Modelling future patterns of urbanization, residential energy use and greenhouse gas emissions in Dar es Salaam with the Shared Socio-Economic Pathways

Chibulu Luo, I. Daniel Posen, Daniel Hoornweg, Heather L. MacLean

PII: S0959-6526(20)30045-7

DOI: https://doi.org/10.1016/j.jclepro.2020.119998

Reference: JCLP 119998

To appear in: Journal of Cleaner Production

Received Date: 9 August 2019

Revised Date: 29 November 2019

Accepted Date: 3 January 2020

Please cite this article as: Luo C, Posen ID, Hoornweg D, MacLean HL, Modelling future patterns of urbanization, residential energy use and greenhouse gas emissions in Dar es Salaam with the Shared Socio-Economic Pathways, *Journal of Cleaner Production* (2020), doi: https://doi.org/10.1016/j.jclepro.2020.119998.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Modelling future patterns of urbanization, residential energy use and greenhouse gas emissions in Dar es Salaam with the Shared Socio-Economic

Pathways

Chibulu Luo^a*, I. Daniel Posen^a, Daniel Hoornweg^b and Heather L. MacLean^{ac} ^a University of Toronto, Department of Civil and Mineral Engineering, 35 St George St, Toronto, ON M5S 1A4, Canada ^b Ontario Tech University, Faculty of Energy Systems and Nuclear Science Research, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada ^{c.} University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College St, Toronto, ON M5S 3E5, Canada *Corresponding author: <u>chibulu.luo@mail.utoronto.ca</u>

Abstract

This paper presents three scenarios of urban growth, energy use and greenhouse gas (GHG) emissions in Dar es Salaam using narratives that are consistent with the Shared Socio-Economic Pathways (SSPs). We estimate residential energy demand and GHG emissions from 2015 to 2050 for household activities (including upstream electricity generation) and passenger (road) transport (Scopes 1 and 2). We project that by 2050, Dar es Salaam's total residential emissions would increase from 1,400 ktCO₂e (in 2015) up to 25,000 – 33,000 ktCO₂e (SSP1); 11,000 – 19,000 ktCO₂e (SSP2); and 5,700 – 11,000 ktCO₂e (SSP3), with ranges corresponding to different assumptions about household size. This correlates with an increase in per capita emissions from 0.2 tCO₂e in 2015 to 1.5 - 2 tCO₂e (SSP1); 0.7 - 1.3 tCO₂e (SSP2); and 0.5 - 0.9 tCO₂e (SSP3). Higher emissions in SSP1 (the sustainability scenario) are driven by a higher urban population in 2050 and increased energy access and electricity consumption. Through aggressive GHG mitigation policies focused on decarbonization of the electricity sector and road transport, total emissions under SSP1 can be reduced by ~66% in 2050. Study insights aim to inform policies that identify and capture synergies between low-GHG investments and broader socio-economic development goals in Sub-Saharan African cities.

Article word count: 10,828 (excluding references, nomenclature and acknowledgements)

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Nomenclature

BRT – Bus Rapid Transit

- GDP Gross Domestic Product
- GHG Greenhouse Gas
- HDI Human Development Index
- IAM Integrated Assessment Model
- IEA International Energy Agency
- INDC Intended Nationally Determined Contribution
- IPCC Intergovernmental Panel on Climate Change
- LEAP Long-Range Energy Alternatives Planning Software
- LPG Liquified Petroleum Gas
- LULUCF Land Use Land-Use Change and Forestry
- SDGs Sustainable Development Goals
- SSA Sub-Saharan Africa
- SSPs Shared Socio-Economic Pathways
- UN United Nations
- UNFCCC United Nations Framework Convention on Climate Change
- WHO-World Health Organization

Metrics

- HH Household
- \mathbf{km} kilometer
- ktCO2e kilotonnes of carbon dioxide equivalents
- $\mathbf{kWh} \mathrm{kilowatt}$ hour
- $\mathbf{GJ}-\mathbf{Gigajoules}$

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) **REVISED VERSION (CLEAN) Journal of Cleaner Production** [As of November 28, 2019]

USD \$ – United States Dollar

yr – year

Equations

Year – year of prediction

 TP_{Year} – Tanzania's total population (in millions) for a given year

TUP_{Year} – Tanzania's urban population level (as a percentage) for a given year

 PS_{Year} – Population share of Dar es Salaam (as a percentage of the total urban population) for a given year

ь а ре

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

1 1. Introduction

How emerging Global South cities - especially in the Sub-Saharan Africa (SSA) region -2 3 mitigate and adapt to climate change is critical to future sustainability. By the end of the century, over 30 SSA cities are expected to be among the world's largest megacities (with populations 4 5 exceeding 10 million) (Hoornweg and Pope, 2017) compared to two megacities in 2017 (Lagos and Kinshasa) (WorldAtlas, 2017; UN, 2018). Though the region accounts for only 3.7% of 6 7 global energy-related greenhouse gas (GHG) emissions (IEA, 2019), rapid urbanization and 8 economic growth will increase future energy demand and GHG emissions. The growth of new 9 urban infrastructure, such as power plants, roads, water supply and sewer systems, will push the region's aggregate material and energy use to much higher levels (Westphal et al., 2017). Urban 10 11 sprawl, and persistent decline in urban population density, will be an additional driver of energy 12 demand and emissions (Angel et al., 2011). Therefore, steering SSA cities towards a low-GHG 13 future is critical to energy policy and planning (Godfrey and Xiao, 2015) as urban growth will 14 impact global emissions due to the projected expansion of Africa's population (Calvin et al., 15 2016). However, literature on the future energy and GHG emissions transitions of SSA cities is limited to a few studies (e.g., Godfrey and Xiao (2015) and SEA (2015a)). This calls for research 16 17 that investigates different scenarios of urban growth and energy use in SSA cities, and 18 specifically, identifies key sectors (e.g., residential, transportation and industrial) driving these 19 changes within individual cities.

20 There are two main contributions of this paper. To our knowledge, we present the first

21 projections of possible changes in residential energy use and GHG emissions, i.e., from domestic

22 activities, including household and transportation activities, in Dar es Salaam, Tanzania (one of

the largest and fastest growing cities in the SSA region (Hoornweg and Pope, 2017)). Our

24 analysis highlights the household and transportation drivers that are the primary contributors to

25 future GHG emissions in Dar es Salaam, providing insights for policy makers and urban

26 planners. The projections are to 2050 and use the Shared Socio-Economic Pathways (SSPs) as a

27 guiding narrative. The SSPs (further detailed in Section 2) were originally established by the

- 28 climate change research community to facilitate integrated analysis of future climate impacts,
- 29 vulnerabilities, adaptation and mitigation (Riahi et al., 2017). There have been only a few

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

30 applications of the SSPs at the city-level (e.g., Kamei et al. (2016) and Hoornweg and Pope 31 (2017)), and none for the purpose of projecting GHG emissions and energy use in Dar es Salaam or any other major African city. Second, the paper presents a method for scoping GHG emissions 32 33 pathways in a relatively data-poor environment, and demonstrates how the SSPs can be used to 34 develop urban growth scenarios. Current urban energy use and/or GHG emissions studies tend to 35 focus on Global North cities (where data sources and methods are more robust), despite calls to action for research attention and focus on the Global South (especially the SSA region) (IPCC, 36 37 2014; van der Zwaan et al., 2018). The lack of research is further reflected by the few "urban metabolism" studies estimating the energy and GHG emissions flows in cities in the SSA region 38 39 (e.g., Kampala (Lwasa, 2017), Lagos (Kennedy et al., 2015) and Cape Town (Hoekman and von 40 Blottnitz, 2017), among others). We focus here on cities as their spatial form and economy drives 41 much of the national energy demand. However, these studies do not discuss expected changes in 42 future GHG emissions in the manner presented in this paper. Our results show the wide uncertainty in these future projections, while simultaneously demonstrating the order of 43 44 magnitude jump in emissions that can be expected in Dar es Salaam even under optimistic

45 scenarios.

- 46 We focus on the residential sector as it is a dominant "end-use" sector in the SSA region (IEA,
- 47 2014, 2019). Regional estimates indicate that 66% of final energy use occurs in the residential
- 48 sector, compared to 21% in the industrial, agricultural and services sectors (IEA, 2014).
- 49 Similarly, in other large SSA cities such as Lagos and Accra, emissions from residential
- 50 buildings (not including biomass use) were estimated at ~30% (2015) and ~23% (2015),
- 51 respectively, of total stationery and transport emissions, compared to ~14% and ~5% in the case
- 52 of industry (i.e., manufacturing and construction) (C40 Cities, 2017). Furthermore, while there is
- 53 no available estimate of residential GHG emissions in Dar es Salaam (outside of the ones
- 54 generated within this research), national GHG inventories estimate that electricity production and
- 55 transportation (including for residential use) accounted for ~38% of Tanzania's total energy
- 56 sector emissions (in 2014), compared to ~7% for industry (WRI, 2015). GHG emissions from
- 57 industry would generally vary on a case-by-case basis and/or may be linked to specific
- regulations, and therefore emissions projections for industry would scale differently compared to

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

- 59 residential emissions. For the above reasons, the focus of this paper is on residential activities,
- 60 although industrial activities could be incorporated in future work.

61 To accomplish the contributions outlined above, this paper:

- 62 (1) Estimates the current (2015) emissions in Dar es Salaam, and present narratives (based on
 63 the SSPs) that project future changes in GHG emissions from domestic households,
 64 including public and private vehicle travel (Scopes 1 and 2) between 2015 and 2050;
- 65 (2) Assesses which household and transportation activities are the primary contributors to
 66 emissions to 2050;
- 67 (3) Analyzes how spatial factors such as urban population density influence energy use and
 68 GHG emissions; and,
- (4) Provides actionable urban policy recommendations that can support a low-GHG and
 sustainable energy transition in Dar es Salaam, and the SSA region more broadly.
- 71

Literature review: Infrastructure and energy transitions in Africa and other Global South cities

The African Development Bank estimates the scale of investments required to build SSA's 74 75 future infrastructure at between \$130 and \$170 billion a year (AfDB, 2018). This infrastructure 76 demand presents a unique opportunity to build more sustainable (and resilient) cities with 77 policies that promote low-GHG and resilient communities (that especially benefit the poor). 78 However, the urbanization of SSA cities comes with unique challenges. Unlike the 79 transformation in Europe and North American cities, whose urbanization was correlated with 80 industrialization and economic growth (Currie and Musango, 2017), these associations are not 81 evident in the SSA region (Allen, 2014). Rather, urban growth has been predominately 82 "splintered" and reinforced by socio-economic challenges such as poverty, inequality and 83 vulnerability to climate change (Allen, 2014; Currie and Musango, 2017). Splintered urbanism 84 has heightened inequalities, as basic infrastructure services, such as electricity, water supply and 85 public transportation, are often limited or non-existent for the poorest neighborhoods (Allen, 2014; Currie and Musango, 2017). In this regard, studies find that low levels of infrastructure 86

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

stock (and urban wealth) in SSA cities is a key reason for their limited energy use and GHG
emissions compared to higher-income cities (Kennedy *et al.*, 2015).

89 A handful of prior studies have compared electricity use, transportation emissions and/or direct

90 final energy use among global cities (e.g., Schulz (2010); Grubler et al. (2013) and Kennedy et

91 al. (2014)), and report values for Dar es Salaam (0.16 MWh/capita, ~1 tCO₂e/capita,

92 17GJ/capita) that are far lower than their counterparts in the U.S. (9 - 10 MWh/capita and 4

93 tCO₂e/capita) or Canada (162 GJ/capita in Toronto). Another set of studies quantify the flows of

94 materials, energy, and waste in cities using urban metabolism frameworks. Metabolism

95 assessments are available for a limited number of SSA cities, including Kampala (Lwasa, 2017),

96 Durban (Jagarnath and Thambiran, 2018) and Cape Town (Hoekman and von Blottnitz, 2017).

97 Increasing resource access remains a key challenge for these cities, with Kennedy *et al.* (2015)

98 concluding that SSA cities (e.g., Lagos) are "consuming resources at rates below those that

99 support a basic standard of living for all citizens". This is consistent with research comparing

100 120 African cities that found strong correlations between resource use and GDP/capita or Human

101 Development Index (HDI) ratings (Currie et al., 2015; Currie and Musango, 2017).

102 Few studies have projected energy use and GHG emissions pathways in SSA cities (e.g., Senatla

103 (2011), Godfrey and Xiao (2015), SEA (2015a) and Stone and Wiswedel (2018)). However,

104 there are a number of studies in other regions of the Global South, especially Asian and Latin

105 American cities (e.g., McPherson and Karney (2014), Collaço *et al.* (2019) and Huang *et al.*

106 (2019)). Emissions pathways are estimated using scenario-based models that aggregate data

107 across different urban sectors. For example, Stone and Wiswedel (2018) use the Stockholm

108 Environment Institute's Long-Range Energy Alternatives Planning (LEAP) software to assess

109 the scale of GHG emissions growth (from residential, industrial and transport activities) in urban

110 SSA from 2012 to 2040. Results indicate that urban energy demand in SSA cities could increase

111 fourfold by 2040, with GHG emissions rising 280%. This would shift the region's share of

112 global emissions from 1% (in 2012) to 4% in 2040. In China, Huang et al. (2019) also use LEAP

113 to project peak levels of GHG emissions in the city of Guangzhou. Findings show that while

114 emissions will peak by 2023 under existing climate mitigation policies, the peak could be moved

115 forward to 2020 with more stringent energy conservation and policies, including (among other

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

116 interventions): (1) adjusting the energy mix and mode of passenger transport; (2) and replacing

117 coal and oil use with electricity and natural gas in the industrial sector; and, (3) enabling large

scale-up of renewable energy power. Similar applications of the LEAP model at the city-level

are available for São Paulo (Collaço et al., 2019), Panama (McPherson and Karney, 2014),

120 Bangkok (Phdungsilp, 2010), and several Chinese cities (Zhou et al., 2016; Fan et al., 2017;

121 Yang *et al.*, 2017; Lin *et al.*, 2018), among others.

122

123 Outside of LEAP, researchers have employed models and frameworks designed for specific 124 sectors, including buildings (e.g., Lin *et al.* (2017), Li *et al.* (2019) and Mokhtara *et al.* (2019)),

 $121 \qquad \text{sectors, merading buildings (e.g., the et al. (2017), the et al. (2017) and modulate et al. (2017))},$

125 transportation (e.g., Pongthanaisawan and Sorapipatana (2013), Aggarwal and Jain (2016), Dhar

126 *et al.* (2017) and Du *et al.* (2017)) and industry (e.g., Wang *et al.* (2013) and de Souza *et al.*

127 (2018)). Other studies have used Integrated Assessment Models (IAMs) to forecast long-term

128 energy and emissions scenarios (e.g., Riahi et al. (2017), van Sluisveld et al. (2018), Silva

129 Herran et al. (2019) and Wu et al. (2019)). IAM literature remains limited in the SSA region,

130 with notable exceptions by Calvin *et al.* (2016), Lucas *et al.* (2015) and van der Zwaan *et al.*

131 (2018). In particular, van der Zwaan et al. (2018) model pathways for low-carbon development

132 in Africa (including North African countries) using the "TIAM-ECN" IAM model, designed to

133 simulate the development of energy economies over time. Their findings show that while

134 Africa's GHG emissions could become substantial at a global scale by 2050, the region could

135 "leapfrog" fossil-fuel based growth with large-scale use of renewable energy options (van der

136 Zwaan *et al.*, 2018).

137

138 A final set of studies couple IAMs with the SSPs to project a range of socio-economic trends, 139 such as future changes in global population (KC and Lutz, 2017), urbanization (Jiang and 140 O'Neill, 2017), energy use (Bauer et al., 2017) and air pollution (Rao et al., 2017). However, a number of research gaps remain in the IAM and SSP literature. Local- or city-level data is not 141 142 widely incorporated into models and there is need for additional research at lower geographic 143 scales to enable local dynamics to be incorporated into IAMs (Cronin et al., 2018). Currently, 144 studies by Kamei et al. (2016) and Hoornweg and Pope (2017) are among the few studies that 145 adopt the SSP narratives at the city-level (though, do not use an IAM approach). Kamei et al.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

146 (2016) determine long-term socioeconomic scenarios in Tokyo based on a theoretical model and

147 expert interviews, while Hoornweg and Pope (2017) couple their narratives with regression

148 models to project urbanization trends in the world's largest cities to 2050, 2075 and 2100.

149

150 Gaps in modelling approaches remain, and researchers have called for additional studies in developing regions, especially Africa (Cronin et al., 2018; van der Zwaan et al., 2018). Our 151 152 paper contributes to the growing SSP literature as well as provides the first application of SSPs 153 in Dar es Salaam or Tanzania. The novelty in our approach is embedded in our scenarios and 154 projections. Unlike existing urban metabolism studies conducted in the region that do not focus on changes in GHG emissions over time (e.g., Kampala (Lwasa, 2017), Lagos (Kennedy et al., 155 156 2015), Durban (Jagarnath and Thambiran, 2018) and others aforementioned), we present current 157 (2015) and potential changes in GHG emissions in Dar es Salaam to 2050, deriving insights that 158 may inform GHG projections for other SSA cities. Furthermore, considering that the IAMs 159 (including the SSPs) are not adapted for city level analysis (Cronin et al., 2018), we couple our 160 SSP narratives with a LEAP modelling approach (as LEAP has been widely adopted to estimate long-term energy use and GHG emissions in developing country contexts). Finally, while 161 162 research by Grubler et al. (2013) and Kennedy et al. (2014, 2015) highlights the low energy use 163 of SSA cities (compared to Global North cities), increasing economic activity in the region will cause the region's future emissions to become substantial at the global level (van der Zwaan et 164 165 al., 2018). However, cities have an opportunity to implement policies that support low-GHG 166 communities and realize significant GHG mitigation with future urban growth. Therefore, the urbanization narratives modelled in this paper - SSP1 (Sustainable Growth), SSP2 (BAU 167 168 Growth), and SSP3 (Fragmented Growth) (described in the Methods) – present distinct 169 urbanization, energy use and GHG emissions futures for Dar es Salaam. The narratives provide a 170 basis for identifying (1) key household and transportation drivers of GHG emissions in Dar es 171 Salaam, and (2) investments that can support future emissions reductions (which could 172 potentially be generalizable to other large SSA cities). 173

- 174
- 175
- 176

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

177 3. Case Study of Dar es Salaam, Tanzania

With an estimated population of 5.1 million (or ~1.3 million households) in 2015 (World Bank, 2018), Dar es Salaam is the largest city and economic hub of Tanzania. The city is experiencing significant changes in urban form, although it is noted that the city masterplan was last updated in 1979 (Government of Tanzania, 2017a). Structurally, Dar es Salaam exhibits a monocentric and radial urban form, with highest population densities clustered around the city centre and along the four major arterial roads, i.e., to the north along Bagamoyo road, north-west along Morogoro road, south-west along Nyerere road and south along Kilwa road (Figure 1).

185

Figure 1: Map showing average population densities in Dar es Salam (by ward) and major arterial roads (Bagamoyo, Kilwa, Morogoro and Nyerere). Map was compiled in ArcGIS by authors using population data from the 2012 national census report. (Government of Tanzania, 2016b, 2017a)

- 186 Generally, energy sector statistics in Tanzania are reported at the national level, including
- 187 through the National Communications to the United Nations Framework Convention on Climate
- 188 Change (UNFCCC) (Government of Tanzania, 2015). An estimated 75% of Dar es Salaam
- 189 households have access to electricity (DHS Program, 2016; Government of Tanzania, 2017b).

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Despite high electrification levels compared to rural areas (Government of Tanzania, 2017b), urban households experience frequent power cuts and fluctuations in voltage that can damage electric appliances (Garside and Wood, 2018). To compensate for electricity shortages, "fuel stacking", where households use a combination of other fuels such as wood, charcoal, liquefied petroleum gas (LPG) or kerosene (in addition to electricity) is widespread (Lusambo, 2016). It is estimated that only 2% of Dar es Salaam households use only electricity for cooking and heating needs (DHS Program, 2016).

197 In the transport sector, approximately 62% of all passenger trips (~81% of vehicle trips) are by 198 small minibuses called "dala-dalas" (Mkalawa and Haixiao, 2014). Other modes include private 199 cars (including taxis) (16% of vehicle trips) and motorcycles and tricycles (known locally as 200 "bodas" and "bajajis") (3% of vehicle of trips) (Table 2) (Mkalawa and Haixiao, 2014). The dala-201 dala service is widely used by the poor given its affordability, though it is often characterized by 202 poor service quality, untrained bus operators and non-adherence to traffic rules and regulations 203 (Nkurunziza et al., 2012). To improve standards of service, the city is implementing a six-phase 204 Bus Rapid Transit (BRT) system, with main corridors operating along the four major arterial 205 roads (Figure 1) (Government of Tanzania, 2017a). Phase 1 of the BRT was completed in 2016 206 and operates along Morogoro road (Figure 1), which traverses from Dar es Salaam's high-207 income central business district towards middle- and low-income residential areas in the west. 208 Plans to expand the BRT up to six phases are currently underway (World Bank, 2017b). More 209 detail about the BRT implementation is available in SM.9.

210 **4. Methods**

211 We model future pathways of energy use and GHG emissions in Dar es Salaam from 2015

212 (current year) to 2050 with a focus on the residential sector, including associated public and

213 private road transportation. We include direct (Scope 1) emissions from households (i.e.,

214 emissions from the use of charcoal, wood, kerosene or liquified petroleum gas (LPG), and

215 emissions from road travel using private vehicles or public transport modes), as well as upstream

216 (Scope 2) emissions from electricity generation (for household use or electric vehicle charging).

217 We broadly describe these activities as "residential" in the remainder of the paper. We do not

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) **REVISED VERSION (CLEAN) Journal of Cleaner Production** [As of November 28, 2019]

- 218 account for emissions from fuel production, or from commercial and industrial activities,
- 219 including air, railway or marine transport. We also do not include embodied (Scope 3) emissions
- 220 associated with product manufacture and shipping.
- 221 The focus on residential energy use and emissions is due to the large contributions of these
- 222 activities compared to industrial activities, or other productive sectors. Domestic use of biomass
- 223 (i.e., charcoal and fuel wood) accounts for over 90% of final energy consumption in Tanzania
- 224 (Government of Tanzania, 2014a). However, biogenic carbon emissions from biomass

225 combustion, as well as emissions from Land Use Land-Use Change and Forestry (LULUCF) are

- 226 not included in emissions inventories for the energy sector category. Emissions accounted for in
- 227 the sector include national electricity ($\sim 11\%$), road transportation ($\sim 27\%$),
- 228 manufacturing/construction (~7%), and commercial, residential and agricultural activities 229 (~55%) (WRI, 2015).

230 All GHG emissions are stated in kilotonnes of carbon dioxide equivalent (ktCO₂e), which 231 includes CO₂, methane and nitrous oxide. GHG emissions are calculated using 100-year global 232 warming potentials (GWP) (IPCC, 2013). GWPs and emissions factors for all household and 233 transport fuels are listed in SM.1.

234 4.1. Dar es Salaam's Urbanization Narratives

- 235 Our urbanization narratives are inspired by the SSPs which have been developed and modelled
- 236 by climate change researchers (e.g., Riahi et al. (2017)). The original SSPs are based on five
- 237 narratives or "storylines", each with different consequences for global and regional socio-
- 238 economic development under increasing climate uncertainty (O'Neill et al., 2017). We focus
- 239 specifically on SSP1, SSP2 and SSP3 as they sufficiently illustrate a range of possible futures
- that encompass results from SSP4 ("Inequality") and SSP5 ("Fossil-Fueled Development"). 240
- 241 The narratives presented in this paper are simplified baseline projections of Dar es Salaam's
- 242 future energy use and GHG emissions. Each narrative is distinct and highlights different energy
- 243 use dynamics and outcomes. We assume no additional climate mitigation actions beyond the
- 244 baseline narratives (and as outlined in the Methods). Therefore, in Section 4.4, we include an

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

- 245 additional mitigation scenario that facilitates the examination of aggressive GHG mitigation
- 246 policies focused on decarbonization of electricity and road transportation, and assesses which
- 247 activities have the potential to drive the largest emissions reductions to 2050. Table 1 describes
- 248 Dar es Salaam's urbanization narratives and justifications, as appropriate.

Indicators	SSP1 (Sustainable	SSP2 (Business as	SSP3 (Fragmented
	Growth)	Usual Growth)	Growth)
Population	 Fast initial population growth by 2050. Lowest peak in population after 2050 (Figure 2). 	 Moderate population growth, consistent with historic growth trends. Moderate peak in population after 2050 (Figure 2). 	 Slow initial population growth. Highest peak population after 2050 (Figure 2).
Households	 100% electrification is realized by 2050, resulting in net-zero consumption of traditional fossil fuels (i.e., charcoal and wood) by 2050. 	 100% electrification by 2050, though households continue to rely on traditional fossil fuels. 	 No change in electrification levels from 2015, and households continue to rely on traditional fossil fuels.
Passenger Transport	 Phases 1 to 4 of the BRT are complete by 2050. BRT ridership accounts for 40% of total passenger trips, similar to reported ridership in Latin American and Chinese cities (WRI, 2018). Fuel efficiency of light-duty vehicles (LDVs) improves to OECD levels, in line with global targets to 2050 (OECD/IEA, 2017a). 	 Phases 1 to 4 of the BRT are complete by 2050. BRT ridership accounts for 15% of total passenger trips, consistent with existing BRT implementation plans (World Bank, 2017b). Fuel efficiency of LDVs progresses to the same levels observed in middle- and high- income cities today. 	 Phases 1 to 4 of the BRT are complete by 2050. BRT ridership accounts for 15% of total passenger trips, with future BRT expansion plans halting post-2050. Fuel efficiency of LDVs progresses to the same levels observed in middle- and high-income cities today.

249 Table 1: Dar es Salaam's Urbanization Narratives (inspired by the SSPs).

250

4.2. Modelling using the LEAP platform

- 252 For each SSP narrative, we use the LEAP modelling platform (Heaps, 2016) to calculate Dar es
- 253 Salaam's residential energy use and GHG emissions to 2050. The platform offers a transparent

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

254 way of structuring complex energy data, projecting different demand and supply scenarios, and

255 integrating factors such as population growth, GDP and policy changes to energy sector analysis

256 (Heaps, 2008, 2016). LEAP has not been employed to model energy use and GHG emissions in

- 257 Dar es Salaam or Tanzania.
- 258 Modelling capabilities include built-in calculations to determine energy use and GHG emissions
- 259 based on time-varying data points (Heaps, 2008, 2016). The platform's Technology and Energy
- 260 Database includes GHG emissions data for a range of fuels based on the Intergovernmental Panel
- 261 on Climate Change (IPCC) guidelines. The supplementary material (SM.10) provides more
- 262 detail about the calculation structure within LEAP.
- 263

4.3. Data sources and underlying assumptions (2015 – 2050)

265 We estimate Dar es Salaam's residential energy use and GHG emissions using the following data

and assumptions (see Table 2): (1) population, GDP and household size; (2) population density;

267 (3) the GHG intensity of electrification; (4) fuel use at the household level; and (5) fuel use for

268 road transportation. The following sections describe our approach in sourcing data. We also

- 269 caveat that where data is not available for Dar es Salaam, we draw from national estimates, or
- 270 proxy data from other cities in developing regions.

271

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

#	Indicator	Unit	Current year – 2015	Data source for current year	SSP1 – 2050	SSP2 – 2050	SSP3 – 2050	Data source for assumptions to 2050	
1	Population	million	5.1	(World Bank, 2018)	16	15	12	Equation 1	
2	GDP/Capita	USD \$	1,100	(IIASA, 2015)	4,700	2,500	1,500	(IIASA, 2015)	
3	Household (HH) size	persons/HH	4	(Government of Tanzania, 2014b)	[2-4]	[2-4]	[2-4]	Reduction to 2 persons/HH at the lower bound reflects the lowest HH size observed globally today (UN, 2017)	
4	Number of households	million	1.3	(Government of Tanzania, 2014b)	[4-12]	[4-8]	[3-6]	Author calculation	
5	Average population density	persons/km ²	3,100	(Government of Tanzania, 2014b)	3,100	3,300	3,500	Downscaled 1km ²	
6	% change in average population density				0%	6%	13%	projections from (Jones and O'Neill, 2016) (Figure 3).	
7	Electrification level	% of total households	75	(Government of Tanzania, 2017b)	100	100	75	(Government of Tanzania, 2017b)	
8	GHG intensity of electricity	gCO2e/kWh	405	Author calculation	405 ³	435 ³	435 ³	Author calculation	
9	Electricity use ^{1, 4}		5	(IEA, 2014)	46	25	18	Assumption based on	
10	LPG use ^{1, 4}	GJ/HH/yr.	4	(Dropp at al. 2015)	0	16	10	SSP narratives for total household energy use; see Table 3.	
11	Kerosene use ^{1, 4}		1	(Drazu <i>et al.</i> , 2015)	0	13	7		

Table 2: Key indicators and underlying assumptions for estimating Dar es Salaam's residential energy use and GHG emissions for SSP1 (Sustainable Growth), SSP2 (BAU Growth), and SSP3 (Fragmented Growth) narratives from 2015 to 2050.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

#	Indicator	Unit	Current year – 2015	Data source for current year	SSP1 – 2050	SSP2 – 2050	SSP3 – 2050	Data source for assumptions to 2050	
12	Fuelwood use ^{1,4}		16	(Drazu <i>et al.</i> , 2015)	0	0	8		
13	Charcoal use ^{1,4}		21	(SEA, 2015b, 2015a)	0	0	10		
14	Annual VKT per capita	km	870	(Mkalawa and Haixiao, 2014; World Bank, 2017a)	870	860	840	Elasticity between density and VKT (Guerra, 2014)	
15	LDV		16%		12%	15%	15%	Based on assumption that relative change in	
17	Dala-dala (standard bus: 40-seater)	% of total vehicle trips	% of total vehicle trips	81%	(Mkalawa and Haixiao 2014)	55%	67%	67%	vehicle trips will mostly shift from dala- dala to BRT as stated in Methods, with small changes in LDV and
18	Boda or Bajaji (motorcycle or tricycle)			% of total vehicle trips	3%		3%	3%	3%
16	BRT		0% ²	(World Bank, 2017b)	30%	15%	15%	Based on projected completion of BRT Phases 1 to 4 (see (World Bank, 2017b))	
19	Electric Vehicles ⁴		0	(IEA, 2017a, 2018)	1%	0.1%	0.1%	(IEA, 2017a, 2018)	
20	Fuel use ⁵ (LDV)	1:4	12	(World Bank, 2017a)	4.4	7.4	7.4	(IEA, 2014, 2017a)	
21	Fuel use ⁵ (BRT)	litres/100km	38	(DART Agency, 2017)		No change.		Author assumption.	

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production

[As of November 28, 2019]

#	Indicator	Unit	Current year – 2015	Data source for current year	SSP1 – 2050	SSP2 – 2050	SSP3 – 2050	Data source for assumptions to 2050
22	Fuel use⁵ (dala-dala)		33					
23	Fuel use⁵ (Boda or Bajaji)		1.8	(IEA/GFEI, 2015)				
Load	Load factor by vehicle mode (from 2015 to 2050):							
-	LDVs – 1.8 passeng	ers/vehicle (World Ba	ank, 2017a)					
-	Dala-dala – 40 passe	engers/vehicle (DAR)	f Agency, 2017)					
•	BRT – 150 passenge	ers/vehicle (DART Ag	gency, 2017)					
-	Boda or Bajaji – 1.2	passengers/vehicle (V	World Bank, 2017a)					
Notes:	Notes:							
¹ Total household energy use remains constant for all future projections, though the relative shares of fuel use change based on the SSP narrative.								
² We as	² We assume no BRT ridership in 2015. Phase 1 of the BRT was fully operational in May 2016 (DART, 2017).							
³ We as	³ We assume different changes in the generation mix depending on the scenario (SM.3)							
⁴ EV pt	⁴ FV projections are based on current IEA estimates for South Africa (SSP2 and SSP3) and Europe (SSP1)							

⁵ EV projections are based on current IEA estimates for South Africa (SSP2 and SSP3) and Europe (SSP1). ⁵ 90% and 10% of LDVs in Tanzania use gasoline and diesel respectively (World Bank, 2017b). Taking into account these relative shares, average LDV fuel use is estimated, assuming ~7 (World Bank, 2017a).

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

272 4.3.1. Population, GDP and Household Size

273 For each SSP narrative, we estimate Dar es Salaam's future population to 2050 as follows:

$DAR \ Population_{Year} = TP_{Year} \times TUP_{Year} \times PS_{Year}$ (1)

274 Where *Year* represents the year of prediction, *TP* represents Tanzania's total population (in

275 millions) for the given year, *TUP* represents Tanzania's urban population level (as a percentage)

276 for the given year, and **PS** is the population share of Dar es Salaam (as a percentage of the total

- 277 urban population) for the given year.
- 278 We determine Tanzania's total population (*TP*) and urban population level (*TUP*) from the
- existing population and urbanization projections for the SSPs (Jiang and O'Neill, 2017; KC and
- Lutz, 2017), which include data from 2010 to 2100. Over the last 20 years, Dar es Salaam has
- consistently accounted for approximately 30% of the country's total urban population (World

282 Bank, 2018). We assume this share will remain at 30% across all future scenarios (while a rate of

283 30% may seem low, we expect that this is consistent with the large growth also expected in other

Tanzanian cities). Finally, we estimate GDP per capita between 2015 and 2050 by dividing

285 Tanzania's projected GDP, available in the SSP database (IIASA, 2015), by Tanzania's

286 projected total population (**TP**).

287 4.3.2. Household Size

288 We estimate the average household size in Dar es Salaam at four persons per household in 2015

289 (Table 2) (DHS Program, 2016). Across all SSPs, Tanzania's total fertility rate (TFR) is

290 projected to fall (Lutz et al., 2014), suggesting that household size will likely decrease in the

291 future. To estimate future changes in household size and impact on household energy use and

emissions, we consider two bounding scenarios -(1) as an upper estimate, we assume household

- size remains constant at four persons per household to 2050; and (2) as a lower estimate, we
- assume an eventual reduction in household size to 2 persons per household by 2050, consistent
- with the lowest household estimates observed globally today (UN, 2017). This also serves the
- 296 purpose of allowing per capita energy to increase as a function decreasing household size. For
- example, our assumption that total household energy use remains constant to 2050 (Table 3),

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

implicitly increases per capita energy use with the reduction in household size. Therefore, while

299 we are unable to create a more refined estimate of changes in total household energy use in Dar

300 es Salaam due to the data limitations, our modelling explores some possible futures in GHG

301 emissions across a range of estimates (based on both constant and changing household size).

302 4.3.3. Population Density

We project Dar es Salaam's average population density using Jones and O'Neill's (2016) spatial projections which map global and regional changes in urban, rural and total population (based on 1km² grids) from 2010 to 2100. By considering only those grids that fall within Dar es Salaam's administrative boundary, we calculate changes in the city's urban density (i.e., sprawl or concentration) for each processed layer (for SSP1, SSP2 and SSP3).

308 4.3.4. Electricity Generation

309 Currently, Tanzania's electricity generation mix is dominated by natural gas (59%) (SM.3); 310 hydro-power (35%), Heavy Fuel Oil (HFO) (5.7%) and biomass (0.3%) account for the 311 remaining fractions (Government of Tanzania, 2017c). By 2040, Tanzania aims to expand the 312 generation mix to include coal, solar, wind and geothermal sources (Government of Tanzania, 2016a). According to Tanzania's Intended Nationally Determined Contribution (INDC) 313 314 (Government of Tanzania, 2015), geothermal potential is estimated at 5GW and hydropower at 315 4.7GW (though installed capacity is currently 0.6GW (Government of Tanzania, 2016a)). Our 316 LEAP model assumes different transformations in the generation mix for each SSP narrative. SSP1 assumes a 10% penetration of renewable energy, consistent with the highest level of 317 318 renewable energy penetration scenario ('Scenario 6') considered in Tanzania's National Power 319 Plan (Government of Tanzania, 2016a). SSP2 and SSP3 assume a shift in the generation mix to 320 natural gas (40%), hydro-power (20%), coal (35%), and 5% penetration of renewable energy 321 (i.e., solar and wind sources) by 2050. These advancements are consistent with the preferred 322 scenario envisioned under Tanzania's National Power Plan ("Scenario 2") (Government of 323 Tanzania, 2016a).

324

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

325 4.3.5. Household Activities

326 We estimate energy use and GHG emissions associated with fuels used for space and water 327 heating, cooking, lighting and appliance use within the city (Scope 1), as well as associated 328 emissions from electricity generation (upstream) (Scope 2). In 2015, Dar es Salaam's household 329 electricity use was estimated at 1,250 kWh/household (HH)/yr (~5 GJ/HH/year). This is 330 consistent with the World Bank's "Tier-4" level of electricity access, where households use 331 electricity for lighting and some medium-power appliances (e.g., television, radio, phone 332 charger) (World Bank, 2015). By 2035, Tanzania plans to achieve a national electrification rate 333 of 90% (Government of Tanzania, 2016a). Therefore, our modelling assumes that 100% 334 electrification is realized for SSP1 and SSP2 by 2050. SSP3 assumes no progress is made, with 335 electrification remaining at 75%. 336 In most households, charcoal or LPG are widely used in combination with electricity. For

example, in 2015, 75% of households in Dar es Salaam used electricity and 69% used charcoal

338 (DHS Program, 2016; Government of Tanzania, 2017b), meaning that some households were

using both charcoal and electricity for daily needs. Other household fuels include LPG (14%),

- 340 wood (6%) and kerosene (6%). We implicitly account for these fuel stacking behaviors by
- 341 calculating the total household energy use (in GJ/HH/yr) and estimate the relative change in fuel

342 use shares (i.e., charcoal, wood, LPG and kerosene) for each SSP narrative (Table 3). Moreover,

- 343 all future scenarios assume that total household energy use remains constant, though we change
- both the household size and the relative energy use shares from the different fuel sources based
- on the SSP narrative. Although household energy use remains constant, we report results in each
- 346 scenario for both constant and decreasing household sizes, with the latter implicitly allowing
- 347 growth in household energy use per person. Refining these projections for household energy use
- is an important area for future work.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Table 3: Modelling assumptions for changes in household energy use for (Sustainable Growth), SSP2 (BAU Growth), and SSP3 (Fragmented Growth) narratives.

Scenario	% share of total household energy use in 2015 (current year)	Estimated changes in energy use (by fuel) to 2050
SSP1 (Sustainable Growth)	 Electricity: 11% (5 GJ/HH/yr) LPG: 9% (4 GJ/HH/yr) Kerosene: 2% (1 GJ/HH/yr) Charcoal: 46% (21 GJ/HH/yr) 	 Electricity accounts for 100% of total household energy by 2050. Charcoal and wood use phased out by 2030. LPG and kerosene use peak to 35% and 28% of total household energy in 2030¹, followed by a decline and eventual phase out by 2050. Total change in energy use (i.e. from phased out charcoal, LPG and kerosene) shifts to electricity.
SSP2 (BAU Growth)	• Fuelwood: 32% (16 GJ/HH/yr)	 Electricity accounts for 100% of total household energy by 2050. Charcoal and wood use halve by 2030 but are entirely phased out by 2050. Total change in energy use (i.e., from phased out charcoal and wood) shifts to electricity, LPG and kerosene, in equal amounts².
SSP3 (Fragmented Growth)	2011	 Electricity accounts for 38% of total household energy by 2050. Charcoal and wood use halve by 2050. Change in total energy use (i.e., from reduced charcoal and wood) shifts to electricity, LPG and kerosene, in equal amounts².

Notes:

¹The eventual phase out of charcoal in 2030 results in a shift in total energy use towards electricity, LPG and kerosene. This shift is what drives the peak in LPG and kerosene use to 2030. However, with continued urbanization and economic growth in Dar es Salaam, we assume that consumption of these fuels will decline post-2030 with improved electricity access.

² The change in total energy use from charcoal and fuelwood use is divided by 3 with amounts (in GJ/HH/yr) transferred to electricity, LPG and kerosene (see Table 2).

349

350

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

351 4.3.6. Transport Activities

We project future changes in travel demand based on annual vehicle kilometers travelled (VKT) 352 353 which accounts for city travel by LDVs and public transit, i.e., dala-dalas, "bajajis" (tricycles), 354 "bodas" (motorcycles) and the BRT. For the baseline, we estimate VKT as a product of the 355 average number of vehicle trips (1.2 trips/person/day (World Bank, 2017a)); average trip 356 distance (20 kilometers (World Bank, 2017a)); mode share; and load factor. Empirical evidence 357 from other developing cities, particularly in Latin America, shows statistically significant 358 correlations between the urban built environment and VKT (Zegras, 2010; Guerra, 2014; 359 Engelfriet and Koomen, 2018). To estimate the correlation between VKT and population density, 360 our modelling draws from research conducted in Mexico City. Using an uncensored latent VKT 361 value that reduces modelling bias associated with different household travel behaviors, a 1% 362 increase in population density is correlated with a 0.03% reduction in VKT (Guerra, 2014). We 363 apply this correlation to our LEAP calculations to estimate the future change in VKT with

364 changes in density for each SSP narrative.

365 All vehicle load factors and fuel consumption estimates are in Table 2. While, key assumptions366 for different transport modes include:

Electric Vehicles: We anticipate that some penetration of electric vehicles in Dar es 367 Salaam is likely, given the existing policies and plans to increase production of EVs 368 369 globally (IEA, 2018). However, it is difficult to make reasonable projections for Dar es 370 Salaam to 2050 given the limited data available on the EV market potential in East Africa. Currently, South Africa is the only African country with electric vehicles, 371 372 representing only 0.1% of passenger vehicle stock (OECD/IEA, 2017b). Our SSP2 and 373 SSP3 narratives estimate that Dar es Salaam realizes a similar level of EVs in the LDV 374 offleet by 2050 (Table 2); while SSP1 estimates an increase to 1%, similar to levels 375 observed in Europe today (e.g., Netherlands and Sweden) (IEA, 2018). This seemingly 376 low level of EV penetration is consistent with our assumption that these are baseline 377 projections with no special measures taken toward GHG mitigation beyond the broad narrative of each scenario. This assumption is relaxed in our discussion of aggressive 378

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

GHG mitigation scenarios in Section 4.4. Finally, we assume electricity consumption of
27 kWh per vehicle-kilometer, consistent with IEA estimates (IEA, 2018).

- 381 **BRT expansion:** For all scenarios, we assume that Dar es Salaam completes Phases 1 to 382 4 of the BRT by 2050, consistent with current implementation plans (SM.9). Completion of the four phases would result in approximately 900,000 riders per day (World Bank, 383 2017b), equivalent to 15% of total passenger trips in 2015. Therefore, SSP2 and SSP3 384 385 assume that BRT trips increase to 15% (of all passenger trips), while SSP1 assumes a 386 higher increase to 40%, similar to levels reported in Latin American and Chinese cities (UITP, 2015; WRI, 2018). We estimate BRT fuel consumption at 38 liters/100km 387 388 (DART Agency, 2017) (Table 2), similar to consumption profiles in Latin America and 389 Asian cities, e.g., 33 litres/100km (Jaipur, India) and 40 litres/100km (Quito, Ecuador)
- 390 (WRI, 2018). We also assume that BRT fuel consumption remains at this level to 2050.
- 391 Dala-dala travel: We assume no changes in dala-dala fuel consumption to 2050, i.e.
 392 consumption remains at 33 litres/100km (DART Agency, 2017), given the current plans
 393 to reduce dala-dala use with a shift to BRT (World Bank, 2017b).
- LDV travel: Fuel consumption estimates for the LDV fleet (~12 L/100km) are taken
 from (World Bank, 2017b). Projecting to 2050, SSP1 envisions that LDV fuel
 consumption improves to 4.4 L/100km, consistent with IEA targets (IEA, 2017b;
- 397 OECD/IEA, 2017a). SSP2 and SSP3 assume a less aggressive improvement to 7.4
- 398 L/100km, consistent with projections to 2040 for the Africa region (OECD/IEA, 2014).
- **399 5. Results and Discussion**

400 **5.1.Changes in Dar es Salaam's total population and density**

401 Across each of the SSPs, Dar es Salaam is shown to experience substantial population growth

- 402 between 2015 and 2050. Projections for Dar es Salaam's population to 2050 are based on
- 403 Equation (3). In all scenarios, Dar es Salaam becomes a megacity by 2050, with the city's
- 404 population growing to 16 million under SSP1, 15 million under SSP2 and 12 million under SSP3
- 405 (Table 2 and Figure 2). Dar es Salaam experiences the fastest urbanization rate under SSP1,
- 406 while moderate and slow urbanization occurs under SSP2 and SSP3, respectively. Our SSP1

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

- 407 population projection for 2030 (9.2 million in Dar es Salaam) is within 15% of the United
- 408 Nation's World Urbanization Projections (WUP) estimate for 2030 (~10.7 million) (UN, 2018).
- 409 In addition, Hoornweg and Pope (2017) extrapolate the WUP dataset to 2100 and project Dar es
- 410 Salaam's population at 16 million in 2050. This is consistent with our SSP1 and SSP2 estimates.
- 411 Fundamentally, our scenarios are based on Jiang and O'Neill (2017) who project substantial
- 412 urban growth in Tanzania across each of the SSPs. Estimates to 2050 project up to 60% (SSP1),
- 413 50% (SSP2) and 30% (SSP3) urbanization in Tanzania (Jiang and O'Neill, 2017), increasing the
- 414 urban share of Tanzania's population by 7% to 37% between now and mid-century. Our
- 415 calculations show that this is equivalent to absolute population increases of 12 million (SSP1),
- 416 11 million (SSP2) and 7.5 million (SSP3) between 2015 and 2050 (Figure 2).

Figure 2: Changes in Dar es Salaam's Population from 2015 to 2050 for SSP1 (Sustainable Growth), SSP2 (BAU Growth) and SSP3 (Fragmented Growth) narratives. Our LEAP
model calculates energy use and emissions to the year 2050; though, estimates are extended
to 2100 to illustrate the eventual slow-down in Dar es Salaam's population under SSP1.
Dar es Salaam's population continues to increase at a higher rate for SSP2 and SSP3.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Dar es Salaam's average population density in 2015 is estimated at 3,100 persons/km² 423 (Government of Tanzania, 2014b). By 2050, we estimate that the city's average population 424 density remains the same for SSP1 (3,100 persons/km²) and increases slightly for SSP2 (3,300 425 persons/km²) and SSP3 (3,500 persons/km²) (Figure 3). Our calculations are based on Jones and 426 O'Neill's (2016) "spatially explicit" global population scenarios, which we use to extract the 427 428 population density projections for Dar es Salaam (see Methods). Given the counter-intuitive 429 nature of the results – i.e., we would expect higher density under SSP1 would be correlated with 430 sustainable resource use (Kennedy *et al.*, 2015) – we caveat that these projections are the only 431 available dataset estimating future population densities based on the SSPs (Gao, 2017) and 432 estimates can be improved with neighborhood level data collection. The maps (shown in Figure 433 3) do not illustrate the growth in Dar es Salaam's spatial extent; for example, the likely urban 434 sprawl given the estimated population increases that are projected for each SSP narrative. Therefore, the maps should not be interpreted as accurate projections of density changes of 435 436 specific neighborhoods. Rather, they provide a baseline assessment of the differences in density 437 change (at the city level) among the three SSP narratives. For example, Figure 3 shows that SSP1 438 has higher population densities closer to the city centre and along the four major arterial roads 439 (key development areas for the BRT expansion). While settlement patterns for SSP2 and SSP3 440 are more dispersed – they show higher densities closer to the periphery, particularly in the south-441 east region of the city. Overall, these patterns can provide insight related to prioritizing policy 442 efforts and infrastructure investments.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Figure 3: Spatial population projections for Dar es Salaam from 2015 to 2050 for SSP1 (Sustainable Growth), SSP2 (BAU Growth) and SSP3 (Fragmented Growth) narratives.

446

443

447 5.2. Linkages between the SSP narratives and Dar es Salaam's GHG emissions

448 Across each of the SSP narratives, population growth is a major driver of rising residential 449 energy use and emissions in Dar es Salaam. In 2015, we estimate total emissions from domestic 450 households and transport activities at 1,400 ktCO₂e (Table 4). In 2014, total energy sector 451 emissions in Tanzania were reported at 22.26 MtCO₂e (WRI, 2015). Dar es Salaam accounts for 452 approximately 10% of Tanzania's total population (World Bank, 2018); therefore, we roughly 453 estimate the city's total energy sector emissions at 2,226 ktCO₂e. Emissions from domestic 454 households and road transport count for approximately 80% of national energy sector emissions 455 (Government of Tanzania, 2014a), which would scale to approximately 1,780 ktCO₂e for Dar es 456 Salaam. Therefore, our estimate of 1,400 ktCO₂e for residential sector emissions in 2015 (i.e., 457 resulting from energy uses from domestic household and transport activities) is consistent with 458 the national dataset (within ~18%), as we do not account for energy use in the commercial and 459 industrial sectors.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

460 By 2050, we estimate that Dar es Salaam's total residential emissions will increase to between 461 25,000 ktCO₂e and 33,000 ktCO₂e (SSP1); 11,000 ktCO₂e and 19,000 ktCO₂e (SSP2); and 5,700 ktCO₂e and 11,000 ktCO₂e (SSP3). This is correlated with an increase in per capita emissions 462 463 from 0.2 tCO₂e in 2015 to between 1.5 tCO₂e and 2 tCO₂e (SSP1); 0.7 tCO₂e and 1.3 tCO₂e (SSP2); and 0.4 tCO₂e and 0.9 tCO₂e (SSP3). Our estimates represent a 4 to 24-fold increase in 464 465 emissions to 2050 (relative to 2015), due to the higher urban population in 2050 and increased energy access and electricity consumption. Increased emissions from household electricity use 466 467 are due to the assumed continued use of fossil fuels for electricity production, consistent with 468 projections under Tanzania's national power plan (Government of Tanzania, 2016a). The 469 Tanzanian government projects that natural gas and coal will continue to dominate Tanzania's 470 electricity mix to 2040, accounting for 40% and 30%-35%, respectively of the mix (Government 471 of Tanzania, 2016a). We apply these projections across each of our scenarios (see SM.3.). 472 To our knowledge, there are no other projections of residential GHG emissions in individual 473 SSA cities against which to compare our results. However, a growing number of regional studies 474 indicate an overall upward trend in GHG emissions due to increased electricity access and 475 economic activity in the region. For example, Calvin et al. (2016) estimate that GHG emissions in the SSA region will increase by 2.7 % to 3.8% per year from 2005 to 2100 (or by ~122% to 476 477 ~171% by 2050). The International Energy Agency (IEA) projects slightly lower levels of 478 growth, estimating an ~ 80% increase in GHG emissions in the SSA region by 2040 (i.e., from 479 1,141 Mt CO₂ to 2,051 Mt CO₂ in 2040) under their "Current Policies" scenario (IEA, 2017b). 480 While, van der Zwaan et al. (2018) estimate a 100% (2-fold) increase in GHG emissions in 481 continental Africa (including North Africa) from 2015 to 2050 under their "reference scenario",

482 and a 30% to 40% increase by assuming (1) a 4% annual increase in the CO₂ price ("TAX"

483 scenario) or (2) a 20% reduction in global emissions by 2050 ("CAP" scenario). In contrast, the

484 results presented in this paper are applicable to the city rather than the regional level (as the

485 above-mentioned regional studies combine both rural and urban data). This partially explains the

486 variation in results, and our substantially higher estimates, given the larger concentration of

487 energy use in cities. Moreover, our emissions scenarios are presented as a range, based on

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

488 assumptions of household size, with the upper estimate reflecting the lower household size

489 assumption (given that total household energy use is kept constant – see Methods).

490 **5.2.1. Household Emissions**

- 491 Between 80% and 90% of total residential emissions are due to household electricity use (given
- 492 that 70% 75% of the electricity mix is from natural gas and coal to 2050 (SM.3)). The
- 493 increasing number of households particularly under SSP1 is what fundamentally drives
- 494 emissions from electricity production (assuming that total household energy use remains
- 495 constant to 2050). Table 2 shows that electrifying all households under SSP1 and SSP2
- 496 narratives will be equivalent to electrifying an additional 3 to 11 million households in 2050
- 497 (from 1.3 million households in 2015). Moreover, the GHG intensity of electricity generation
- 498 remains high even under SSP1 (remaining at ~405 gCO₂e/kWh in 2050) (Table 2) a level that
- 499 well exceeds the IEA target of 254 gCO₂e/kWh by 2060 (IEA, 2017a). Given that the narratives
- 500 defined in this paper do not assume aggressive GHG mitigation policies and instead, offer
- 501 baseline trajectories to 2050 we find that the highest GHG emissions are associated with SSP1.
- 502 Therefore, our findings highlight the opportunity for more aggressive GHG mitigation policies to
- 503 reduce the GHG intensity of electricity generation (such as integrating renewable sources) to
- 504 offset future residential emissions increases in Dar es Salaam.
- 505 The fact that an SSP3 trajectory results in the lowest residential emissions is largely due to the
- 506 inequalities in access that are reinforced under this scenario (i.e., no changes in electrification
- from 2015) and a 25% lower population under SSP3, compared to SSP1. Under SSP1 and SSP2,
- 508 Dar es Salaam will likely surpass in absolute terms, in 2050, the current (2013 2015) GHG
- 509 emission levels of North American and European cities (C40 Cities, 2017) (SM.5). On a per
- 510 capita basis, we find that emissions remain low compared to other global cities, assuming that
- 511 total household energy use remains constant. For example, per capita emissions (from buildings
- 512 and transportation) in cities such as New York, San Francisco or London (where data is more
- 513 robust) were estimated at 5.7 tCO₂e/capita (in 2014), 5.5 tCO₂e/capita (in 2015), and 4.5
- 514 tCO₂e/capita (in 2013) (C40 Cities, 2017) (SM.5), compared with only 0.5 tCO₂e/capita to 2
- 515 tCO₂e/capita across our scenarios.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

516 Finally, we do not account for biogenic carbon emissions from charcoal or wood burning but 517 illustrate biogenic emissions for each scenario in SM.7, which increase to $\sim 2,500 \text{ ktCO}_{2}\text{e} - 5,000$ 518 ktCO₂e under SSP3 (which assumes a continued reliance on charcoal to 2050). Ultimately, 519 increasing charcoal use under SSP3 may threaten forests in Dar es Salaam's surrounding rural areas, given that the city already consumes nearly 70% of all charcoal produced in Tanzania, 520 which threatens an estimated 2.8 million hectares of forests (~8.5% of Tanzania's total forest 521 522 cover) (Msuya et al., 2011). The use of charcoal and fuelwood is also linked to premature 523 mortality and morbidity from indoor air pollution (WHO, 2012). Globally, the World Health 524 Organization (WHO) estimates that over four million premature deaths were attributed to 525 household air pollution from the traditional use of biomass fuels for daily cooking activities in 526 2012 (WHO, 2012).

527 **5.2.2.** Transport Emissions

Road transport is a smaller driver of total residential emissions compared to household 528 529 emissions. Overall, total emissions from transport increase from 490 ktCO₂e (in 2015) to 600 530 ktCO₂e (SSP1); 900 ktCO₂e (SSP2); and 700 ktCO₂e (SSP3) in 2050 (Table 4). We find that 531 annual VKT per capita does not change substantially across any of the narratives (Table 2), with 532 the highest drop (only ~3%) in VKT per capita, projected under SSP3, which is due to the slightly higher population density assumed under this narrative. In addition, although population 533 534 increases by three to four times by 2050, transportation emissions in all scenarios increase much more slowly. This is due primarily to improving fuel economy and changes in mode share 535 (responsible for a 20% - 60% drop in per capita transportation emissions relative to 2015). 536 537 Across all scenarios, emissions from LDV travel (with minimal ridesharing) dominate; 538 accounting for over 80% of transport emissions (Table 4).

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

		Current year – 2015	SSP1 – 2030	SSP2 – 2030	SSP3 – 2030	SSP1 – 2050	SSP2 – 2050	SSP3 – 2050
HOUSEHOLDS					<u>s</u>			
Electricity use	-	700	[6,400 - 7,100] ¹	[3,200 - 4,100]	[1,900 – 2,400]	[24,000 – 32,000]	[9,000 – 17,000]	[4,500-8,900]
 LPG use 		60	[300 - 390]	[230 – 290]	[130 – 170]	-	[700 – 1,300]	[330 - 650]
Kerosene use	ktCO ₂ e	10	[170 – 210]	[110 - 140]	[50-60]	-	[400 - 700]	[200 - 300]
 Charcoal use² 		120	-	[90-120]	[80 - 140]	-	-	[130 – 260]
 Wood use² 		20	20	20	20	-	-	[20-50]
TOTAL EMISSIONS (HOUSEHOLDS)	ktCO ₂ e	910	[6,700 - 7,500]	[3,700 – 4,700]	[2,200 - 2,800]	[24,000 - 32,000]	[10,000 - 18,000]	[5,000 - 10,000]
ROAD TRANSPORT								
 LDV use 		440	560	600	500	500	800	600
 Dala-dala use 		20	40	40	30	50	60	40
 Bajaji or Boda use 	kiCO ₂ e	30	50	40	40	80	80	50
 BRT use 		-	0.4	0.2	0.1	2.0	0.7	0.3
TOTAL EMISSIONS (ROAD TRANSPORT)	ktCO ₂ e	490	700	700	600	600	900	700
TOTAL (RESIDENTIAL EMISSIONS)	ktCO ₂ e	1,400	[7,400 - 8,200]	[4,400 – 5,400]	[2,800 – 3,400]	[25,000 – 33,000]	[11,000 – 19,000]	[5,700 – 11,000]
	tCO2e/capita	0.2	[0.8 - 0.9]	[0.5 - 0.6]	[0.4 - 0.5]	[1.5 – 2]	[0.7 - 1.3]	[0.5 – 0.9]
	[% change er	in total residential nissions]	[430%-500%]	[210%-290%]	[100% – 140%]	[1700%- 2300%]	[690% - 1300%]	[310% -660%]

Table 4: Total residential emissions from household and transport activities in Dar es Salaam by activity. Results for SSP1(Sustainable Growth), SSP2 (BAU Growth) and SSP3 (Fragmented Growth) narratives for 2030 and 2050.

Note:

¹Variation in GHG emissions due to variation in household size for each SSP narrative. See Table 2.

²LEAP model does not account for carbon-dioxide emissions from charcoal and wood use (biogenic CO₂). See SM.7. for estimates of biogenic CO₂ emissions.

• Values rounded to 2 significant figures. Values do not represent the precision of the estimates in the LEAP model.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Totals do not add due to rounding.

• Refer to SM.2 for emissions factors for all fuels used in the LEAP model.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

539 **5.3.**Correlation between total residential emissions, GDP and population

540 By plotting population and total residential emissions on a logarithmic scale, we find that 541 population is positively and linearly correlated with GHG emissions. The resulting elasticities 542 reveal an increasing and positive relationship for all SSPs. For example, our findings show a 1% increase in total population is correlated with a 2.2% to 2.4% increase in total residential 543 544 emissions for SSP1, compared to an increase of 1.7% to 2.1% for SSP2 and 1.5% to 2.2% for 545 SSP3. Dar es Salaam's population growth is projected to result in a super-linear scaling relationship for all SSP narratives, with emissions growing at 150% to 240% faster rates than 546 547 population to 2050. While some studies have shown a linear (Fragkias et al., 2013) and sub-548 linear (Kennedy et al., 2015) scaling relationship between city population and emissions, these correlations have been weakest in low-GDP cities (including African cities) given their low 549 550 levels of access to basic infrastructure services such as electricity (Kennedy et al., 2015).

551 Urban growth in low-GDP cities such as Dar es Salaam requires that resource use increases to a 552 threshold that supports sustainable living standards for residents. Our results show that emissions 553 in Dar es Salaam increase super-linearly due to improved energy access and electricity-use, and 554 the likely high GHG-intensity of new electricity sources to 2050 (Table 2). Furthermore, our 555 findings are influenced by the potential drop in household size and assumption that traditional 556 sources being phased out (wood and charcoal) would result in low emissions reductions due to 557 the exclusion of biogenic CO_2 emissions from the emissions accounting.

558 SSP1 is associated with the highest level of economic growth (IIASA, 2015). Projections show 559 that Tanzania is expected to experience a nearly eight-fold increase in GDP under SSP1, from 560 USD 49 billion in 2015 to USD 400 billion in 2050, while under SSP2 and SSP3, GDP is 561 expected to increase to USD 260 billion and USD 177 billion, respectively. These estimates are 562 available in the SSP database (IIASA, 2015). Therefore, plotting Dar es Salaam's annual 563 residential emissions per capita against the projected GDP per capita (using a logarithmic scale) reveals a weak (sub-linear) correlation between GDP and emissions. For example, a 1% increase 564 565 in GDP per capita is correlated with an increase of 0.07% to 0.1% for SSP1 and SSP2, and 0% to

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

0.1% for SSP3 (SM.6). As our model does not explicitly account for the likely rise in demand for
household energy services and transportation in response to growing GDP, these correlations are
(a) likely underestimated, and (b) not explicitly causal (though potentially linked via the SSP
narratives).

570 5.4.Comparison of Dar es Salaam's emissions projections with those of other Global South 571 cities

572 A limited number of studies project changes in residential GHG emissions in individual SSA 573 cities, or at the regional level. The studies reveal an overall increasing trend in GHG emissions, 574 though at much lower rates than projected in our paper. Like the current study, some of the 575 studies find that electricity-based emissions play a dominant role in emissions increases (Table 5). However, accounting methods vary among the studies, where electricity emissions are 576 577 calculated separately or included within a larger energy sector. For example, in their "BASE" 578 scenario, Senatla (2011) show that electricity generation contributes more than 95% of 579 Gauteng's residential sector GHG emissions between 2007 and 2030. Regional projections by 580 Stone and Wiswedel (2018) estimate a 240% increase in total urban emissions between 2012 and 581 2040, with transport and industry (including electricity use from industry) being the largest 582 contributors. Similarly, studies in other regions of the Global South (i.e., Asia and Latin America) show that transportation and industry drive GHG emissions given their more advanced 583 584 levels of socio-economic development. Table 5 compares our results with those of other studies in the literature to (1) demonstrate the large difference between our results and example results 585 586 from other regions, and (2) further illustrate the need for additional GHG emissions studies in 587 large SSA cities such as Dar es Salaam.

Table 5: Comparative GHG emissions results and main drivers of GHG emissions for selected cities or regions in the Global South

Study	City/Region	Scope	Projection timeline	Percentage change in GHG emissions from starting year	Main driver of GHG emissions
-------	-------------	-------	------------------------	--	------------------------------------

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

This paper	Da es Salaam, Tanzania	Residential sector	2015 – 2050	310% - 2300%	Electricity (Electricity use increases from 5GJ/HH/yr in 2015 to 18 – 46GJ/HH/yr in 2050 – see Table 2)
(Senatla, 2011)	Gauteng, South Africa	Residential sector	2007 - 2030	~100%1	Electricity
(Stone and Wiswedel, 2018)	SSA region	Total urban emissions ²	2012 - 2040	240% ¹	Transport and Industry
(Godfrey and Xiao, 2015)	SSA region	Total urban emissions ²	2012 – 2030	61% ¹	Variable based on city income categorization (i.e., middle- income or least developed city)
(Collaço <i>et al.</i> , 2019)	São Paulo, Brazil	Total urban emissions ²	2014 - 2030	43%	Transport
(Huang <i>et al.</i> , 2019)	Guangzhou, China	Total urban emissions ²	2010 - 2030	~20%	Industry and Transport

¹Projections are based on business-as-usual or baseline scenarios mentioned in each study.

²Total urban emissions refer to emissions in all urban sectors, including industrial, commercial, residential and transportation. Though, studies may use other categories in their accounting approach.

588

589 5.5. Implementing aggressive GHG mitigation policies under SSP1

590 Of all regions in Africa, East Africa has the highest renewable energy potential (Lucas et al.,

- 591 2017). Estimates project that Tanzania can realize the following grid mix under an SSP1
- narrative by 2040: 12% hydropower, 30% solar, 20% wind, and 14% geothermal (leaving 23%
- 593 for natural gas and coal combined) (Lucas et al., 2017). These estimates are consistent with

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

regional models for electricity generation in East Africa and reflect the more rapid development of renewables (wind and solar) in rural areas. The different electricity generation scenarios are detailed in SM.3. We include an additional narrative (based on SSP1 data and assumptions; see Table 2) to test the impact of aggressive decarbonization of electricity, combined with low-GHG investments in transportation. Actions examined are as follows:

- (1) 70% of the electricity generation to be from solar, wind and geothermal sources by 2050
 (Lucas *et al.*, 2017).
- 601 (2) The BRT system carries ~50% of all passenger trips.
- 602 (3) 60% of the LDV fleet is electrified by 2050, consistent with global trends (IEA, 2017a).
- As shown in SM.4, generating 70% of electricity from renewable sources in 2050 would reduce
- the GHG intensity of the grid to $\sim 129 \text{ gCO}_2\text{e/kWh}$, compared to 405 gCO₂e/kWh under SSP1
- (Table 2). By 2050, total residential emissions would increase to 7,400 ktCO₂e 11,000 ktCO₂e,
- 606 which is ~66% lower than under our original sustainability narrative (SSP1), though still far
- 607 higher than current (2015) emissions. Total residential emissions for this aggressive GHG
- 608 mitigation narrative, are compared with those of the other SSP narratives in SM.8.
- 609

610 **6. Research limitations and areas of future work**

611 There are important areas of future work that are not explicitly considered in our modelling. 612 First, the assumption that household energy use remains constant is an important limitation. This 613 assumption is expected to underestimate demand for energy in a developing economy such as 614 Dar es Salaam. Thus, our scenarios are likely conservative, even though they show an order of magnitude increase in GHG emissions by 2050 (ranging from 4 to 24 times the 2015 level, as 615 616 detailed in the results and conclusions). Second, if vehicle manufacturers fulfill commitments to 617 scale up production of EVs or hydrogen fuel cell vehicles in the coming decades (IEA, 2018), and these become more broadly affordable, Tanzania may see growth in EVs by 2050 beyond the 618 619 estimates projected in our model (see Table 2). Also, improvements in road infrastructure and public transit (with the BRT expansion) may result in induced or latent travel demand similar to 620

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

621 trends observed in European and North American cities (Cervero, 2002; Noland and Lem, 2002), 622 which will impact transport-related emissions. Third, our estimates exclude Scope 3 or upstream 623 emissions from infrastructure supply chains, which could also contribute substantially to 624 projected GHG emissions. For example, research conducted in Delhi, India estimated that up to 625 32% of the city's emissions was due to out-of-boundary (Scope 3) activities such as fuel 626 processing, air travel, cement use, and food production (Chavez et al., 2012). Fourth, biogenic 627 emissions from charcoal use are considered as carbon neutral, consistent with IPCC guidelines. 628 However, biogenic emissions would nearly double (assuming HH size reduces to two persons 629 per household by 2050) under SSP3 (SM.7), influencing land degradation and public health 630 outcomes (due to indoor air pollution). Finally, as noted in our introduction and methods, future 631 work could also incorporate emissions from other sectors, especially industry, which are 632 expected to contribute substantially to future energy demand in the SSA region (IEA, 2019).

- 633 **7. Conclusions and implications for energy policy**
- 634 In this paper, we:
- Provide the first projection of residential energy use and GHG emissions in Dar es
 Salaam and demonstrate the use of the SSPs at the city scale.
- Analyze the key drivers of residential energy use and GHG emissions in a large SSA city,
 Dar es Salaam, offering new insights for the region.
- Demonstrate a method for projecting emissions in a data-poor environment.
- Show the wide uncertainty in these future projections, while also demonstrating the order
 of magnitude jump in emissions that can be expected in Dar es Salaam to 2050.

642

- 643 Key results are summarized as follows:
- Dar es Salaam is projected to experience a 4- to 24-fold increase in residential GHG
 emissions by 2050. Though Dar es Salaam's current (2015) emissions of 1,400 ktCO₂e
 (~ 0.2 tCO₂e/capita) are low compared to the emissions of other global cities (see SM.5),

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

647 emissions are expected to increase to between $5,700 \text{ ktCO}_2\text{e}$ (~ $0.5 \text{ tCO}_2\text{e}$ /capita) and 648 $33,000 \text{ ktCO}_2\text{e}$ (~ $2 \text{ tCO}_2\text{e}$ /capita by 2050. The upper estimate is as high as the recorded 649 emissions of Global North cities such as New York, San Francisco and London, among 650 others.

- 651 Electricity access is the largest driver of residential emissions to 2050. Assuming that 652 total household energy use remains constant to 2050, with the relative shares of fuel use 653 changing for each SSP narrative (Table 3), we estimate that GHG emissions from 654 electricity production (due to improved electrification and access to services) will be a major driver of future residential emissions in Dar es Salaam, i.e., accounting for between 655 80% and 90% of total residential emissions. This is largely due to continued reliance on 656 657 fossil fuels for electricity generation. Even under SSP1 (the sustainability scenario), we 658 project that fossil fuels will account for a dominant portion of Tanzania's electricity mix, i.e., 40% and 30% from natural gas and coal, respectively, compared to 20% and 10% 659 from hydro and other renewables (i.e., wind and solar) (SM.3). 660
- Across all scenarios, Dar es Salaam's residential emissions increase super-linearly
 with population size, mainly due to household electricity use. The high GHG intensity
 of electricity which remains at 405 gCO₂e/kWh for SSP1 and SSP2 results in a 6- to
 35-fold increase in household emissions relative to 2015.
- The sustainability scenario (SSP1) has the highest residential emissions due to
 increased household and transportation energy services. This suggests a particularly
 acute need to promote low-GHG development in Dar es Salaam to reduce any tension
 between social and environmental goals.
- Dar es Salaam's current low emissions provides an opportunity to design a low GHG future. This will hinge on the implementation of low-GHG investments
 (namely, the decarbonization of electricity production) during these next stages of
 urban growth. As shown in our aggressive GHG mitigation scenario (Section 4.4),
 decarbonizing Tanzania's electricity grid through the use of renewable energy sources
 such as solar, wind and geothermal could reduce the city's total residential emissions by
 up to 66% by 2050 (SSP1). However, realizing this pathway will hinge on the

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

development of urban policies and financing for aggressive GHG mitigation during thesenext stages of urban growth.

678 Lastly, though not explicitly explored in this paper, realizing a low-GHG transition in Dar es

- 679 Salaam requires the consideration of the city's broader socio-economic development goals.
- 680 Policies need to leverage synergies between energy sector investments, i.e., financing to
- decarbonize electricity with renewable technologies or scale-up public transport with the BRT
- network, and socio-economic development objectives at the city and national level. For example,
- 683 given that Dar es Salaam is growing amidst other socio-economic challenges, including urban
- 684 inequality, poverty and climate change, policy actions would require cross-sectoral collaboration
- between key stakeholders, government agencies, infrastructure service providers and the private
- 686 sector to identify co-benefits between low-GHG investments and priorities in key sectors. This
- 687 will be critical for ensuring that low-GHG investments improve the living standards of
- 688 marginalized groups and that they benefit from the transition.
- 689

690 **Declaration of competing interest**

691 None.

692

693 Acknowledgements

- 694 We thank the International Development Research Centre (IDRC) Canada (Award #: 108544-
- 695 032); the Natural Sciences and Engineering Research Council of Canada (NSERC); the
- 696 International Institute for Applied Systems Analysis (IIASA) Young Scientists Summer Program
- 697 (YSSP); and the Paul Cadario Doctoral Fellowship in Global Engineering at the University of
- 698 Toronto for resources and funding support. The views expressed within the paper are those of the
- authors alone and do not represent those of the funding organizations.
- 700

701 **References**

- 702 (1) AfDB (2018) African economic outlook. African Development Bank Group. Available at:
- $703 https://www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/African_Economic_Outlook_2$
- 704 018_-_EN.pdf.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) **REVISED VERSION (CLEAN) Journal of Cleaner Production** [As of November 28, 2019]

705 (2) Aggarwal, P. and Jain, S. (2016) 'Energy demand and CO2 emissions from urban on-road transport in 706 Delhi: current and future projections under various policy measures', Journal of Cleaner Production, 707

128, pp. 48-61. doi: 10.1016/j.jclepro.2014.12.012.

- 708 (3) Allen, A. (2014) 'Peri-Urbanization and the Political Ecology of Differential Sustainability', in The 709 Routledge Handbook on Cities of the Global South. doi: 10.4324/9780203387832.ch43.
- 710 (4) Angel, S. et al. (2011) 'The dimensions of global urban expansion: Estimates and projections for all 711 countries, 2000-2050', Progress in Planning, 75(2), pp. 53-107. doi: 10.1016/j.progress.2011.04.001.
- 712 (5) Bauer, N. et al. (2017) 'Shared Socio-Economic Pathways of the Energy Sector - Quantifying the 713 Narratives', Global Environmental Change, 42, pp. 316–330. doi: 10.1016/j.gloenvcha.2016.07.006.

714 (6) C40 Cities (2017) GHG Interactive Dashboard Data. London, UK. Available at:

715 http://www.c40.org/other/gpc-dashboard (Accessed: 29 October 2019).

- 716 (7) Calvin, K. et al. (2016) 'The effect of African growth on future global energy, emissions, and 717 regional development', Climatic Change, 136(1), pp. 109-125. doi: 10.1007/s10584-013-0964-4.
- 718 (8) Cervero, R. (2002) 'Induced travel demand: Research design, empirical evidence, and normative 719 policies', Journal of Planning Literature, 17(1), pp. 3–20. doi: 10.1177/088122017001001.
- 720 (9) Chavez, A. et al. (2012) 'Implementing Trans-Boundary Infrastructure-Based Greenhouse Gas
- 721 Accounting for Delhi, India: Data Availability and Methods', Journal of Industrial Ecology, 16(6), 722 pp. 814-828. doi: 10.1111/j.1530-9290.2012.00546.x.
- 723 (10)Collaco, F. M. de A. et al. (2019) 'The dawn of urban energy planning – Synergies between 724 energy and urban planning for São Paulo (Brazil) megacity', Journal of Cleaner Production, 215, pp. 725 458-479. doi: 10.1016/j.jclepro.2019.01.013.
- 726 Cronin, J., Anandarajah, G. and Dessens, O. (2018) 'Climate change impacts on the energy (11)727 system: a review of trends and gaps', Climatic Change. Climatic Change, 151(2), pp. 79–93. doi: 728 10.1007/s10584-018-2265-4.
- 729 Currie, P. et al. (2015) 'Towards Urban Resource Flow Estimates in Data Scarce Environments: (12)730 The Case of African Cities', Journal of Environmental Protection, 06(09), pp. 1066–1083. doi: 731 10.4236/jep.2015.69094.
- 732 (13)Currie, P. and Musango, J. K. (2017) 'African Urbanization: Assimilating Urban Metabolism into 733 Sustainability Discourse and Practice', Journal of Industrial Ecology, 21(5), pp. 1262–1276. doi: 734 10.1111/jiec.12517.
- 735 DART Agency (2017) BRT Bus Information. Dar es Salaam. (14)
- 736 Dhar, S., Pathak, M. and Shukla, P. R. (2017) 'Electric vehicles and India's low carbon passenger (15)

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

- transport: a long-term co-benefits assessment', *Journal of Cleaner Production*, 146, pp. 139–148. doi:
 10.1016/j.jclepro.2016.05.111.
- 739 (16) DHS Program (2016) Tanzania: Demographic and Health Survey and Malaria Indicator Survey
- 740 (2015/2016). Available at: https://dhsprogram.com/pubs/pdf/FR321/FR321.pdf.
- (17) Drazu, C., Olweny, M. and Kazoora, G. (2015) 'Household energy use in Uganda: existing
 sources, consumption, and future challenges', *Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association 2015*,

744 2012(2008), pp. 352–361.

- 745 (18) Du, H. *et al.* (2017) 'Pathways for energy conservation and emissions mitigation in road transport
 746 up to 2030: A case study of the Jing-Jin-Ji area, China', *Journal of Cleaner Production*. doi:
- 747 10.1016/j.jclepro.2017.06.054.
- (19) Engelfriet, L. and Koomen, E. (2018) 'The impact of urban form on commuting in large Chinese
 cities', *Transportation*, pp. 1269–1295. doi: 10.1007/s11116-017-9762-6.
- (20) Fan, J. L. *et al.* (2017) 'Energy demand and greenhouse gas emissions of urban passenger
 transport in the Internet era: A case study of Beijing', *Journal of Cleaner Production*, 165, pp. 177–
 189. doi: 10.1016/j.jclepro.2017.07.106.
- Fragkias, M. *et al.* (2013) 'Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas',
 PLoS ONE, 8(6). doi: 10.1371/journal.pone.0064727.
- Gao, J. (2017) Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid
 Cells, NCAR Technical Note. Boulder, Colorado. doi: http://dx.doi.org/10.5065/D60Z721H.
- Garside, B. and Wood, D. (2018) *Improving Tanzania's power quality: can data help?*, *IIED*.
 Available at: https://www.iied.org/improving-tanzanias-power-quality-can-data-help (Accessed: 15
 March 2018).
- 760 (24) Godfrey, N. and Xiao, Z. (2015) *The Contribution of African Cities to the Economy and Climate*761 (*Technical Note*). London.
- 762 (25) Government of Tanzania (2014a) Second National Communication to the Framework Convention
 763 on Climate Change.
- (26) Government of Tanzania (2014b) *The United Republic of Tanzania Basic Demographic and Socio-Economic Profile Report Tanzania Mainland Dar es Salaam.*
- 766 (27) Government of Tanzania (2015) 'Intended Nationally Determined Contributions (INDCs)', pp. 1–
 767 8.
- 768 (28) Government of Tanzania (2016a) Power System Master Plan Update 2016. Dar es Salaam.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

769 Government of Tanzania (2016b) The United Republic of Tanzania: Dar es Salaam Region: (29)770 Basic Demographic and Socio-Economic Profile. 771 (30)Government of Tanzania (2017a) Dar es Salaam City Master Plan (2012 - 2032) (Draft 772 Document). Dar es Salaam. 773 (31)Government of Tanzania (2017b) Energy Access Situation Report (2016). 774 (32) Government of Tanzania (2017c) EWURA: Annual Report. Dar es Salaam. 775 Grubler, A. et al. (2013) 'Urban Energy Systems', Global Energy Assessment (GEA), pp. 1307-(33) 776 1400. doi: 10.1017/CBO9780511793677.024. 777 (34) Guerra, E. (2014) 'The Built Environment and Car Use in Mexico City: Is the Relationship 778 Changing over Time?', Journal of Planning Education and Research, 34(4), pp. 394–408. doi: 779 10.1177/0739456X14545170. 780 (35) Heaps, C. (2008) 'An introduction to LEAP', Stockholm Environment Institute, pp. 1-16. 781 Available at: http://www.leap2000.org/documents/LEAPIntro.pdf. 782 (36) Heaps, C. (2016) Long-range Energy Alternatives Planning (LEAP) system [Software version: 783 2018.1.14]. Somerville, MA, USA. 784 Hoekman, P. and von Blottnitz, H. (2017) 'Cape Town's Metabolism: Insights from a Material (37) 785 Flow Analysis', Journal of Industrial Ecology, 21(5), pp. 1237–1249. doi: 10.1111/jiec.12508. 786 (38) Hoornweg, D. and Pope, K. (2017) 'Population predictions for the world's largest cities in the 787 21st century', Environment and Urbanization, 29(1), pp. 195–216. doi: 10.1177/0956247816663557. 788 (39) Huang, Y. et al. (2019) 'Exploring potential pathways towards urban greenhouse gas peaks: A 789 case study of Guangzhou, China', Applied Energy, 251. doi: 10.1016/j.apenergy.2019.113369. 790 (40)IEA/GFEI (2015) Baseline survey on Uganda's National Average Automotive Fuel Economy. 791 IEA (2014) 'Energy in Africa Today', in Africa Energy Outlook, pp. 13–25. doi: (41) 792 https://www.iea.org/publications/freepublications/publication/africa-energy-outlook.html. 793 (42) IEA (2017a) 'Energy Technology Perspectives 2017', Technology, pp. 1-82. doi: 794 10.1787/energy tech-2017-en. 795 (43) IEA (2017b) 'World Energy Outlook 2017', International Energy Agency. doi: 10.1787/weo-796 2017-en. 797 IEA (2018) Global Electric Vehicle Outlook 2018, Global EV Outlook. doi: EIA-0383(2016). (44)798 IEA (2019) Africa Energy Outlook 2019. (45)799 IIASA (2015) SSP Database 2012-2015. https://tntcat.iiasa.ac.at/SspDb. Available at: (46)800 https://tntcat.iiasa.ac.at/SspDb.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

801 (47) IPCC (2013) 'Anthropogenic and natural radiative forcing (Chapter 8)', in *Climate Change 2013*802 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the
803 Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781107415324.018.

- 804 (48) IPCC (2014) 'Human Settlements, Infrastructure, and Spatial Planning (Chapter 12)', *Climate*
- 805 Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth
 806 Assessment Report of the Intergovernmental Panel on Climate Change, pp. 923–1000. doi:
 807 10.1017/CBO9781107415416.018.
- 808 (49) Jagarnath, M. and Thambiran, T. (2018) 'Greenhouse gas emissions profiles of neighbourhoods
 809 in Durban, South Africa an initial investigation', *Environment and Urbanization*, 30(1), pp. 191–
 810 214. doi: 10.1177/0956247817713471.
- 811 (50) Jiang, L. and O'Neill, B. C. (2017) 'Global urbanization projections for the Shared
 812 Socioeconomic Pathways', *Global Environmental Change*, 42, pp. 193–199. doi:
- 813 10.1016/j.gloenvcha.2015.03.008.
- 814 (51) Jones, B. and O'Neill, B. C. (2016) 'Spatially explicit global population scenarios consistent with
 815 the Shared Socioeconomic Pathways', *Environmental Research Letters*, 11(8). doi: 10.1088/1748816 9326/11/8/084003.
- 817 (52) Kamei, M., Hanaki, K. and Kurisu, K. (2016) 'Tokyo's long-term socioeconomic pathways:
- 818 Towards a sustainable future', *Sustainable Cities and Society*, 27, pp. 73–82. doi:
- 819 10.1016/j.scs.2016.07.002.
- KC, S. and Lutz, W. (2017) 'The human core of the shared socioeconomic pathways: Population
 scenarios by age, sex and level of education for all countries to 2100', *Global Environmental Change*,
- 42, pp. 181–192. doi: 10.1016/j.gloenvcha.2014.06.004.
- Kennedy, C. *et al.* (2015) 'Energy and material flows of megacities', *Proceedings of the National Academy of Sciences*, 112(19), pp. 5985–5990. doi: 10.1073/pnas.1504315112.
- Kennedy, C., Ibrahim, N. and Hoornweg, D. (2014) 'Low-carbon infrastructure strategies for
 cities', *Nature Climate Change*, 4(5), pp. 343–346. doi: 10.1038/nclimate2160.
- (56) Li, X. *et al.* (2019) 'Low carbon heating and cooling of residential buildings in cities in the hot
 summer and cold winter zone A bottom-up engineering stock modeling approach', *Journal of Cleaner Production*, 220, pp. 271–288. doi: 10.1016/j.jclepro.2019.02.023.
- kin K., Liu, G. and Müller, D. B. (2017) 'Characterizing the role of built environment stocks in
 human development and emission growth', *Resources, Conservation and Recycling*, 123, pp. 67–72.
- 832 doi: 10.1016/j.resconrec.2016.07.004.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

Kin, J. *et al.* (2018) 'Scenario analysis of urban GHG peak and mitigation co-benefits: A case
study of Xiamen City, China', *Journal of Cleaner Production*, 171, pp. 972–983. doi:

835 10.1016/j.jclepro.2017.10.040.

- 836 (59) Lucas, P., Dagnachew, A. and Hof, A. (2017) Towards universal electricity access in Sub-
- 837 Saharan Africa A quantitative analysis of technology and investment requirements Policy Report.
 838 Available at: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-towards-universal839 electricity-access-in-sub-saharan-africa-1952.pdf.
- Lucas, P. L. *et al.* (2015) 'Future energy system challenges for Africa: Insights from Integrated
 Assessment Models', *Energy Policy*, 86, pp. 705–717. doi: 10.1016/j.enpol.2015.08.017.
- key Karley Kar
- Lutz, W., Butz, W. P. and KC, S. (2014) World Population and Human Capital in the Twenty-*First Century, Oxford Scholarship Online*. doi: 10.1093/acprof:oso/9780198703167.001.0001.
- Karal (63) Lwasa, S. (2017) 'Options for reduction of greenhouse gas emissions in the low-emitting city and
 metropolitan region of Kampala', *Carbon Management*, 8(3), pp. 263–276. doi:
 10.1080/17583004.2017.1330592.

849 (64) McPherson, M. and Karney, B. (2014) 'Long-term scenario alternatives and their implications:

LEAP model application of Panama's electricity sector', *Energy Policy*, 68, pp. 146–157. doi:

- 851 10.1016/j.enpol.2014.01.028.
- (65) Mkalawa, C. C. and Haixiao, P. (2014) 'Dar es Salaam city temporal growth and its influence on
 transportation', *Urban, Planning and Transport Research*. Routledge, 2(1), pp. 423–446. doi:

854 10.1080/21650020.2014.978951.

- 855 (66) Mokhtara, C. *et al.* (2019) 'Pathways to plus-energy buildings in Algeria: Design optimization
 856 method based on GIS and multi-criteria decision-making', *Energy Procedia*, 162, pp. 171–180. doi:
 857 10.1016/j.egypro.2019.04.019.
- 858 (67) Msuya, N., Masanja, E. and Temu, A. K. (2011) 'Environmental Burden of Charcoal Production
 859 and Use in Dar es Salaam, Tanzania', *Journal of Environmental Protection*, 02(10), pp. 1364–1369.
 860 doi: 10.4236/jep.2011.210158.
- 861 (68) Nkurunziza, A. *et al.* (2012) 'Spatial variation of transit service quality preferences in Dar-es862 Salaam', *Journal of Transport Geography*, 24, pp. 12–21. doi: 10.1016/j.jtrangeo.2012.06.001.
- 863 (69) Noland, R. B. and Lem, L. L. (2002) 'A review of the evidence for induced travel and changes in
 864 transportation and environmental policy in the US and the UK', *Transportation Research Part D:*

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

865 Transport and Environment, 7(1), pp. 1–26. doi: 10.1016/S1361-9209(01)00009-8. 866 (70)O'Neill, B. C. et al. (2017) 'The roads ahead: Narratives for shared socioeconomic pathways 867 describing world futures in the 21st century', Global Environmental Change, 42, pp. 169–180. doi: 868 10.1016/j.gloenvcha.2015.01.004. 869 (71)OECD/IEA (2017a) 'International Comparison of Light-duty Vehicle Fuel Economy 2005-2015 870 Ten years of fuel economy benchmarking', IEA Publications. Available at: 871 http://www.iea.org/publications/freepublications/publication/wp15ldvcomparison.pdf. 872 OECD/IEA (2017b) 'South Africa's New Passenger Vehicle CO2 Emissions Baseline Analysis', (72)873 International Energy Agency, (June). 874 Phdungsilp, A. (2010) 'Integrated energy and carbon modeling with a decision support system: (73)875 Policy scenarios for low-carbon city development in Bangkok', Energy Policy, 38(9), pp. 4808–4817. 876 doi: 10.1016/j.enpol.2009.10.026. 877 (74)Pongthanaisawan, J. and Sorapipatana, C. (2013) 'Greenhouse gas emissions from Thailand's 878 transport sector: Trends and mitigation options', Applied Energy, 101, pp. 288-298. doi: 879 10.1016/j.apenergy.2011.09.026. 880 Rao, S. et al. (2017) 'Future air pollution in the Shared Socio-economic Pathways', Global (75)881 Environmental Change, 42, pp. 346–358. doi: 10.1016/j.gloenvcha.2016.05.012. 882 Riahi, K. et al. (2017) 'The Shared Socioeconomic Pathways and their energy, land use, and (76) 883 greenhouse gas emissions implications: An overview', Global Environmental Change, 42, pp. 153-884 168. doi: 10.1016/j.gloenvcha.2016.05.009. 885 (77) Schulz, N. (2010) Urban Energy Consumption Database and Estimations of Urban Energy 886 Intensities, Global Energy Assessment (GEA) - Supplementary Information. Laxenburg, Austria. 887 SEA (2015a) Modelling the Urban Energy Future of Sub-Saharan Africa, Sustainable Energy (78) 888 Africa (SEA). 889 (79) SEA (2015b) Modelling Urban Sub-Saharan Africa (Technical Report). 890 (80)Senatla, 'Mamahloko (2011) Determining the Impacts of Selected Energy Policies on Gauteng's 891 Residential Energy Consumption and the Associated Emissions using LEAP as a tool for Analysis: 892 Implications for sustainable livelihoods for the poor. University of Cape Town. Available at: 893 https://open.uct.ac.za/handle/11427/11516. 894 Silva Herran, D., Tachiiri, K. and Matsumoto, K. (2019) 'Global energy system transformations (81) 895 in mitigation scenarios considering climate uncertainties', Applied Energy, 243, pp. 119–131. doi: 896 10.1016/j.apenergy.2019.03.069.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

897 (82) van Sluisveld, M. A. E. *et al.* (2018) 'Comparing future patterns of energy system change in 2 °C
898 scenarios to expert projections', *Global Environmental Change*, 50, pp. 201–211. doi:

899 10.1016/j.gloenvcha.2018.03.009.

- 900 (83) de Souza, J. F. T. *et al.* (2018) 'Industrial low carbon futures: A regional marginal abatement cost
 901 curve for Sao Paulo, Brazil', *Journal of Cleaner Production*, 200, pp. 680–686. doi:
- 902 10.1016/j.jclepro.2018.07.206.
- 903 (84) Stone, A. and Wiswedel, S. (2018) 'Modelling the Urban Energy Future of Sub-Saharan Africa',
 904 in *International Energy Workshop*. Maryland, USA: University of Maryland, p. 13. Available at:

905 http://samsetproject.net/outputs/.

- 906 (85) UITP (2015) 'Mobility in Cities Database'.
- 907 (86) UN (2017) Household size and composition around the world. doi: 10.3390/atmos6091362.
- 908 (87) UN (2018) World Urbanization Prospects (2018 Revision).
- Wang, Hongsheng *et al.* (2013) 'Carbon reduction potentials of China's industrial parks: A case
 study of Suzhou Industry Park', *Energy*, 55, pp. 668–675. doi: 10.1016/j.energy.2013.01.034.
- 911 (89) Westphal, M. et al. (2017) 'Powering Cities in the Global South: How Energy Access for All
- 912 Benefits the Economy and the Environment', *World Resources Institute*, p. 55. Available at:

913 http://www.wrirosscities.org/sites/default/files/WRR_Energy_Final.pdf.

- 914 (90) WHO (2012) 'Burden of disease from Household Air Pollution for 2012', World Health
- 915 Organization, Global Health Risks, 1(February), pp. 1–17. doi: 10.1016/S0140-6736(12)61766916 8.Smith.
- 917 (91) World Bank (2015) Beyond connections Energy Access Redefined. Conceptualization report.
- 918 Available at: http://www.worldbank.org/content/dam/Worldbank/Topics/Energy and
- 919 Extract/Beyond_Connections_Energy_Access_Redefined_Exec_ESMAP_2015.pdf.
- 920 (92) World Bank (2017a) CURB: Climate Action for Urban Sustainability., World Bank. doi:
 921 10.1016/j.csi.2007.10.009.
- 922 (93) World Bank (2017b) Dar es Salaam Urban Transport Improvement Project.
- 923 (94) World Bank (2018) World Bank Open Data. Available at: https://data.worldbank.org/ (Accessed:
 924 15 March 2018).
- 925 (95) WorldAtlas (2017) 15 Biggest Cities In Africa. Available at:
- 926 https://www.worldatlas.com/articles/15-biggest-cities-in-africa.html (Accessed: 15 May 2018).
- 927 (96) WRI (2015) Climate Analysis Indicators Tool (CAIT). Climate Data Explorer. 2015, World
- 928 *Resources Institute*. Available at: http://cait.wri.org/historical.

Luo, C., Posen, I.D., Hoornweg, D., MacLean, H.L. (2019) REVISED VERSION (CLEAN) Journal of Cleaner Production [As of November 28, 2019]

- 929 (97) WRI (2018) Global BRT Data. Available at: https://brtdata.org/ (Accessed: 13 September 2018).
- 930 (98) Wu, L. et al. (2019) 'Global carbon reduction and economic growth under autonomous

931 economies', *Journal of Cleaner Production*. Elsevier Ltd, 224, pp. 719–728. doi:

- 932 10.1016/j.jclepro.2019.03.225.
- 933 (99) Yang, Dewei *et al.* (2017) 'Sectoral energy-carbon nexus and low-carbon policy alternatives:
- A case study of Ningbo, China', *Journal of Cleaner Production*, 156, pp. 480–490. doi:
- 935 10.1016/j.jclepro.2017.04.068.
- 936 (100) Zegras, C. (2010) 'The built environment and motor vehicle ownership and use: Evidence from
 937 Santiago de Chile', *Urban Studies*, 47(8), pp. 1793–1817. doi: 10.1177/0042098009356125.
- 938 (101) Zhou, J. et al. (2016) 'Implications of the 11th and 12th Five-Year Plans for energy conservation
- and CO2 and air pollutants reduction: A case study from the city of Urumqi, China', *Journal of Cleaner Production*, 112, pp. 1767–1777. doi: 10.1016/j.jclepro.2015.08.015.
- 941 (102) van der Zwaan, B. et al. (2018) 'An integrated assessment of pathways for low-carbon
- 942 development in Africa', *Energy Policy*, 117, pp. 387–395. doi: 10.1016/j.enpol.2018.03.017.

943

944

Modelling future patterns of urbanization, residential energy use and greenhouse gas emissions in Dar es Salaam with the Shared Socio-Economic Pathways

Chibulu Luo^a*, I. Daniel Posen^a, Daniel Hoornweg^b and Heather L. MacLean^{ac} ^a University of Toronto, Department of Civil and Mineral Engineering, 35 St George St, Toronto, ON M5S 1A4, Canada ^b Ontario Tech University, Faculty of Energy Systems and Nuclear Science Research, 2000 Simcoe Street North, Oshawa, Ontario, L1G 0C5, Canada ^c University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College St, Toronto, ON M5S 3E5, Canada *Corresponding author: <u>chibulu.luo@mail.utoronto.ca</u>

HIGHLIGHTS

This paper:

- Provides the first projection of residential energy use and GHG emissions in Dar es
 Salaam and demonstrate the use of the SSPs at the city scale.
- Analyzes the key drivers of residential energy use and GHG emissions in a large SSA city, Dar es Salaam, offering new insights for the region.
- Demonstrates a method for projecting emissions in a data-poor environment.
- Shows the wide uncertainty in these future projections, while also demonstrating the order of magnitude jump in emissions that can be expected in Dar es Salaam to 2050.

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk