
Restricted Assignment Scheduling with
Resource Constraints ∗

Gyorgy Dosa,† Hans Kellerer,‡ Zsolt Tuza §

Abstract

We consider parallel machine scheduling with job assignment re-
strictions, i.e., each job can only be processed on a certain subset of the
machines. Moreover, each job requires a set of renewable resources.
Any resource can be used by only one job at any time. The objective
is to minimize the makespan. We present approximation algorithms
with constant worst-case bound in the case that each job requires only
a fixed number of resources. For some special cases optimal algorithms
with polynomial running time are given. If any job requires at most
one resource and the number of machines is fixed, we give a PTAS.
On the other hand we prove that the problem is APX-hard, even when
there are just three machines and the input is restricted to unit-time
jobs.

Keywords: scheduling; restricted assignment; resources; APX hardness;
graph coloring.

∗ Research of G. Dosa and Zs. Tuza was supported in part by the National Research,
Development and Innovation Office – NKFIH under the grant SNN 116095. G. Dosa
was also supported in part by VKSZ 12-1-2013-0088 Development of cloud based smart
IT solutions by IBM Hungary in cooperation with the University of Pannonia. All three
authors are partially supported by Stiftung Aktion Österreich-Ungarn, under grant 92öu1.
†Department of Mathematics, University of Pannonia, H-8200 Veszprém, Egyetem

u. 10, Hungary. E-mail: dosagy@almos.vein.hu
‡ Institut für Statistik und Operations Research, Universität Graz, Universitätsstraße

15, 8010 Graz, Austria. E-mail: hans.kellerer@uni-graz.at
§Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Bu-

dapest, Reáltanoda u. 13–15; and Department of Computer Science and Systems Tech-
nology, University of Pannonia, H-8200 Veszprém, Egyetem u. 10, Hungary. E-mail:
tuza@dcs.uni-pannon.hu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/286427737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

We are given a set J = {1, . . . , n} of n independent jobs that are to be
scheduled on m parallel machines M1, . . . ,Mm. In the Restricted Assignment
problem (RA-problem, for short) each job j can be executed on a specific
subset M(j) of the machines, and on those machines the processing time of
job j is pj. The objective is to minimize the makespan. In the three field
notation, we abbreviate this problem by R|pij ∈ {pj,∞}|Cmax.

Assume that additionally there are µ renewable resources R1, . . . , Rµ. Let
Λk be the set of jobs which require resource Rk, k = 1, . . . , µ, and let Λ0 be
the set of jobs which require no resources. Let λk denote the cardinality of set
Λk, k = 0, . . . , µ. Job j requires simultaneous availability of all resources in
the set R(j) ⊆ {R1, . . . , Rµ} for processing; we denote by ρj the cardinality
of R(j), j = 1, . . . , n. Any resource can be used by only one job at any time.
It means that two jobs which require the same resource cannot be processed
simultaneously. Note that in standard three-field notation problems with
resources are classified by “resµσρ” which means that there are µ resources,
the size of each resource does not exceed σ, and each job consumes no more
than ρ units of a resource. Hence, our problem is abbreviated by R|pij ∈
{pj,∞}, resµ11|Cmax. In the following, we will call it Restricted Assignment
with Resources problem, briefly RAR-problem. The degree of the problem
is defined as the quantity B = max

j=1,...,n
ρj, that is the maximum number of

resources required by a job.

1.1 Related Problems

To the best knowledge of the authors, restricted assignment and resources
were not considered previously together. The two types of conditions, how-
ever, have been studied separately.

The restricted assignment problem can be considered as a special case of
the classical unrelated machine problem R| · |Cmax, where job j on machine
Mi has processing time pij. The paper of Lenstra et al. [24] contains a
polynomial-time 2-approximation algorithm for R| · |Cmax. On the negative
side it is proven that one cannot get any worst-case ratio better than 3/2 for
R| · |Cmax unless P = NP holds. Ebenlendr et al. [14] extend this negative
result even to the case where each setM(j) contains at most two machines.

Only for special cases of the RA-problem, small improvements of the 2-

2

approximation of [24] have been found recently. In [14] a 1.75-approximation
is presented for the case that each job can be assigned to at most two ma-
chines. Chakrabarty et al. [12] consider the case where each job is either
heavy (pj = 1) or light (pj = ε), for some parameter ε > 0. Their main re-
sult is a (2− δ)-approximate polynomial-time algorithm for a fixed constant
δ > 0.

There are many papers considering Multiprocessor Scheduling With Re-
sources, MPSR for short. The first of them dealing with complexity analysis
seems to be [18], another early one is [10]. The problem has several variants,
some of them being of interest already on a single machine; see e.g. [25].

If each task requires at most one resource, i.e. B = 1, then MPSR with
unit-time jobs admits a polynomial-time algorithm for an arbitrary number
of processors, even with prescribed release times and deadlines [6]. On the
other hand, for a variable number of resources the problem of minimizing
maximum lateness becomes NP-hard, still with unit processing times of all
the tasks, and already on just two processors [7]. Further related papers are
[9, 22, 30]; see also the volume [8], the survey [15], and the references therein.

MPSR is equivalent to the problem of Scheduling With Conflicts (SWC),
where we are given m parallel, identical machines, a set J of n jobs j with
processing times pj, and a conflict graph G = (J,E). Each edge in E corre-
sponds to a pair of jobs that cannot be scheduled concurrently. Hence, SWC
can be considered as MPSR where each edge represents a resource which
is required by the two jobs corresponding to that edge.1 Vice versa, each
instance of MSPR defines a unique conflict graph. Hence, each MSPR can
be considered as SWC. The difference between the two models is that SWC
classifies a problem according to the conflict graph, while in MPSR a problem
is characterized by the resources required by the jobs, especially the number
of resources is relevant. The latter model is much more realistic since most
practical problems require only a constant number of resources.

The approach of MPSR, as compared to SWC, is also advantageous or
more informative in the sense that in this way we embed the problem into a
more general scenario, namely the MultiProfessor model, which we describe
after the next paragraph.

Baker and Coffman [3] investigated SWC with unit-time jobs under the

1 Since a resource may be required by more than two jobs, the minimum number
of resources needed to transform an instance of SWC to that of MPSR is equal to the
minimum number of complete subgraphs covering all edges of the conflict graph (if there
are no additional restrictions).

3

name mutual exclusion scheduling . Even et al. [17] mainly investigated online
algorithms for SWC, but also showed that the computation of the offline opti-
mum of SWC is APX-hard, even for two machines and jobs whose processing
times are integers between 1 and 4.

A further problem, introduced recently in [13], is called the Multiprofessor
Scheduling problem. It involves a set P = {P1, . . . , Pu} of professors and a
set L = {L1, . . . , Ln} of lectures (of specified durations), with two sets C and
C∗ of conditions given by pairs: (Pi, Lj) ∈ C means that professor Pi can
deliver lecture Lj if it is assigned to him, while (Ps, Lt)

∗ ∈ C∗ means that
professor Ps has to be present when Lt is delivered by some other professor,
who is assigned to this lecture.

Professors of the Multiprofessor Scheduling model correspond to machines
of the RAR model; the lectures are the jobs, the duration of a lecture means
the processing time. But RAR is only a particular case of the multiprofessor
scheduling problem: distinction between machines and resources means a
partition of professors into two classes: those only delivering lectures (‘Pro-
fessors’), and the others only attending (‘Instructors’).

1.2 Our Results

We prove inapproximability results and design approximation algorithms for
the RAR-problem. Our main negative result is that the problem with unit-
time jobs is APX-hard, already on three machines. In the case that each
job requires only a bounded number of resources, we design approximation
algorithms with constant worst-case bound, without any restrictions on pro-
cessing times. For some special cases (e.g., unit-time jobs with degree B = 1)
we design optimal algorithms with polynomial running time.

To derive the main negative result, we prove a theorem on graph coloring,
which seems to be of interest on its own right, too. It states APX-hardness of
the chromatic number on a restricted class of graphs. Interestingly enough,
the corresponding result on scheduling was widely believed2 to have been
proved via triangle packing; but actually there is no quantitative equation
between optimal triangle packings and optimal schedules. We illustrate this
fact with a simple example in Figure 1. The vertices represent unit-time jobs,

2 Section 1.2 of [17, p. 200] claims “a hardness gap for maximum packing of triangles
in a graph (...) implies a hardness gap for scheduling with conflicts of unit jobs on 3
machines.”

4

Figure 1: Small counterexample to a suspected relation between triangle
packings and optimal schedules.

and the edges represent those pairs of jobs which are processable simultane-
ously. (The number of machines can be any m ≥ 3.)

An optimal schedule requires makespan 3, by processing the two jobs of a
pendant edge in each time slot. On the other hand, starting from the optimal
triangle-packing and hence processing the three jobs of the central triangle
at the same time, each of the remaining jobs (the three pendant vertices)
require a further distinct time slot, yielding a schedule with makespan 4.

Section 2 is devoted to exact and approximation algorithms and their
analysis, Section 3 gives a PTAS for the case of B = 1 with a fixed number
of machines, and Section 4 contains inapproximability results. We finish in
Section 5 with some conclusions and topics for future research.

1.3 Some Terminology

Given an instance of the RAR-problem, we use the term assignment if the
jobs are assigned to the machines in a feasible way (i.e., the machine assign-
ment restrictions are satisfied), without fixing the time slots to execute the
jobs. If the jobs already got also their time slots where they are processed,
this assignment is called schedule. For a set of jobs J ′ ⊂ J we denote by
p(J ′) the total processing time of the jobs in J ′, i.e., p(J ′) =

∑
j∈J ′ pj.

In a graph G = (V,E) with vertex set V and edge set E, a set S ⊂ V is
independent if any two v, w ∈ S are nonadjacent. The independence number
of G is the maximum cardinality of an independent set in G. The chromatic
number is the minimum number of independent sets whose union is the entire
vertex set V . Equivalently, it is the minimum number of colors that can be
assigned to the vertices in such a way that no two adjacent vertices get
the same color. A clique cover of G is a collection of complete subgraphs

5

whose union contains all vertices of G. Throughout this paper we restrict
our attention to clique covers in which the complete subgraphs are mutually
vertex-disjoint.

A matching in a graph is a collection of mutually vertex-disjoint edges;
with an alternative terminology, any two edges of a matching are nonadja-
cent. The matching number is the maximum number of edges in a matching.
The chromatic index of a graph or multigraph G is the minimum number
of matchings whose union is the set E of all edges. Equivalently, it is the
minimum number of colors that can be assigned to the edges in such a way
that no two adjacent edges get the same color.

1.4 Approximation and L-Reduction

For an optimization problem P , if I is a problem instance and z is a solution
on I, we denote by OptP (I) the optimum value on I. If not stated oth-
erwise, let OptRAR denote the optimal solution value for the RAR-problem
and OptRA be the optimal solution for the RA-problem, respectively. Let
valP (I, z) denote the actual value of solution z; we may simply write val(I, z)
if P is understood. Given P and a real ρ > 1, an algorithm is a ρ-approximation
algorithm if it determines a solution z for every instance I, with the property
that valP (I, z) ≤ ρOptP (I) if P is a minimization problem, and valP (I, z) ≥
1
ρ
OptP (I) if P is a maximization problem. A family of ρ-approximation algo-

rithms is called a polynomial-time approximation scheme (PTAS) if ρ = 1+ε
for any ε > 0 and the running time is polynomial with respect to the length
of the problem input. A family of ρ-approximation algorithms is called a
fully polynomial-time approximation scheme (FPTAS) if ρ = 1 + ε for any
ε > 0 and the running time is polynomial with respect to both the length of
the problem input and 1/ε.

Consider now two NP-optimization problems, say A and B. As intro-
duced in [27], an L-reduction from A to B consists of two functions f and
g, computable in polynomial time, for which there exist constants α, β > 0
such that:

• if I is an instance of problem A, then f(I) is an instance of problem
B, satisfying

OptB(f(I)) ≤ α · OptA(I) ;

6

• if z is a solution on f(I), then g(z) is a solution on I, satisfying

|OptA(I)− valA(I, g(z))| ≤ β · |OptB(f(I))− valB(f(I), z)|.

The problem class APX consists of those optimization problems P for which
there exists a C-approximation with some constant C. The relevance of L-
reduction is that if a problem A is APX-hard and there is an L-reduction
form A to B then also B is APX-hard.

2 Exact and Approximation Algorithms

In this section we will present optimal algorithms with polynomial running
time for two special cases, and a polynomial approximation algorithm for the
general case. For the unit-time case with B = 1 we will give an exact algo-
rithm with running time in O((m3 + m2n) log n) and for the unit-time case
with two machines we will give an optimal algorithm applying a maximum
matching algorithm. For the general case we design a polynomial approxi-
mation algorithm with worst-case bound B + 2− 1/m.

Solving the problem with two machines and unit-time jobs is straightfor-
ward using matching techniques.

Theorem 1. The RAR-problem with unit-time jobs and two machines can
be solved in polynomial time.

Proof. We define a graph G = (V,E). The vertices in V consist of the jobs
1, . . . , n. There is an edge between vertex i and vertex j if and only if jobs i
and j have no resource in common which they require, i.e., R(i) ∩R(j) = ∅
and, moreover, it is not the case that |M(i)| = |M(j)| = 1 and M(i) =
M(j). In this graphical representation two unit-time jobs can be processed
in the same time interval if and only if they are connected by an edge. If a
maximum matching of this graph has ν edges, then the minimum makespan
of a feasible schedule is n − ν, and vice versa. Now the theorem follows by
the fundamental result of Edmonds [16] that the matching number of graphs
can be determined in polynomial time. �

The next theorem shows that for unit processing times and B = 1, the
RAR-problem can be solved in polynomial time on any (maybe not even a
constant) number of machines. Better bounds could be given for large m,

7

but the main point here is polynomiality; moreover the formula is very strong
if m is small, which is the typical case in scheduling.

Theorem 2. The RAR-problem with n unit-time jobs and m machines can
be solved in O((m3 +m2n) log n) time for B = 1.

Proof. Let f be a given positive integer. We will present an algorithm
which examines in polynomial time whether an assignment exists with finish
time less than or equal to f . The optimal value of f can then be found by
binary search. Set λmax = max{λ1, . . . , λµ}. Since λmax is a lower bound for
the optimal finish time, we may assume that f ≥ λmax. Notice further that
for B = 1, the sets Λ0,Λ1, . . . ,Λµ are disjoint and hence (Λ0,Λ1, . . . ,Λµ) is
a partition of J . In the first stage, we will check whether there is a feasible
assignment of jobs to machines with makespan at most f while ignoring the
resource requirements. This is done by solving an appropriate network flow
problem in a bipartite network N .

The network N is defined as follows. From a source node s we have arcs
to all nodes of a set V1 = {1, . . . , n} of n nodes which represent the n jobs.
The second part of the node set is given by V2 = {M1, . . . ,Mm}. From node
j there is an arc to node Mi if and only if Mi ∈ M(j). There is an arc
from each node Mi to the sink t. All arcs have capacity 1 except for the
arcs incident with t, which have capacity f . Applying standard techniques
including the Flow Integrality Theorem, it follows that there is a feasible
assignment of jobs to machines with makespan at most f if and only if N
admits a flow from s to t with flow value n.

If a flow with flow value n exists, we take such an integral flow and use
the computed assignment of jobs to machines in order to assign the jobs to
time slots in the second stage. We have to assure that two jobs from the
same set Λk, k = 1, . . . , µ are not processed simultaneously. Since there are
no restrictions for the time slots for jobs in Λµ+1, they are given into the time
slots of idle time leftover after assigning the jobs from Λ1, . . . ,Λµ. For the
assignment of the jobs from Λ1, . . . ,Λµ we will define a bipartite multigraph
G with vertex set V = V1 ∪ V2. The set V1 consists of µ vertices R1, . . . , Rµ.
The vertex set V2 corresponds to the m machines M1, . . . ,Mm. There is an
edge between vertices Rk and Mi if and only if at least one job j ∈ Λk has
been assigned to Mi in the first stage. The multiplicity of the edge is equal
to the number of jobs assigned to Mi from Λk.

Recall that the chromatic index of a (multi)graph G is the smallest num-
ber of colors needed to partition the edge set of G into color classes so that

8

each class is a matching. Given such an edge coloring of G, we identify each
color with a time slot; and then the λk jobs in Λk can be assigned arbitrarily
to the λk different time slots corresponding the λk colors of the edges incident
to Rk. It is easily seen that there is a feasible schedule of makespan f if we
can find an edge coloring with at most f colors, and vice versa: “Each job
requiring the same resource has to be processed in different time slots” trans-
lates into “All edges incident to some vertex v ∈ V1 must receive different
colors.” “At each time, each machine executes at most one job” translates
into “All edges incident to some v ∈ V2 must receive different colors.” It is
well-known that a bipartite graph (or multigraph) with maximum degree h
has also chromatic index h (see e.g. Berge [4, p. 247]).

Since f ≥ λmax, G has maximum degree f , and hence the desired feasible
schedule exists. To find such a schedule, we use the algorithm due to Alon
for minimal edge coloring of bipartite multigraphs [2].

Let us look at the time complexity. The network N of Stage 1 has |V1| = n
and the number of arcs in N is in O(nm). Hence, the algorithm of Ahuja
et al. [1] for bipartite network flows uses O(m3 + m2n) time. Since graph
G has only n edges, we need O(n log n) time for the coloring algorithm in
Stage 2, see [2]. Clearly, all jobs can be finished by time n. Thus, we can
find a schedule with minimum makespan using binary search with at most
log(n) steps. This gives the claimed time complexity. �

We investigate now the RAR-problem with arbitrary processing times.
Our approximation algorithm is again composed of two stages. In the first
stage an assignment of jobs to machines with an approximation on the mini-
mum finish time is given while ignoring the resources. This means that in the
first stage a solution for the RA-problem is computed. In the second stage
this assignment is transformed into a feasible schedule for the RAR-problem.

Let us now assume that we have found an assignment of the jobs to
the machines using a heuristic H by ignoring the resources. Let Cmax(H)
denote the makespan produced by heuristic H. We fix in the second stage
the schedule for each machine, taking into account that jobs requiring the
same resource cannot be processed simultaneously. This is done by a greedy
approach as follows.

Algorithm G

Input: An assignment of jobs to machines produced by a heuristic H

9

Output: A heuristic schedule S

1. Let t be the first time, such that some machine Mi is available
and there is a job j, that may be started by Mi at time t. Select
j to be the next job processed by Mi.

2. Repeat Step 1 until all jobs are scheduled. Stop.

Let p(Λk) be the total length of all jobs which require resource Rk, i.e.,
p(Λk) =

∑
j∈Λk

pj, for k = 1, . . . , µ. Set p(Λmax) = maxk=1,...,µ p(Λk).
It can be easily seen that the running time of Algorithm G is at most

O(mn2B). We now analyze its worst-case performance.

Theorem 3. Let Cmax(G) be the makespan of Algorithm S after applying
heuristic H. Then

Cmax(G) ≤ Cmax(H) + p(Λmax) ·B.

Proof. Let S be the schedule produced by G. Without loss of generality,
suppose that machine Mm is the one which terminates schedule S. Let Q
be the set of jobs processed by Mm after the last idle interval for Mm. We
assume that Q is not empty, since otherwise Cmax(G) = Cmax(H) and the
theorem obviously holds.

Each of the jobs of set Q requires at least one resource; otherwise a job
from Λµ+1 would have started earlier. Select one of the jobs j ∈ Q. It follows
that the total idle time of Mm does not exceed the total time for processing
all jobs that require at least one of the resources in R(j). Indeed, job j was
not able to start in an idle interval because resources in R(j) were required
by some other jobs in that entire interval. This means that the union of idle
intervals for Mm is completely contained in the union of intervals in which
jobs requiring resources from R(j) are processed. Thus, the total time of
this union of intervals is bounded from above by

∑
k∈R(j)

p(Λk). Since ρj ≤ B,

we conclude that

Cmax(G) ≤ Cmax(H) +
∑
k∈R(j)

p(Λk) ≤ Cmax(H) + p(Λmax) ·B.

�

Corollary 4. If heuristic H provides an α-approximation for the RA-problem,
we obtain an (α +B)-approximation algorithm for the RAR-problem.

10

Proof. Recall that OptRAR denotes the optimal solution value for the RAR-
problem and OptRA the optimal solution for the RA-problem, respectively.
Then, we have

OptRAR ≥ max{OptRA, p(Λmax)}.
Using Theorem 3 we get

Cmax(S) ≤ α · OptRA + p(Λmax) ·B ≤ (α +B) · OptRAR.

�

Theorem 5. There is a polynomial-time (2−1/m+B)-approximation algo-
rithm for the RAR-problem on m machines with arbitrary processing times.

Proof. Consider the scheduling problem of minimizing the makespan on
unrelated machines, R| · |Cmax. In the unrelated machine problem, job j has
processing time pij on machine i.

For an assignment of jobs to machines in the RA-problem the processing
times pij reduce to

pij =

{
pj, i ∈M(j)
∞, otherwise.

Recall that Lenstra et al. [24] present a 2-approximation algorithm for
problem R| · |Cmax. Using the improved rounding scheme of Shchepin and
Vakhania [29] it is even possible to find a solution for IP with makespan

Cmax(SV) ≤
(

2− 1

m

)
OptRA, (1)

where Cmax(SV) denotes the makespan obtained by applying the algorithm
in [29] and OptRA corresponds to an optimal solution of the RA-problem.
Replacing α by 2− 1/m in Corollary 4 we get the desired result. �

Corollary 6. If B is a constant, there is a polynomial-time approximation
algorithm with constant worst-case bound for the RAR-problem.

Corollary 7. There is a polynomial-time (1 + B)-approximation algorithm
for the RAR-problem with unit-time jobs and abritrary number of machines.

Proof. It can be easily seen that the RA-problem with unit-time jobs is
solvable in polynomial time by maximum cardinality bipartite matching. �

11

Corollary 8. For any fixed ε > 0 there is a polynomial-time (1 + ε + B)-
approximation algorithm for the RAR-problem, when the number of machines
m is a constant.

Proof. It is well-known that there is an FPTAS for the problem Rm| · |Cmax

with a fixed number of machines. �

A special case of the restricted assignment problem is the problem where
the sets M(j) are nested: for any two jobs j and k, either M(j) ∩M(k) =
∅, or M(j) ⊆ M(k), or M(k) ⊆ M(j). Muratore et al. [26] derive a
polynomial-time approximation scheme for the restricted assignment problem
with nested constraints (without any assumptions on m). This results in the
following corollary.

Corollary 9. For any fixed ε > 0 there is a polynomial-time (1 + ε + B)-
approximation algorithm for the RAR-problem with nested constraints, even
when the number of machines m is part of the input.

Proof. Replace α by 1 + ε for this special RA-problem. �

3 A PTAS for a Fixed Number of Machines

and B = 1

In this section we present a polynomial time approximation scheme (PTAS)
for the RAR-problem with B = 1 for which the number of machines m is
fixed. Our proof is an extension of the proof in [20] for the problem with
parallel dedicated machines with a single resource PDm|res111|Cmax where
each job has to be processed on exactly one machine and one resource is
available. For the sake of completeness, we will repeat those parts of the
proof from [20] that are slightly modified but necessary for understanding.

Recall from the preceding section that Cmax(SV) denotes the makespan
obtained by applying the algorithm in [29] to the RA-problem. Then, define

C = max{p(Λmax), p(J)/m,Cmax(SV)/2}.
Here, p(Λmax) and p(J)/m are obvious lower bounds for OptRAR. We con-
clude for B = 1 from (1) that

C ≤ OptRAR. (2)

12

Applying Theorem 3 with Cmax(SV) we get OptRAR ≤ Cmax(SV) + p(Λmax)
and thus

OptRAR ≤ 3C. (3)

Let ε > 0 be a small number and set ε̃ = ε/74. We introduce the sequence
of real numbers δ1, δ2, . . . such that

δt =

(
ε̃

m3

)2t

.

For each integer t, t ≥ 1, define the set of jobs J t = {j ∈ J | δ2
tC < pj ≤ δtC}.

Obviously, J1, J2, . . . are mutually disjoint and their union is J . Thus, there
is a positive integer t0 ≤ dmε̃ e such that p(J t0) ≤ ε̃p(J)/m ≤ ε̃C holds.
Choose δ = δt0 . Partition the set J of jobs into the set of big jobs J1, the set
of medium jobs J2, and the set of small jobs J3, defined as follows:

J1 = {j | δC < pj},
J2 = {j | δ2C < pj ≤ δC}, (4)

J3 = {j | pj ≤ δ2C}.

The corresponding cardinalities of J1, J2, J3 are given by n1, n2, n3, respec-
tively. Note that by definition J2 = J t0 , so that

p(J2) ≤ ε̃OptRAR. (5)

Besides,

ε̃

m3
≥ δ ≥

(
ε̃

m3

)2d
m
ε̃ e

. (6)

We get from (3) that

n1 <
3

δ
m. (7)

Consider the set of restricted schedules SR which consists of all the sched-
ules, in which the starting times of the big jobs are non-negative integer
multiples of δ2C. Let OptSR denote the optimal solution value for the RAR-
problem restricted to class SR. Assume that the schedules are represented by
Gantt-charts where the horizontal axis corresponds to the time. We trans-
form an optimal schedule S∗ of the RAR-problem into a schedule SR ∈ SR
by shifting jobs iteratively to the right, beginning with the smallest starting

13

time of a big job which is not equal to a multiple of δ2C. In each iteration
jobs are shifted to the right by at most δ2C and after n1 iterations we obtain
a schedule of class SR. Using (3) and (7) we get

OptSR ≤ OptRAR + 3mδC ≤ 3C (1 +mδ) . (8)

For the jobs of set J1, define SB as the class of schedules which con-
tains all possible schedules of big jobs with starting and completion times in
[0; 3C (1 +mδ)] such that all starting times are non-negative integer multi-
ples of δ2C. Consider an arbitrary schedule SB ∈ SB. Let τ1 < τ2 < . . . < τq
be the increasing sequence of all positive distinct starting and completion
times of the big jobs. By (7) we have

q <
6

δ
m. (9)

For schedule SB, define the following sequence of time intervals

I0 = [0; τ1], I1 = [τ1; τ2], . . . , Ih = [τh; τh+1], . . . , Iq−1 = [τq−1; τq], Iq = [τq;∞[.

Clearly, inside a time interval Ih, 0 ≤ h ≤ q, no big job starts or completes.
With τq+1 = ∞ and τ0 = 0 denote the length of Ih by `(Ih) = τh+1 − τh for
h = 0, . . . , q − 1 and `(Iq) =∞.

When a time interval Ih is associated with a machine Mi we denote it by
Ii,h and define its capacity by

c(Ii,h) =

{
`(Ih), if no big job is processed on Mi in interval Ih

0, otherwise.

The capacity for resource Rk of interval Ih is given as

rk(Ih) =

{
`(Ih), if no big job of Λk is processed in interval Ih

0, otherwise.

The value rk(Ih) specifies the maximum total processing time of small or
medium jobs in Λk which can be processed during time interval Ih. As in the
proof of Theorem 5 the processing times pij reduce to

pij =

{
pj, i ∈M(j)
∞, otherwise.

14

We want to assign the small jobs preemptively into schedule SB. For this
purpose the linear program LP (SB) is defined as follows:

minimize z

s.t.
∑
j∈J3

x(i,h),j pi,j ≤ c(Ii,h), i = 1, . . . ,m, h = 0, . . . , q − 1, (10)

m∑
i=1

∑
j∈Λk

x(i,h),j pi,j ≤ rk(Ih), k = 1, . . . , µ, h = 0, . . . , q − 1, (11)

∑
j∈J3

x(i,q),j pi,j ≤ z, i = 1, . . . ,m, (12)

m∑
i=1

∑
j∈Λk

x(i,q),j pi,j ≤ z, k = 1, . . . , µ, (13)

q∑
h=0

m∑
i=1

x(i,h),j = 1, j ∈ J3, (14)

x(i,h),j ≥ 0.

The variable x(i,h),j determines the rate of small job j which is processed
in interval Ih on machine Mi. Hence, (14) guarantees that job j is fully
distributed among the machines and that 0 ≤ x(i,h),j ≤ 1. Inequalities (10)
ensure that the total processing time of small jobs executed in interval Ih
on machine Mi does not exceed the interval length `(Ih). Inequalities (11)
guarantee that the total processing time of jobs in Λk executed in interval Ih
does not exceed `(Ih). By (12) and (13) the optimal objective function value
z is not smaller than the maximum of the total processing time of small
jobs processed on a machine after time τq and the maximum of the total
processing time of small jobs which require a certain resource. Notice that
LP (SB) only assigns small jobs to time intervals, but no starting times of the
jobs are given and a preempted job can be assigned to different machines.

The linear program LP (SB) consists of m(q + 1) inequalities (10), (12),
µ(q + 1) inequalities (11), (13) and n3 equations (14). Let an optimal basic

15

solution of LP (SB) with optimal solution value z∗ be represented as a matrix

Γ =
(
γ(i,h),j

)
, i = 1, . . . ,m, h = 0, . . . , q, j ∈ J3.

The rows of Γ correspond to all possible pairs (i, h) taken in any order, the
n3 columns correspond to different small jobs. The values v1 and v2 denote
the number of inequality constraints (10), (12) and (11), (13), respectively,
which are satisfied as equalities by Γ. By elementary linear programming
theory, the number γ+ of strictly positive values in Γ is at most n3 + v1 + v2.
Clearly, v1 ≤ m(q+ 1). For µ ≤ m, we have v2 ≤ m(q+ 1) as well. If µ > m,
then for each h, 0 ≤ h ≤ q, inequalities (11) and (13) hold as equality for
at most m resource values k. We conclude that at most m(q + 1) inequality
constraints (11), (13) are non-redundant. Thus, we have shown that

γ+ ≤ n3 + 2m(q + 1). (15)

Call positive solution values γ(i,h),j with γ(i,h),j < 1 split values; otherwise,
call positive solution values with γ(i,h),j = 1 non-split values. Notice that if
γ(i,h),j is a non-split value, then job j is completely assigned to time interval Ih
on machine Mi. Partition the set of small jobs J3 into the set Js3 of small split
jobs , i.e., those jobs j for which there is a row (i, h) such that 0 < γ(i,h),j < 1,
and into the set Jns3 of small non-split jobs , i.e. those jobs j for which there
is a row (i, h) such that γ(i,h),j = 1.

Since each job is processed on at least one machine and in at least one time
interval, it follows that each of the n3 columns of matrix Γ has at least one
positive entry. By (15) there are at most 2m(q+ 1) columns with more than
one positive entry, and the positive entries of each such column correspond
to the split values of Γ. Hence, there are at most 4m(q + 1) split values and
at most 2m(q + 1) small split jobs. Since the maximum processing time of a
small split job is δ2C, we obtain

p(Js3) ≤ 2m(q + 1)δ2C. (16)

Temporarily, ignore the set Js3 . For each time interval Ih we define an open
shop problem where the small non-split jobs which use the same resource and
are assigned to Ih by LP (SB) form an operation. The schedule of each such
open shop problem corresponds to time slots to which we assign the original
jobs afterwards. More precisely, let J(i,h),Λk denote the set of small non-split

16

jobs which require resource k and which are assigned by LP (SB) to machine
Mi in time interval Ih, i.e.,

J(i,h),Λk =
{
j ∈ Jns3 | j ∈ Λk, γ(i,h),j = 1

}
i = 1, . . . ,m, h = 0, . . . , q, k = 1, . . . , µ.

Analogously,
J(i,h),Λ0 =

{
j ∈ Jns3 | j ∈ Λ0, γ(i,h),j = 1

}
is the set of small non-split jobs which require no resource and which are
assigned by LP (SB) to machine Mi in time interval Ih. Then, define for each
time interval Ih, h = 0, . . . , q, an open shop problem OS(h) on m machines
with m + µ jobs as follows. There are given µ jobs Oh,k, k = 1, . . . , µ, with
operations O(i,h),k on machine Mi, i = 1, . . . ,m. These operations have the
processing times

p(O(i,h),k) =
∑

j∈J(i,h),Λk

pj, i = 1, . . . ,m, k = 1, . . . , µ. (17)

Furthermore, there are m jobs O(i,h),0, i = 1, . . . ,m, which consist of single
operations, also denoted as O(i,h),0, which have to be processed on machine
Mi. They have the processing times

p(O(i,h),0) =
∑

j∈J(i,h),Λ0

pj, i = 1, . . . ,m. (18)

Each job Oh,k of problem OS(h), h = 0, . . . q, has release time τh. We
allow the jobs to be preemptive. Hence, the problem can be classified in
3-field notation as Om|pmtn|Cmax. Let OptOS(h) denote the optimal solution
of problem OS(h).

For a classic open shop problem on m machines with n jobs and operation
times qij, i = 1, . . . ,m, j = 1, . . . n, there are two obvious lower bound on
the optimal makespan:

LB1 = max

{
n∑
j=1

qij | i = 1, . . . ,m

}
(machine based lower bound),

and

LB2 = max

{
m∑
i=1

qij | j = 1, . . . , n

}
(job based lower bound).

17

If the open shop problem is preemptive, there is a polynomial algorithm
which finds an optimal schedule with solution value equal to max{LB1, LB2}
(see [28] for details). Inequalities (10) and (11) imply that

OptOS(h) ≤ τh+1, h = 0, . . . , q − 1. (19)

Analogously, inequalities (12) and (13) correspond to the machine based and
the job based lower bound, respectively. This implies that

OptOS(q) ≤ τq + z∗. (20)

Notice that there is an optimal schedule for Om|pmtn|Cmax that has no more
than 4m2 preemptions. A possible algorithm for finding such a schedule is
described in [23].

Consider such an optimal schedule for problem OS(h), h = 0, . . . , q. For
each k, k = 0, . . . , µ, and each machine Mi, i = 1, . . . ,m, identify the se-
quence T u(i,h),k, u = 1, 2, . . . , of time slots in which the operation O(i,h),k is

processed (preemptively) on machine Mi. For each such interval T u(i,h),k de-

termine its length `(T u(i,h),k). Notice that,

p(O(i,h),k) =
∑
u

`
(
T u(i,h),k

)
. (21)

We are now able to formulate the PTAS for our problem.

Algorithm RARm

Input: An instance of the RAR-problem with B = 1, a fixed number of
machines m and accuracy ε > 0

Output: A heuristic schedule Sε

1. For a given ε, determine ε̃ and δ. Partition the set J of jobs into the
subsets J1, J2 and J3 of big, medium and small jobs, respectively, as
defined in (4).

2. For each schedule SB ∈ SB solve the corresponding linear program
LP (SB) and find the optimal value z∗ of the objective function. Identify
schedule S∗B ∈ SB for which the value z∗ + τq attains its minimum.
Denote Iq+1 = [τq; τq + z∗].

18

3. For the schedule S∗B solve the corresponding q + 1 open shop problems
OS(0), OS(1), . . . , OS(q) such that each optimal solution has at most
4m2 preemptions. For each i = 1, . . . ,m, h = 0, . . . , q, k = 0, . . . , µ,
assign the jobs in J(i,h),Λk non-preemptively to the corresponding time-
slots T u(i,h),k, u = 1, 2, . . . , by using First Fit. The small non-split jobs

which could not be sequenced are collected in set Jns13 .

4. The jobs which are not assigned yet, i.e., the medium jobs J2, small
split jobs in Js3 and the small non-split jobs in Jns13 , are sequenced
at the end of the schedule in any order. We obtain schedule Sε with
makespan Cmax(Sε).

Theorem 10. Algorithm RARm is a PTAS for the RAR-problem with a
fixed number of machines and B = 1.

Proof. Algorithm RARm runs in polynomial time for fixed m and ε. This
is guaranteed by the fact that the maximum number of schedules in SB is in
O((m

δ2)
3m
δ) and is therefore a constant. We prove that the algorithm produces

a schedule with makespan not greater than (1 + ε)OptRAR.
The optimal solution of LP (S∗B) gives a lower bound for the optimal

solution values of schedules in SR, i.e.,

z∗ + τq ≤ OptSR . (22)

Inequalities (19), (20) guarantee that the time-slots produced in Step 3 fit
into the intervals I0, I1, . . . , Iq+1. Therefore, the small jobs assigned in Step 3
are finished before τq + z∗ and the makespan of schedule Sε is bounded by
the total processing time of the jobs assigned in Step 4 plus τq + z∗, i.e.,

Cmax(Sε) ≤ τq + z∗ + p (J2) + p (Js3) + p
(
Jns13

)
. (23)

The total processing time of the medium jobs and the small split jobs is
bounded by (5) and (16). We have to estimate the number of small non-split
jobs that cannot be scheduled in Step 3 of the algorithm. Therefore, we turn
to the time slots T u(i,h),k introduced in Step 3 of Algorithm RARm. Collect

the time slots T u(i,h),k which correspond to the same operation in set T̂(i,h),k,
i.e.,

T̂(i,h),k =
{
T u(i,h),k|u = 1, 2, . . .

}
.

19

First, consider the time slots which belong to one-element sets T̂(i,h),k.
From (17), (18) and (21) follows that in Step 3 of the algorithm all jobs of
J(i,h),Λk are processed on machine Mi as a single block.

Collect the time slots which belong to sets T̂(i,h),k with more than one

element, in set T̂1 and define t1 = |T̂1|. Recall that there are at most 4m2

preemptions for each open shop problem OS(h), h = 0, . . . , q. Any set T̂(i,h),k

with v elements (v ≥ 1) corresponds to v − 1 preemptions in interval Ih.
Hence, we get t1 ≤ 8m2(q + 1) and at most 8m2(q + 1) small non-split jobs
cannot be assigned by First Fit in Step 3. This results in

p
(
Jns13

)
≤ 8m2(q + 1)δ2C. (24)

Now it is possible to estimate Cmax(Sε) by inserting (5), (16) and (24) in
(23). We get

Cmax(Sε) ≤ τq + z∗ + ε̃OptRAR + 2m(q + 1)δ2C + 8m2(q + 1)δ2C. (25)

Applying (2), (8) and (22) inequality (25) simplifies to

Cmax(Sε) ≤
(
1 + 3mδ + ε̃+ 2m(q + 1)δ2 + 8m2(q + 1)δ2

)
OptRAR.

Inserting (9) and afterwards (6) we deduce

Cmax(Sε) ≤
(
1 + 3mδ + ε̃+ 12m2δ + 2mδ2 + 48m3δ + 8m2δ2

)
OptRAR

≤
(

1 +
3ε̃

m2
+ ε̃+

12ε̃

m
+

2ε̃2

m5
+ 48ε̃+

8ε̃2

m4

)
OptRAR

≤ (1 + 74ε̃)OptRAR

= (1 + ε)OptRAR.

Thus, we have shown that Algorithm RARm is a PTAS. The theorem is
proved. �

4 Inapproximability for Unit-Time Jobs

In this section we study the RAR-problem for unit-time jobs, but with no
upper bound on B. We first show that this subproblem cannot be approx-
imated within any constant bound. Then, by studying graph coloring on

20

a restricted class, we will prove that even the problem with unit-time jobs
and just three machines is APX-hard. Notice that for the unrelated machine
problem with any fixed number of machines, namely Rm| · |Cmax, an FPTAS
can be constructed by using standard dynamic programming techniques (see
e.g. [19]).

Let us note further that the RAR-problem with any fixed number m
of machines and arbitrary processing times is in APX, because a trivial m-
approximation is to schedule all jobs sequentially (each job j on any ma-
chine chosen from M(j)). Hence, if m is bounded, APX-hardness and APX-
completeness are equivalent. For unbounded m, however, approximation is
much less efficient, as shown in the following result. It extends the corre-
sponding observation from [17, p. 209] to a stronger form allowed by the
current model; it is adjusted from [13, Theorem 11] to the RAR terminology.

Theorem 11. The RAR-problem cannot be approximated within O(n1−ε)
for any fixed ε > 0 in polynomial time, unless P = NP, even when restricted
to instances where all jobs have unit time, each job can be processed on exactly
one machine, each machine processes exactly one job, and each resource is
required by at most two jobs.

Proof. We recall a reduction from [13], where it was constructed for a more
general problem, but works also for the current restricted one, too, without
modification. We apply the theorem of Zuckerman [31], which states that
the chromatic number of graphs does not admit a polynomial-time O(n1−ε)-
approximation for any ε > 0, where n is the number of vertices. So, let
G = (V,E) be a graph of order n, and denote its vertices by v1, . . . , vn.
Each vi corresponds to a unit-time job i. We assume here m = n, and that
machine Mi is dedicated to process job i. In this way the machines can work
independently at any time, except that restrictions will be created by the
resource requirements.

We define µ = |E|, and index the resources with the edges of G. If
vivj ∈ E, then there is a resource Rij required for both jobs i and j (but
not for any other job). This ensures that i and j cannot be processed at the
same time.

Since there are no more restrictions, it follows that a subset S ⊂ {1, . . . , n}
of jobs can be processed simultaneously in the same time slot if and only if
the set {vi | i ∈ S} is independent in G. Thus, minimum makespan equals
the chromatic number of G. �

21

The scheduling problem for parallel dedicated machines under resource
constraints, briefly PD|resµ11|Cmax, is a special case of the RAR-problem
where each job has to be processed on exactly one machine. It was shown
in [21] that there is a PTAS for this problem when the number of machines
is a constant. In contrast, Theorem 11 shows that even for unit-time jobs it
is non-approximable with a constant worst-case bound when the number of
machines is part of the input.

Corollary 12. The scheduling problem PD|resµ11|Cmax cannot be approxi-
mated within O(n1−ε) for any fixed ε > 0 in polynomial time even for unit-
time jobs, unless P = NP.

It should be noted that the problem instances constructed in the proof
above have input sizes of order n2. Currently we do not know what kind of
lower bound holds for instances whose size grows more slowly, e.g. is linear
in n.

As the main tool for the APX-hardness result, next we prove a theorem on
graph colorings and clique covers, which is of interest on its own right, too.
The algorithmic problems Chromatic Number and Minimum Clique
Cover take a graph G as input, and ask for the chromatic number of G
and the minimum number of complete subgraphs3 in a clique cover of G,
respectively. Although there is an extensive literature on the approximability
of the chromatic number of graphs, we were not able to find the theorem given
below.

Theorem 13. The following optimization problems are APX-complete:

(i) the Chromatic Number problem restricted to graphs of independence
number 3,

(ii) the Minimum Clique Cover problem restricted to graphs whose clique
number is 3,

(iii) even more restrictively the Minimum Clique Cover problem on graphs
whose clique number is 3 and maximum degree is 4.

3 Since all induced subgraphs of a complete graph are complete, the minimum is the
same independently of whether it is assumed that the subgraphs used in the cover are
vertex-disjoint.

22

Proof. Membership in APX is immediately seen, because the optimum
clearly is at most n and at least n/3 for every graph of order n; thus, the
solution ‘n ’ is a trivial 3-approximation. Also, equivalence between (i) and
(ii) holds by taking complementary graphs. For this reason it suffices to prove
that there is no PTAS for Minimum Clique Cover under the degree-4
condition, unless P=NP.

We apply L-reduction from the Max-2-SAT-3 problem, which is APX-
hard by the theorem of Berman and Karpinski [5]. (More explicitly, if P 6=NP,
then it is not possible to approximate the optimum within a multiplicative
1.0005 in polynomial time.) The construction below is quite similar to the
one given by Caprara and Rizzi [11] for the problem of determining the maxi-
mum number of vertex-disjoint triangles in graphs,4 but there are substantial
differences: the current structure is somewhat simpler, but nevertheless its
verification is much more tedious.

Let Φ be a Boolean formula over the n variables x1, . . . , xn with m clauses
c1, . . . , cm such that each clause is either a single literal or the disjunction of
two literals, and each variable occurs in at most three clauses (where both
literals xi and ¬xi are counted). The task is to maximize the number of
satisfied clauses in a truth assignment. Note that

Opt(Φ) ≥ m/2

because the all-true and all-false assignments together satisfy each clause,
therefore one of them satisfies at least half of the clauses.

We may assume without loss of generality that each variable xi occurs in
at least one positive and also in at least one negative literal, for otherwise
we can set all clauses containing xi true, hence reducing the instance to a
smaller one in constant time. Thus the total number of literals is at least 2n;
but it cannot exceed 2m (by the condition on clause size), therefore m ≥ n
holds, which implies

Opt(Φ) ≥ n/2.

For the sake of simpler formalism it is also convenient to assume that
if a variable occurs in three clauses, then two of those literals are positive
and one is negative. (In the opposite case just switch between positive and

4 Note that a clique cover may use not only triangles and vertices but also edges,
moreover there is no guarantee that an optimal solution occurs where the number of
triangles is maximum.

23

negative for this variable in the clauses and also between true and false in its
truth assignment.)

From every instance Φ satisfying the restrictions above, we construct a
graph GΦ on 8n + m vertices, which will be an instance of the problem in
(iii); cf. Figure 2. Its m clause-vertices will simply be denoted by c1, . . . , cm.

cj00 3 xi

cj0 3 xi

cj 3 ¬xi

clauses containing xi or ¬xivariable xi

Figure 2: Variable gadget for xi, and its adjacencies to clause vertices

The variable-gadgets have eight vertices each: the gadget belonging to xi
has vertex set {u1,i, u2,i, u3,i, u4,i, v1,i, v2,i, v3,i, v4,i}. The central part of the
gadget is a 4-cycle C(i) = v1,iv2,iv3,iv4,i, its vertices appear along the cycle in
this order; and the other four vertices are the third vertices of four triangles:

T1,i = u1,iv1,iv2,i , T2,i = u2,iv2,iv3,i , T3,i = u3,iv3,iv4,i , T4,i = u4,iv4,iv1,i .

If cj is the (unique) clause where ¬xi appears as a negative literal, then
there is an edge cju2,i; and if cj′ , cj′′ are the two clauses where xi appears as
a positive literal (say, j′ < j′′), then there are two edges cj′u1,i and cj′′u3,i.
Should xi as a positive literal occur in just one clause cj′ , only cj′ will be
adjacent with u1,i, hence u3,i has then degree 2 in GΦ. One can construct GΦ

from Φ in linear time. Moreover, we clearly have

Opt(GΦ) ≤ 4n+m ≤ 10 · Opt(Φ)

(where 10 ·Opt(Φ) is a very rough upper bound, but the actual coefficient of
Opt(Φ) is irrelevant with respect to L-reduction).

24

Claim. For any clique cover K of GΦ there exists a clique cover K∗ such
that |K∗| ≤ |K| and, for each index i (1 ≤ i ≤ n), either T1,i, T3,i ∈ K∗ or
T2,i, T4,i ∈ K∗.

The proof of this claim is easy but somewhat tedious since one has to
consider quite a few cases. It proceeds by making local modifications inside
each variable gadget. To perform them, it suffices to concentrate on those
cliques K ∈ K, termed crossing clique, which contain vertices both inside and
outside the central 4-cycle C(i) of the gadget in question. Note that such
cliques do not have any clause vertices, and contain precisely one neighbor
u`,i of C(i). We make primary distinction by inspecting the positions of the
intersections

K ∩ {v1,i, v2,i, v3,i, v4,i},
with secondary distinction by the vertex of K in {u1,i, u2,i, u3,i} if literals of
xi appear in precisely three clauses, or in {u1,i, u2,i} if each of xi and ¬xi
appears in precisely one clause.

A systematic listing of cases is given in the Appendix. As an example for
the transformation, suppose that K = {u1,i, v2,i} is the unique such clique. It
means that u2,i and u3,i are contained in some “external” cliques, say K2 and
K3, which do not meet C(i); but some cliques of K must contain u4,i, v1,i, v3,i,
and v4,i. This needs at least two cliques of K not yet listed. We then omit
those two cliques from K, and do the following further local modifications:
adjoin v1,i to K, which yields T1,i; remove u3,i from K3, and cover it together
with v3,i and v4,i as T3,i; and take the singleton {u4,i} as an additional clique.
In this way two cliques of K have been removed and two others inserted,
while all vertices are still covered and {T1,i, T3,i} is included in the modified
cover. (The clique K2 remained unchanged.) The other situations can also
be handled with similar modifications, some of them leading to |K∗| < |K|,
some others keeping |K∗| = |K| similarly to the present one.

We now define a mapping from the set of solutions on GΦ to set of solu-
tions on Φ, specifying a truth assignment fK(xi) for each clique cover K. For
i = 1, . . . , n let

fK(xi) =

{
true if {T2,i, T4,i} ⊂ K∗,
false if {T1,i, T3,i} ⊂ K∗.

Observe the following fact: If an xi is a positive literal in a clause cj, and in
the variable gadget of xi the clique cover K∗ uses the triangles T2,i and T4,i,

25

then the value of cj is set true by fK . A similar relation holds for negative
literals in connection with T1,i and T3,i. Thus, if fK(cj) = false, then K∗
contains {cj} as a separate clique (cf. Figure 3), therefore

cj = (xi _ ¬xj)

Figure 3: Non-satisfied clause yields singleton clique

val(GΦ,K) ≥ val(GΦ,K∗) ≥ 4n+m− val(Φ, fK). (26)

We can define a mapping in the opposite direction, too. If f is a truth
assignment in which the set of satisfied clauses is {cj | j ∈ Jf} (where
Jf ⊆ {1, . . . ,m}), then a clique cover Kf can be generated by the following
rules:

• if f(xi) = true, then put T2,i and T4,i into Kf ;

• if f(xi) = false, then put T1,i and T3,i into Kf ;

• for each j ∈ Jf select an index ij such that the literal of xij sets cj true;

• put the edge cju`,ij into Kf , where u`,ij is the neighbor of cj in the
vertex gadget of xij ;

• each vertex not covered so far is put into Kf as a complete subgraph
of order 1.

Since the set
{u`,i | 1 ≤ i ≤ n, 1 ≤ ` ≤ 4}

26

is independent, every clique cover of the subgraph induced by the variable
gadgets contains at least 4n complete subgraphs. The cover Kf uses fur-
ther complete subgraphs only for those clauses which are not satisfied by f .
Applying this to an optimal truth assignment, we obtain:

Opt(GΦ) ≤ 4n+m− Opt(Φ). (27)

The combination of the inequalities (26) and (27) yields

Opt(Φ) + Opt(GΦ) ≤ 4n+m ≤ val(Φ, fK) + val(GΦ,K),

thus the inequality

|Opt(Φ)− val(Φ, fK)| ≤ |Opt(GΦ)− val(GΦ,K)|

is valid for every solution K on GΦ. It implies that we have an L-reduction,
and consequently the problems listed in (i)–(iii) are APX-hard. �

Theorem 14. The RAR-problem is APX-complete, even when it is restricted
to the following type of instances: there are only three machines (m = 3), all
jobs have unit time (pj = 1 for all 1 ≤ j ≤ n), any job can be processed on
any machine (M(j) = {M1,M2,M3} for all 1 ≤ j ≤ n), and each resource
is required only for two jobs (|Λk| = 2 for all 1 ≤ k ≤ µ).

Proof. We apply Theorem 13(i), constructing a reduction from the Chro-
matic Number problem. Let G be a graph in which no four vertices are
mutually nonadjacent. Let the vertices v1, . . . , vn of G represent unit-time
jobs 1, . . . , n, and let each edge vivj ∈ E(G) mean that there is a resource
R(i, j) required for precisely the jobs i and j. If vi and vj are nonadjacent,
then there is no such common resource for them. Suppose further that any
of the three machines M1,M2,M3 can process any of the jobs 1, . . . , n. Then
a subset of jobs can be scheduled within a unit time slot if and only if the
corresponding vertices are mutually nonadjacent. Thus, the optimum make-
span for the RAR-problem instance is equal to the chromatic number of G.
Consequently, the problem is APX-hard. Since membership in APX is clear
(as noted above), the theorem follows. �

Corollary 15. The SWC-problem is APX-hard on three machines with unit-
time jobs.

27

It is worth comparing this result with the complexity of SWC on two
machines, as proved in [17]: it is solvable optimally in polynomial time if the
processing times satisfy pj ∈ {1, 2} for all j, 4/3-approximable if pj ∈ {1, 2, 3}
(the status of APX-hardness is not settled for this case), and is APX-complete
if pj ∈ {1, 2, 3, 4}.

5 Conclusions and Open Questions

We have studied a scheduling problem in which the jobs can only be processed
on specified subsets of the machines, moreover they require simultaneous
availability of renewable resources. We achieved results both in the general
setting and in cases where jobs are assumed to have unit processing time
and/or they require a limited number of resources. In the next three tables
we summarize our results.

If m = 1, the RAR-problem is of no sense, as all jobs must be processed
on a single machine. So we start the number of machines with m = 2.
We abbreviate by “con” that the number m of machines or the degree B
of the problem is a fixed constant, and we denote by “arb” if m or B can
be arbitrarily large, being part of the input. In parentheses we indicate the
corresponding statement (T1 as Theorem 1, T2 as Theorem 2, etc., and sim-
ilarly, C stands for Corollary). Writing “OPT” means that the optimum can
exactly be determined by an algorithm with polynomial running time, while
“???” means that it is open whether the problem is APX-hard, or admits a
PTAS, or can even be solved optimally by a polynomial-time algorithm.

Table 1 contains complexity results for the special case where the jobs
have unit time. Here the complexity status of the RAR-problem with con-
stant B and more than two machines is still open.

m, the number of machines

m = 2 m = con, m ≥ 3 arb

B = 1 OPT (T1) OPT (T2) OPT (T2)

B = con OPT (T1) ??? ???

B = arb OPT (T1) APX-complete (T14) Ω(n1−ε) ([17], T11)

Table 1: Complexity for unit-time jobs

28

Table 2 shows that unrestricted processing times make the complexity of
the problem much higher for most combinations of m and B. If m or B is
not constant, then the RAR-problem is proved to be APX-hard; if both m
and B are constants, we do not know whether a PTAS can be designed.

m, the number of machines

m = 2 m = con, m ≥ 3 arb

B = 1 NP-hard PTAS (T10) APX-complete (T14)

B = con NP-hard NP-hard APX-complete (T14)

B = arb APX-complete ([17]) APX-complete (T14) Ω(n1−ε) ([17], T11)

Table 2: Complexity for arbitrary processing times

Finally, we summarize our approximation bounds in Table 3.

m, the number of machines

m = 2 m = con,m ≥ 3 arb

B = 1, arb. proc. times PTAS (T10) PTAS (T10) 3− 1
m

(T5)

unit times 1 (T1) 1+B (C7) 1+B (C7)

arb. proc. times 1 + ε+B (C8) 1 + ε+B (C8) 2− 1
m

+B (T5)

Table 3: Approximation bounds

5.1 Open Problems and Topics for Further Research

Below we list several problems which remain open or are interesting topics
for future research.

• The complexity status of the RAR-problem with unit time jobs and
constant degree B is still open. It is not known whether the problem
is NP-hard or whether there is an exact algorithm with polynomial
running time.

29

• For the RAR-problem with unit time jobs and a constant number of
machines Corollary 7 gives a worst-case bound of 1 + B. This is very
close to the bound of 1 + B + ε which we get by Corollary 8 for the
RAR-problem with arbitrary processing times and a constant number
of machines. It seems plausible that for unit time jobs algorithms with
much better bounds exist. Even the existence of an optimal algorithm
cannot be excluded.

• Our algorithms are usually split into two phases. In the first phase,
jobs are assigned to possible machines. In the second phase, jobs are
assigned to time slots. It would be interesting to construct better al-
gorithms by using a combined approach.

• Section 3 contains a PTAS for B = 1 and m fixed. Can this approach
be extended to constant B or at least B = 2?

• Can a better approximation be given under some special assumptions
on the processing times? For example, assume that only two values
of processing times occur, like in the paper of Chakrabarty et al. [12]:
each job is either heavy (pj = 1) or light (pj = ε, for some parameter
ε > 0). Or, let the processing times be integers from a given range
{1, 2, . . . , p}.

• How is the non-approximability hardness getting worse and worse as m
grows? For unit-time jobs, m = 3 and fixed B, the lower bound on the
multiplier is a constant slightly larger than 1; and for large m we have
a lower bound O(n1−ε). How does this transition happen in detail as
m grows?

• How does it make the problem harder if we have time-windows for the
resources?

References

[1] R. K. Ahuja, J. B. Orlin, C. Stein and R. E. Tarjan, Improved algorithms
for bipartite network flow, SIAM J. Comput., 23, 906–933, 1994.

[2] N. Alon, A simple algorithm for edge-coloring bipartite multigraphs,
Inform. Process. Lett., 85 (6), 301–302, 2003.

30

[3] B. S. Baker and E. G. Coffman, Mutual exclusion scheduling, Theoret.
Comput. Sci, 162 (2), 225–243, 1996.

[4] C. Berge, Graphs, North-Holland, Amsterdam, 1985.

[5] P. Berman and M. Karpinski, On some tighter inapproximability results
(Extended abstract), Proc. ICALP’99, LNCS 1644, Springer-Verlag,
200–209, 1999.

[6] J. Blazewicz, Deadline scheduling of tasks with ready times and resource
constraints, Inform. Process. Lett., 8 (2), 60–63, 1979.

[7] J. Blazewicz, J. Barcelo, W. Kubiak and H. Rock, Scheduling tasks on
two processors with deadlines and additional resources, Europ. J. Oper.
Res., 26, 364–370, 1986.

[8] J. Blazewicz, W. Cellary, R. Slowinski and J. Weglarz, Scheduling under
resource constraints—deterministic models, Ann. Oper. Res., 7, 359 pp.,
1986.

[9] J. Blazewicz, W. Kubiak, H. Rock and J. Szwarcfiter, Minimizing mean
flow-time with parallel processors and resource constraints, Acta In-
form., 24, 513–524, 1987.

[10] J. Blazewicz, J. K. Lenstra and A. H. G. Rinnooy Kan, Scheduling
subject to resource constraints: Classification and complexity, Discrete
Appl. Math., 5 (1), 11–24, 1983.

[11] A. Caprara and R. Rizzi, Packing triangles in bounded degree graphs,
Inform. Process. Lett., 84, 175–180, 2002.

[12] D. Chakrabarty, S. Khanna and S. Li, On (1, ε)-restricted assignment
makespan minimization, Proc. Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1087–1101, 2015.

[13] G. Dosa and Zs. Tuza, Multiprofessor Scheduling, Discr. Appl. Math.,
http://dx.doi.org/10.1016/j.dam.2016.01.035 (in print)

[14] T. Ebenlendr, M. Krčál and J. Sgall, Graph balancing: a special case of
scheduling unrelated machines, Algorithmica, 68 (1), 62–80, 2014.

31

[15] E. B. Edis, C. Oguz and I. Ozkarahan, Parallel machine scheduling
with additional resources: Notation, classification, models and solution
methods, Europ. J. Oper. Res., 230 (3), 449–463, 2013.

[16] J. Edmonds, Paths, trees, and flowers, Canad. J. Math., 17, 449–467,
1965.

[17] G. Even, M. M. Halldórsson, L. Kaplan and D. Ron, Scheduling with
conflicts: online and offline algorithms, J. Sched., 12, 199–224, 2009.

[18] M. R. Garey and D. S. Johnson, Complexity results for multiprocessor
scheduling under resource constraints, SIAM J. Comput., 4, 397–411,
1975.

[19] E. Horowitz and S. Sahni, Exact and approximate algorithms for
scheduling nonidentical processors, J. ACM, 23, 317–327, 1976.

[20] H. Kellerer and V. A. Strusevich, Scheduling parallel dedicated machines
under a single non-shared resource, Europ. J. Oper. Res., 147, 345–364,
2003.

[21] H. Kellerer and V. A. Strusevich, Scheduling problems for parallel dedi-
cated machines under multiple resource constraints, Discr. Appl. Math.,
133, 45–68, 2004.

[22] H. Kellerer and V. A. Strusevisch, Scheduling parallel dedicated ma-
chines with the speeding-up resource, Naval Res. Log., 55 (5), 377–389,
2008.

[23] E. L. Lawler and J. Labetoulle, On preemptive scheduling of unrelated
parallel processors by linear programming, J. Assoc. Comput. Mach. 25,
612.-619, 1978.

[24] J. K. Lenstra, D. Shmoys and E. Tardos, Approximation algorithms for
scheduling unrelated parallel machines, Math. Progr., 46, 259–271, 1990.

[25] C.-L. Li, Scheduling to minimize the total resource consumption with
a constraint on the sum of completion times, Europ. J. Oper. Res., 80,
381–388, 1995.

32

[26] G. Muratore, U. M. Schwarz and G. J. Woeginger, Parallel machine
scheduling with nested job assignment restrictions, Oper. Res. Lett., 38,
47–50, 2010.

[27] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation,
and complexity classes, J. Comput. System Sci., 43, 425–440, 1991.

[28] M. Pinedo, Scheduling: Theory, Algorithms and Systems, 5th ed.,
Springer, New York, 2016.

[29] E. V. Shchepin and N. Vakhania, An optimal rounding procedure gives
a better approximation for scheduling unrelated machines, Oper. Res.
Lett., 33, 127–133, 2005.

[30] J. A. Ventura and D. Kim, Parallel machine scheduling with earliness–
tardiness penalties and additional resource constraints, Computers &
Oper. Res., 30 (13), 1945–1958, 2003.

[31] D. Zuckerman, Linear degree extractors and the inapproximability of
Max Clique and Chromatic Number, Theory Comput., 3, 103–128, 2007.

Appendix — Cases for the Claim on page 25

The verification of the Claim in the proof of Theorem 13 can be carried out by
a systematic scanning of cases. This may be organized in several ways; below we
list the cases via one possible approach.

The transformation from K to K∗ is done inside each variable gadget indepen-
dently of the others. We recall that each variable xi occurs as a negative literal
¬xi in precisely one clause cj , represented by the edge cju2,i of GΦ. Moreover,
the positive literal xi occurs in either just one clause cj′ or two clauses cj′ and
cj′′ , represented by the single edge cj′u1,i or by the two edges cj′u1,i and cj′′u3,i.
(The latter situation is exhibited in Figure 2.) In the parts (1) and (2) below, we
list the possible subcases for the single and for the double occurrences of literal
xi, respectively. The position of crossing clique(s) is explicitly given after the ‘→’
sign in each subcase.

We assume in all subcases that the complete subgraphs (edges and triangles) of
the initial clique cover are mutually vertex-disjoint. In case if the positive variable
xi occurs in two clauses of Φ, we say that an edge or a triangle in the cover of the
corresponding variable gadget is crossing if it has at least one vertex in each of the
sets {u1,i, u2,i, u3,i} and {v1,i, v2,i, v3,i, v4,i}. More restrictively if xi has only one

33

positive (and one negative) appearance in Φ, then a crossing clique has one vertex
in {u1,i, u2,i} and one or two in {v1,i, v2,i, v3,i}. (Hence, cliques are not considered
to be crossing if they do not contain any vertices adjacent to a clause vertex; this
is the reason for the absence of u3,i and its neighbor v4,i in the definition if xi does
not have a second positive occurrence in Φ.)

To ensure a transparent systematic listing, each case description begins with
a number, or with a combination of numbers, expressing how many vertices the
crossing cliques have in {v1,i, v2,i, v3,i, v4,i}. For instance, ‘1 + 2’ with its two
terms means that there are two crossing cliques in the clause gadget under in-
vestigation, one of them (a crossing edge, represented with ‘1’) has one vertex in
{v1,i, v2,i, v3,i, v4,i}, and the other one (a crossing triangle, belonging to ‘2’) has
two of the v-vertices.

There are situations where already those numbers determine the positions of
the crossing cliques up to symmetry. This is the case e.g. with ‘1 + 2’ when we are
in (1). Indeed, then the corresponding crossing edge and crossing triangle involved
in the clique cover together entirely contain {u1,i, u2,i}∪ {v1,i, v2,i, v3,i}. Thus, the
cliques are either {u1,i, v1,i, v2,i} and {u2,i, v3,i} or {u1,i, v1,i} and {u2,i, v2,i, v3,i},
these two possibilities being symmetric to each other. Such symmetric variants,
which therefore need not be checked separately, are indicated in brackets in the
list.

In other situations the positions of crossing cliques are not uniquely determined
by the numbers alone. Note that crossing cliques never contain the edge v1,iv4,i,
therefore we may view the v-part of them as a subset (or subgraph) of the path
v1,iv2,iv3,i in (1) or v1,iv2,iv3,iv4,i in (2). Those paths have two end vertices and
one or two middle vertices, which are referred to as ‘end’ and ‘middle’ in the list,
respectively. In most of the subcases, this is our main way to distinguish between
the possible positions of crossing cliques. Differently from this, in subcase ‘1 + 1’
of (2) we make primary distinction according to the distance of the corresponding
two vertices in {v1,i, v2,i, v3,i, v4,i}.

We simplify notation and omit the second subscript ‘ i ’ from u`,i and v`,i for
1 ≤ ` ≤ 4. It is a matter of routine to check that, in each case, the clique cover can
be modified to one which does not contain more cliques than the original cover,
and which includes either T1,i and T3,i or T2,i and T4,i.

As an illustration, consider the case ‘1+2’ with ‘middle pair’ in (2). It assumes
the presence of K1 = {u1, v1} and K2 = {u2, v2, v3} in the initial clique cover. Such
a cover can be modified to one with the required property by replacing its clique
containing u4 with {u4, v1, v4}. This transformation reduces K1 to the singleton
{u1} (and if the initial cover was not locally optimal inside the variable gadget,
then eliminates the singleton clique {v4}). Similar modifications can be done in
all subcases; details are left to the reader.

34

(1) — only u1 and u2 are adjacent to clause vertices ⇒ crossing cliques meet C(i)
in a subset of {v1, v2, v3}

possible cardinalities of the crossing clique intersections with {v1, v2, v3} :

• 0 → no crossing cliques

• 1 → two subcases

• end (v1 [or v3]) → K = {u1, v1}
• middle (v2) → K = {u1, v2} [or K = {u2, v2}]

• 2 (v1v2 [or v2v3]) → K = {u1, v1, v2}

• 1 + 1 → two subcases

• two ends (v1 and v3) → K1 = {u1, v1}, K2 = {u2, v3}
• includes middle (v1, v2 [or v2, v3]) → K1 = {u1, v1}, K2 = {u2, v2}

• 1 + 2 (v1v2 and v3 [or v1 and v2v3]) → K1 = {u1, v1, v2}, K2 = {u2, v3}

(2) — all the three u1, u2, u3 are adjacent to clause vertices ⇒ crossing cliques
meet C(i) in a subset of {v1, v2, v3, v4}, their edge set does not contain edge v1v4

possible cardinalities of the clique intersections with {v1, v2, v3, v4} :

• 0 → no crossing cliques

• 1 → two subcases

• end (v1 [or v4]) → K = {u1, v1}
• middle (v2 [or v3]) → two subcases

• K = {u1, v2}
• K = {u2, v2}

• 2 → two subcases

• end (v1v2 [or v3v4]) → K = {u1, v1, v2}
• middle (v2v3) → K = {u2, v2, v3}

• 1 + 1 → three subcases

• neighbors → two subcases

• v1 and v2 [or v3 and v4] → K1 = {u1, v1}, K2 = {u2, v2}

35

• v2 and v3 → two subcases

• K1 = {u1, v2}, K2 = {u2, v3}
• K1 = {u1, v2}, K2 = {u3, v3}

• distance 2 (v1 and v3 [or v2 and v4]) → two subcases

• K1 = {u1, v1}, K2 = {u2, v3}
• K1 = {u1, v1}, K2 = {u3, v3}

• two ends (v1 and v4) → K1 = {u1, v1}, K2 = {u3, v4}

• 1 + 2 → two subcases

• middle pair (v2v3 with v1 [or v4]) → K1 = {u1, v1}, K2 = {u2, v2, v3}
• end pair (v1v2 [or v3v4]) → two subcases

• end single (v4) → K1 = {u1, v1, v2}, K2 = {u3, v4}
• middle single (v3) → two subcases

• K1 = {u1, v1, v2}, K2 = {u2, v3}
• K1 = {u1, v1, v2}, K2 = {u3, v3}

• 2 + 2 (v1v2 and v3v4) → K1 = {u1, v1, v2}, K2 = {u3, v3, v4}

• 1 + 1 + 1 → two subcases

• missing end (v1, v2, v3 [or v2, v3, v4]) → K1 = {u1, v1} K2 = {u2, v2},
K3 = {u3, v3}

• missing middle (v1, v2, v4 [or v1, v3, v4])→K1 = {u1, v1}K2 = {u2, v2},
K3 = {u3, v4}

• 1 + 1 + 2 → two subcases

• end pair (v1v2 with v3 and v4 [or v3v4 with v1 and v2]) → K1 =
{u1, v1, v2} K2 = {u2, v3}, K3 = {u3, v4}

• middle pair (v2v3 with v1 and v4) → K1 = {u1, v1} K2 = {u2, v2, v3},
K3 = {u3, v4}

36

