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Abstract

Hovey introduced A-cordial labelings as a generalization of cordial and
harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) →
A of the vertices of some graph G induces an edge labeling on G; the edge
uv receives the label f(u)+f(v). A graph G is A-cordial if there is a vertex-
labeling such that (1) the vertex label classes differ in size by at most one
and (2) the induced edge label classes differ in size by at most one.

The problem of A-cordial labelings of graphs can be naturally extended
for hypergraphs. It was shown that not every 2-uniform hypertree (i.e., tree)
admits a Z2 × Z2-cordial labeling [8]. The situation changes if we consider
p-uniform hypertrees for a bigger p. We prove that a p-uniform hypertree is
Z2 × Z2-cordial for any p > 2, and so is every path hypergraph in which all
edges have size at least 3. The property is not valid universally in the class
of hypergraphs of maximum degree 1, for which we provide a necessary and
sufficient condition.
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1. Introduction

A hypergraph H is a pair H = (V,E) where V is a set of vertices and E is a
set of non-empty subsets of V called hyperedges. The order (number of vertices)
of a hypergraph H is denoted by |H| and the size (number of edges) is denoted
by ‖H‖. If all edges have the same cardinality p, the hypergraph is said to be
p-uniform. Hence a graph is a 2-uniform hypergraph. The degree of a vertex v,
denoted by d(v), is defined as d(v) = |{e ∈ E : v ∈ e}|; i.e., the degree of v is the
number of edges to which it belongs. Two vertices in a hypergraph are adjacent
if there is an edge containing both of them.

In order to avoid some trivialities, we assume in most of this paper that
every edge of a hypergraph has at least two vertices. The only exception will be
Section 3.2.

A walk in a hypergraph is a sequence v0, e1, v1, . . . , vn−1, en, vn, where vi ∈ V ,
ei ∈ E and vi−1, vi ∈ ei for all i. We define a path in a hypergraph to be a walk
with all vi distinct and all ei distinct. A cycle is a walk containing at least two
edges, all ei are distinct and all vi are distinct except v0 = vn. A hypergraph is
connected if for every pair of its vertices v, u, there is a path starting at v and
ending at u. A hypertree is a connected hypergraph with no cycles.

A star is a hypertree in which one vertex — called the center of the star
— is contained in all edges (and the edges are mutually disjoint outside this
vertex). Observe that a p-uniform hypertree with ‖T‖ edges always has exactly
1 + (p − 1)‖T‖ vertices. An even simpler structure is a matching — frequently
called ‘packing’ in the literature — in which any two edges are vertex-disjoint.
(Here we allow that isolated vertices may also occur.)

For a p-uniform hypergraph H = (V,E), an Abelian group A and an A-
labeling c : V → A let vc(a) = |c−1(a)|. The labeling c is said to be A-friendly if
|vc(a) − vc(b)| ≤ 1 for any a, b ∈ A. The labeling c induces an edge labeling c∗ :
E → A defined by c∗(e) =

∑

v∈e c(v). Let ec∗(a) = |c∗−1(a)|. A hypergraph is said
to be A-cordial if it admits an A-friendly labeling c such that |ec∗(a)− ec∗(b)| ≤ 1
for any a, b ∈ A. Then we say that the edge labeling c∗ is A-cordial.

Cordial labeling of graphs was introduced by Cahit [1] as a weakened version
of graceful labeling and harmonious labeling. This notion was generalized by
Hovey for any Abelian group of order k [7]. So far research on A-cordiality has
mostly focused on the case where A is cyclic and so called k-cordial. Hovey [7]
showed that all caterpillars are k-cordial for all k and all trees are k-cordial for
k = 3, 4, 5. Moreover, he showed that cycles are k-cordial for any odd k. He
raised the conjectures that if H is a tree graph, it is k-cordial for every k, and
that all connected graphs are 3-cordial [7]. In the last twenty-five years there was
little progress towards a solution to either of these conjectures. However, Driscoll,
Krop and Nguyen proved recently that all trees are 6-cordial [4].
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Note that this result does not extend even to the smallest noncyclic group,
the Klein four-group (i.e., V4 = Z2 × Z2); the paths P4 and P5 are not V4-cordial
what is shown in the following theorem.

Theorem 1 [8]. The path Pn is V4-cordial unless n ∈ {4, 5}.

In [3] we investigated a problem analogous to Hovey’s problem for hypertrees
(connected hypergraphs without cycles) and presented various sufficient condi-
tions on H to be k-cordial. From our theorems it follows that every uniform
hyperpath is k-cordial for any k, and every k-uniform hypertree is k-cordial. We
conjectured that all hypertrees are k-cordial for all k. Recently Tuczyński, Wenus
and Węsek proved this conjecture for k = 2, 3 [9].

However, a 2-uniform hypertree is not V4-cordial in general by Theorem 1.
In this paper we show that such counterexamples no longer exist in case of

p-uniform hypertrees for p ≥ 3. Namely, we prove that any p-uniform hypertree is
V4-cordial for all p ≥ 3. Beyond that, for stars we can even drop the condition of
uniformity. We also characterize V4-cordial hypergraphs whose edges are mutually
disjoint (i.e., matchings).

2. Extension Lemma and Uniform Hypertrees

We begin this section with some sufficient conditions under which a V4-cordial
labeling can be derived from that of a subhypergraph. This result will be applied
later in several situations, leading to substantial shortening of various arguments.
We use it first for uniform hypertrees, proving that all of them are V4-cordial.

Before we present the results, we introduce a notation for convenience. Let
the edge set of the hypergraph under consideration be E = {e1, e2, . . . , em}. For
all 1 ≤ i ≤ m, let us denote Xi =

⋃

1≤j≤i ej . We will assume without loss of
generality that the edges are indexed in such a way that ei meets at most one
connected component of the subhypergraph with vertex set Xi−1 and edge set
{e1, . . . , ei−1}. In particular, for hypertrees it means that each ei has exactly one
vertex in common with the set Xi−1; hence every {e1, e2, . . . , ei} forms a hypertree
in which ei is a pendant edge. For hypertrees it can also be assumed that em is
the last edge in a longest path in T .

Theorem 2 (Extension Lemma). Let H = (V,E) be a hypergraph with edge set

E = {e1, . . . , em}, and let e−m := em \ (e1 ∪ · · · ∪ em−1). Assume that |e−m| ≥ 2,
and that the following conditions hold:

1. If |V | ≡ 0 (mod 4), then m ≡ 1 (mod 4).

2. If |V | ≡ 2 (mod 4), then m 6≡ 0 (mod 4).

3. If |V | ≡ 3 (mod 4) and |e−m| = 2, then m 6≡ 0 (mod 4).
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If the hypergraph H− obtained from H by omitting em from E and deleting the

vertices of e−m from V is V4-cordial, then H is V4-cordial.

Proof. Assume that c′ is a V4-labeling of Xm−1 that induces a V4-cordial labeling
c′∗ of H−. If m−1 ≡ 0 (mod 4), then every V4-friendly extension of c′ to Xm = V
verifies that H is V4-cordial. Otherwise, if m 6≡ 1 (mod 4), assumption 1 of the
theorem implies |Xm| 6≡ 0 (mod 4). If |Xm−1| 6≡ 0 (mod 4), we first assign
a := 4 − (|Xm−1| (mod 4)) vertices of e−m = em \ Xm−1 to those elements of V4

which occur on one fewer vertex of Xm−1 than the other 4 − a elements. Here
1 ≤ a ≤ 3, and the step is feasible unless |e−m| = 2 and a = 3, because apart
from this exception |e−m| ≥ a holds and there is enough room to have the current
partial labeling completely balanced for the elements of V4.

Suppose first that either |e−m| ≥ 3 or a ≤ 2. Let b = |e−m| − a denote the
number of vertices unlabeled so far. We next distribute equally the elements of
V4 on b− (b (mod 4)) vertices of em. There still remain some r unlabeled vertices
in em, where 1 ≤ r ≤ 3 since |Xm| 6≡ 0 (mod 4). We choose q ∈ V4 such that the
current partial sum on em plus q occurs fewer times than some other label(s) in
c′∗ on the edge set e1, . . . , em−1. By assumption 2 that |Xm| ≡ 2 (mod 4) implies
m 6≡ 0 (mod 4), we can take q 6= (0, 0) if r = 2. Therefore we can easily select r
distinct elements l1, . . . , lr ∈ V4 such that l1+ · · ·+ lr = q. Assigning them to the
remaining vertices, a V4-cordial labeling of the entire T is obtained.

Consider now the case |e−m| = 2 with a = 3. Here a = 3 means that |Xm−1| ≡
1 (mod 4), and then |e−m| = 2 yields |Xm| ≡ 3 (mod 4). Hence so far three
elements of V4 are used one fewer than the fourth element, and we have to use
two of them on the unlabeled vertices of em. Now m 6≡ 0 (mod 4) by assumption
3, thus at least two sums are feasible on em. Consequently, by the pigeonhole
principle, one of two feasible sums coincides with one of three sums which can be
generated by the sum of labels on the vertices in Xm−1 ∩ em together with the
pairs of the three usable elements of V4.

Theorem 3. Let p ≥ 3. Then every p-uniform hypertree is V4-cordial.

Proof. The theorem obviously holds for any hypertree with size one, this case is
the anchor of induction. Let T be a p-uniform hypertree with size m = ‖T‖ ≥ 2
and assume that the theorem holds for every p-uniform hypertree with size less
than m. Let T ′ = T−{em} be the p-uniform hypertree with vertex set V ′ = Xm−1.
By induction there exists a V4-friendly labeling c′ for T ′ which induces a V4-cordial
labeling c′∗. Below we show that c′ can be extended to a V4-friendly labeling c of
T in such a way that c induces a V4-cordial labeling for T .

Recall that we have |T | = (p − 1)‖T‖ + 1, therefore the residue of |Xm|
modulo 4 is obtained according to Table 1. Column m ≡ 0 shows that the second
and third conditions in Theorem 2 automatically hold, moreover only one of the
two occurrences of 0 violates the first condition. Hence, to complete the proof, we
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may restrict our attention to p ≡ 2 (mod 4) and m ≡ 3 (mod 4), in which case
we have |Xm| ≡ 0 (mod 4). We will consider three subcases.

(mod 4) m ≡ 0 1 2 3

p ≡ 0 1 0 3 2

1 1 1 1 1

2 1 2 3 0

3 1 3 1 3

Table 1. The value of |Xm| (mod 4).

Case 1. em−1 ∩ em 6= ∅. Note that in this situation T ′′ = T −{em−1, em} is a
p-uniform hypertree with the vertex set V ′′ = Xm−2. By the induction hypothesis
there exists a V4-friendly labeling c′′ for T ′′ which induces a V4-cordial labeling
c′′∗. We show that c′′ can be extended to a V4-friendly labeling c of T in such a
way that c induces a V4-cordial labeling for T . Note that in this case there are
exactly two elements x, y ∈ V4 that occur one time fewer in the labeling c′′ of the
vertices of T ′′ than the other two elements of V4; and there is exactly one element
z ∈ V4 that occurs one time more in the labeling of the edges of T ′′ induced by c′′

than the other three elements of V4. Let em−1 =
{

v, vm−1
1 , vm−1

2 , . . . , vm−1
p−1

}

and

em =
{

v, vm1 , vm2 , . . . , vmp−1

}

.

Suppose first that Xm−2 ∩ em−1 = {v}. If now z 6∈
{

x + c′′(v), y + c′′(v)
}

then we put the label x on vm−1
1 and y on vm1 , and on the remaining vertices of

the edges em−1 and em each element of V4 exactly (p− 2)/4 times. Obviously we
obtain a V4-cordial labeling of T . If z ∈

{

x+ c′′(v), y + c′′(v)
}

, then there exists
α ∈ V4 such that z 6∈

{

x+ c′′(v)+α, y+ c′′(v)+α
}

. Label the vertices as follows:
vm−1
1 by x, vm−1

2 by α, and vm−1
3 , vm−1

4 , vm−1
5 by the elements (0, 1), (1, 0), (1, 1),

whereas vm1 by y, vm2 by (0, 0), and vm3 , vm4 , vm5 by the elements of V4 − {α}; and
on the remaining vertices put each element of V4 exactly (p− 6)/4 times in each
of em−1 and em.

Suppose now that Xm−2 ∩ em−1 6= {v}, say Xm−2 ∩ em−1 =
{

vm−1
1

}

. We can
assume that x + c′′

(

vm−1
1

)

6= z because y 6= x. Label vm−1
2 by x and put on the

remaining vertices of the edge em−1 each element of V4 exactly (p− 2)/4 times in
such a way that y+ c(v) 6∈

{

z, x+ c′′
(

vm−1
1

)}

. Now label vm1 by y and put on the
remaining vertices of the edge em each element of V4 exactly (p− 2)/4 times.

Case 2. em−1 ∩ em = ∅. One can easily see (and it also follows from the
inductive step described below) that if m = 3, then the hypertree (path) T is
V4-cordial. Therefore we can assume that m ≥ 7. Observe that this time T ′′ =
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T−{em−2, em−1, em} is a p-uniform hypertree with the vertex set V ′′ = Xm−3. By
induction there exists a V4-friendly labeling c′′ for T ′′ which induces a V4-cordial
labeling c′′∗. Note that in this case there are exactly three elements x, y, z ∈ V4

that occur one time fewer in the labeling c′′ of vertices T ′′ than the other element
of V4, and all the elements of V4 occur the same times in the labeling of edges of
T ′′ induced by c′′. We show that the labeling c′′ can be extended to a V4-friendly
labeling c of T in such a way that c induces a V4-cordial labeling for T .

Assume first that em−2∩em 6= ∅ and em−2∩em−1 6= ∅. Let v ∈ Xm−3∩em−2,
u ∈ em−2∩em−1 and w ∈ em−2∩em. For the moment we assume that v 6∈ {u,w}.
Put the label x on the vertex u, and on the remaining vertices of the edge em−2

each element of V4 exactly (p − 2)/4 times in such a way that c(w) = c(u). For
the edges em−1 and em proceed the same way now as in Case 1.

In the other situation, if Xm−3 ∩ em−2 coincides with em−2 ∩ em−1, we apply
essentially the same strategy, imposing the condition that the vertex w gets the
label c′′(v).

Next, let em−2 ∩ em = ∅ and em−2 ∩ em−1 6= ∅. This situation can be reduced
to Case 1 by a modification of the indexing of the edges, viewing em−1 as the new
em, also em−2 as the new em−1, and the old em (which is disjoint from both other
edges) as the new em−2. Using the new indices we have em−1 ∩ em 6= ∅, which
has already been settled. A similar re-indexing works if em−2 ∩ em−1 = ∅ and
em−2 ∩ em 6= ∅.

Finally, assume that em−2 ∩ em = ∅ and em−2 ∩ em−1 = ∅. Then let em−2 =
{

vm−2
1 , vm−2

2 , . . . , vm−2
p

}

, em−1 =
{

vm−1
1 , vm−1

2 , . . . , vm−1
p

}

and em =
{

vm1 , vm2 ,

. . . , vmp
}

such that Xm−3∩em−2 =
{

vm−2
1

}

, Xm−3∩em−1 =
{

vm−1
1

}

and Xm−3∩
em =

{

vm1
}

. Suppose first that

∣

∣

{

c′′
(

vm−2
1

)

, c′′
(

vm−1
1

)

, c′′
(

vm1
)}

∣

∣ < 3,

then without loss of generality we can assume that c′′
(

vm−1
1

)

= c′′(vm1 ). Put the
label x on the vertex vm−2

p and on the remaining vertices of the edge em−2 each
element of V4 exactly (p − 2)/4 times. For the edges em−1 and em proceed the
same way now as in Case 1.

Otherwise, if
{

c′′
(

vm−2
1

)

, c′′
(

vm−1
1

)

, c′′
(

vm1
)}

= {a, b, c} is a set of three dis-
tinct labels, let us denote by β the element of V4 − {a, b, c}. On p− 2 vertices in
each of em−2, em−1, em we distribute the elements of V4 equally, using (p − 2)/4
times each. The current partial sums on these edges are a, b, c, and we need to
assign x, y, z (one of them in each edge) in a way that the sums remain mutually
distinct. If β /∈ {x, y, z}, then in fact {a, b, c} = {x, y, z}, and we can obviously
create the sums x+ y, y + z, and z + x, which satisfy the conditions. Else, if say
β = x, we have {a, b, c} = {a, y, z} where a 6= x. We then create two nonzero
sums a+y and y+x, and the zero sum z+z. The corresponding labeling satisfies
the conditions and completes the proof of the theorem.
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3. Stars, Matchings, Paths

In this section we consider hypergraphs also with smaller edges than in the previ-
ous sections, because even such extensions allow characterizations for the existence
of V4-cordial labelings in some subclasses. In particular, stars need no restriction,
whereas V4-cordial hypergraphs of maximum degree 1 admit a simple characteri-
zation. The case of paths seems to be more complicated to handle, here we only
exhibit an infinite family which is not V4-cordial.

3.1. Stars

Recall that the edge set of a star is a collection of sets of size at least 2 each,
which are mutually disjoint apart from a single vertex which is contained in all
of them. Hence each edge ei contains precisely |ei| − 1 private vertices, and with
the notation of the Extension Lemma (Theorem 2) we have |e−m| = |em| − 1, no
matter which indexing order e1, . . . , em of the edges we take.

Theorem 4. Every star is V4-cordial.

Proof. Let H be a star with m edges e1, . . . , em. We can associate the m-tuple
(f1, . . . , fm) of integers with H, where fi = |ei| − 1 for all 1 ≤ i ≤ m. It is clear
that every m-tuple of positive integers uniquely determines the corresponding star
up to isomorphism, moreover |H| = 1+

∑m
i=1 fi. This representation can further

be simplified to one which still determines H, namely we can denote by mk the
number of indices i such that fi = k.

The proof will be an induction on |H|, anchored by approximately 30 small
cases. We are going to introduce several reductions, along which it will turn out
which of the small cases are relevant to be checked separately. Below we describe
the situations and explain why they are reducible.

(1) If there is a k ≥ 5 with mk > 0, then it reduces to mk := mk − 1 and
mk−4 := mk−4 + 1.

The reason is that inside an edge with 5 or more non-center vertices we can
assign four to the elements of V4, hence creating a partial sum equal to zero and
decreasing |H| by four, still having a star with m edges. Hence it suffices to
consider stars represented by 4-tuples (m1,m2,m3,m4).

(2) If there is a k ≤ 4 with mk ≥ 4, then it reduces to mk := mk − 4.

Assume that |e1| = |e2| = |e3| = |e4| = k + 1. Table 2 shows how the non-center
vertices of e1, e2, e3, e4 can be labeled to induce four distinct edge labels, and
hence eliminate those four edges. In this way all remaining stars to be considered
are represented by 4-tuples (m1,m2,m3,m4) ∈ {0, 1, 2, 3}4, that is already a finite
collection of basic configurations.
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k = 1 k = 2 k = 3 k = 4

e1 = (0, 0) (0, 0) (0, 0), (0, 0) (0, 0), (0, 0), (0, 0) (0, 0), (0, 1), (1, 0), (1, 1)

e2 = (0, 1) (0, 1) (1, 0), (1, 1) (0, 1), (0, 1), (0, 1) (0, 0), (0, 1), (0, 1), (0, 1)

e3 = (1, 0) (1, 0) (0, 1), (1, 1) (1, 0), (1, 0), (1, 0) (0, 0), (1, 0), (1, 0), (1, 0)

e4 = (1, 1) (1, 1) (0, 1), (1, 0) (1, 1), (1, 1), (1, 1) (0, 0), (1, 1), (1, 1), (1, 1)

Table 2. Eliminating four edges of equal size. The label of center vertex, when different
from (0, 0), permutes the edge sums indicated in the first column.

(3) If f1 + f2 + f3 + f4 ≡ 0 (mod 4), then e1, e2, e3, e4 can be eliminated. More
explicitly, if in each position the 4-tuple (m1,m2,m3,m4) is at least as large
as one or more of

(0, 1, 2, 1), (0, 2, 0, 2), (1, 0, 1, 2), (1, 2, 1, 0), (2, 0, 2, 0), (2, 1, 0, 1)

then the configuration is reducible.

Indeed, the condition f1 + f2 + f3 + f4 ≡ 0 (mod 4) actually means that f1 +
f2+ f3+ f4 equals 8 or 12, because 4 and 16 would only occur as 4× 1 and 4× 4,
respectively, and these cases have just been settled by (2). Simple enumeration
yields that there are six possible 4-tuples (f1, f2, f3, f4) apart from permutations.
Table 3 exhibits an ad hoc labeling from the many possibilities for each of them,
showing that all these subconfigurations can be eliminated. There is a direct one-
to-one correspondence between the 4-tuples (m1,m2,m3,m4) and (f1, f2, f3, f4),
for example (m1,m2,m3,m4) = (1, 0, 2, 1) — the third case listed above — means
f1 = 1, f2 = 3, f3 = 3, f4 = 4.

(f1, f2, f3, f4) e1 = (0, 0) e2 = (0, 1) e3 = (1, 0) e4 = (1, 1)

(1, 1, 2, 4) (0, 0) (0, 1) (0, 0), (1, 0) (0, 1), (1, 0),

(1, 1), (1, 1)

(1, 1, 3, 3) (0, 0) (0, 1) (0, 0), (0, 1), (1, 1) (1, 0), (1, 0), (1, 1)

(1, 2, 2, 3) (0, 0) (0, 0), (0, 1) (0, 1), (1, 1) (1, 0), (1, 0), (1, 1)

(1, 3, 4, 4) (0, 0) (0, 1), (0, 1), (0, 1) (0, 0), (1, 0), (1, 0), (1, 0) (0, 0), (1, 1),

(1, 1), (1, 1)

(2, 2, 4, 4) (0, 0), (0, 0) (0, 0), (0, 1) (0, 1), (1, 0), (1, 0), (1, 1) (0, 1), (1, 0),

(1, 1), (1, 1)

(2, 3, 3, 4) (0, 0), (0, 0) (0, 1), (0, 1), (0, 1) (1, 0), (1, 0), (1, 0) (0, 0), (1, 1),

(1, 1), (1, 1)

Table 3. Eliminating four edges whose total number of non-center vertices is 8 or 12.



Z2 × Z2-Cordial Cycle-Free Hypergraphs 9

Since the theorem claims V4-cordiality of stars without any exceptions, all the
situations described above provide an inductive step when they occur as subcon-
figurations. It follows that, for an anchor of the induction, a V4-cordial labeling
has to be presented for only those stars which are not reducible by any of (1)–(3).
There are 79 such cases, as listed in Table 4. Below we show how they can be
handled.

O — Obvious cases are the stars with just one edge (m1 +m2 +m3 +m4 = 1,
the V4-cordial labelings are precisely the V4-friendly ones) and the star graphs
(m2 = m3 = m4 = 0, a labeling is V4-cordial if and only if it is V4-friendly on
the set of leaves and also on the entire vertex set). There are 6 such cases.

T — Trivial reduction applies for stars with 5 edges (m ≡ 1 (mod 4), hence the
last edge admits any V4-friendly extension from a V4-cordial labeling for the
first m−1 edges); and also for stars of order 5 or 9 or 13 (n ≡ 1 (mod 4), hence
the last vertex can get an arbitrary label needed for a V4-cordial extension
from m− 1 edges to m edges). This reduction settles 24 cases.

F — Four vertices can be eliminated if m4 ≥ 1 and m2 + m3 + m4 ≥ 2 (here
extension goes from n−4 to n, while m remains unchanged). Indeed, inside a
5-element edge we can label three non-center vertices with (0, 1), (1, 0), (1, 1)
while assigning the label (0, 0) to a vertex in another edge of size at least 3.
This reduction settles further 24 cases.

R — Reduction applies by Theorem 2 for stars with n ≡ 2 (mod 4) unless
m ≡ 0 (mod 4); and also with n ≡ 3 (mod 4) except when m ≡ 0 (mod 4)
and the star contains no edges of 4 or 5 vertices (i.e., m3 = m4 = 0). This
reduction settles further 13 cases.

* — There are 12 cases not covered by the previous considerations; Table 5
exhibits a V4-cordial labeling for each of them. Although there are several
cases, all are very easy to construct.

Together with this last set of labelings *, all cases are exhausted and the
theorem is proved.

3.2. Matchings

Recall that a matching (also called packing) in a hypergraph is a collection of
mutually disjoint edges. We now consider hypergraphs whose entire edge set
is a matching. Contrary to the previous parts of the paper, in this particular
section we allow singleton edges (edges consisting of just one vertex), and either
exclude or allow isolated vertices. Let us denote by M the class of hypergraphs
with maximum degree 1, i.e., hypergraphs whose edge set is a matching, possibly
together with one or more vertices of degree 0. More restrictively let M0 ⊂
M denote the subclass consisting of the 1-regular hypergraphs, the subscript
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(0, 0, 0, 1) 1, 5 O (0, 2, 1, 0) 3, 8 * (1, 1, 1, 1) 4, 11 F

(0, 0, 0, 2) 2, 9 T (0, 2, 1, 1) 4, 12 F (1, 1, 2, 0) 4, 10 *

(0, 0, 0, 3) 3, 13 T (0, 2, 2, 0) 4, 11 R (1, 1, 3, 0) 5, 13 T

(0, 0, 1, 0) 1, 4 O (0, 2, 3, 0) 5, 14 T (1, 2, 0, 0) 3, 6 R

(0, 0, 1, 1) 2, 8 F (0, 3, 0, 0) 3, 7 R (1, 2, 0, 1) 4, 10 F

(0, 0, 1, 2) 3, 12 F (0, 3, 0, 1) 4, 11 F (1, 3, 0, 0) 4, 8 *

(0, 0, 1, 3) 4, 16 F (0, 3, 1, 0) 4, 10 * (1, 3, 0, 1) 5, 12 T

(0, 0, 2, 0) 2, 7 R (0, 3, 1, 1) 5, 14 T (2, 0, 0, 1) 3, 7 R

(0, 0, 2, 1) 3, 11 F (0, 3, 2, 0) 5, 13 T (2, 0, 0, 2) 4, 11 F

(0, 0, 2, 2) 4, 15 F (0, 3, 3, 0) 6, 16 * (2, 0, 0, 3) 5, 15 T

(0, 0, 2, 3) 5, 19 T (1, 0, 0, 0) 1, 2 O (2, 0, 1, 0) 3, 6 R

(0, 0, 3, 0) 3, 10 R (1, 0, 0, 1) 2, 6 R (2, 0, 1, 1) 4, 10 F

(0, 0, 3, 1) 4, 14 F (1, 0, 0, 2) 3, 10 F (2, 1, 0, 0) 3, 5 T

(0, 0, 3, 2) 5, 18 T (1, 0, 0, 3) 4, 14 F (2, 1, 1, 0) 4, 8 *

(0, 0, 3, 3) 6, 22 F (1, 0, 1, 0) 2, 5 T (2, 2, 0, 0) 4, 7 *

(0, 1, 0, 0) 1, 3 O (1, 0, 1, 1) 3, 9 T (2, 3, 0, 0) 5, 9 T

(0, 1, 0, 1) 2, 7 F (1, 0, 2, 0) 3, 8 * (3, 0, 0, 0) 3, 4 O

(0, 1, 0, 2) 3, 11 F (1, 0, 2, 1) 4, 12 F (3, 0, 0, 1) 4, 8 *

(0, 1, 0, 3) 4, 15 F (1, 0, 3, 0) 4, 11 R (3, 0, 0, 2) 5, 12 T

(0, 1, 1, 0) 2, 6 R (2, 0, 0, 0) 2, 3 O (3, 0, 0, 3) 6, 16 F

(0, 1, 1, 1) 3, 10 F (1, 0, 3, 1) 5, 15 T (3, 0, 1, 0) 4, 7 R

(0, 1, 1, 2) 4, 14 F (1, 1, 0, 0) 2, 4 * (3, 0, 1, 1) 5, 11 T

(0, 1, 1, 3) 5, 18 T (1, 1, 0, 1) 3, 8 F (3, 1, 0, 0) 4, 6 *

(0, 1, 2, 0) 3, 9 T (1, 1, 0, 2) 4, 12 F (3, 1, 1, 0) 5, 9 T

(0, 1, 3, 0) 4, 12 * (1, 1, 0, 3) 5, 16 T (3, 2, 0, 0) 5, 8 T

(0, 2, 0, 0) 2, 5 T (1, 1, 1, 0) 3, 7 R (3, 3, 0, 0) 6, 10 R

(0, 2, 0, 1) 3, 9 T

Table 4. The 79 cases of (m1,m2,m3,m4) which are not excluded by (1)–(3), the cor-
responding pairs m,n (number of edges m = m1 + m2 + m3 + m4, number of vertices
n = f1+ f2+ f3+ f4+1), and a way how they can be settled. The 12 cases marked with
* need labelings to be constructed separately.
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indicating that the number of 0-degree vertices is zero.
Despite the fact that the removal of the center from a star does not change the

relative value of edge sums — equal edge sums remain equal, distinct ones remain
distinct — this operation is not invariant with respect to V4-cordiality. This
fact, supported by an infinite family of examples, is expressed in the following
proposition as opposed to Theorem 4.

(m1,m2,m3,m4) m,n fi = 1 fi = 2 fi = 3 fi = 4

(0, 1, 3, 0) 4, 12 (0, 0), (0, 0) (0, 1), (0, 1), (0, 1)

(1, 0), (1, 0), (1, 0)

(1, 1), (1, 1), (1, 1)

(0, 2, 1, 0) 3, 8 (0, 0), (0, 1) (0, 1), (1, 0), (1, 1)

(0, 0), (1, 0)

(0, 3, 1, 0) 4, 10 (0, 1), (1, 0) (0, 0), (0, 0), (0, 0)

(0, 1), (1, 1)

(1, 0), (1, 1)

(0, 3, 3, 0) 6, 16 (0, 0), (0, 0) (0, 1), (0, 1), (0, 1)

(0, 0), (0, 0) (1, 0), (1, 0), (1, 0)

(0, 1), (1, 0) (1, 1), (1, 1), (1, 1)

(1, 0, 2, 0) 3, 8 (0, 1) (0, 0), (0, 1), (1, 0)

(1, 0), (1, 1), (1, 1)

(1, 1, 0, 0) 2, 4 (0, 0) (0, 1), (1, 0)

(1, 1, 2, 0) 4, 10 (0, 0) (0, 1), (1, 0) (0, 0), (0, 0), (0, 1)

(1, 0), (1, 1), (1, 1)

(1, 3, 0, 0) 4, 8 (0, 0) (0, 1), (1, 0)

(0, 1), (1, 1)

(1, 0), (1, 1)

(2, 1, 1, 0) 4, 8 (0, 1) (0, 0), (1, 1) (0, 1), (1, 0), (1, 1)

(1, 0)

(2, 2, 0, 0) 4, 7 (0, 1) (0, 1), (1, 0)

(1, 0) (1, 1), (1, 1)

(3, 0, 0, 1) 4, 8 (0, 1) (0, 0), (0, 1), (1, 0), (1, 1)

(1, 0)

(1, 1)

(3, 1, 0, 0) 4, 6 (0, 0) (0, 0), (1, 1)

(0, 1)

(1, 0)

Table 5. Labeling for the 12 small cases which remain after the reductions O, T, F,

and R. If n ≡ 0 (mod 4), then the center gets the unique label occurring fewer in the

list than the other elements of V4, and if n ≡ 2 (mod 4), then it has three options for

its label. In (2, 2, 0, 0) the center vertex gets the label (0, 0); this is an exceptional case

where only three labels can be used on the non-centers and the fourth element of V4 can

occur only on the center (cf. Proposition 5).

Proposition 5. If H ∈ M0 is a hypergraph consisting of mutually disjoint edges,
such that both |H| and ‖H‖ are even, moreover |H| 6≡ ‖H‖ (mod 4), then H is
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not V4-cordial.

Proof. Let E(H) = {e1, . . . , em} and V (H) = {v1, . . . , vn} = e1 ∪ · · · ∪ em,
where the edges e1, . . . , em are mutually disjoint. Consider any vertex labeling
c : V (H) → V4 and its induced edge labeling c∗ : E(H) → V4.

Assume that the labeling is V4-cordial, i.e., c is V4-friendly on V (H) and the
induced edge labeling c∗ : E(H) → V4 fulfils |ec∗(a)−ec∗(b)| ≤ 1 for any a, b ∈ V4.
Since each vertex belongs to precisely one edge, the sum S of all labels satisfies

S =
n
∑

i=1

c(vi) =
m
∑

j=1

c∗(ej).

Now the conditions on |H| and ‖H‖ imply that precisely one of the order and
size is a multiple of 4, the other is congruent to 2 (mod 4). For the multiple of 4,
every element of V4 occurs the same number of times as a vertex label or as an
edge label, thus

S = (0, 0).

On the other hand, in the “ 2 (mod 4) ” set precisely two elements of V4 occur one
fewer times than the other two elements. Since the overall sum of labels should
also be S = (0, 0), it follows that the sum of two distinct a, b ∈ V4 should be zero,
which is impossible.

It turns out that this proposition characterizes the exceptions, apart from
which all matchings are V4-cordial.

Theorem 6. Let H be a matching, where 1-element edges are also allowed.

(i) If H ∈ M0, then H is V4-cordial if and only if H does not satisfy the condi-

tions of Proposition 5; i.e., if either at least one of |H| and ‖H‖ is odd, or

both are even and |H| ≡ ‖H‖ (mod 4).

(ii) If H ∈ M \M0, then H is V4-cordial.

Proof. Let H = (V,E), with n vertices and m edges, say E = {e1, . . . , em}. The
argument mostly applies the ideas of the proof of Theorem 4, keeping in mind
that now e−m = em holds in any indexing order of the edges. If H ∈ M0, then
H can be extended to a star H+ by inserting a center vertex, say x (x /∈ V ),
and enlarging each edge ei to e+i := ei ∪ {x}. We already know that H+ has
a V4-cordial labeling c+. If H itself is not V4-cordial, then it must be the case
that the label of the center occurs one fewer than the most frequent vertex label;
otherwise we would simply forget about the center and its label. We are going to
prove that this situation can be avoided, unless the conditions of Proposition 5
hold.
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In the same way as in the proof of Theorem 4, one can verify that the following
reductions are feasible inside the class M. For easier comparison we keep the
sequence of properties in the same order.

1. If |ei| ≥ 5 for some 1 ≤ i ≤ m, then we can reduce n to n − 4 by assigning
each element of V4 to one vertex of ei, while the status of the conditions with
respect to |H| and ‖H‖ remain unchanged. This eliminates all edges larger
than 4.

2. If |e1| = |e2| = |e3| = |e4|, then we can apply the labeling scheme given in
Table 2 inside these four edges. Then n decreases by a multiple of 4, and m
decreases by exactly 4. Hence again the conditions with respect to |H| and
‖H‖ remain unchanged.

3. If |e1| + |e2| + |e3| + |e4| equals 8 or 12, then we can apply the labeling
scheme given in Table 3 inside these four edges. More explicitly, this step is
applicable whenever the edges can be indexed in such a way that the sequence
(|e1|, |e2|, |e3|, |e4|) is one of (1, 1, 2, 4), (1, 1, 3, 3), (1, 2, 2, 3), (1, 3, 4, 4), (2, 2,
4, 4), (2, 3, 3, 4). Then again n decreases by a multiple of 4, and m decreases
by exactly 4. Hence the conditions with respect to |H| and ‖H‖ remain
unchanged.

4. If all edges are singletons, or if H has only one edge, an obvious labeling veri-
fies that H is V4-cordial. Note that in these cases the conditions of Proposition
5 do not hold because here we have either |H| = ‖H‖ or |H| = 1.

5. If |e1| = 4 and |e2| > 1, then (0, 0) can be assigned to a vertex of e2, and the
other three elements of V4 to vertices of e1; in this way zero partial sums are
inserted in both edges and n is reduced to n− 4, while m is kept unchanged.
Since n and m do not change modulo 4, the status of the conditions on |H|
and ‖H‖ remains the same.

Steps 1–3 of this list are analogous to (1)–(3) in the proof of Theorem 4, while
the parts 4 and 5 correspond to the reductions O and F, respectively.

Hence only some of those 49 cases remain to be considered which are marked
with T or R or * in Table 4. For the case of matchings they are summarized in
Table 6. Among them there are 14 further ones which are reducible by step 5; we
indicate them with F′. This leaves 35 cases, among which there are 6 satisfying
the congruence conditions of Proposition 5 and hence we know that they are not
V4-cordial. These are marked with ×.

Note that in the current situation we have n = f1 + f2 + f3 + f4, without
the +1 term; this is the reason why the pairs m,n differ by 1 when compared in
Tables 4 and 6. Now a natural analogue of T is the following reduction, which
necessarily is slightly more restrictive.
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(0, 0, 0, 2) 2, 8 F′ (0, 3, 1, 0) 4, 9 T′ (1, 1, 2, 0) 4, 9 T′

(0, 0, 0, 3) 3, 12 F′ (0, 3, 1, 1) 5, 13 F′ (1, 1, 3, 0) 5, 12 T′

(0, 0, 2, 0) 2, 6 R′ (0, 3, 2, 0) 5, 12 T′ (1, 2, 0, 0) 3, 5 T′

(0, 0, 2, 3) 5, 18 F′ (1, 0, 0, 1) 2, 5 T′ (1, 3, 0, 0) 4, 7 **

(0, 0, 3, 0) 3, 9 T′ (1, 0, 1, 0) 2, 4 × (1, 3, 0, 1) 5, 11 F′

(0, 0, 3, 2) 5, 17 F′ (1, 0, 1, 1) 3, 8 F′ (2, 0, 0, 3) 5, 14 F′

(0, 1, 1, 0) 2, 5 T′ (1, 0, 2, 0) 3, 7 ** (2, 0, 1, 0) 3, 5 T′

(0, 1, 1, 3) 5, 17 F′ (2, 1, 1, 0) 4, 7 R′ (2, 2, 0, 0) 4, 6 ×

(0, 1, 2, 0) 3, 8 ** (1, 0, 3, 0) 4, 10 × (2, 3, 0, 0) 5, 8 T′

(0, 1, 3, 0) 4, 11 R′ (2, 1, 0, 0) 3, 4 ** (3, 0, 0, 1) 4, 7 R′

(0, 2, 0, 0) 2, 4 × (3, 2, 0, 0) 5, 7 T′ (3, 0, 0, 2) 5, 11 F′

(0, 2, 0, 1) 3, 8 F′ (2, 0, 0, 1) 3, 6 R′ (3, 0, 1, 0) 4, 6 ×

(0, 2, 1, 0) 3, 7 R′ (1, 0, 3, 1) 5, 14 F′ (3, 0, 1, 1) 5, 10 F′

(0, 2, 2, 0) 4, 10 × (1, 1, 0, 0) 2, 3 R′ (3, 1, 0, 0) 4, 5 T′

(0, 2, 3, 0) 5, 13 T′ (1, 1, 0, 3) 5, 15 F′ (3, 1, 1, 0) 5, 8 T′

(0, 3, 0, 0) 3, 6 ** (1, 1, 1, 0) 3, 6 R′ (3, 3, 0, 0) 6, 9 T′

(0, 3, 3, 0) 6, 15 R′

Table 6. The 4-tuples (m1,m2,m3,m4) not eliminated by steps 1–6, the pairs m,n, and

a way how they can be settled.

T′ — Trivial reduction applies if we have n ≡ 1 (mod 4) or m ≡ 1 (mod 4) or
both, and H contains an edge whose deletion (also deleting its vertices) does
not lead to a case marked with ×.

The reason is that the last vertex can get any label when we have a completely
balanced labeling on n − 1 vertices, hence the needed label on the last edge can
surely be generated; or, the last edge can get any label, hence any V4-friendly
extension of a V4-cordial labeling of the hypergraph with m− 1 edges will do the
job. This operation settles 15 further cases.

As a further simplification, Theorem 2 leads to the following reduction.

R′ — If there is a non-singleton edge ei such that H − ei is a matching not
marked with ×, then the following conditions are sufficient for reduction:
n ≡ 2 (mod 4) unless m ≡ 0 (mod 4), or n ≡ 3 (mod 4) unless |ei| = 2 and
m ≡ 0 (mod 4).

This eliminates 9 further cases.
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** — There are 5 cases not covered by the previous considerations; Table 7
exhibits a V4-cordial labeling for each of them.

This completes the proof of the theorem.

(m1,m2,m3,m4) m,n fi = 1 fi = 2 fi = 3

(0, 1, 2, 0) 3, 8 (0, 0), (1, 1) (0, 0), (0, 1), (1, 1)

(0, 1), (1, 0), (1, 0)

(0, 3, 0, 0) 3, 6 (0, 0), (0, 0)

(0, 1), (1, 1)

(1, 0), (1, 1)

(1, 0, 2, 0) 3, 7 (0, 1) (0, 0), (0, 1), (1, 0)

(1, 0), (1, 1), (1, 1)

(1, 3, 0, 0) 4, 7 (0, 0) (0, 1), (1, 0)

(0, 1), (1, 1)

(1, 0), (1, 1)

(2, 1, 0, 0) 3, 4 (0, 1) (0, 0), (1, 1)

(1, 0)

Table 7. Labeling for the 5 final cases of matchings. (Edges of size 4 do not occur.)

3.3. Paths

Inside the class of path hypergraphs we define a hyperpath as a path in which all
edges have size at least 3. The main result of this section is that every hyperpath
is V4-cordial. Before proving this, we exhibit an infinite family of paths which
are not V4-cordial, hence showing that edges of size 2 create more problems than
the sporadic examples P4 and P5 themselves. The complete characterization of
V4-cordial paths remains open.

Proposition 7. If H is a path with three edges e1, e2, e3, such that e2 is the
middle edge having size |e2| = 2, moreover |H| ≡ 0 (mod 4), then H is not
V4-cordial.

Proof. Let V (H) = {v1, . . . , vn}, and consider any V4-friendly vertex labeling
c : V (H) → V4 with the corresponding induced edge labeling c∗ : E(H) → V4.
Since e1 ∪ e3 = V (H) and |H| is a multiple of 4, we now have

c∗(e1) + c∗(e3) =
n
∑

i=1

c(vi) = (0, 0).

This implies c∗(e1) = c∗(e3), hence the labeling cannot be V4-cordial.
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Theorem 8. Every hyperpath is V4-cordial.

Proof. Consider a hyperpath H = (V,E), with E = {e1, . . . , em}. We apply
induction on the number m of edges, from m − 4 to m. The base of induction
will be m = 1, 2, 3; and a special interpretation will be given to the case m = 0 to
make it possible that the inductive step works for m = 4, hence avoiding the need
to verify the assertion separately for the many different paths with four edges.

Inside this proof, we simplify the notation to denote the three elements of
V4 \ {(0, 0)} by a, b, c and write 0 for (0, 0).

Case m = 1. Every V4-friendly labeling is V4-cordial.

Case m = 2. Sequentially creating a V4-friendly labeling, for the last vertex
we still have at least two choices — which ensure that the sums on e1 and e2 can
be made different — unless n ≡ 0 (mod 4). In this exceptional case, however, the
sum over the vertex set is equal to 0 ∈ V4. Then we assign a nonzero element b
to the vertex e1 ∩ e2; this guarantees that the two sums differ, because the sum
over e1 plus the sum over e2 is equal to b.

Case m = 3. Let us start with the periodic labeling 0, a, b, c, 0, a, b, c, . . .
along the vertices of the path, and see whether the sums s1, s2, s3 on e1, e2, e3
are distinct or not. If some equalities occur, we eliminate them in two steps as
follows.

First, to eliminate s1 = s3 if it occurs, we switch the label between vertex
e1 ∩ e2 and its successor (which is only in e2, not in e1 ∪ e3, because |e2| ≥ 3).
This keeps s2 (and also s3) unchanged, but modifies the sum over e1 to a new
updated value of s1, which is then different from s3.

Second, to maintain s1 6= s3 and eliminate s1 = s2 or s2 = s3 if it holds
after the first step, we switch the label between vertex e2 ∩ e3 and one of its
next two successors. (Recall that |e3| ≥ 3 holds, hence |e−3 | ≥ 2.) These are
two possibilities, each keeping s3 (and also s1) unchanged, but offering two new
values for an updated s2. At least one of the two will be different from both
s1 and s3, hence satisfying the requirement. (After any of the two switches the
original equality s1 = s2 or s2 = s3 automatically disappears, we only have to
ensure that a new equality with the other end will not arise.)

Inductive step from m− 4 to m. Instead of dealing with the last four edges,
we omit the first two and last two edges from the hyperpath e1, . . . , em. Hence
let H ′ be the hyperpath with vertex set X ′ =

⋃m−2
j=3 ej and edge set E′ = {ej |

3 ≤ j ≤ m − 2}, with |X ′| = n′ and |E′| = m′ = m − 4. By the induction
hypothesis there exists a V4-cordial labeling (c′, c′∗) on (X ′, E′). Our goal is to
assign n − n′ labels to the vertices of V \ X ′ and generate four distinct sums
on e1, e2, em−1, em. The n − n′ labels have to be selected from a multiset S′ of
4 · ⌈n/4⌉−n′ elements over V4; namely, starting with ⌈n/4⌉ copies of V4 we delete
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the elements which have been assigned to X ′, and from the remaining multiset
we need to select n − n′ labels properly. Note that the multiplicities of any two
elements in S′ differ by at most 1, because c′ is V4-friendly by assumption, hence
what remains after omitting its labels from ⌈n/4⌉ times V4 is also balanced in the
sense of tolerating difference at most 1. We can assume without loss of generality
that n ≡ 0 (mod 4), because any other case would give us some flexibility in
selecting the set of labels, whereas in this case the multiset of labels to be used is
determined.

Assume that the vertices in e2 ∩X ′ and in em−1 ∩X ′ are labeled with x and
y, respectively, and that the sum of all labels over X ′ is z. (Some or all of x, y, z
may coincide.) Then the label x′ of the vertex in e1 ∩ e2 and y′ of the vertex in
em−1 ∩ em should satisfy

(1) x′ + y′ = x+ y + z.

Indeed, since n ≡ 0 (mod 4), the sum z of labels inside X ′ is equal to the sum
outside X ′, moreover — as said above — the intention is to achieve that the four
sums on the edges ei (i = 1, 2,m− 1,m) are all distinct. If this holds, then those
four sums on e1, e2, em−1, em sum up to 0 ∈ V4, what implies z+x+ y+x′+ y′ =
∑

v∈V (H)\X′ c′(v) + x+ y + x′ + y′ = 0.

We proceed in three steps, after which a V4-cordial labeling will be obtained.

Step 1. Determine x′, y′.

We choose x′ and y′ in such a way that one of them is an element which is
most frequent in S′, moreover the remaining multiset S′ \ {x′, y′} still contains at
least one occurrence of 0. We argue that this can always be done. Indeed, the
condition on edge sizes implies |S′| ≥ 8. Assume first that equality |S′| = 8 holds;
then each element occurs precisely twice in S′. If equation (1) requires x′ = y′

(that is, if x+ y+ z = 0), then we can use any of the three labels different from 0
for x′. On the other hand if x′ 6= y′, the required sum x′+y′ can be formed in two
ways, each of them leaving two elements of V4 with multiplicity 2 and two with 1
in S′\{x′, y′}, hence either choice is feasible. Finally if |S′| > 8, the most frequent
element occurs at least three times. We choose it for x′, and assign x+ y+ z− x′

for y′. This is feasible because all elements have multiplicity at least 2 in S′ \{x′}.

Step 2. Distribute all but 6 labels from S′ \ {x′, y′}.

If |S′| = 8, there is nothing to do in this step, the remaining multiset is

0, 0, a, a, b, b or 0, a, a, b, b, c or 0, 0, a, a, b, c

whose sum is

0 or c or a,
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respectively. If |S′| > 8, we distribute |S′| − 8 elements from S′ \ {x′, y′} almost
arbitrarily, but in such a way that the following conditions are met:

• either 0, a, a, b, b, c or 0, 0, a, a, b, c remains;

• e2 and em−1 have just one unlabeled vertex;

• each of e1 and em has two unlabeled vertices.

After this, let us denote the current sums of labels in e1, e2, em−1, em by s1, s2,
sm−1, sm, respectively. From these four partial sums we shall have to create four
distinct final sums by properly distributing the remaining six labels. From this
point of view (s1, s2, sm−1, sm) and (a+s1, a+s2, a+sm−1, a+sm) are equivalent.
For this reason we may assume without loss of generality that 0 is most frequent
among s1, s2, sm−1, sm. Hence, apart from the permutation of subscripts, only
the following five types of 4-tuples are relevant for (s1, s2, sm−1, sm).

1. (0, 0, 0, 0), sum = 0;

2. (0, 0, 0, a′), sum = a′ 6= 0;

3. (0, 0, a′, a′), sum = 0;

4. (0, 0, a′, b′), sum = a′ + b′ 6= 0;

5. (0, a′, b′, c′), sum = a′ + b′ + c′ = 0.

Here we use prime notation to mean that a′, b′ may be other than a, b in the re-
maining 6-element multiset; but different primed letters mean different elements.
Observe, however, that s1 + s2 + sm−1 + sm must be equal to the sum of the six
elements in the multiset, because the total sum over the four edges will eventually
be zero; this is implied by the choice of x′ and y′. This fact yields, in particu-
lar, that not all 4-tuples fit together with all 6-tuples. Namely, 0, 0, a, a, b, b is
compatible with the cases 1, 3, 5, while 0, a, a, b, b, c and 0, 0, a, a, b, c admit the
cases 2, 4.

Step 3. Complete the labeling on e1, e2, em−1, em.

This step is a little time consuming, but easy. The selection rules described
above already imply that if three edges have mutually distinct final sums, then the
fourth edge has the missing value for its sum. To achieve this, we systematically
enumerate the 4-tuples listed in 1–5 above with their compatible 6-tuples of labels,
and — up to symmetry — the possible positions of 0, a′, b′ and the elements that
can play the role of 0, a′, and b′. Tables 8 and 9 exhibit a suitable way of extending
c′ to a V4-cordial labeling of the entire path.

Case m = 4. Let us artificially introduce the 0-path as a single vertex with
no edges. It is of course V4-cordial, any label x can be assigned to the vertex.
Now, for m = 4 we identify the vertex with e2 ∩ e3, and apply the inductive step
above as described for the case x = y. This completes the proof of the theorem.
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(s1, s2, sm−1, sm) 6-tuple a′ = e1 e2 em−1 em

(0, 0, 0, 0) 0, 0, a, a, b, b − 0, a → a 0 → 0 b → b a, b → c

(0, 0, 0, a′) 0, a, a, b, b, c c a, b → c 0 → 0 b → b a, c → a

0, 0, a, a, b, c a 0, a → a 0 → 0 b → b a, c → c

(0, 0, a′, 0) 0, a, a, b, b, c c a, b → c 0 → 0 b → a a, c → b

0, 0, a, a, b, c a 0, a → a 0 → 0 b → c a, c → b

(0, 0, a′, a′) 0, 0, a, a, b, b a 0, a → a 0 → 0 b → c a, b → b

c 0, b → b 0 → 0 b → a a, a → c

(0, a′, 0, a′) a a, b → c 0 → a b → b 0, a → 0

c 0, a → a 0 → c b → b a, b → 0

(0, a′, a′, 0) a 0, b → b 0 → a b → c a, a → 0

c 0, b → b 0 → c b → a a, a → 0

(a′, 0, 0, a′) a 0, b → c 0 → 0 b → b a, a → a

c 0, b → a 0 → 0 b → b a, a → c

Table 8. Labels inserted into e1, e2, em−1, em starting from at most two distinct sums,

and the final sum of labels inside ei.

(s1, s2, sm−1, sm) 6-tuple a′, b′ = e1 e2 em−1 em

(0, 0, a′, b′) 0, a, a, b, b, c a, b a, a → 0 b → b b → c 0, c → a

0, 0, a, a, b, c b, c a, a → 0 b → b c → a 0, 0 → c

(0, a′, 0, b′) 0, a, a, b, b, c a, b a, a → 0 b → c b → b 0, c → a

0, 0, a, a, b, c b, c a, a → 0 0 → b c → c 0, b → a

(0, a′, b′, 0) 0, a, a, b, b, c a, b a, a → 0 b → c c → a 0, b → b

0, 0, a, a, b, c b, c a, a → 0 0 → b 0 → c b, c → a

(a′, 0, 0, b′) 0, a, a, b, b, c a, b b, c → 0 a → a b → b 0, a → c

0, 0, a, a, b, c b, c 0, b → 0 a → a c → c 0, a → b

(0, a′, b′, c′) 0, 0, a, a, b, b a, b a, a → 0 0 → a 0 → b b, b → c

b, c a, a → 0 0 → b 0 → c b, b → a

(a′, 0, b′, c′) a, b 0, a → 0 a → a 0 → b b, b → c

b, c 0, b → 0 b → b 0 → c a, a → a

Table 9. Labels inserted into e1, e2, em−1, em starting from 3 or 4 distinct sums, and the

final sum of labels inside ei.

4. Conclusions

We finish the paper with some simple open problems.
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Conjecture 9. Let T = (V,E) be a hypertree. If |e| ≥ 3 for every e ∈ E(T ),
then T is V4-cordial.

Problem 10. Characterize the class of hypergraphs which are cycle-free and
V4-cordial.

Problem 11. Give necessary and sufficient conditions for V4-cordial path hyper-
graphs.
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