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Abstract 

In this study, the mechanical properties of ultrasonic welded lap joints of all-polypropylene 

composite (APPC) were investigated and compared to the interlaminar properties of the 

composite sheet itself. The process control parameter was welding time: welded samples were 

prepared with an ultrasonic welding machine in the 0.1–1.0 second time range. In most cases, 

the shear strength of the welded samples exceeded that of the unwelded APPC. Although it was 

found that during the ultrasonic welding process, the reinforcing tapes partially melted in the 

welding zone, the seam remained strong enough since the heat released and the pressure applied 

during the welding process further improved the consolidation of the APPC layers. 

 

1. Introduction 

Polypropylene (PP) is one of the most frequently used polymer materials, owing to its 

low price, good processability and mechanical properties. [1-3] In order to achieve mechanical 

properties similar to those of engineering materials, neat PP has to be reinforced. [4-7] The most 

frequently used reinforcement is glass fibre (GF), which can improve both the modulus and the 

strength of the matrix material. The main problem is that the adhesion of glass fibres to the 

strongly non-polar PP is poor, therefore fibres must be treated with a sizing material and/or a 

coupling agent needs to be added to the PP matrix or copolymerization of the PP material may 

be necessary. [8, 9] Another disadvantage of GF reinforcement is during the mechanical recycling 

of reinforced polymers, glass fibres become too fragmented, and lose their reinforcing ability. 

[10] Due to environmental concerns, improving the recyclability of composite materials is 

already in the EU’s automotive industrial regulations. [11] Therefore easily recyclable and 

reprocessible all-polymer composite materials are increasingly used; they exhibit similar 

mechanical properties (when the difference in density is considered) to composites with 

traditional (for example glass or carbon fibre) reinforcements. [12-17]  

In all-polymer composites, both the reinforcement and the matrix material belong to the 

same material family, therefore the mass of the all-polymer composite can be as much as 30% 

lower than the mass of a glass fibre-reinforced composite with the same amount of 

reinforcement. Three main methods are generally used for the production of all-polymer 

composite materials: hot compaction, consolidation of coextruded tapes and film stacking. [18-

20] Many papers focus on the mechanical properties of various all-polymer composites and the 

consolidation process of the matrix and fibre components. [16, 17, 21-26] Studies have also 



confirmed that all-PP composites can be prepared by injection moulding. [21, 24] There are 

numerous uses of self-reinforced and all-polymer composites in the automotive industry, 

especially as interior components. [27] 

Plastics can be joined with several methods, ranging from snap fits through adhesive 

bonding to welding processes. [28-32] Ultrasonic welding is one of the most frequently used 

welding technologies, especially in the electric, electronic and automotive industries. [33] A 

major advantage of this technology is that it is fast, economic to use in large series production 

and can also be easily controlled and automated. [34] When mechanical vibrations, produced by 

the ultrasonic welding machine, reach a thermoplastic polymer, sinusoidal standing waves are 

generated inside the material. The inherent energy of the vibrations is transformed into heat 

during welding in two ways: at the start of the welding process, heat is generated on the border 

between the two overlapped specimens because of friction. The amount of heat generated 

depends on the surface roughness and friction coefficient between the specimens. With enough 

heat and friction, the geometrical features on the surface (i.e. the surface roughness) melt and 

disappear. Heat is also generated when vibrations are dampened because of the resistance of 

primary chemical bonds between atoms, molecules and polymer chains. Secondary bonds can 

also break, promoting chain movement at elevated temperatures. [35] 

During ultrasonic welding, the parts must be firmly clamped in a controllable manner, for 

which an anvil (a counter-support under the welded parts) is used. Mechanical vibrations are 

transmitted to the seam by the so-called sonotrode, which also clamps the welded parts together 

(Figure 1). [34, 35] The quality of the welded seam can be considerably improved with an energy 

director, which is a geometrical feature on the welded product. The energy director transforms 

the plane-to-plane contact of the welded surfaces into plane-to-linear or even plane-to-point 

contacts, concentrating the energy of ultrasonic vibrations and thus increasing heat release rates. 

The design and shape of the energy director greatly determines the strength of the welded joint 

and the transformation of ultrasonic energy to heat. [36] In applications where hermetic seals 

must be formed, a solid joint can hardly be achieved without the use of an energy director. 

Composites with a thermoplastic matrix can also be joined by ultrasonic welding. [37]  

In this study, the mechanical properties of ultrasonic-welded APPC lap joints welded with 

various welding times, with and without an energy director were analysed and compared to the 

interlaminar properties of the all-PP composite laminates with mechanical and optical tests. 

 

  



2. Materials and Methods 

The matrix material of the APPC sheets was a 0.18 mm thick film extruded from Tipplen 

R351 PP copolymer pellets (MFI=8.5 g/10 min (2.16 kg at 230 °C); manufacturer: MOL 

Petrolkémia Zrt., Tiszaújváros, Hungary). The reinforcement was a woven fabric 

(manufacturer: Stradom S.A., Częstochowa, Poland) composed of highly stretched, split PP 

tapes with a nominal weight of 180 g/m2. The reinforcing tape had a melting temperature of 

Tm=172.4 °C (determined by DSC in accordance with ISO 11357-4, in the temperature range 

of -100…+250 ºC, at a heating rate of 7.5 ºC/min in 50 ml/min N2 flow), and a tensile strength 

of 465±32 MPa (measured on five samples cut out from a single tape). The matrix films (7 

layers) and the reinforcing woven fabrics (6 layers) were assembled with a cross-ply lay-up to 

make the resulting sheets orthotropic. 2 mm thick composite sheets with a base area of 350 x 

350 mm were prepared by film-stacking in a heated press with the following parameters: the 

sheets were held at 167 ºC for 30 seconds at atmospheric pressure in the closed press, then they 

were compression moulded at 6 MPa pressure for 90 seconds, followed by cooling under 6 MPa 

to 50 ºC at a cooling rate of 7.5 ºC/min. Nominal reinforcement content was 50 wt%. Specimens 

with a triangle-shaped energy director (Figure 1) were also manufactured with the same process 

parameters with a mould with a corresponding triangle-shaped groove. As there is no ideal 

angle for the energy director published in the literature, the following parameters were used: 

90º main angle and 1 mm height, as used in other publications. [20, 22] 25 mm wide strips were 

cut from the APPC sheets for mechanical testing and welding.  

Welding experiments were done on a Herrmann Ultraschalltechnik HiQ Evolution Speed 

Control ultrasonic welding machine. A catenoidal sonotrode with a 70x11 mm flat welding 

surface, together with a flat anvil was used. The APPC specimens were clamped together in an 

overlapped position and were welded as shown in Figure 2. The vibration amplitude 

transformation constant of the sonotrode was 1:2.6, while the amplification factor of the booster 

amplifier was 1:1.25, meaning that the amplitude of the vibrations was 39 µm. The welding 

frequency was 20 kHz. 

The welding machine was able to control the welding process in various modes, i.e. time 

mode, energy mode, power consumption mode and displacement mode. We selected time 

control mode as it is the simplest and is commonly used in the industry. Welding was performed 

in the range of 0.1-1 seconds, with a clamping force of 300 N, which was found to be optimal 

in our preliminary experiments. After the vibrations stopped, the sonotrode clamped the seam 

for 2 more seconds with 300 N, therefore it was under pressure during the cooling period. A 



clamping force of 300 N set on the welding machine translated into 1.1 MPa of pressure at the 

overlapping area of the welded sheets. 

We compared the mechanical properties of the APPC sheet and the welded joints by lap 

shear tests and determined the interlaminar strength of the composite laminates with a double-

notched shear test according to ASTM D3846, on five specimens cut and prepared from the 

APPC sheets. Test speed was 5 mm/min for both mechanical testing methods, as recommended 

by the ASTM D3846 standard. Mechanical tests were performed on a Zwick Z020 type 

universal testing machine at room temperature. Cross-sections of the seams were examined 

with an Olympus BX51 optical microscope. 

Figure 3 shows the geometry of the tested specimens. Figure 3/a shows the specimen cut 

from the APPC sheet, prepared for the double-notched in-plane shear test, during which the 

shear stress between the reinforcement and matrix layers were measured. Figure 3/b shows the 

lap shear test arrangement of the welded joints. In this case, both tensile, shear and torsion 

forces loaded the specimen, with shear force being the dominant loading component. The 

ultimate lap shear strength (ULSS) of the specimens was calculated. 

 

3. Results and Discussion 

3.1. Shear Strength of the Raw Material and the Welded Joint  

At first, we welded the APPC specimens together without inserting a PTFE film between 

them. Then we examined the joints with an Olympus optical microscope and found that the 

sheets were welded together not only in the area between the sonotrode and the anvil but also 

further away from the compressed surface. Thus, we could not calculate the exact strength of 

the joint as the area of the welded surfaces differed from specimen to specimen. To eliminate 

this effect, we placed a thin film made of PTFE between the APPC sheets during welding so 

that the width of the seam was equal to the width of the sonotrode (11 mm), as shown in Figure 

1 and 3. This way, we were able to significantly reduce the standard deviation of the measured 

data. 

The strength of the lap joints is described by the ratio of the force needed for failure 

divided by the overlapping surface area. 5 samples were welded and measured for each welding 

time value. The maximum shear strength of welded specimens (8.5±0.4 MPa) was higher than 

the 4.8±0.8 MPa measured for the APPC sheet. Furthermore, interlaminar shear strength was 

approximated or even surpassed by the shear strength of the welded joint in almost the entire 



welding time range: the strength of the joints became significantly lower only in the case of 

very short (0.1-0.2 s) welding times. 

Figure 4 shows that there was an optimal welding time range, below which weld shear 

strength decreased, along with the reproducibility of the welded joint (as can be seen through 

the increase in the standard deviation of strength values). With this welding arrangement, the 

greatest shear strength (approximately 8.5 MPa) was achieved with a welding time of 0.5-0.7 

s. The reinforcing tapes also partly melted and recrystallized, thus adhesion between the matrix 

material and the reinforcing tapes also changed. The shear strength increased and the trendline 

of average values resembled a saturation curve until 0.7 s welding time. When welding time 

was longer than 0.7 s, the matrix material of the laminates melted and was partly pushed out 

from between the sonotrode and the anvil, flash was formed near the seam and the sonotrode 

made a distinct indentation, thus a weak region was formed in the material. In these cases, the 

joints failed near the seam, in the welding zone (WZ), by tensile fracture of the APPC, thus we 

could not determine the shear strength of the specimens (the characteristic failure modes of the 

specimens as a function of welding time are noted in Figure 4).  

 

3.2. Shear Strength of the Welded Joint Manufactured with an Energy Director 

Shear strength was slightly greater when an APPC specimen with an energy director and 

a simple APPC specimen were welded together (Figure 1) compared to the instances when 

APPC sheets without an energy director were welded together. A thin PTFE film was also 

placed between the APPC specimens, so that the width of the seam was equal to the width of 

the sonotrode (11 mm), and shear strength could be compared with the shear strength of APPC 

specimens without an energy director. Figure 5 shows that above the 0.7 sec welding time 

threshold, the shear strength of the welded joint exceeded 9.0 MPa. However, above the 1.0 s 

welding time threshold, the sonotrode made an indentation on the surface of the welded sheets 

(Figure 6/d and 6/e) and a weak region near the edge of the seam was formed. 

The characteristic failure mode of the welded samples was tape-matrix delamination 

when the welding time was below 0.9 s. Up to 0.8 s welding time, there were no visible marks 

or defects left by the sonotrode on the surfaces of the welded sheets (Figure 6/a and Figure 6/b). 

Figure 6/c shows a side view of the lap joint (welding time: 0.7 s) after the shear test. Both the 

matrix and the reinforcing materials of the APPC partially melted and recrystallized, causing 

interfacial properties to change and improving the shear strength of the joints. At a welding 

time of 1.0 s (Figure 6/d and 6/e), the sonotrode significantly sank into the material of the 

welded sheets, leaving an indentation at the edge of the seam. As a result, the seam was thinner 



and flash was pushed out perpendicularly to the longitudinal axis of the specimens, while the 

joint failed at the edge of the seam by tensile fracture. Because of this, we could not determine 

the shear strength values of any specimens welded with more 0.9 s welding time. 

The effect of the energy director on the quality of the seam was reflected not only in shear 

strength, but also in the welding energy measured by the ultrasonic welding machine. Figure 7 

shows that both with and without an energy director, the energy needed to complete the welding 

process increased with welding time in a linear manner. However, when an energy director was 

used, significantly less energy was consumed, and the joint had better strength. This was caused 

by the energy director, which concentrated the heat generated from ultrasonic energy into a 

smaller heat-affected zone (HAZ). As a result, less energy was needed for the same effect and 

there were also fewer microstructural changes in the matrix material in the vicinity of the seam.  

Figure 8 shows a transmitted light microscopy image of the cross-section of a welded 

seam where an energy director was used. The border between the two welded sheets completely 

disappeared. The reinforcing tapes at the lower and upper part of the figure (grey and black 

quasi-horizontal lines) are relatively intact but in the centre of the image, the tapes have 

completely melted: this was caused by a highly concentrated heat build-up in the vicinity of the 

energy director. In the polarized light microscopy image in Figure 9, the typical damage types 

of the APPC sheets can be seen: with long welding time, the reinforcing material can break into 

shorter pieces or melt and recrystallize even without the use of an energy director. Furthermore, 

tape-matrix debonding and delamination can also occur. These defects act as starting points for 

cracks, impairing the mechanical properties of the welded samples. 

 

4. Conclusions 

Shear tests were performed on all-polypropylene composite (APPC) sheets and ultrasonic 

welded APPC specimens cut from the same laminates (manufactured with and without an 

energy director) according to ASTM D3846, to examine the strength of the laminates and the 

joints. An ultrasonic welding machine was used in time-control mode (with a welding time of 

0.1-1.0 second) and welded sheets had greater strength than the interlaminar shear strength of 

the unwelded APPC sheets. This can be explained by the improved tape-matrix connection, due 

to the combined effect of heat generated by ultrasonic vibrations and the applied welding 

pressure. It was also found that an energy director improves the quality of welding of APPC 

sheets, as it slightly improves the strength and reproducibility of the seams. It also decreases 

the energy needed for welding. When welding time was below or equal to 0.6-0.7 seconds, the 

sonotrode and the anvil left practically no marks on the surfaces of the welded sheets, and 



therefore joints had good mechanical properties and were aesthetic. This light-weight composite 

structure (and the ultrasonic welding process used to join these parts together) has promising 

potential applications in the vehicle industry (as dashboard and bumper elements) and in other 

industries too (in the energy sector, in sports goods, etc). 
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Figure 1. Side view of the welding configuration with the location and geometry of the energy 

director and the polytetrafluorethylene (PTFE) film 

 

 

Figure 2. Arrangement of the overlapping sheets and the welding configuration 

 



a) b) 

Figure 3. Side view of the test specimens used in the shear strength tests.  

a) Test specimen made of APPC raw material, prepared according to ASTM D3846,  

b) welded sample prepared for the lap shear strength test. 

 

 

Figure 4. Shear strength of lap joints prepared without an energy director and the 

characteristic failure mode of the welded joints as a function of welding time 



 

  

Figure 5. Shear strength of the test specimens welded with an energy director and the 

characteristic failure mode of the welded joints as a function of welding time 
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Figure 6. Side view of the samples  

a. During welding 

b & c. After welding (welding time < 0.7 s) 

d & e. After welding (welding time > 0.7 s) 
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Figure 7. The energy necessary for welding with and without an energy director, as a function 

of welding time  

 

Figure 8. Transmitted light microscopy image of the cross-section of the seam welded with 

an energy director. The central, circumscribed part shows the melted zone produced by the 

energy director.  

White areas: matrix material, black or grey areas: reinforcing tapes 

 



 

Figure 9. Polarized light microscopic image of the cross-section of a seam welded without an 

energy director 
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