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Abstract

Accurate detection and genotyping of structural variations (SVs) from short-read data is a long-standing area of
development in genomics research and clinical sequencing pipelines. We introduce Paragraph, an accurate
genotyper that models SVs using sequence graphs and SV annotations. We demonstrate the accuracy of Paragraph
on whole-genome sequence data from three samples using long-read SV calls as the truth set, and then apply
Paragraph at scale to a cohort of 100 short-read sequenced samples of diverse ancestry. Our analysis shows that
Paragraph has better accuracy than other existing genotypers and can be applied to population-scale studies.
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Background
Structural variants (SVs) contribute to a large fraction of
genomic variation and have long been implicated in
phenotypic diversity and human disease [1–3]. Whole-
genome sequencing (WGS) is a common approach to
profile genomic variation, but compared to small variants,
accurate detection and genotyping of SVs still remains a
challenge [4, 5]. This is especially problematic for a large
number of SVs that are longer than the read lengths of
short-read (100–150 bp) high-throughput sequence data,
as a significant fraction of SVs have complex structures
that can cause artifacts in read mapping and make it diffi-
cult to reconstruct the alternative haplotypes [6, 7].
Recent advances in long-read sequencing technologies

(e.g., Pacific Biosciences and Oxford Nanopore Tech-
nologies) have made it easier to detect SVs, including
those in low-complexity and non-unique regions of the
genome. This is chiefly because, compared to short
reads, long (10–50 kbp) reads can be more reliably
mapped to such regions and are more likely to span en-
tire SVs [8–10]. These technologies combined with data
generated by population studies using multiple sequen-
cing platforms are leading to a rapid and ongoing
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expansion of the reference SV databases in a variety of
species [11–13].
Currently, most SV algorithms analyze each sample in-

dependent of any prior information about the variation
landscape. The increasing availability and completeness
of a reference database of known SVs, established
through long-read sequencing and deep coverage short-
read sequencing, makes it possible to develop methods
that use prior knowledge to genotype these variants.
Furthermore, if the sequence data remain available, they
can be re-genotyped using new information as the refer-
ence databases are updated. Though the discovery of de
novo germline or somatic variants will not be amenable
to a genotyping approach, population studies that in-
volve detection of common or other previously known
variants will be greatly enhanced by genotyping using a
reference database that is continually updated with
newly discovered variants.
Targeted genotyping of SVs using short-read sequen-

cing data still remains an open problem [14]. Most
targeted methods for genotyping are integrated with
particular discovery algorithms and require the input
SVs to be originally discovered by the designated SV
caller [15–17], require a complete genome-wide realign-
ment [18, 19], or need to be optimized on a set of train-
ing samples [12, 20]. In addition, insertions are generally
more difficult to detect than deletions using short-read
technology and thus are usually genotyped with lower
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accuracy or are completely excluded by these methods
[21–23]. Finally, consistently genotyping SVs across
many individuals is difficult because most existing geno-
typers only support single-sample SV calling.
Here, we present a graph-based genotyper, Paragraph,

that is capable of genotyping SVs in a large population
of samples sequenced with short reads. The use of a
graph for each variant makes it possible to systematically
evaluate how reads align across breakpoints of the candi-
date variant. Paragraph can be universally applied to
genotype insertions and deletions represented in a vari-
ant call format (VCF) file, independent of how they were
initially discovered. This is in contrast to many existing
genotypers that require the input SV to have a specific
format or to include additional information produced by
a specific de novo caller [14]. Furthermore, compared to
alternate linear reference-based methods, the sequence
graph approach minimizes the reference allele bias and
enables the representation of pan-genome reference
structures (e.g., small variants in the vicinity of an SV)
so that variants can be accurate even when variants are
clustered together [24–28].
We compare Paragraph to five popular SV detection

and genotyping methods and show that the performance
of Paragraph is an improvement in accuracy over the
other methods tested. Our test set includes 20,108 SVs
(9238 deletions and 10,870 insertions) across 3 human
samples for a total of 60,324 genotypes (38,239 alterna-
tive and 22,085 homozygous reference genotypes).
Against this test set, Paragraph achieves a recall of 0.86
and a precision of 0.91. By comparison, the most com-
prehensive alternative genotyping method we tested
achieved 0.76 recall and 0.85 precision across deletions
only. In addition, the only discovery-based SV caller we
tested that could identify both insertions and deletions
had a recall of 0.35 for insertions compared to 0.88 for
Paragraph. Finally, we showcase the capability of Para-
graph to genotype on a population-scale using 100 deep-
coverage WGS samples, from which we detected signa-
tures of purifying selection of SVs in functional genomic
elements. Combined with a growing and improving cata-
log of population-level SVs, Paragraph will deliver more
complete SV calls and also allow researchers to revisit
and improve the SV calls on historical sequence data.

Result
Graph-based genotyping of structural variations
For each SV defined in an input VCF file, Paragraph
constructs a directed acyclic graph containing paths
representing the reference sequence and possible alter-
native alleles (Fig. 1) for each region where a variant is
reported. Each node represents a sequence that is at
least one nucleotide long. Directed edges define how the
node sequences can be connected to form complete
haplotypes. The sequence for each node can be specified
explicitly or retrieved from the reference genome. In the
sequence graph, a branch is equivalent to a variant
breakpoint in a linear reference. In Paragraph, these
breakpoints are genotyped independently and the geno-
type of the variant can be inferred from genotypes of in-
dividual breakpoints (see the “Methods” section). Besides
genotypes, several graph alignment summary statistics,
such as coverage and mismatch rate, are also computed
which are used to assess quality, filter, and combine
breakpoint genotypes into the final variant genotype.
Genotyping details are described in the “Methods”
section.

Construction of a long read-based ground truth
To estimate the performance of Paragraph and other
existing methods, we built a long-read ground truth
(LRGT) from SVs called in three samples included in
the Genome in a Bottle (GIAB) [11, 29] project data:
NA12878 (HG001), NA24385 (HG002), and NA24631
(HG005). Long-read data from these three individuals
was generated on a Pacific Biosciences (PacBio) Sequel
system using the Circular Consensus Sequencing (CCS)
technology (sometimes called “HiFi” reads) [30]. Each
sample was sequenced to an average of 30 fold depth
and ~ 11,100 bp read length. Previous evaluations
showed high recall (0.91) and precision (0.94) for SVs
called from PacBio CCS NA24385 with similar coverage
levels against the GIAB benchmark dataset in confident
regions [11, 30], thus indicating SVs called from CCS
data can be effectively used as ground truth to evaluate
the performance of SV genotypers and callers.
For each sample, we called SVs (50 bp+) as described

in the “Methods” section and identified a total of 65,108
SV calls (an average 21,702 SVs per sample) representing
38,709 unique autosomal SVs. In addition, we parsed
out SV loci according to regions with a single SV across
the samples and those with multiple different SVs and
identified that 38,239 (59%) of our SV calls occur as sin-
gle, unique events in the respective region and the rest
26,869 (41%) occur in regions with one or more nearby
SVs (Additional file 1: Figure S1). Recent evidence sug-
gests that a significant fraction of novel SVs could be
tandem repeats with variable lengths across the popula-
tion [31, 32], and we found that 49% of the singleton
unique SVs are completely within the UCSC Genome
Browser Tandem Repeat (TR) tracks while 93% of the
clustered unique SVs are within TR tracks. Because re-
gions with multiple variants will pose additional com-
plexities for SV genotyping that are beyond the scope of
the current version of Paragraph, we limited our LRGT
to the 9238 deletions and 10,870 insertions that are not
confounded by the presence of a different nearby or
overlapping SV (see the “Methods” section). Considering



Fig. 1 Overview of the SV genotyping workflow implemented in Paragraph. The illustration shows the process to genotype a blockwise
sequence swap. Starting from an entry in a VCF file that specifies the SV breakpoints and alternative allele sequences, Paragraph constructs a
sequence graph containing all alleles as paths of the graph. Colored rectangles labeled FLANK, ALTERNATIVE, and REFERENCE are nodes with
actual sequences, and solid arrows connecting these nodes are edges of the graph. All reads from the original, linear alignments that aligned
near or across the breakpoints are then realigned to the constructed graph. Based on alignments of these reads, the SV is genotyped as
described in the “Methods” section
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all three samples, there are (1) 4260/4439 deletions/in-
sertions that occurred in just 1 sample, (2) 2258/2429
deletions/insertions that occurred in 2 samples, and (3)
2720/4002 deletions/insertions that occurred in all 3
samples. With short-read sequencing also available for
these three samples, we are able to test any SV genotyp-
ing method and can estimate recall and precision using
the long-read genotypes as the ground truth.

Test for recall and precision
To evaluate the performance of different methods, we
genotyped the LRGT SVs on short-read data of
NA12878 (63×), NA24385 (35×), and NA24631 (40×)
using Paragraph and two widely used SV genotypers,
SVTyper [16] and Delly Genotyper [17]. Additionally, we
ran three methods that independently discover SVs (i.e.,
de novo callers), Manta [21], Lumpy [33], and Delly [17].
Because the genotyping accuracy of classifying homozy-
gous versus heterozygous alleles may vary for the short-
and long-read methods used here, we focus our test on
the presence/absence of variants and not genotyping
concordance. Thus, we define a variant as a true positive
(TP) if LRGT also has a call in the same sample and a
false positive (FP) if LRGT did not call a variant in that
sample. We have 38,239 individual alternative genotypes
in LRGT to calculate TPs and 22,085 individual refer-
ence genotypes in LRGT to calculate FPs. Since some of
the methods are not able to call certain sizes or types of
SVs, we only tested these methods on a subset of the
SVs when calculating recall and precision.
Paragraph has the highest recall: 0.84 for deletions and

0.88 for insertions (Table 1) among all the genotypers
and de novo callers tested. Of the genotypers, Paragraph
had the highest genotype concordance compared to the
LRGT genotypes (Additional file 1: Table S1). The preci-
sion of Paragraph is estimated as 0.92 for deletions,
which is 7% higher than Delly Genotyper (0.85), and
0.89 for insertions. Though SVTyper had the highest
precision (0.98) of all the methods tested, it achieved
that by sacrificing recall (0.70). Furthermore, SVTyper is
limited to deletions longer than 100 bp. When measur-
ing precision only on 100 bp+ deletions, Paragraph has a
slightly lower precision (0.93) than SVTyper (0.98) but
the recall is 12% higher (0.82 vs. SVTyper 0.70). Com-
bining recall and precision, Paragraph has the highest F-
score among all genotypers also for this subset of 100



Table 1 Performance of different genotypers and de novo callers, measured against 50 bp or longer SV from our LRGT

Type Deletion Insertion

Paragraph Delly Genotyper SVTyper (100+ bp) Manta Delly Lumpy (100+ bp) Paragraph Manta

#Tested TPs 16,936 16,936 11,160 16,936 16,936 11,160 21,303 21,303

Recall 0.84 0.76 0.70 0.62 0.61 0.64 0.88 0.35

#Tested FPs 10,778 10,778 6960 – – – 11,307 –

Precision 0.92 0.85 0.98 – – – 0.89 –

F-score 0.88 0.80 0.82 – – – 0.88 –

Genotyping/calling was evaluated on short-read data of the three samples sequenced with 150 bp paired-end reads on Illumina platforms. As SVTyper and Lumpy
are limited to deletions longer than 100 bp, they have fewer tested SVs than other methods
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bp+ deletions (0.88 vs. 0.80 for Delly Genotyper and
0.82 for SVTyper). In addition, we tested another short-
read genotyper, BayesTyper, a kmer-based method, and
estimated a recall of 0.47 and precision of 0.94 across all
of the LRGT SVs. The low recall of BayesTyper is be-
cause it produced no genotype call for 56% of the LRGT
SVs. We speculate that this may be largely caused by se-
quencing errors that would have a greater impact on
methods that require exact matches of kmers.
Since genotyping performance is often associated with

SV length (e.g., depth-based genotypers usually perform
better on larger SVs than smaller ones), and some of the
tested methods only work for SVs above certain deletion/
insertion sizes, we partitioned the LRGT SVs by length
and further examined the recall of each method (Fig. 2).
Fig. 2 Estimated recall of different methods, partitioned by SV length. Reca
negative SV length indicates a deletion, and a positive SV length indicates
gray bars in b represent the count of SVs in each size range in LRGT. The c
In general, for deletions between 50 bp and ~ 1000 bp, the
genotypers (Paragraph, SVTyper, and Delly Genotyper)
have better recall than the de novo callers (Manta, Lumpy,
and Delly). SVTyper and Paragraph have comparable
recall for larger (> 300 bp) deletions, and in that size range,
Delly Genotyper has lower recall than these two. For
smaller deletions (50–300 bp), the recall for Paragraph
(0.83) remains high while we observe a slight drop in the
recall of Delly Genotyper (0.75) and a larger drop in the
recall of SVTyper (0.43). We speculate that this is because
SVTyper mainly relies on paired-end (PE) and read-depth
(RD) information and will therefore be less sensitive for
smaller events. Only Paragraph and Manta were able to
call insertions, and while Paragraph (0.88) has consistently
high recall across all insertion lengths, Manta (0.35) has a
ll was estimated on the three samples using LRGT as the truth set. A
an insertion. Colored lines in a show recall of different methods; solid
enter of the plot is empty since SVs must be at least 50 bp in length
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much lower recall which drops further for larger
insertions.
We additionally partitioned the precision of each gen-

otyper by SV length (Additional file 1: Figure S1). The
result suggests that false positives are more likely to
occur in small SVs than in large ones. Paragraph has a
consistent precision for deletions and insertions, while
the only comparable method in genotyping very small
deletions (50–100 bp), Delly Genotyper, has a precision
drop in this range (Additional file 1: Figure S2). We fur-
ther examined Paragraph FPs in one of the tested sam-
ples, NA24385, and found nearly all of the FP deletions
(91%) and the FP insertions (90%) are completely within
TR regions. We performed a visual inspection of the 21
FP deletions and 83 FP insertions that are outside of
TRs: 12% (12) have 2 or more supporting reads for an
SV but were not called by the long-read caller in LRGT,
40% (42) have 1 or more large indels (longer than 10 bp)
in the target region, and 48% (50) have no evidence of
variants in the long-read alignments in the target region,
and thus, these FPs are likely to come from short-read
alignment artifacts.
So far, we tested the recall using high depth data (>

35×) with 150 bp reads but some studies may use shorter
reads and/or lower read depths. To quantify how either
shorter reads or lower depth will impact genotyping per-
formance, we evaluated data of different read lengths
and depths by downsampling and trimming reads from
our short-read data of NA24385. Generally, shorter read
lengths are detrimental to recall; reductions in depth
have less of a deleterious effect until the depth is below
~ 20× (Additional file 1: Figure S3).

Genotyping with breakpoint deviations
The LRGT data we used here will be both costly and
time-consuming to generate in the near term because
generating long-read CCS data is still a relatively slow
and expensive process. An alternative approach to build
up a reference SV catalog would be to sequence many
samples (possibly at lower depth) using PacBio contigu-
ous long reads (CLR) or Oxford Nanopore long reads ra-
ther than CCS technology and derive consensus calls
across multiple samples. The high error rates (~ 10–
15%) of these long reads may result in errors in SV de-
scriptions especially in low-complexity regions where
just a few errors in the reads could alter how the reads
align to the reference. Since Paragraph realigns reads to
a sequence graph using stringent parameters, inaccur-
acies in the breakpoints may result in a decreased recall.
To understand how the genotypers perform with input

SVs that have imprecise breakpoints, we called SVs from
CLR data of NA24385 that were generated on a PacBio
RS II platform. 9534 out of the total 12,776 NA24385
SVs in LRGT closely match those generated from the
CLR data (see the “Methods” section for matching de-
tails). Of these, 658 (17%) deletions and 806 (14%) inser-
tions have identical breakpoints in the CLR and CCS SV
calls. The remaining 3306 deletions and 4763 insertions,
although in approximately similar locations, have differ-
ences in representations (breakpoints and/or insertion
sequences). Assuming breakpoints found using the CCS
data within the LRGT SVs are correct, we consider devi-
ations in the CLR breakpoints as errors in this sample.
For the matching deletions between LRGT and CLR
calls but with deviating breakpoints, Paragraph recall de-
creased from 0.97 to 0.83 when genotyped the CLR-
defined deletions. Overall, there is a negative correlation
between Paragraph recall and breakpoint deviations: the
larger the deviation, the less likely the variant can be ge-
notyped correctly (Fig. 3). While deviations of a few base
pairs can generally be tolerated without issue, deviations
of 20 bp or more reduce recall to around 0.44. For inser-
tions with differences in breakpoints and/or insertion se-
quences, Paragraph recall decreased from 0.88 to 0.66
when genotyped the CLR-defined insertions. We also in-
vestigated how inaccurate breakpoints impact insertion
genotyping, but found no clear trend between recall and
base-pair deviation in breakpoints.
On the same set of CLR calls, we estimated the impact

of breakpoint deviation on SVTyper and Delly Genoty-
per (Additional file 1: Figure S4). Similar to Paragraph,
the split-read genotyper, Delly Genotyper, shows the
same negative relationship between its recall and break-
point deviations. As a contrast, SVTyper, which geno-
types SVs mostly using information from read depth and
pair-read insert size distribution, does not depend much
on breakpoint accuracy and is not significantly affected
by deviations in breakpoints.

Genotyping in tandem repeats
We identified that most of the SVs having breakpoint
deviations between the CLR calls and LRGT are in low-
complexity regions: of the 8069 matching SVs with
breakpoint deviations, 3217 (77%) are within TRs. SVs
within TRs have larger breakpoint deviations in CLR
calls from the true breakpoints than those not in TRs:
35% of the SVs with smaller (≤ 10 bp) deviations are
within TRs while 66% of the SVs with larger breakpoint
deviations (> 20 bp) are within TRs. Additionally, we
found that 59% of the FNs and 77% of the FPs in
NA24385 occur in SVs that are completely within TRs.
To further understand the impact of TRs on the per-
formance of Paragraph, we grouped LRGT SVs accord-
ing to whether they are in TRs and plotted Paragraph
recall binned by SV lengths. Paragraph has a better recall
in SVs that are outside of TRs (0.89 for deletions and
0.90 for insertions), compared to its recall in SVs that
are within TRs (0.74 for deletions and 0.83 for



Fig. 3 Demonstration of the impact of recall when tested SVs include errors in their breakpoints. Breakpoint deviations measure the differences in positions
between matching deletions in the CLR calls and in LRGT. Paragraph recall was estimated using CLR calls as genotyping input and TPs in LRGT as the ground
truth. Breakpoint deviations were binned at 1 bp for deviations less than 18 bp and at 2 bp for deviations larger or equal to 19 bp. Solid bars show the number
of deletions in each size range (left axis). Points and the solid line show the recall for individual size and the overall regression curve (right axis)
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insertions) (Fig. 4a). Small (< 200 bp) SVs are much
more likely to be within TRs (~ 75%) than large (> 1000
bp) SVs (~ 35%) (Fig. 4b), and that matches our earlier
observation that Paragraph and other genotypers have
decreased recall and precision, in small SVs.
When building our LRGT, we excluded SVs with other

nearby SVs in one or more samples (named as clustered
SVs in the “Construction of long read-based ground
truth” section). The majority of these SVs (93%) are
within TRs; therefore, benchmarking against these
Fig. 4 The impact of TRs on SV recall. a Estimated Paragraph recall from LR
TRs. b LRGT SV count partitioned by length and grouped by their positioni
clustered SVs could be informative to quantify the im-
pact of TRs in SV genotyping. As none of the tested
methods could model each SV cluster as a whole with-
out an appropriate annotation, we instead model each of
the SVs in the clusters as a single SV and evaluated the
performance of Paragraph and other methods on the
same three samples using long-read genotypes of these
clustered SVs as the underlying truth (Additional file 1:
Table S2). All methods have a lower recall and precision
in the clustered SVs than in LRGT highlighted by their
GT, partitioned by SV length and grouped by their positioning with
ngs with TRs
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reduced F-scores: Paragraph (0.64 vs. 0.88), Delly Geno-
typer (0.58 vs. 0.80), and SVTyper (0.42 vs. 0.82). The
three de novo callers have a deletion recall of 0.15–0.20
in the clustered SVs, much lower than their recall of
0.61–0.64 in LRGT.

Population-scale genotyping across 100 diverse human
genomes
A likely use case for Paragraph will be to genotype SVs
from a reference catalog for more accurate assessment
in a population or association studies. To further test
and demonstrate Paragraph in this application, we geno-
typed our LRGT SVs in 100 unrelated individuals (not
including NA24385, NA12878, or NA24631) from the
publicly available Polaris sequencing resource (https://
github.com/Illumina/Polaris). This resource consists of a
mixed population of 46 Africans (AFR), 34 East Asians
(EAS), and 20 Europeans (EUR). All of these samples
were sequenced on Illumina HiSeq X platforms with
150 bp paired-end reads to at least 30-fold depth per
sample.
Most deletions occur at a low alternative allele fre-

quency (AF) in the population, whereas there is a grad-
ually decreasing number of deletions at progressively
higher AF. Over half of the insertions also occur at a
low AF, but there is a sizeable number of insertions with
Fig. 5 Population-scale genotyping and function annotation of LRGT SVs. a
population. b PCA biplot of individuals in the population, based on genoty
different functional elements. SV count: 191 in UTRs, 554 in exons, 420 in p
very high AF or even fixated (AF = 1) in the population.
As been reported previously [12], these high AF inser-
tions are likely to represent defects and/or rare alleles in
the reference human genome. Based on the Hardy-
Weinberg Equilibrium (HWE) test, we removed 2868
(14%) SVs that are inconsistent with population genetics
expectations. The removed SVs chiefly come from the
unexpected AF peak at 0.5 (dashed lines in Fig. 5a).
Seventy-nine percent of these HWE-failed SVs are
within TRs, which are likely to have higher mutation
rates and be more variable in the population [34, 35].
SVs that showed more genotyping errors in the dis-
covery samples were more likely to fail the HWE test
(Additional file 1: Table S3). For example, while just
9% of the SVs with no genotyping errors failed our
HWE test, 40% of the SVs with two genotyping errors
in our discovery samples failed our HWE test.
Because these samples are derived from different pop-

ulations, our HWE test can be overly conservative, al-
though only 962 (5%) of LRGT SVs have significantly
different AFs between populations as measured by the
test of their Fixation Index (Fst) [36]. In the principal
component analysis (PCA) of the HWE-passing SVs, the
samples are clearly clustered by populations (Fig. 5b).
Interestingly, in PCA of the HWE-failed SVs, the sam-
ples also cluster by population (Additional file 1: Figure
The AF distribution of LRGT SVs in the Polaris 100-individual
pes of HWE-passing SVs. c The AF distribution of HWE-passing SVs in
seudogenes, 9542 in introns, and 6603 in intergenic regions

https://github.com/Illumina/Polaris
https://github.com/Illumina/Polaris
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S5), indicating that some SVs could fail our HWE test
because of population substructure rather than poor
genotyping performance. Genotyping more samples in
each of the three populations will allow better assess-
ment of the genotyping accuracy without the confound-
ing factor of subpopulations that could lead to
erroneous HWE deviations.
The population AF can reveal information about the

potential functional impact of SVs on the basis of signals
of selective pressure. By checking the AFs for SVs in dif-
ferent genomic elements, we found that SVs within
exons, pseudogenes, and untranslated regions (UTRs) of
coding sequences, in general, have lower AFs than those
in intronic and intergenic regions. SVs in introns and
intergenic regions have more uniform AF distributions
compared to the more extreme AFs in functional ele-
ments (UTRs, exons) (Fig. 5c). All these suggest a purify-
ing selection against SVs with potentially functional
consequences [25]. Common SVs are more depleted in
functional regions than rare SVs, although we do see a
few common SVs within exons of genes including TP73
(AF = 0.09, tumor suppressor gene), FAM110D (AF =
0.60, functions to be clarified, possibly related with cell
cycle), and OVGP1 (AF = 0.18, related to fertilization
and early embryo development). As the three discovery
samples are likely healthy individuals, and these SVs are
found at a high frequency in the population, and we
expect unlikely to have functional significance.
We also observed 17 exonic insertions fixated (AF = 1)

in the population (Additional file 1: Table S4). Since
these insertions are present and homozygous in all 100
genotyped individuals, the reference sequence reflects
either rare deletion or errors in GRCh38 [37]. Specifically,
the 1638-bp exonic insertion in UBE2QL1 was also re-
ported at high frequency in two previous studies [38, 39].
Particularly, a recent study by TOPMed [39] reported this
insertion in all 53,581 sequenced individuals from mixed
ancestries. Applying Paragraph to population-scale data will
give us a better understanding of common, population-
specific, and rare variations and aid in efforts to build a bet-
ter reference genome.

Discussion
Here, we introduce Paragraph, an accurate graph-based
SV genotyper for short-read sequencing data. Using SVs
discovered from high-quality long-read sequencing data
of three individuals, we demonstrate that Paragraph
achieves substantially higher recall (0.84 for deletions
and 0.88 for insertions) compared to three commonly
used genotyping methods (highest recall at 0.76 for dele-
tions across the genome) and three commonly used de
novo SV callers (highest recall of 0.64 for deletions). Of
particular note, Paragraph and Manta were the only two
methods that worked for both deletions and insertions,
and based on our test data, Paragraph achieved substan-
tially higher recall for insertions compared to Manta
(0.88 vs. 0.35).
As highlighted above, a particular strength of Para-

graph is the ability to genotype both deletions and inser-
tions genome-wide, including those within complicated
regions. While we expect that there are as many inser-
tions as there are deletions in the human population, the
majority of the commonly used methods either do not
work for insertions or perform poorly with the inserted
sequence. In particular, insertions are poorly called by
de novo variant callers from short reads. Currently, the
most effective method to identify insertions is through
discovery with long reads. Once a reference database of
insertions is constructed, they can then be genotyped
with high accuracy in the population using Paragraph.
We expect this will be especially helpful to genotype
clinically relevant variants as well as to assess variants of
unknown significance (VUS) by accurately calculating
AFs in healthy and diseased individuals.
Existing population reference databases for SVs may

include many variants that are incorrectly represented.
Since errors in the breakpoints may be a limitation for
population-scaled SV genotyping, we have quantified the
genotyping performance of Paragraph and its correlation
with breakpoint accuracy (Fig. 3). Our analysis shows
that Paragraph can generally tolerate breakpoint devi-
ation of up to 10 bp in most genomic contexts, although
the performance suffers as the breakpoints deviate by
more bases. Undoubtedly, recent advances in long-read
accuracy will lead to more accurate SV reference data-
bases and thus better performance for Paragraph as a
population genotyper.
Paragraph works by aligning and genotyping reads on

a local sequence graph constructed for each targeted
SV. This approach is different from other proposed and
most existing graph methods that create a single
whole-genome graph and align all reads to this large
graph [18, 40]. A whole-genome graph may be able to
rescue reads from novel insertions that are misaligned
to other parts of the genome in the original linear refer-
ence; however, the computational cost of building such
a graph and performing alignment against this graph is
very high. Adding variants to a whole-genome graph is
also a very involved process that typically requires all
reads to be realigned. Conversely, the local graph ap-
proach applied in Paragraph is not computationally
intensive and can easily be adapted into existing sec-
ondary analysis pipelines. The local graph approach uti-
lized by Paragraph also scales well to population-level
studies where large sets of variants identified from dif-
ferent resources can be genotyped rapidly (e.g., 1000
SVs can be genotyped in 1 sample in 15 min with a sin-
gle thread) and accurately in many samples.
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In this study, we demonstrated that Paragraph can ac-
curately genotype single SVs that are not confounded by
the presence of nearby SVs (Table 1, Additional file 1:
Table S2). Though, of the SVs identified in these three
samples, almost half (48%) occurred in the presence of
one or more different SVs. The current version of Para-
graph only genotypes one SV per locus though we are
actively working on the algorithm to consider and test
the ability to annotate overlapping SVs and genotype
them simultaneously. In addition, it will be equally im-
portant to create a more complete catalog of SVs in
these highly variable loci so that the entire complexity
can be encoded into the graph.
The primary use case for Paragraph will be to allow in-

vestigators to genotype previously identified variants
with high accuracy. This could be applied to genotype
known, medically relevant SVs in precision medicine ini-
tiatives or to genotype SVs from a reference catalog for
more accurate assessment in a population or association
study. Importantly, the catalog of both medically import-
ant SVs and population-discovered SVs will continue to
evolve over time and Paragraph will allow scientists to
genotype these newly identified variants in historical se-
quence data. Certainly, the variant calls for both small
(single sample) and large (population-level) sequencing
studies can continue to improve as our knowledge of
population-wide variation becomes more comprehensive
and accurate.
Conclusions
Paragraph is an accurate SV genotyper for short-read se-
quencing data that scales to hundreds or thousands of
samples. Paragraph implements a unified genotyper that
works for both insertions and deletions, independent of
the method by which the SVs were discovered. Thus,
Paragraph is a powerful tool for studying the SV landscape
in populations, human or otherwise, in addition to analyz-
ing SVs for clinical genomic sequencing applications.
Methods
Graph construction
In a sequence graph, each node represents a sequence
that is at least one nucleotide long and directed edges
define how the node sequences can be connected to-
gether to form complete haplotypes. Labels on edges are
used to identify individual alleles or haplotypes through
the graph. Each path represents an allele, either the ref-
erence allele, or one of the alternative alleles. Paragraph
currently supports three types of SV graphs: deletion, in-
sertion, and blockwise sequence swaps. Since we are
only interested in read support around SV breakpoints,
any node corresponding to a very long nucleotide se-
quence (typically longer than two times the average read
length) is replaced with two shorter nodes with se-
quences around the breakpoints.

Graph alignment
Paragraph extracts reads, as well as their mates (for
paired-end reads), from the flanking region of each tar-
geted SV in a Binary Alignment Map (BAM) or CRAM
file. The default target region is one read length up-
stream of the variant starting position to one read length
downstream of the variant ending position, although this
can be adjusted at runtime. The extracted reads are rea-
ligned to the pre-constructed sequence graph using a
graph-aware version of a Farrar’s Striped Smith-
Waterman alignment algorithm implemented in GSSW
library [41] v0.1.4. In the current implementation, read
pair information is not used in alignment or genotyping.
The algorithm extends the recurrence relation and the
corresponding dynamic programming score matrices
across junctions in the graph. For each node, edge, and
graph path, alignment statistics such as mismatch rates
and graph alignment scores are generated.
Only uniquely mapped reads, meaning reads aligned

to only one graph location with the best alignment
score, are used to genotype breakpoints. Reads used in
genotyping must also contain at least one kmer that is
unique in the graph. Paragraph considers a read as sup-
porting a node if its alignment overlaps the node with a
minimum number of bases (by default 10% of the read
length or the length of the node, whichever is smaller).
Similarly, for a read to support an edge between a pair
of nodes means its alignment path contains the edge and
supports both nodes under the above criteria.

Breakpoint genotyping
A breakpoint occurs in the sequence graph when a node
has more than one connected edges. Considering a
breakpoint with a set of reads with a total read count R
and two connecting edges representing haplotype h1 and
h2, we define the read count of haplotype h1 as Rh1 and
haplotype h2 as Rh2. The remaining reads in R that are
mapped to neither haplotype are denoted as R≠h1, h2.
The likelihood of observing the given set of reads with

the underlying breakpoint genotype Gh1/h2 can be repre-
sented as:

p R j Gh1=h2

� � ¼ p Rh1;Rh2 j Gh1=h2

� �

� p R≠h1;h2 j Gh1=h2

� � ð1Þ

We assume that the count of the reads for a break-
point on the sequence graph follows a Poisson distribu-
tion with parameter λ. With an average read length l, an
average sequencing depth d, and the minimal overlap of
m bases (default: 10% of the read length l) for the
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criteria of a read supporting a node, the Poisson param-
eter can be estimated as:

λ ¼ d � l−mð Þ=l ð2Þ
When assuming the haplotype fractions (expected

fraction of reads for each haplotype when the underlying
genotype is heterozygous) of h1 and h2 are μh1 and μh2,
the likelihood under a certain genotype, p(Rh1, Rh2 |Gh1/h2),
or the first term in Eq. (1), can be estimated from the
density function dpois() of the underlying Poisson
distribution:

p R j Gh1=h2

� � ¼ dpois Rh1; λ� μh1ð Þ
� dpois Rh2; λ� μh2ð Þ ð3Þ

If h1 and h2 are the same haplotypes, the likelihood
calculation is simplified as:

p R j Gh1=h1

� � ¼ dpois Rh1; λ 1−εð Þð Þ ð4Þ
where ε is the error rate of observing reads supporting
neither h1 nor h2 given the underlying genotype Gh1/h2.
Similarly, the error likelihood, p(R≠h1, h2 | Gh1/h2), or the
second term in eq. (1), can be calculated as:

p R≠h1;h2 j Gh1=h2

� � ¼ dpois R≠h1;h2; λ� ε
� � ð5Þ

Finally, the likelihood of observing genotype Gh1/h2

under the observed reads R can be estimated under a
Bayesian framework:

p Gh1=h2 j R
� �

∼p Gh1=h2

� �� p R j Gh1=h2

� � ð6Þ
The prior P(Gh1/h2) can be pre-defined or calculated

using a helper script in Paragraph repository that uses
the expectation-maximization algorithm to estimate
genotype likelihood-based allele frequencies under the
Hardy-Weinberg Equilibrium across a population [42].

SV genotyping
We perform a series of tests for the confidence of break-
point genotypes. For a breakpoint to be labeled as “pass-
ing,” it must meet all of the following criteria:

1. It has more than one read aligned, regardless of
which allele the reads were aligned to.

2. The breakpoint depth is not significantly high or
low compared to the genomic average (p value is at
least 0.01 on a two-sided Z test).

3. The Phred-scaled score of its genotyping quality
(derived from genotype likelihoods) is at least 10.
4. Based on the reads aligned to the breakpoint,
regardless of alleles, the Phred-scaled p value from
FisherStrand [43] test is at least 30.

If a breakpoint fails one or more of the above tests, it
will be labeled as a “failing” breakpoint. Based on the test
results of the two breakpoints, we then derive the SV
genotype using the following decision tree:

1. If two breakpoints are passing:

(a) If they have the same genotype, use this

genotype as the SV genotype.
(b) If they have different genotypes, pool reads from

these two breakpoints and perform the steps in
the “Breakpoint genotyping” section again using
the pooled reads. Use the genotype calculated
from the pooled reads as the SV genotype.
2. If one breakpoint is passing and the other one is
failing:

(a) Use the genotype from the passing breakpoint

as the SV genotype.

3. If two breakpoints are failing:
(a) If the two breakpoints have the same genotype,
use this genotype as the SV genotype

(b) If two breakpoints have different genotypes,
follow the steps in 1b.
Note that for 1b and 2b, as we pool reads from two
breakpoints together, the depth parameter d in Eq. (2)
needs to be doubled, and reads that span two break-
points will be counted twice. We also set a filter label
for the SV after this decision tree, and this filter will be
labeled as passing only when the SV is genotyped
through decision tree 1a. SVs that fail the passing cri-
teria 1 and 2 for any one of its breakpoints were consid-
ered as reference genotypes in the evaluation of
Paragraph in the main text.

Sequence data
The CCS data for NA12878 (HG001), NA24385
(HG002), and NA24631 (HG005) are available at the
GiaB FTP (ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/).
These samples were sequenced to an approximate 30×
depth with an average read length of 11 kb on the
PacBio Sequel system. We realigned reads to the most
recent human genome assembly, GRCh38, using pbmm2
v1.0.0 (https://github.com/PacificBiosciences/pbmm2).
Pacbio CLR data of NA24385 [11] were sequenced to
50× coverage on a PacBio RS II platform, and reads were
aligned to GRCh38 using NGMLR [10] v0.2.7.
To test the performance of the methods on short-read

data, we utilized three matching samples that were se-
quenced using TruSeq PCR-free protocol on Illumina
platforms with 150 bp paired-end reads: 35× (NA24385)

ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/
https://github.com/PacificBiosciences/pbmm2
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on HiSeq X, 64× (NA12878), and 48× (NA24631) on
NovaSeq 6000. Reads were mapped to GRCh38 using
the Issac aligner [44]. To estimate the recall of Para-
graph in samples of lower depth, we downsampled the
35× NA24385 data to different depths using SAMtools
[45]. To estimate the recall of Paragraph in 100 bp and
75 bp reads, we trimmed the 150-bp reads from their 3′
end in the downsampled NA24385 data.

Long-read ground truth and performance evaluation
SVs were called from the CCS long-read data of the
three samples using PBSV v2.0.2 (https://github.com/
PacificBiosciences/pbsv). When merging SVs across
samples, we define deletions as “different” if their deleted
sequences have less than 80% reciprocal overlap; we de-
fine insertions as “different” if their breakpoints are
more than 150 bp apart, or their insertion sequences
have less than 80% of matching bases when aligning
against each other using the Smith-Waterman algorithm.
After merging, we obtained 41,186 unique SVs. From
these unique SVs, we excluded 1944 from chromosome
X or Y, 53 SVs that had a failed genotype in 1 or more
samples, and 480 SVs where a nearby duplication was
reported in at least 1 sample. In the remaining 38,709
unique SVs, 20,108 have no nearby SVs within 150 bp
upstream and downstream and these SVs were used as
LRGT to test the performance of Paragraph and other
methods.
For each method, we define a variant as a true positive

(TP) if the LRGT data also has a call in the same sample
and a false positive (FP) if the LRGT did not call a vari-
ant in that sample. For each genotyper, we estimate its
recall as the count of its TPs divided by the count of al-
ternative genotypes in LRGT. We calculate the precision
of each method as its TPs divided by its TPs plus FPs.
Variants identified by the de novo methods (Manta,
Lumpy, and Delly) may not have the same reference co-
ordinates or insertion sequences as the SVs in LRGT.
To account for this, we matched variants from de novo
callers and SVs in LRGT using Illumina’s large-variant
benchmarking tool, Wittyer (v0.3.1). Wittyer matches
variants using centered-reciprocal overlap criteria, simi-
lar to Truvari (https://github.com/spiralgenetics/truvari)
but has better support for different variant types and
allows stratification for variant sizes. We set parameters
in Wittyter as “--em simpleCounting --bpd 500 --pd 0.2,
” which means for two matching variants, their break-
point needs to be no more than 500 bp apart from each
other, and if they are deletions, their deleted sequences
must have no less than 80% reciprocal overlap.

Estimation of breakpoint deviation
From CLR NA24385, SVs were called using the long-
read SV caller, Sniffles [10], with parameters “--report-
seq -n -1” to report all supporting read names and inser-
tion sequences. Additional default parameters require 10
or more supporting reads to report a call, and require
variants to be at least 50 bp in length. Insertion calls
were refined using the insertion refinement module of
CrossStitch (https://github.com/schatzlab/crossstitch),
which uses FalconSense, an open-source method origin-
ally developed for the Falcon assembler [46] and is also
used as the consensus module for Canu [47].
We used a customized script to match calls between

the CLR and LRGT SVs of NA24385. A deletion from
the CLR data is considered to match a deletion in LRGT
if their breakpoints are no more than 500 bp apart and
their reciprocal overlap length is no less than 60% of
their union length. An insertion from the CLR data is
considered to match an insertion in LRGT if their break-
points are no more than 500 bp apart. Base pair devia-
tions between insertion sequences were calculated from
the pairwise alignment method implemented the python
module biopython [48].

Population genotyping and annotation
The 100 unrelated individuals from the Polaris sequen-
cing resource (https://github.com/Illumina/Polaris) were
sequenced using TruSeq PCR-free protocol on Illumina
HiSeq X platforms with 150 bp paired-end reads. Each
sample was sequenced at an approximate 30-fold cover-
age. We genotyped the LRGT SVs in each individual
using Paragraph with default parameters.
For each SV, we used Fisher’s exact test to calculate its

Hardy-Weinberg p values [49]. SVs with p value less
than 0.0001 were considered as HWE-failed. We used
dosage of HWE-passing SVs to run PCA, which means 0
for homozygous reference genotypes and missing geno-
types, 1 for heterozygotes, and 2 for homozygous alter-
native genotypes.
We used the annotation tracks from the UCSC Gen-

ome Browser to annotate SVs in LRGT. We define an
SV as “within TR” if its reference sequence is completely
within one or more TRF tracks. We categorized an SV
as functional if it overlaps with one or more functional
tracks. We used the ENCODE Exon and PseudoGene
SupportV28 track for exons, IntronEst for introns, and
ENCFF824ZKD for UTRs. SVs that overlap with any
functional track SVs that do not overlap with any of
these tracks were annotated as intergenic.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1909-7.

Additional file 1: Figure S1. Examples of singleton SVs and clustered
SVs. Figure S2. Estimated precision of different genotypers, partitioned
by SV length. Figure S3. Recall under different read lengths and depths.

https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv
https://github.com/spiralgenetics/truvari
https://github.com/schatzlab/crossstitch
https://github.com/Illumina/Polaris
https://doi.org/10.1186/s13059-019-1909-7
https://doi.org/10.1186/s13059-019-1909-7


Chen et al. Genome Biology          (2019) 20:291 Page 12 of 13
Figure S4. The impact of recall when tested SVs include errors in their
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HWE-failed SVs. Table S1. Estimated genotype concordance of gen-
otypers. Table S2. Performance of different methods in clustered
SVs. Table S3. SVs with genotyping errors in the three discovery
samples. Table S4. List of fixated exonic SVs.
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