these cells may develop
into LCs during inflammation (reviewed in: (66)).mMonocyte origination of LCs is also evident from
studies on their development from CD3sllsin vitro. Monocyte intermediates which arise in these

cultures have to lose expression of the monocyatity factor KLF4, in order to differentiate into
16
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LCs (67). In conclusion, our data are consisterth & model whereby monocytes immigrate to the
psoriatic epidermis and there differentiate into 200CD1aCD1c¢'CD206 LCs. It has been
previously shown that in psoriasis CD206 is exgdssy a subset of CDl1&pidermal cells (37).
Whether human inflammation-associated COZID1¢’'CD206 LC arise from myeloid progenitor
cells, CD14 monocytes or CDIcblood DC remains to be studied. In this contexs interesting to
note that BMP7-LCs phenotypically differed from nm@8 previously shown to resemble atopic
dermatitis-associated IDECs (36-39).

Our results demonstrated, thiat vitro BMP7-LCs express higher levels of several pro-
inflammatory genes and exhibit more potent T ctthglatory capacity than TGB1-LCs. This is
consistent with the observation that CDla on LGdlifates psoriatic skin inflammation both in
patients and the murine system (68). However, alaggry function of these celis vivo cannot be
ruled out, considering previously demonstrated lagguy properties of semi-mature or even mature
DCs (69); recently reviewed in: (70). With regatdsa possible function of psoriatic inflammation-
associated LCs, we previously showed that LCs medsable for the induction phase of psoriatic
lesions in JufiJunB" K5cre-ER mice; however they exerted an immune-regulatonyction in
chronic lesions (7). Despite our here presentedrobfions that murine lesions in these mice are als
BMP7"/p-SMAD1/5/8", a direct translation of these findings to the honsystem must take into
account major species differences; recently revieiwe(70).

We showed that TGB1 stimulation represses CD1c and CD206 expressituCs generated
in response to BMP7. It will be interesting to jpenfi therapy-orientedn vivo studies addressing
whether bone marrow-derived psoriatic LCs mighfedéntiate further into steady-state-like LCs
during the resolution phase of cutaneous psoiliesions, and whether this process is driven orbean
augmented by TGB-ALKS5 signaling. Moreover, future studies are raqdito address the molecular
mechanism of enhanced BMP7 expression in psotiesions. Among several factors, high BMP7
levels throughout the epidermal psoriatic lesiomghinbe due to the expansion of basal keratinocytes
or enhanced processing of BMP7 precursor molecules.

In conclusion, our data indicate that available TESFamily members within psoriatic

epidermal lesions preferentially activate the BM@naling cascade, leading to the generation of
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477  proliferative, inflammation-associated LCs. Thenamally targeting of this pathway, or restoratiain
478 canonical TGR3 signaling, might allow for interfering with cutames psoriatic lesion formation.
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Figurelegends

Fig. 1. BMP7-driven L Csshow up-regulation of inflammation-associated genes.

(A) Schematic overview dh vitro LC generation from CD34cord blood hematopoietic progenitor
cells. Bright field images represent day 7 LC @ust Flow cytometry contour plots represent day
7 expression of CD1a/CD207 induced by T@EFer BMP7.(B) Heat map visualizes gene expression
profiles of differentially expressed genes. COC®207 LCs were generated from three independent
donors in response to TGH- or BMP7 and were FACS sorted before analysisoiSakpresent high
(red) and low (blue) intensitfC) gRT-PCR analysis of TLR1-10 mRNA expression by day
generated MACS sorted LCs (TGHE-vs. BMP7). Values are normalized to HPRT (n=4Di&-
tailed Student’s t test, *P<0.05; ** P<0.00%pP) Flow cytometry contour plots represent day 7
expression of TLR2 on CD20ZCs induced by TGH1 or BMP7. Graph represents mean
fluorescence intensity (MFI) of TLR2 by CD20@ells (n=4, +SD, 2-tailed Student’s t test, *P&).0
(E) MACS sorted LCs (TGB1-LCs or BMP7-LCs) were activated or not for 48ihabug/ml PGN
and cytokine production was measured by cytokinayafright; n=3, 1-way ANOVA, corrected with

Tukey multiple comparison test, * P<0.05; ** P<0606** P<0.005).

Fig. 2. Immunophenotypic analysis of in vitro generated L Cs.

(A) Pre-expanded CD34ells were cultivated for 7 days with GM-CSF, FEIT3SCF, TNF and
either TGFB1 or BMP7. Histograms depict relative expressiorellef indicated markers for gated
CD14d/CD207 cells. Bars graphs represent mean fluoresceneasity (MFI) for listed markers
(n=4, mean £SD, 2-tailed Student'sest, * P<0.05; ** P<0.005; *** P<0.0005)B) Phenotype of
MACS sorted peripheral blood monocytes vs. CDIDEs. (C) CD14 peripheral blood monocytes
were differentiated to LCs for 5 days with GM-CSktaeither TGH31 or BMP7. Histograms depict
relative expression level of CD1c and CD206 foredaCD1&CD207 cells (n=3).(D) CD1c¢
peripheral blood DCs were differentiated to LCs 8odays with GM-CSF and either TGH- or
BMP7. Histograms depict relative expression leieC®1c and CD206 for gated CD1&D207

cells (n=3).(E) CD34 cells-derived LCs were FACS sorted for CD2@2lls, then fixed with
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glutaraldehyde. Ultrathin sections were analyzeth Wiecnai-20 transmission electron microscope

(n=3). Size bars left =2n; right = 500nm

Fig. 3. The psoriatic epidermis harbours L Cs with phenotypical resemblance to in vitro BMP7-
driven LCs. Representative images of sections from healthyit dduman skin(A) and psoriatic
lesions(B) were analyzed for the expression of CD207, CD1c@nd06.Arrow heads indicate triple
positive CD207/CD1c/CD206 cells. Scatter plot (tjgshows % of CD1€D206 cells in CD207
population (n=3, 2-tailed Studenttstest, *P<0.05).(C) Single cell suspension from biopsies of
lesional skin of two psoriatic patients was anatymgth flow cytometry. After gating for singlets én
viable cells, CD207cell population has been assessed for the exprestioD1c, CD206, and TLR2.
Scatter plot (right) shows % of CDI@D206TLR2" cells in CD207 population (n=2).
Representative images of sections from healthytdduhan skin(D) and psoriatic lesionfE) were
analyzed for the expression of BMPRIlI and CD2Gtatter plot (right) shows % CD20%o-
expressing BMPRII (n=3). Nuclei were visualizedwidapi. The dotted lines represent the dermal-

epidermal junction (n=3). Size bar=50um.

Fig. 4. BMP7-SMAD1/5/8 signaling is strongly induced in the psoriatic epider mis. Representative
images of paraffin sections from healthy adult horekin and psoriatic lesions were analysed for the
expression of CDl1la, BMP{A, B) and CD1a, phospho-SMAD1/5/8 (pSMAD1/5/&), D). Nuclei
were visualized with Dapi. The dotted lines repntgbe dermal—epidermal junction (n=3). Size bar
= 50um.(E) Representative images of sections from the eadsm@ffJunBf/f KScre-ERT mice (ctrl —
cre- litermate control, KO d7 — Jun/JunB knockoay &, KO d12 — Jun/JunB knockout day 14)
analysed for the expression of BMP7, CD207 and jpo$SMAD1/5/8 (pSmad1/5/8). Nuclei were
visualized with Dapi. The dotted lines represesmt dermal—epidermal junction (n=%)) Schematic
presentation of noggin (nog) and tamoxifen (Tx)atneent regiment of Junf/fJunBf/f K5cre-
ERT mice.(G) Ear swelling in control and Jun/JunB KO animatsadermaly injected with ctrl (0.1%
BSA+beads) or noggin (nog+beads) n=5, +SEM, 1-w§OXA, corrected with Tukey multiple
comparison test, * P<0.084) Representative images of disease progressiongr{Ki® nog) and ctrl

(KO ctrl) injected ears on experiment day 1P. Epidermal thickness in all experimental groups
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assessed based on H&E staining (n=6, +SEM, 1-wayO¥¥N, corrected with Tukey multiple
comparison test, * P<0.05; ** P<0.00%)) Ear skin histology (H&E, day 12) of control anchliunB

KO animals intradermally injected with ctrl (0.198RB) or noggin (nog). Size bar = 100um

Fig. 5. BMP7 supplementation is associated with mitotic activity of CD207'LC.

(A) Pre-expanded CD34ells were cultivated for 7 days with GM-CSF, FET3SCF, TNF: and
either TGFB1 or BMP7. Graph depicts proliferation (total celimber) at day 7 and day 14 (n=4,
mean +SD, 2-tailed Student’s t test, ** P<0.008) Graph represents % of phenotypically defined
cells generated as stated in A, and analyzed hw fgtometry for the expression of LC lineage
markers CDla, CD207, CD324 (n=4, 2-tailed Studemt'sest, * P<0.05; ** P<0.005)(C)
Immunofluorescent and immunohistochemical stainirgwesent sections of day 7 generated LC
clusters analyzed for the expression of Ki67 an@CD Size bar = 50um (n=3P) % of Ki67" cells
among total CD207LCs. Each symbol represent one cluster (n=10jl€tsStudent’s t test, ****
P<0.0001)(E) Representative images of sections from healthyt dauwhan skin and psoriatic lesions
were analyzed for the expression of BMP7, Ki67 @m07. Nuclei were visualized with Dapi. The
dotted lines represent the dermal—epidermal junct®ize bar = 50um (n=3}F) % of Ki67" LCs
calculated from immunohistology sections from Healand psoriatic skin. Each symbol represents
one patient(G) Pie charts depict % of CD20%ells confined to the KC layers expressing BMP7 in
healthy (n=2, mean) and psoriatic skin (n=4, me&tgan was calculated from immunohistological

sections.

Fig. 6. TGF-p1 represses BMP7-driven CD206'CD1c" L C characteristics via ALK5.

(A) Schematic representation of canonical TEBMP7 downstream signaling(B) CD34
cells were induced to differentiate into LCs in gresence of TGB1 or BMP7 for 8 days. Parallel
day 6 cultures were supplemented with BMP7 or P&Fas indicated. Representative contour plots
show expression of CD1c vs CD206 by gated day &meed CD15CD207 cells. Bars represent
mean fluorescence intensity (MFI) of CD1c/CD206 @ated CD14CD207 cells (n=3, +SD){(C)

CD34 cells were cultured for 4 days, then pre-treatedad with SB421543 (ALKS5 inhibitor) for 1 h,
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followed by TGFB1 addition. Representative contour plots show daygeherated gated
CD1aCD207 cells analyzed for the expression of CD1c and (@D2Bars represent mean
fluorescence intensity (MIF) of CD1c/CD206 expressby gated CDIACD207 cells pretreated or

not with 8uM ALKS inhibitor (n=3, £SEM, 2-tailed &dent’st test, * P<0.05; ** P<0.005).

Fig. 7. Reduction in lesional epidermal BMP7 expression in psoriasis correlates with clinical
improvement. (A) Graph indicates relative staining intensity of BMB&fore and after dithranol
treatment analyzed using ImageJ software (n=6jl@dt&student’s t test, * P<0.05). Representative
images of sections from the lesional skin of psmrigatients analyzed for the BMP7 expression
before and after dithranol treatment. Size bar gnh(B) Correlation between PASI score reduction
and BMP7 relative staining intensity reduction afteéhranol treatment (n=6, nonparametric Sperman

correlation).
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Supplementary figure legends

Fig. S1. BMP7-generated LCs exhibit immunostimulatry capacity.

(A)10° naive CD4 T cells were stimulated with the indichhumbers of LCs. Proliferation of T cells
was monitored on day 5 of co-culture by additioroéthyl-3H]TdR, followed by measurement of
[methyl-3H]TdR incorporation 18h later (n=3, +SDitelled Student’s t test, *** P<0.0005)B)
Allogeneic, naive CD4T-cells were co-cultured for 5 days with TGE- or BMP7-LCs. Cytokines in
the supernatants were measured by Luminex systef) #8EM, 2-tailed Student’s t test P<0.05; **

P<0.005; *** P<0.0005).

Fig. S2. BMP7-LCs express higher levels of pSmadI183han TGF-p1-LCs.

Day 7 TGFB1- and BMP7-LCs were MACS sorted. Cytospins wemnmimolabeled to asses CD207
cells for the expression of pPSMAD1/5/8. Graph idés relative staining intensity of pSmad1/5/8
analyzed using ImageJ software. For the relativerfiscence intensity 150 CD207+ cells/condition

were measured (n=3, 2-tailed Student’s t test, #¥€0.0001).

Fig. S3. BMP7-LCs have a unique phenotype distindrom moDCs. cD14 peripheral blood

monocytes were differentiated for 7 days with GMFC&8nd IL-4 to moDCs. Histograms depict

relative expression level of indicated markersG@rla/CD11b cell population (n=4).

Fig. S4. Inhibition of BMP signaling with noggin or Alk3 inhibitor results in decreased ear
swellingin vivo. (A) Representative images of sections from the ealandfunB” K5cre-ER' knock

out mice injected intradermally (day 0) with beadisorbed noggin (KO nog) or 0.1% BSA + beads
control (KO ctrl). Samples were analyzed for theression of phospho-Smad1/5/8 (pSmad1/5/8) on
day 12 of the experiment. Nuclei were visualizethvidapi. The dotted lines represent the dermal—
epidermal junction (n=3)B) Jun”JunB" K5cre-ER" knock out mice were treated topically from day
10 of the experiment, with 10uM dorsomorphin (DJréar 5 consecutive days. Graph represents

differences in ear thickness measured on day 15-fn2-tailed Student'stest, **P<0.005).
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Fig. S5. Hypothetical model of pathogenic epidermd@MP signaling in psoriasis.

BMP7 is expressed aberrantly throughout all KC daym the lesional psoriatic epidermis and
promotes the generation of proliferative CD2DB1¢TLR2'LCs from precursors. These psoriatic
LCs occur scattered throughout the enlarged epide@onversely, in the healthy epidermis, LCs are
CD206TLR2CD1¢™", exhibit a predominant basal/suprabasal locatiangd the occasionally
observed mitotic LCs are confined to the basal BMRZ layer. In psoriasis, aberrantly activated
canonical BMP-pSMAD1/5/8 signaling promotes lesiimnmation and induces the generation of
inflammatory LCs, sensitized for bacterial signglitour data suggest that aberrant high BMP7 in
psoriatic KCs is mediated by a KC intrinsic processl enhances microbial signals in psoriatic

lesions.



108  Supplementary methods

109

110 Cellisolation

111 CD34 hematopoietic progenitor/stem cells (HSCsJord blood was collected during healthy, full-

112 term deliveries. Ethics approval (26-520) was otgdi from the Medical University of Graz
113 Institutional Review Board for these studies. Infied consent was provided to patients in accordance
114  with the Declaration of Helsinki. Cord blood CO34SCs were positively selected with magnetic
115 sorting (EasySefy Human CD34 Positive Selection Kit, StemCell Tedbges"). CD14

116 monocytes, naive CD4T-cells, CD1¢ blood DCs: Buffy coats from healthy donors werecpased

117 from Transfusion Medicine Department, Medical Umsity of Graz, Austria. For the isolation of
118 peripheral blood mononuclear cells (PBMCs) hepaedi blood was separated by gradient
119 centrifugation with Lymphopréf§ (Axis Shield, Norway). Subsequently, various celisre isolated
120 using magnetic sorting technique according to theufacturer’s instructions. First, CDImonocytes
121 were positively selected (CD14 MicroBeads, humarilteMlyi Biotec, Germany). Second, after
122  depletion of CD19cells, CD1¢ blood dendritic cells were positively selected (@BBDCA-1
123 Dendritic Cell Isolation Kit, human, Miltenyi Biote Germany). Last, naive CDZ&-cells were
124 negatively selected (MagniSort™ Human CD4 Naiveell Enrichment Kit, ThermoFisher Scientific,
125 USA). Purity of sorted cells was assessed by flgieroetry and was greater than 95%.

126

127  Preparation of single cell suspension from psoriatiskin biopsies

128 Punch biopsies (4 mm) have been taken from lesiekial of psoriatic patients. Ethics approval
129 (EK700/2009) was obtained from the Medical Univgrsif Vienna Institutional Review Board for
130 these studies. Informed consent was provided t@rmiatin accordance with the Declaration of
131 Helsinki. To prepare single cell suspension genfl€@8™ Dissociator (Miltenyi Biotec, Germany)
132 have been used. Skin biopsy was cut into smallegieand transferred into gentleMACS C Tube
133 (Miltenyi Biotec, Germany) containing mix of 900 @bllagenase IV (0.5 Winsch units/ml) and 100
134 pl DNAse | (10 mg/ml). Tissue with enzymes was Imeted overnight in 37°C in shaking water bath.

135 This was followed by tissue disassociation usingtlgl/ACS™ Dissociator system. Obtained cell
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suspension was filtered through 100 pum cell straamel centrifuged for 10 min in 4°C at 1600 rpm.

After supernatant was discarded cell pellet wasetbfor flow cytometry analysis.

Gene expression analysis

The raw data of the dataset GSE49085 (1) (6 samiifssnetrix Human Genome U133 Plus 2.0
Array) was downloaded from Gene Expression Omnibus (2)d aanalysed in

R 3.5.1 https://www.R-project.org)The R package 'oligo’ (3) was used for qualitytoal and
pre-processing. The R package 'limma’' (4) was tsedlculate log2 (fold changes) and p values
between the groups with patients as covariatescifspdiltering was applied using selected
features associated with dendritic cells (24). Phaalues were adjusted for multiple testing with
Benjamini and Hochberg’'s method to control the dafliscovery rate. Genes with an absolute
logy(fold change) > log2(1.5) and an adjusted p-valae0<05 were considered as differentially
expressed. Hierarchical clustering with Euclide@tashce and Ward linkage was performed and

visualized as a heatmap. The heatmap was genersitegithe R package 'gplots’'.

RNA isolation, reverse transcription (RT-PCR) and real-time quantitative PCR (QPCR)

Prior to the RNA extraction, day 7 CDZ0@ells were isolated with magnetic sorting (human
CD207/Langerin MicroBeads, Miltenyi Biotec, Germankxtraction of total RNA from sorted LCs
(purity > 80%) was performed with RNeasy Micro Kit (Qiag€ermany). cDNA was generated
using High-Capacity cDNA Reverse Transcription Applied Biosystems, USA). The gPCR was
performed using Fast SYBR™ Green Master Mix (ApplBiosystems, USA) and CFX96 Real-Time
Thermal cycler (Bio-Rad Laboratories, USA). All p$e were performed according to the
manufacturer’s instructions. Values were normalitedHPRT. Primer sequences are listed in the

supplementary table 2.

Cytokine measurements
Day 7 CD207 LCs (TGFB1-LCs vs. BMP7-LCs) were MACS sorted (purit90%) and activated
with 5 pg/ml PGN. After 48h supernatants were collectede photeome profiler human cytokine

array kit (R&D Systems, USA) was used accordingh® manufacturer’s instructions. Spot intensity
6
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was quantified with ImageLa¥ software (BioRad). For the quantitative measurdrnéaytokines in

the supernatants from T-cell/LC co-culture experntad.uminex system was used.

Transmission electron microscopy (TEM)

Day 7 FACS sorted CD2071.Cs were fixed with 2,5% Glutaraldehyde and 1% @®sfalade and
dehydrated in a graded ethanol series. Afterwa@$ Wwere embedded in Epon (Serva, Germany) and
ultrathin sections (70—-100 nm) were cut using ama@iut-UCT ultramicrotome (Leica Inc., Austria),
transferred to copper grids, and viewed eitherainetl or stained with 1% uranyl acetate and 5% lead
citrate (Merck, Germany) using a Tecnai-20 TEM {T@e0 equipped with a LaB6 cathode; FEI
Company, Netherlands) at an acceleration voltag80OokV. Digital images were recorded with an

Eagle 4 k-CCD camera; chip size: 4,096 x 4,096IpiffeEl Company).

Immunofluorescence and immunohistochemistry

Healthy, adult (18-42 year) skin samples were ctdié after plastic surgery. Ethics approval (27)071
was obtained from the Medical University of Grastitutional Review Board for these studies.
Informed consent was provided to patients in acaecd with the Declaration of Helsinki. Paraffin
sections (gm) were subjected to HIER antigen retrieval in TEardretrieval Solution pH 6.0
(Agilent/Dako, USA) followed by blocking with 5% d&ey serum (Jackson ImmunoResearch
Laboratories, USA). Primary and secondary antibodiee listed in the supplementary table 4.
Staining specificity controls were performed withbstitution of primary antibodies by isotype-
matched control antibody against irrelevant ansgitlowed by corresponding secondary antibody.
To visualize nuclei, sections were counterstainét WwOug/mL DAPI. Images were obtained with
Leica DM4000B microscope and ZEIS LSM700 confocalroscope and processed using LAS V3.8,

ZEN 2.3 lite, and ImageJ software.

Mice
Jun”JunB" K5cre-ER" mice (mixed background) with conditional deletiminJun/JunB under keratin
5 promoter (K5cre-ERT) were described previously T® delete Jun/JunB K5-Cfepositive (KO) or

negative (ctrl; JufJunB") mice were injected intraperitoneally with 1 mgntaifen (Tx, Sigma-
7
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Aldrich, USA) in an emulsion with sunflower seed (®igma-Aldrich)/ethanol mixture (10:1) on 5
consecutive days. Deletion of Jun/JunB was verifigdPCR. Mice were kept in the animal facility of
the Medical University of Vienna in accordance wittstitutional policies and federal guidelines.
Animal experiments were approved by the Animal Expental Ethics Committee of the Medical
University of Vienna and the Austrian Federal Minisof Science and Research. (Animal license
numbers: GZ 66.009/124-BrGT/2003; GZ 66.009/109-B&603; BMWF-66.009/0073-11/10b/2010
BMWF-66.009/0074-11/10b/2010; BMWFW-66.009/0200-WRBb/2014; and BMWF W-

66.009/0199-WF/11/3b/2014).

Intradermal noggin injections in mice

For delivery of Noggin-adsorbed beads, we usedexigusly described approach (6-9). Ears of
Jun”JunB” K5cre-ER™ mice were injected intradermally one time with ax rof FluoSpheres®
(Invitrogen, USA) and noggin (300ng) 24h beforeifipection. For control challenge injection a mix

of FluoSpheres® and 0.1% BSA was used.

Topical treatment with dorsomorphin

Jurf7JunB"K5-cre-ER mice aged 5-6 weeks were injected with TamoxifEx) to trigger psoriasis
as previously published (5,10) After five consegitdays of Tx injection, mice were given an
additional 5 days to manifest a pronounced pherotfter this, for another five consecutive days
inhibitors were applied topically to the ears of tinice. Dorsomorphin (Tocris Bioscience, UK) was
diluted to a concentration of 10uM in DMSO; of timxture, 40uL were pipetted onto each mouse
ear (20ul to the dorsal, 20ul to the ventral sidd)e control group received pure DMSO. Ear
thickness was measured daily via caliper. Aftee filays of treatment (from day 10 to 15), the ineeea

of ear thickness relative to ear thickness at the: of inhibitor treatment was calculated.

Murine skin thickness measurement
Paraffin sections from mouse ears were stained kdtinatoxylin and eosin (Sigma, USA). Images

were obtained with Olympus BX53 (Olympus) microseoppidermal thickness was measured in 20
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random fields on 5 independent pictures per sar@piggnification 10x) using AxioVision LE64

software (Zeiss).

T-cell proliferation assay (MLR)

The assay was performed as described previously (i lbrief, MACS-sorted CD207L.Cs were
seeded in graded numbers with a constant numb&ei5ef purified, allogenic naive CD4T-cells in
96-well tissue culture plates in RPMI-1640 mediusng(na-Aldrich, USA) supplemented with 10%
FBS. The proliferation of T-cells was analyzed omy & of culture by adding [methyH]TdR
followed by incorporation measurement [metflTdR 18h later. Incorporated radioactivity was
measured using a 1450 microbeta plate reader (@Vatitux Instrument; Life Science). Supernatants
were collected for cytokine measurement (Luminesjobe adding [methylH]TdR. Assays were

performed in triplicates.
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Supplementary tables

Antibody (anti-) Clone Company
CDla HI149 BD Biosciences
CD1b SN13(K5-1B8) BioLegend
CD1c 510/21A3 BD Biosciences
CD11b ICRF44 BioLegend
CD11lc BU15 BioLegend
CD14 M5E3 BioLegend
CDh31 WM59 BioLegend
CD36 CB38 BD Biosciences
CD40 5C3 BD Biosciences
CD80 L307.4 BD Biosciences
CD86 2331(FUN-1) BD Biosciences
CD206 15-2 BioLegend
CD207 DCGM4 Beckman Coulter
CD209 eB-h209 eBioscience
CD324/E-cadherin 67A4 BD Biosciences
CXCR1 8F1-CXCR1 BioLegend
CX3CR1 2A9-1 eBioscience
HLADR G46-6 BD Biosciences
EpCAM/Tropl EBA-1 BD Biosciences
Trop2 162-46 BD Biosciences
TLR2 1167 BD Biosciences

Table S1. Flow cytometry antibodies
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Cytokine/reagent

Company

Trombopoietin (TPO)

Stem cell factor (SCF)

Fms-related tyrosine kinase 3 ligand (FLT3-L)

Tumor necrosis factor alpha (TNF

Granulocyte-macrophage colony-stimulating factoM(GSF)

Interleukin 4 (IL-4)

PeproTech, UK

Transforming growth factor beta 1 (TGH)

R&D Systems,

Recombinant mouse noggin (NOG) USA
. . ImmunoTools,
Bone morphogenetic protein 7 (BMP7) Germany
Alk4/5/7 inhibitor (SB431542) Tocris

Dorsomorphin

Bioscience, UK

FluoSpheres® carboxylate-modified microspheregi®? crimson fluorescer
(625/645) 2% solids

t Invitrogen, USA

Recombinant extracellular domain of Notch ligandt®é (Delta-£*-IgG)

Table S2. Cytokines and reagents

Kindly provided
by I. Bernstein
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Name | Orientation | Sequence 53’
TLR1 fw GGCACCCCTACAAAAGGAATC
rev TGAAGATAATGGCAAAATGGAAG
TLR2 fw GCTGCCATTCTCATTCTTCTG
rev GCCACTCCAGGTAGGTCTTG
fw TCCACCACCAGCAATACAAC
TLR3 rev AAGCCAAGCAAAGGAATCG
TLR4 fw TCATTGTCCTGCAGAAGGTG
rev AGATGTTGCTTCCTGCCAAT
TLRS fw TTGCTCAAACACCTGGACAC
rev CACCACCATGATGAGAGCAC
fw GACCTACCGCTGAAAACCAA
TLRO rev CTCACAATAGGATGGCAGGA
fw TCCTAAAACTCTGCCCTGTGA
TLR7 rev GGGAGATGTCTGGTATGTGG
TLRS fw GGGGATCAAAGAGGGAAGAG
rev TTGGGATGTGGAAAGAGACC
TLR9 fw CTGCCTTCCTACCCTGTGAG
rev AGAATCATGGAGGTGGTGGA
fw TGGTTGGATGGTCAGATTCA
TLRIO rev AGGGCAGATCAAAGTGGAGA
HPRT fw GACCAGTCAACAGGGGACAT

rev

AACACTTCGTGGGGTCCTTTTC

Table S3. gPCR primer sequences

12
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pAb — polyclonal antibody
mAb — monoclonal antibody

Primary antibody Clone Company
pAb rabbit anti-CD207 N/A Sigma-Aldrich, USA
mADb rat anti-CD207 Alexa Fluor-488 929F3.01 Derndsit France
pAb rabbit anti-BMP7 N/A LifeSpan BioSciences, USA
mAb mouse anti-Ki67 MIB-1 Dako, USA
pAb rabbit anti-pSMAD1/5/8 N/A CellSignaling, USA
mAb mouse anti-CD1a 010 Novus Biologicals, USA
mAb mouse anti-CD1c OTI2F4 Abcam, UK
pAb rabbit anti-CD206 N/A . .
pAb rabbit anti-BMPR2 N/A Sigma-Aldrich, USA
Secondary antibody (conjugated)
pAb donkey anti-mouse DyLight488 N/A
pAb donkey anti-mouse Cy3 N/A
donkey anti-rabbit Cy3 N/A Jacllfsgn In:m_unolfjgif\earch
donkey anti-rabbit DyLight488 N/A aboratories,
donkey anti-rabbit Alexa Fluor-647 N/A

Table S4. Immunohistology antibodies
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