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Abstract: Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of
systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further
evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily
breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep,
manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes,
and nightmares. These problems are associated with a reduction in the patients’ quality of life and
increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations
and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we
discuss recent advances in understanding the pathways linking cancer and the brain and how this
leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal
homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental
to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic
approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
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1. Introduction

Tumors alter the activity of cells in their local microenvironment (e.g., T-cells, fibroblasts,
macrophages) and distal organs (e.g., liver, brain) in order to evade the immune system and meet
metabolic demands (Figure 1; reviewed in [1,2]). In this way, tumors present a heterogenous and
dynamic physiological challenge, where collateral damage from the host response contributes to
debilitating problems like fatigue, sleep and circadian disruption, impairments in energy balance,
inflammation, reduced food intake, and cachexia/anorexia [3–6]. Of these, sleep disruption is among
the most common, especially within breast cancer patient populations [7]. Unfortunately, poor sleep
is associated with impaired patient quality of life and mortality even when controlling for multiple
factors like metastatic spread, age, cortisol concentrations, estrogen receptor expression, and co-morbid
depression [8,9].
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Figure 1. Cancer in the periphery dynamically interacts with nervous, endocrine, metabolic, and 
immune systems (NEMI) to elicit systemic changes in physiology and behavior. Tumor cells and those 
comprising its microenvironment secrete cytokines, growth factors, chemokines, and metabolites that 
the brain is sensitive to. This homeostatic challenge promotes aberrant neural activity, which then 
contributes to devastating symptoms like sleep disruption, inflammation, anorexia/cachexia, and 
changes in metabolism. 

It has been difficult to tease apart cause and effect in cancer-associated sleep disruption. Due to 
the heterogeneity among cancer types, treatment regimens, patient populations, and other lifestyle 
factors, the underlying mechanisms remain unclear. Indeed, a ‘chicken or the egg’ phenomenon has 
emerged whereby cancer seems to promote disrupted sleep, and reciprocally, poor sleep promotes 
tumorigenesis and cancer progression [10,11]. In this review, we provide a brief overview of sleep 
neurocircuitry, common sleep troubles in patients with cancer, how signals in the periphery 
communicate with the brain, recent mechanistic studies in animal models, and discuss further 
research that is necessary in treating sleep problems associated with cancer.  

2. Sleep Neurocircuitry 

Sleep is ubiquitous across nearly all life, highlighting its ancient and important role across the 
phylogenetic tree. To put the following sections in context, we will give a brief overview of relevant 
neural circuits involved in sleep/wake control. We focus on the mammalian system, but significant 
work has been done in invertebrates (e.g., C. elegans, D. melanogaster), and non-mammalian 
vertebrates (e.g., D. rerio). In mammals and some non-mammalian vertebrates, sleep can be 
objectively measured using electroencephalogram (EEG) and electromyogram (EMG) biopotential 
signals.  

During non-rapid eye movement (NREM) sleep, the firing rate of cortical neurons steadily 
declines compared to that observed in rapid eye movement (REM) sleep or wakefulness [12–14]. The 
EEG serves as a representation of the aggregate firing of cortical neural circuits, depending on a 
‘cortico-thalamo-cortical’ loop influenced by local pacemakers and subcortical neuromodulators 
[15,16]. It can be split into conventional bandwidths describing cortical firing rates at different 
approximate frequencies, including delta (0.5-4 Hz, and containing slow waves), theta (6–9 Hz), alpha 
(9–12 Hz), sigma (spindle band; 12–15 Hz), beta (12–30 Hz), low (30–60 Hz) and high gamma (60–100 
Hz). The synchronization of cortical firing (e.g., in the delta band) during NREM sleep depends on 
the precise timing of thalamocortical activity [17]. Indeed, during NREM sleep, delta waves form 
primary components of the EEG, with high amplitude and low frequency waves being the most 

Figure 1. Cancer in the periphery dynamically interacts with nervous, endocrine, metabolic, and
immune systems (NEMI) to elicit systemic changes in physiology and behavior. Tumor cells and
those comprising its microenvironment secrete cytokines, growth factors, chemokines, and metabolites
that the brain is sensitive to. This homeostatic challenge promotes aberrant neural activity, which
then contributes to devastating symptoms like sleep disruption, inflammation, anorexia/cachexia, and
changes in metabolism.

It has been difficult to tease apart cause and effect in cancer-associated sleep disruption. Due to the
heterogeneity among cancer types, treatment regimens, patient populations, and other lifestyle factors,
the underlying mechanisms remain unclear. Indeed, a ‘chicken or the egg’ phenomenon has emerged
whereby cancer seems to promote disrupted sleep, and reciprocally, poor sleep promotes tumorigenesis
and cancer progression [10,11]. In this review, we provide a brief overview of sleep neurocircuitry,
common sleep troubles in patients with cancer, how signals in the periphery communicate with the
brain, recent mechanistic studies in animal models, and discuss further research that is necessary in
treating sleep problems associated with cancer.

2. Sleep Neurocircuitry

Sleep is ubiquitous across nearly all life, highlighting its ancient and important role across the
phylogenetic tree. To put the following sections in context, we will give a brief overview of relevant
neural circuits involved in sleep/wake control. We focus on the mammalian system, but significant
work has been done in invertebrates (e.g., C. elegans, D. melanogaster), and non-mammalian vertebrates
(e.g., D. rerio). In mammals and some non-mammalian vertebrates, sleep can be objectively measured
using electroencephalogram (EEG) and electromyogram (EMG) biopotential signals.

During non-rapid eye movement (NREM) sleep, the firing rate of cortical neurons steadily
declines compared to that observed in rapid eye movement (REM) sleep or wakefulness [12–14].
The EEG serves as a representation of the aggregate firing of cortical neural circuits, depending on a
‘cortico-thalamo-cortical’ loop influenced by local pacemakers and subcortical neuromodulators [15,16].
It can be split into conventional bandwidths describing cortical firing rates at different approximate
frequencies, including delta (0.5–4 Hz, and containing slow waves), theta (6–9 Hz), alpha (9–12 Hz),
sigma (spindle band; 12–15 Hz), beta (12–30 Hz), low (30–60 Hz) and high gamma (60–100 Hz).
The synchronization of cortical firing (e.g., in the delta band) during NREM sleep depends on the
precise timing of thalamocortical activity [17]. Indeed, during NREM sleep, delta waves form primary
components of the EEG, with high amplitude and low frequency waves being the most prominent.
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In contrast, REM sleep is dominated by low amplitude theta waveforms in the EEG. REM sleep is also
called ‘paradoxical sleep’ as the EEG looks similar to what one would observe during wakefulness,
but the animal is deep asleep. During wakefulness, EMG activity is high and the EEG displays
task-dependent spectral properties. Importantly, sleep is a homeostatic process (i.e., process S), where
delta activity in the NREM EEG increases in amplitude relative to the duration of prior waking, although
the mechanisms governing this process are unclear [18,19]. Sleep is also under the control of the master
circadian clock (i.e., process C), ensuring that the timing of sleep coincides with environmental inputs
(e.g., light, food availability).

There are two primary subcortical brain structures that regulate arousal state stability, as well as
transitions into and out of NREMS, REMS, and wakefulness. The first is the hypothalamus, which
primarily serves a homeostatic function acting to adaptively regulate thermoregulation, hunger and
appetite control, reproductive behavior, motivation, and sleep, among others. The second is the
brainstem, where the ascending reticular activating system originates, and cholinergic signaling plays a
major role in wakefulness and REM sleep control. Below, we discuss a few specific neural populations
expressing neuromodulators (e.g., hypocretin/orexin) that serve to powerfully control arousal states.
A full discussion of all relevant circuitry, however, is beyond the scope of this review (for more detail
see: [20–22]).

2.1. Hypocretin/Orexin (HO) Neurons

The lateral hypothalamus contains numerous neural populations that receive, integrate, and fire
to influence systemic physiology and behavior [23]. Among the most well studied are those that
express the neuropeptides hypocretin-1 and -2 (also known as orexin-A and -B; HO). Discovered by
two groups at essentially the same time [21,24], these cells serve a non-redundant role in stabilizing
wakefulness. The first in vivo use of optogenetics demonstrated that these neurons are essential for
transitions between sleep and wakefulness; stimulation of these neurons had an awakening effect
in mice while their continued inhibition induced NREM sleep [25,26]. Further, the destruction of
these neurons, absence of HO, or its receptors (primarily HcrtR2), results in the debilitating sleep
disorder narcolepsy with cataplexy [27–29]. Recently, evidence has accumulated to support the idea
that narcolepsy is an autoimmune disease, as CD8+ autoreactive T-cells have been identified in human
narcoleptics [30,31].

HO neurons are sensitive to several signals arriving from the periphery, including cytokines,
leptin, ghrelin, glucose, dietary amino acids, and changes in extracellular pH and CO2 [32]. Afferent
inputs to these neurons were mapped using a combination of tract tracing methods, uncovering major
projections from the lateral septal nucleus, bed nucleus of the stria terminalis, preoptic area, multiple
hypothalamic nuclei, substantia nigra and ventral tegmental area (VTA), as well as the dorsal raphe
(DR) [33]. Genetic tracing revealed cell-type specific afferents arriving from cholinergic neurons in the
laterodorsal tegmentum, preoptic GABAergic neurons, as well as 5-HT+ neurons in the raphe nuclei,
suggesting a major role for these neurons in functions ranging from neuroendocrine control to arousal
and metabolic regulation [34–36]. Subsequent studies revealed that their primary arousal promoting
effects are mediated though direct synaptic connections with noradrenergic neurons in the locus
coeruleus (LC-NE), as HO-mediated wakefulness can be blocked via simultaneous photoinhibition of
LC-NE neurons [37,38].

Two key efferent outputs from HO neurons drive changes in peripheral physiology relevant
to cancer. One is through engagement of the hypothalamic–pituitary–adrenal (HPA) axis to elicit
secretion of glucocorticoids. Indeed, optogenetic stimulation of HO neurons rapidly promotes
corticosterone secretion, elicits an aversive behavioral response, and this effect can be attenuated via
leptin pre-administration [39,40]. As glucocorticoids have pleiotropic effects on the immune system [41],
states of hyperarousal (e.g., anxiety, fear, panic, insomnia) can have real effects on peripheral physiology
relevant to cancer. Additionally, HO neurons innervate multiple autonomic output nuclei in the
brainstem, and are able to signal via the sympathetic nervous system (SNS) to alter the whole-body
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energy balance [42]. The disinhibition of HO neurons can promote hepatic gluconeogenesis and
increase circulating glucose concentrations via the SNS [43]. Therefore, HO neurons are situated to
receive signals from the periphery on energy balance and immune status, integrate these inputs, and
fire to adjust arousal state and metabolic function accordingly (see Figure 2).
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Figure 2. Discrete neural circuits integrate cancer-related neural and humoral signals arriving from the
periphery. Depending on the timing and salience of these inputs, changes in gene expression and firing
properties (e.g., spike timing) occur in an attempt to restore homeostasis. If this occurs chronically,
it can influence systemic physiology and behavior resulting in debilitating symptoms like sleep and
metabolic disruption.

2.2. Melanin Concentrating Hormone (MCH) Neurons

Co-mingled among HO neurons are cells identified based on their expression of melanin
concentrating hormone (MCH) [44]. MCH neurons are strongly active during REM sleep, somewhat
during NREM sleep, and are silent during wakefulness [45,46]. This pattern is reciprocal to that of
neighboring HO neurons. MCH knockout mice show REM sleep abnormalities, a reduction in NREM
sleep and an increase in wakefulness [47]. MCH-containing cells are also sensitive to signals arriving
from the periphery (e.g., glucose), as we discuss in subsequent sections, which give them a broader role
in the regulation of energy balance and feeding behavior. We were unable to detect changes in MCH
neural activity in a mouse model of non-metastatic breast cancer despite changes in sleep, however,
technical limitations may have prevented us from detecting changes happening in these neurons on
shorter timescales [10]. As there is evidence of inhibitory feedback between HO and MCH neurons
in vitro [48], this cross-talk may serve to support appropriate coordination of sleep/wake transitions
with the integration of signals of changes in systemic physiology.

As we discuss below, cognitive (including memory) impairments are prevalent in patients with
cancer, even prior to treatment initiation [49]. Kosse and Burdakov recently demonstrated that MCH
neurons are critical for encoding object location memories [50]. MCH neurons increase activity
(measured via GCaMP6s fluorescence) during novel object exploration. The closed-loop inhibition of
these neurons during natural object exploration prevented the formation of object location memories,
a process that is regulated by local inhibitory GAD65+ neurons in a GAD65→MCH circuit. As MCH
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neurons are sensitive to peripheral inputs (including glucose) that become deregulated in cancer, their
dysfunction may contribute to sleep and memory impairments experienced by patients with cancer.

2.3. VLPO GABAergic Neurons

Sherin and colleagues identified a group of sleep-active neurons in the ventrolateral preoptic
area (VLPO) that synapse onto histaminergic neurons in the tuberomammillary nucleus (TMN) [51].
These neurons contain the inhibitory neurotransmitters GABA and galanin, and innervate other
components of the ascending arousal system including the locus coeruleus (LC), the raphe,
periaqueductal gray, parabrachial nuclei, and the lateral hypothalamus (including HO neurons) [52].
Structurally, the VLPO is comprised of a dense core of sleep-active, galanin+ neurons that primarily
project to the wake-promoting TMN, surrounded by a more diffuse population projecting to other
targets like the dorsal raphe and LC [53]. Cell type specific lesion studies suggest that neurons within
the core are most closely associated with NREM sleep, and those in the extended VLPO are associated
with REM sleep, as destruction of these cells suppressed NREM and REM sleep by 50% or more,
respectively. Although they are intermingled with other neurons that do not show arousal-state
dependent changes in firing rate, VLPO ‘sleep-active’ neurons fire at about 1–2 Hz during wakefulness,
2–4 times faster during NREM sleep, even more frequently during NREM sleep following sleep
deprivation, and the fastest during REM sleep [54].

Like many other populations in the hypothalamus, VLPO neurons integrate physiological signals
that become deregulated in the context of cancer. For example, elevations in extracellular glucose
concentrations increases cFos expression in putative ‘sleep active’ VLPO neurons, without similar
changes in neighboring nuclei (e.g., LPOA, MPOA) [55]. The infusion of physiological concentrations
of glucose into the VLPO promotes NREM sleep, an effect that seems to be driven by closure of
potassium gated ATP channels (KATP). This suggests that multiple hypothalamic nuclei (both wake
and sleep-promoting) monitor changes in systemic energy balance to adjust arousal state. Logically,
cancer-induced changes in metabolism, immunity, or endocrine function likely disrupt sleep via the
promotion of aberrant activity within these neural populations (see Figure 1).

2.4. VTA

The ventral tegmental area (VTA) in the midbrain has only recently been linked to sleep and
sleep-related behaviors. Early reports suggested that both dopaminergic (DA) and GABAergic cells
within this region are maximally active during REM sleep, followed by wakefulness, and relatively
silent during NREM sleep [56,57]. Whether these neurons played an active role in regulating arousal
states, however, was unknown. In the last couple of years, advances in technology have allowed
researchers to determine that VTA-DA neurons are indeed most strongly active during REM sleep,
and activation of these neurons strongly promotes wakefulness through prominent projections to the
nucleus accumbens [54]. Notably, the chemogenetic silencing of these neurons caused mice to engage in
‘sleep preparatory behavior’, involving nest building, prior to sleep [58]. Co-mingled GABAergic and
glutamatergic neurons (VTA-GABA/Glut) also causally contribute to arousal state dynamics, via their
projections to the nucleus accumbens and lateral hypothalamus [59,60].

The VTA plays a critical role in motivation and goal-directed behaviors, processes that are
fundamentally coupled to arousal [61]. A component of cancer-associated fatigue is a reduced
motivation to complete everyday tasks (e.g., doing laundry, working, cooking) [62–64]. Although a
systematic investigation of this midbrain circuit in cancer is lacking, reduced dopaminergic output from
the VTA could underlie both reduced arousal and motivation in cancer-associated fatigue. Additionally,
although VTA neurons are not classically associated with the integration of peripheral physiological
signals, recent evidence suggesting that they are able to influence the systemic immunity may prove
important in developing novel therapeutics for cancer [65–67].
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2.5. Dorsal Raphe

Initial research suggested that serotonin (5HT) neurons in the raphe nuclei promote sleep,
as lesions of this area or 5HT depletion could cause an insomnia phenotype in cats and rats. Later,
it was shown that this effect was driven by the effects of 5HT on thermoregulation, as the insomnia
phenotype only emerged in cool, but not warm environments [68]. Now, it seems that evidence points
to a wakefulness-promoting role for 5HT, as it directly excites other wake-promoting circuits and SSRIs
(which increase 5HT concentrations) are generally wake-promoting. Indeed, the optogenetic activation
of 5HT neurons drastically increases wakefulness at the expense of NREM sleep [69], an effect that
may depend on the co-release of glutamate [70].

More recently, a role for dopaminergic signaling from the raphe has been implicated in sleep-wake
regulation. Indeed, dorsal raphe dopaminergic (DRN-DA) neurons (which are distinct from those
expressing 5HT) are activated by salient stimuli regardless of valence (i.e., positive, negative, neutral).
Further, they are most active during wakefulness, and optogenetic stimulation of these neurons rapidly
promotes wakefulness, while chemogenetic inhibition induces sleep even in the presence of salient
stimuli [71].

The raphe nuclei are sensitive to inflammatory insults originating in the periphery (e.g., cytokine
release by tumor-associated macrophages) [72–74]. Interleukin-1 signaling (primarily IL-1β), as we
discuss below, is a powerful sleep-modulatory molecule [75–78]. It interacts with many neural systems
to increase NREM sleep at the expense of REM sleep and wakefulness. IL-1 modulates the activity
of key arousal-related neural populations and fast neurotransmitter actions including cholinergic,
glutamatergic, monoamine, and adenosine functions. In the raphe nuclei, IL-1 inhibits 5HT signaling
by enhancing GABA-induced inhibitory post-synaptic potentials. It accomplishes this by recruiting
GABAA receptors to the cell surface, increasing chloride (Cl−) uptake, and delaying the potentiation of
GABA-induced Cl− currents. These effects can be inhibited by the co-administration of an IL-1 receptor
antagonist [1–4]. Systemic inflammation is an emerging hallmark of cancer and it is likely that changes
in circulating cytokine concentrations link cancer-associated immune activation with sleep and arousal.
This largely remains an open area for empirical testing.

2.6. LC Noradrenergic Neurons

The locus coeruleus (LC) powerfully promotes wakefulness. The arousal promoting properties of
these neurons are due to norepinephrine (NE) signaling onto post-synaptic targets throughout the
brain [79,80]. LC-NE neurons fire at approximately 1-3 Hz during wakefulness, have variable activity
during NREM sleep, and are silent during REM sleep. Importantly, these neurons participate heavily
in brain-body cross talk via the sympathetic nervous system. They receive signals on critical cues from
the periphery, including afferents from the cardiovascular system and nociceptors [81–85].

Reciprocally, the LC controls autonomic function via direct projections to the spinal cord and
indirect actions on autonomic nuclei including the nucleus ambiguous, dorsal motor nucleus of the
vagus, the rostroventrolateral medulla, the caudal raphe, salivatory nuclei, paraventricular nucleus,
the Edinger-Westphal nucleus, and the amygdala [86]. Through these projections, the LC increases
sympathetic tone and suppresses parasympathetic activity. Therefore, changes in LC activity result
in both the disruption of arousal states and changes in autonomic function associated with complex
patterns of neural activity across the brain.

3. Sleep Disruption in Patients with Cancer and Cancer Survivors

Sleep disruption is common across cancers, with the highest prevalence experienced by patients
with breast cancer [7,8,62,87,88]. Indeed, patients experience approximately double the rate of
sleep disturbances in comparison to the general population [89]. Treatment regimens (e.g., cytotoxic
chemotherapy, radiotherapy) can exacerbate these problems, which in some cases persist for many years
following treatment cessation [63,88]. Hypersomnia, insufficient sleep, along with sleep fragmentation,
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poor sleep efficiency, hot flashes and circadian misalignment all present (to varying degrees) throughout
many types of cancer. Classifying the prevalence and etiology of these problems remains challenging
and no common mechanisms have been delineated [90–92].

The most common problems related to sleep in breast cancer patients across a wide range of studies
using subjective and objective measures of sleep (actigraphy, questionnaires, and polysomnography) are
poor sleep efficiency (i.e., <85% time in bed spent asleep), frequent nocturnal awakenings (>15/night),
extended wake after sleep onset (WASO), and daytime sleepiness [88]. Tumor physiology itself likely
plays a role in the development of sleep disruption and cognitive deficits, which may explain why
symptoms are sometimes evident prior to starting treatment [49]. Another complicating factor is the
confusing nomenclature around related, but distinct phenomenon including fatigue, sleep disruption,
and excessive daytime sleepiness (EDS), which are all frequently reported as ‘feeling tired’. Fatigue
is hard to quantify as it is an ultimately subjective experience with no known biomarker, potentially
causing physicians to overlook or question the importance of fatigue in disease progression and
outcome [93]. For our purposes, fatigue distinguishes itself from other disorders of arousal in that it is
attributed to a physiological source (i.e., not related to subjective experience or mood), and is defined
as an overwhelming sense of tiredness and exhaustion that is not attenuated with subsequent sleep
or rest [94]. This lack of homeostatic rebound following sleep distinguishes fatigue from generalized
‘tiredness’.

Unfortunately, fatigue and sleep disturbances frequently occur along with other neuropsychological
symptoms including depression and cognitive impairment, which may either contribute to or be the
result of ongoing sleep disruption. A popular hypothesis that has gained substantial support is that
cancer- or chemotherapy-induced changes in sleep are driven by inflammatory mechanisms acting
at sleep/wake centers in the brain [95–97]. Indeed, circulating inflammatory cytokine concentrations
are associated with changes in fatigue and sleep quality in breast cancer patients undergoing
chemotherapy [98], and inflammatory cytokines can directly modulate sleep in humans. This provides
an attractive link between cancer, chemotherapy, and sleep [99–101]. However, significantly more
research is needed to identify the exact factors, how they interact with vigilance state circuitry in the
CNS, and how this ultimately causes changes in behavior and subjective feelings of arousal. Below, we
provide an overview of potential mechanisms underlying cancer-associated sleep disruption, primarily
focusing on humoral signals from the immune system and those relaying changes in energy balance to
the brain.

4. Immune Pathways Deregulated by Cancer that Influence Sleep

The tumor microenvironment, consisting of the surrounding blood and lymphatic vessels,
immune cells, fibroblasts, and extracellular matrix, performs an integral role in the development of
solid tumors [102]. Multiple cellular processes are required for the emergence of neoplastic tissue
and the progression to malignancies; namely, limitless replication potential, adequate growth signals,
insensitivity to growth-inhibitory signals, evasion of apoptosis, sustained angiogenesis, and ultimately
tissue invasion and metastasis formation [2]. Notably, inflammation can affect the majority of these
processes [103]. Virtually all tumors have some type of innate and adaptive immune cell infiltration.
This was originally thought of as a productive immune response to elicit anti-tumor effects; however,
more recent studies have demonstrated that the tumor associated immune response can instead enhance
tumorigenesis and progression [2,104,105]. Cancer cells can secrete leukocyte attracting chemokines,
such as C-C Motif Chemokine Ligand 2 (CCL2), CCL4, CCL5, CCL7, CCL8, and CCL20 leading to
an infiltration of tumor associated macrophages, neutrophils, T cells, and dendritic cells [105–107].
In turn, these leukocytes secrete growth factors that promote proliferation (e.g., hepatocyte growth
factor (HGF), epidermal growth factor (EGF), insulin-like growth factor (IGF), fibroblast growth
factor (FGF), platelet-derived growth factor (PDGF), and transforming growth factor beta (TGF-β)),
pro-angiogenic factors that increase nutrient supply (vascular endothelial growth factor (VEGF) and
basic fibroblast growth factor (bFGF), anti-apoptotic factors that prevent cell death (nuclear factor
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kappa-light-chain-enhancer of activated B cells (NF-κB)), enzymes that break down the extracellular
environment to enhance invasiveness and promote metastases (matrix metalloproteinases; MMPs
and cytokines that work to enhance all of the above include interleukin-1 (IL-1), interleukin-2 (IL-2)
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-4 (IL-4), interleukin-8 (IL-8),
interleukin-10 (IL-10), and TGF-β [2,103–111].

Tumor secreted cytokines and growth factors are not limited to the tumor microenvironment.
Once released, cytokines and growth factors can circulate throughout the body and propagate to the
brain via two main routes, humoral and neural [112–114]. Within humoral signaling there are multiple
pathways by which peripheral cytokines can be transduced into the brain. Cytokines can enter the
CNS through simple diffusion at circumventricular organs, which lack a fully functional blood brain
barrier (BBB), they can bind cytokine transporters at the BBB and be transported into the brain, and
they can bind cytokine receptors on endothelial cells that in turn release IL-1 and prostaglandins within
the brain parenchyma. The neural route consists primarily of signaling from vagal afferents arising
from the thorax and abdomen. These nerves express cytokine receptors that when activated result in a
neural signal to the brain. This neural signal can be propagated or transduced back into an immune
signal within the CNS. Once in the brain (via humoral and/or neural route), these cytokines activate
microglia, which propagate this signal leading to alterations in behavior and sleep. Further, microglia
can induce neurotoxic reactive astrocytes, which further amplify and propagate the inflammatory
signal to influence neural survival, axon conductance and myelination, stem cell differentiation, and
behavior [115–117].

5. Interleukin-1

IL-1β, IL-6, TNF-α, IL-4, IL-10, and TGF-β are among the most well studied cytokines known to
effect cancer initiation/progression and sleep [72,103,118,119]. IL-1β can be produced directly by tumors
or by tumor associated leukocytes [120]. High production of IL-1β by tumors is generally associated
with poor prognoses [121,122]. Within the tumor microenvironment, IL-1β acts as a pleiotropic
cytokine, increasing tumor growth and invasiveness via induction of MMPs, VEGF, IL-8, IL-6, TNFα,
and TGFβ [120]. primarily, through NF-κB signaling [103] Indeed, in a mouse model of melanoma,
IL-1β signaling was demonstrated to be necessary for in vivo angiogenesis and invasiveness [123].
As previously discussed, IL-1β is not restricted to the tumor microenvironment. It can signal to the
brain via passive diffusion at circumventricular organs, binding to IL-1R1 on endothelial cells at the
BBB, or by binding to IL-1Rs expressed on vagal afferents [114,124,125]. Once in the brain IL-1β can
act on a multitude of sites to affect behavior and sleep.

A central or systemic injection of IL-1β enhances both delta power (~0.5–4 Hz oscillations) during
NREM sleep and the duration of NREM sleep (i.e., it acts as a somnogen). Inhibition of IL-1β via via
administration of neutralizing antibodies or an IL-1β receptor antagonist reduced spontaneous NREM
sleep [126,127]. However, IL-1β

β’s effect on REM sleep seems to be time of day and dose dependent. Low levels of IL-1β have no
effect on the duration of REM sleep. However, high doses of IL-1β inhibits REM sleep [72]; further
supporting IL-1β’s role as sleep regulatory substance. IL-1β concentrations within the brain follow
a diurnal pattern, peaking when NREM sleep duration is greatest. Further, in response to sleep
deprivation, IL-1β expression within the brain is increased [128]. IL-1β can act on multiple sleep
nuclei. For example, microinjection of IL-1β into the dorsal raphe or locus coeruleus inhibits neural
activity and enhances NREM sleep [77,129]. Further, microinjections of IL-1β reduces the activity of
wake-promoting neurons in the basal forebrain and increases the activity of sleep promoting neurons in
the preoptic area [130]. IL-1β can further influence a variety of other molecules and neurotransmitters
that influence sleep (e.g., NF-κB, cyclooxygenase-2, nitric oxide (NO), adenosine, prostaglandins, and
GABA). For example, IL-1β increases NO production and administration of L-NAME, an inhibitor of
nitric oxide synthesis, reduces IL-1β induced NREM sleep [131]. Together, these data demonstrate that
IL-1β acts as a NREM sleep promoting molecule, which is under circadian and homeostatic control.
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6. Interleukin-6

Interleukin-6 is an inflammatory and pleiotropic cytokine, with tumor stimulating and inhibitory
effects [132,133]. IL-6 is commonly produced by a variety of cancer types including breast, lung,
liver, and prostate cancer and elevated serum IL-6 is generally correlated with poor outcomes in
cancer patients [134–137]. Within the tumor microenvironment, IL-6 is secreted by tumor associated
macrophages (TAMs), T-cells, fibroblasts, and malignant cells (i.e., cancer cells). Specifically, TAMs
secrete IL-6 to aid in tumor promotion, whereas, during tumor progression T-cells become the primary
source of IL-6 [103,138,139]. It is important to note that IL-6 signaling can occur via classical or
trans-signaling pathways [140]. During classical singling, IL-6 binds to the membrane bound IL-6
receptor which then binds to the glycoprotein 130 (gp130 subunit) and allows for signal transduction.
Classical signaling occurs in the liver and some leukocytes express membrane bound IL-6. However,
during trans signaling, the major signaling pathway used within the tumor microenvironment and
CNS, IL-6 binds in solution to a soluble Il-6 receptor (sIL-6R) which is secreted by cells. This IL-6/sIL-6R
complex can bind to gp130 expressed by most cells types and can induce IL-6-mediated signaling
in those cells. IL-6 secretion is induced by a multitude of factors, including lipopolysaccharides
(LPS), prostaglandins (PGE-2), hypoxia, oxidative stress, VEGF, TNFα, and IL-1β [132]. Once released,
IL-6 aids in tumor promotion and progression by activating major proliferative pathways (STAT3,
MAPK, and PI-3K), inhibiting many pro-apoptotic mediators (p53 and forkhead box (FOX) proteins)
via AKT signaling, and inducing the activation of anti-apoptotic genes (Bcl-2, Bcl-xL, and Mcl-1) via
STAT3. Indeed, studies have demonstrated that IL-6 and its downstream signaling transcription factor,
STAT3, are essential for the formation and progression of liver cancer, lung cancer, breast cancer, and
leukemia [141–144]. Furthermore, IL-6 production by cancer cells has detrimental effects such as
resistance to chemotherapeutics and eventual tumor relapse [145,146]. Similar to IL-1β, IL-6 is not
restricted to the tumor microenvironment. IL-6 signaling to the brain is thought to occur primarily
through humoral signaling as evidence of IL-6 signaling via the vagus nerve is scarce [147,148].

Interleukin-6′s role in sleep is not yet thoroughly understood. In humans, IL-6 plasma
concentrations follow diurnal rhythms. IL-6 is low during wakefulness and peaks during sleep [72,149].
Similar to IL-1β, sleep deprivation increases the amount of circulating IL-6 [150,151]. Subcutaneous
injections of IL-6 in humans increases slow wave sleep (defined as the total amount of stage III and
IV sleep) and reduces REM sleep [72,152]. However, animal models investigating the effects of IL-6
on sleep have produced conflicting results. Indeed, ICV injection of human recombinant IL-6 into
rabbits demonstrated a pyrogenic but not somnogenic effect [153]. However, ICV injection of rat
recombinant IL-6 into rats temporarily enhances NREM sleep followed by a subsequent reduction of
NREM sleep [154]. Furthermore, blocking IL-6 signaling via neutralizing antibodies had no apparent
effect on natural sleep [Interleukin-6 alters sleep of rats.]. Notably, the relationship between sleep and
IL-6 is not unidirectional. In humans sleep enhances IL-6 trans-signaling with little to no effect on
classical/membrane bound IL-6 signaling. Indeed, sleep greatly enhanced the concentrations of sIL-6R,
exceeding wake levels of sIL-6R by 70% at the termination of sleep [155]. This likely reflects sleep’s
support of immune defenses as there is an increasing amount of evidence demonstrating a positive
role for sleep in immunity [156,157]. Together, the data from human an animal models suggest that
IL-6 influences sleep in a time-of-day and dose-dependent manner.

7. Tumor Necrosis Factor

Tumor necrosis factor is a proinflammatory cytokine with pro- and anti-tumor effects. In fact,
TNF was first isolated in 1975 by Carswell and colleagues while studying the hemorrhagic necrosis
of tumors [158]. The authors demonstrated that TNF-positive serum is just as effective as endotoxin
in promoting necrosis in a variety of tumors. The authors postulated that macrophage derived
TNF mediated the anti-tumor effects. Additional studies using high doses of TNF replicated TNF’s
anti-tumor effects. Indeed, exogenous administration of human recombinant TNF to mice induced
necrosis in xenografted and syngeneic tumors [159–161]. However, to be effective TNF had to be
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injected repeatedly and locally. Upon further investigation, administration of exogenous recombinant
TNF of the same species (i.e., recombinant mouse TNF to mice) produced severe toxicity [162]. It was
initially believed that TNF mediated anti-tumor effects via direct cytotoxic or cytostatic actions on
malignant cells. However, this was later demonstrated to be incorrect as TNF can promote resistance
and resilience in cytotoxic conditions [163]. Additional evidence supporting TNF’s pro-tumor role
came from studying TNF-KO mice. Moore and colleagues demonstrated that mice lacking TNF treated
with a skin carcinogen actually developed fewer rather than more tumors [164]. Substantial evidence
has accumulated demonstrating TNF’s pro-tumor effects in animal models [161]. Within the tumor
microenvironment, TNF is produced by tumor associated macrophages and is constitutively produced
in cancer cells [165,166]. Through activation of NF-κB, TNF can induce the expression of a variety
of pro-tumor genes including MMPs, COX2, and VEGF. Further, activation of NF-κB promotes cell
survival through its anti-apoptotic actions [167]. More recent evidence suggest that TNF can bind to
TNF receptor 2 (TNFR2) expressed predominately on regulatory T-cells (Tregs) to suppress anti-tumor
immunity [168,169]. As expected, TNF is not restricted to the tumor microenvironment and can signal
to the brain via humoral routes. Indeed, studies have demonstrated that TNF can be transported across
the BBB, where the inflammatory signal is further propagated across the brain parenchyma [170,171].

Tumor necrosis factor has a well demonstrated somnogenic effect. In humans, plasma
TNF concentrations correlate with EEG slow wave activity [172]. Additionally, studies in rats
have demonstrated diurnal rhythms in TNF concentrations within the hypothalamus, with peak
concentrations observed during sleep [173,174]. TNF’s ability to promote NREM sleep was first
described by Shoham and colleagues [175]. They observed that the administration of human
recombinant TNF to rabbits via IV or ICV injection enhanced slow wave sleep with concurrent
reductions in REM sleep and biphasic fevers. Additional studies suggest that TNF can also enhance
slow wave sleep in rats and mice [176,177]. Increases in NREM sleep following TNF administration is
generally accompanied by concurrent reductions in REM sleep; however, low dose administration of
TNF to mice does not affect REM sleep. Similar to IL-1, TNF can act on multiple sites within the brain
to enhance sleep. For example, microinjection of TNF into the preoptic area in rats increases NREM
sleep [177]. Further, the administration of sTNFR fragment into the preoptic area reduces NREM sleep.
TNF can also act on wakefulness promoting regions; specifically, elevations in TNF concentrations
decreases the mRNA half-life and enhances protein ubiquitination and subsequent degradation of
wake-stabilizing hypocretin-1 and hypocretin-2 (discussed above) [178]. Additionally, microinjections
of human recombinant TNF into the locus coeruleus of rats enhanced sleep; this effect was blocked
by pre-treatment with polyclonal antibodies against TNF [179]. Furthermore, infusions of TNF into
the subarachnoid space near the rat basal forebrain increased slow wave sleep and reduced REM
sleep [180]. Similar to IL-1, TNF can have indirect effects on sleep through the activation of downstream
molecules such as COX or NO [181]. Co-infusion of TNF and a non-selective cyclooxygenase (COX)
inhibitor or pretreatment with a COX-2-specific inhibitor into the subarachnoid space near the rat basal
forebrain blocked TNF-mediated increases in slow wave sleep. Together, these data demonstrate that
TNF is a somnogenic cytokine that increases NREM sleep at the expense of REM sleep and wakefulness.

8. Transforming Growth Factor Beta, Interleukin-4, and Interleukin-10

TGFβ, IL-4, and IL-10 are anti-inflammatory pleiotropic signaling molecules that are involved in
critical functions during tumor promotion and progression. The role of these signaling molecules as
tumor promoting or tumor suppressing are still being debated, as these signaling proteins display
differential effects during the early and late stages of tumor development. For example TGFβ early
in tumor development is associated with a better prognosis due to its effects on cell cycle arrest
and apoptosis [182]. However, later-stage tumors with high TGFβ concentrations are associated
with increased aggressiveness and more metastasis [183]. TGFβ is produced by malignant cells and
macrophages in order to increase angiogenesis via the upregulation of VEGF and bFGF, suppress the
immune system via multiple steps (driving T-helper cells and macrophage polarization towards a
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Th2 and M2 phenotype, increasing activation of T-reg cells, and reducing cytotoxic activity of CD8+

T-lymphocytes and natural killer cells), and promote metastases via the activation of signaling proteins
(Smads) necessary for epithelial to mesenchymal transitions [118].

Similar to TGFβ, IL-10 and IL-4 have dynamic effects on tumor promotion and progression.
For example, elevated concentrations of systemic IL-10 are associated with a poor prognosis,
but paradoxically, high levels of tumor IL-10 are associated with a better prognosis [184]. Additionally,
studies examining IL-4 concentrations in the blood of breast cancer patients before starting treatment
demonstrate a correlation between IL-4 and subsequent mortality [185]. Other studies examining IL-4′s
role in prostate cancer suggest that serum IL-4 concentrations are elevated in patients with benign
prostatic disease [186], and IL-10 and IL-4′s pro tumor effects likely reflect their immunosuppressive
properties. However, these same properties can result in paradoxical anti-tumor effects as well.
Thus, the actions of IL-10 and IL-4 on tumors are varied and are still a subject of ongoing
investigation (see [187–189]). Few studies have examined the ability of IL-10 and TGFβ to be
transported across the blood brain barrier (BBB) demonstrate no active transport across a normal intact
mouse BBB [190]. Additionally, to our knowledge no study has examined the ability of IL-4 to be
transported across the blood brain barrier [191]. Thus, any peripheral to brain signaling likely occurs
at circumventricular organs.

Contrary to IL-1 and TNF, IL-4, TGFβ, and IL-10 reduce sleep [181]. Indeed, ICV administration
of IL-10 or IL-4 to rabbits during the light phase (rest phase) inhibited NREM sleep [192,193]. High
doses of IL-10 (250ng) or IL-4 (250ng) administered to rabbits during the light phase inhibited NREM
sleep and significantly decreased REM sleep. However, the administration of IL-10 or IL-4 during
the dark phase had no effect on sleep. Similar studies examining the effects of IL-10 on sleep have
replicated these finding in rats [194]. Further, studies examining TGF-β’s role in sleep suggest it has
similar effects on sleep. ICV administration of TGF-β to rabbits during the light phase reduced NREM
sleep but had no effect on REM sleep. Despite this, administration of TGF-β during the dark phase
had no effect on sleep [195]. The mechanism by which IL-4, TGFβ, and IL-10 reduce sleep has not been
elucidated. However, previous studies have postulated that these anti-inflammatory cytokines reduce
sleep by inhibiting the production of IL-1 and TNF, powerful sleep-promoting components of the
immune system. Together, these studies demonstrate that IL-4, TGFβ, and IL-10 are anti-somnogenic
cytokines and that their sleep inhibitory properties depend on dose and time of day.

9. Cancer, Energy Balance, and Sleep

While cytokines secreted by the tumor or tumor microenvironment are a rather obvious mechanism
by which peripheral tumors can alter sleep, they are not the only mechanism. Tumors can also affect sleep
through alterations in metabolism and subsequent energy balance. For example, recent studies have
demonstrated that tumors can directly secrete ghrelin to aid in metastasis and cell proliferation [196].
Ghrelin is a peptide hormone typically produced in the stomach and brain to induce food intake and
stimulate growth hormone secretion. Ghrelin is produced in two forms: acyl-ghrelin, the “active
form” that serves as the endogenous ligand for the growth hormone secretagogue receptor (GHSR),
and des-acyl ghrelin, the inactive form that does not activate the GHSR receptor and does not induce
GH release from the pituitary [197]. It is important to point out the “inactive” form of ghrelin is a
misnomer; des-acyl ghrelin has known signaling effects [198–200]; however the receptor that des-acyl
ghrelin binds to induce downstream signaling is currently unknown. Ghrelin and its receptor GHSR
are expressed in a multitude of cancers including breast, ovarian, prostate, pancreatic, oral, gastric,
and colorectal cancer [196]. The effect of ghrelin and des-acyl ghrelin are varied and cancer specific.
For example in human prostate cancer cell lines, ghrelin and des-acyl ghrelin inhibited cell proliferation
in the DU-145 cell line but had no effect on LNCaP cells [198]. However, in other prostate, breast, and
endometrium cell lines, ghrelin stimulates cell growth [201]. Additionally, the relationship between
ghrelin expression and outcome in cancer patients is complex and still being elucidated. In breast
cancer patients, ghrelin has been associated with favorable outcomes in recurrence and survival [202].
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Whereas, in renal cell carcinoma ghrelin is associated with poor outcomes and survival [196]. Ghrelin
actively crosses the blood brain barrier in humans and mice [203]. However, notably, des-acyl ghrelin
crosses the BBB to a much greater extent in mice. In contrast, in humans, des-acyl and acyl ghrelin
cross the BBB at equivalent rates. Similar to the effects on tumor growth and metastases, the effects
of ghrelin on sleep are complex and at times contradictory. Intravenous ghrelin injections in rats
and mice increase NREM sleep [204–206]. However, ICV injections in ad libitum-fed and fasted rats
reduces NREM sleep [207]. Additionally, human data demonstrate further contradictions with elevated
ghrelin concentration associated with short sleep durations; whereas the administration of ghrelin
to humans increase NREM sleep [208,209]. Further additional studies demonstrate increased ghrelin
concentrations in humans that have been sleep deprived [210]. The mechanisms by which ghrelin can
inhibit sleep or promote sleep have not explicitly been tested. However, ghrelin can act on hypocretin
neurons to increase their activity and this may explain the inhibition of sleep [211]. Additionally, as
previously discussed, the systemic injection of ghrelin in mice increased sleep; however, this effect
was abolished in mice lacking functional GHRH receptors, suggest ghrelin may be acting via GHRH
receptors to promote sleep [206]. Together, these studies demonstrate a highly complex and at times
contradictory effect of ghrelin on sleep. This complexity and contradictions are likely due to different
routes of administration, the varying forms of ghrelin, and the multiple endogenous receptors of
ghrelin and des-acyl ghrelin can bind.

Leptin is an additional metabolic hormone with direct effects on cancer and sleep. Leptin’s role
in non-diseased animals is to function as a satiety signal and increases energy expenditure; thus,
opposing ghrelin’s actions [212]. Leptin is produced via adipocytes and can signal via its receptor
Ob-R. In general leptin is considered to be beneficial for tumor promotion and progression due to its
shared signaling pathway with IL-6 (see above) [213]. Leptin’s receptor Ob-R is an IL-6 family receptor;
thus, binding of leptin to its receptor induces the similar signaling cascade as IL-6 signaling [214].
Additionally, leptin can directly increase the production of IL-6 and TNF-α [215]. Leptin and/or its
receptor have been confirmed in breast, colorectal, prostate, pancreatic, ovarian, and lung cancer [213].
Typically, leptin is associated with increased cell proliferation in cancer. However, there are studies
demonstrating decreased cell proliferation in pancreatic cancer [216]. Additionally, high serum leptin
levels have been associated with increased risk of breast and colorectal cancer [217–219]. Leptin crosses
the blood brain barrier via a saturable system and may interact directly with sleep nuclei [220]. Similar
to ghrelin, the effects of leptin on sleep are unclear and still under investigation. In humans leptin
levels demonstrate a diurnal rhythm peaking during sleep [221] and short sleep duration is associate
with reduced leptin levels [209,222,223]. Intraperitoneal administration of leptin to rats increased
delta power and slow-wave sleep with concurrent reductions in REM sleep [224]. However, Laposky
and colleagues examined sleep in leptin receptor deficient mice and demonstrate increased overall
sleep time, increased sleep fragmentation, and alterations in delta power [225]. The mechanism by
which leptin alters sleep/wake states has not been thoroughly investigated. However, leptin excites
hypothalamic neurons expressing the long-form leptin receptor (LepRb), which synapse directly onto
inter-mingled hypocretin/orexin neurons [39]. Significant work is still needed to understand leptin’s
role in sleep and its underlying circuitry.

Other less defined mechanisms by which cancer may affect sleep include changes in glucose
concentrations in the blood, amino acids concentrations in the blood, and pH levels. The metabolic
requirement for cancer cells is immense; thus, cancer cells require high glucose levels and increase
the demand for amino acids in order to maintain consistent proliferation. Indeed, tumors consume
extreme amounts of glucose relative to healthy tissues and require exogenous and/or de novo supply of
amino acids [226,227]. Intriguingly, amino acid content and blood glucose levels increase in the serum
to meet the energetic demands of the tumor [228–230]. Additionally, acidosis (an overproduction of
acid) is an hallmark of tumors to increase invasiveness, drug resistance, and proliferation [231,232].
This is thought to occur due to the high rate of glycolysis and reduced functional vasculature within
the tumor. Notably, alterations in glucose, amino acids, and pH can affect sleep nuclei within the
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brain. Elevations in glucose inhibit hypocretin neurons via tandom-pore potassium channels [233].
Conversely, hypoglycemia increases hypocretin neuron activity [234]. Additionally, glucose can act to
increase the activity of MCH neurons in the lateral hypothalamus [235]. Amino acids stimulate the
activity of hypocretin neurons; indeed Karnani and colleagues demonstrated increased cFos expression
in hypocretin neurons following peripheral and central administration of physiological mixtures of
amino acids [236]. Further, hypocretin neurons are sensitive to changes in pH; specifically, reductions
in pH increase the activity of hypocretin neurons [237]. Alterations in glucose concentrations, amino
acid dynamics, and pH have not been examined with respect to cancer induced sleep alterations, and
offer an exciting avenue for future research.

10. Preclinical Research

Despite the prevalence and severity of sleep problems in patients with cancer and cancer survivors
(see prior sections), few mechanistic studies aimed at understanding this phenomenon have been
conducted. Below, we discuss several examples linking cancer-induced changes in physiology to arousal
circuitry in the brain. Focusing on the lateral hypothalamus, hypocretin/orexin (HO) neurons have been
linked to the development of sleep and metabolic abnormalities in a mouse model of non-metastatic
breast cancer [10]. Using female Balb/C mice and syngeneic mammary tumor cells (67NR, 4T1, 4T07),
the authors demonstrated that peripheral tumor growth promotes systemic inflammation, largely
driven by interleukin-6 (IL-6). Tumor-bearing mice exhibited phenotypes consistent with classical
IL-6 signaling (hepatic), including pSTAT3 induction, socs3, il1r1, il6ra, and ccl2 gene expression
changes. This was accompanied by drastic changes in gluconeogenesis/glycolysis pathway gene
expression, hyperglycemia/insulinemia, reduced locomotor activity, sleep fragmentation, and altered
satiety hormone (leptin/ghrelin) signaling.

When the brains of these mice were examined, HO neurons in the LH, which are sensitive to
glucose, leptin, and ghrelin, were found to be aberrantly active. As we discussed above, cancer and
cancer-related systemic inflammation is thought to drive sleep disruption and fatigue [95,97], however
this had not been formally tested in a preclinical model. To test whether IL-6 was promoting changes
in sleep, the researchers administered anti-IL-6 monoclonal antibodies (mAbs) or the IgG isotype
control to tumor- and non-tumor bearing mice. This successfully attenuated measures of inflammation
(reduced pSTAT3, socs3, il1r1 expression), but was unable to rescue tumor-induced changes in sleep or
glucose processing.

However, when mice were administered a dual hypocretin receptor antagonist (Almorexant),
both measures of peripheral metabolic disruption and sleep fragmentation were attenuated. This was
accompanied by increased NREM spectral power in the delta band, indicative of deep, restorative
sleep. If HO neurons are signaling to the periphery to influence glucose metabolism, how is that
signal propagated from the brain? A likely pathway is through the sympathetic nervous system
(SNS), as HO neurons send projections to diverse autonomic output nuclei in order to influence
systemic physiology [42,43]. Indeed, when peripheral sympathetic nerve terminals were ablated using
intraperitoneal injections of the neurotoxin 6-hydroxydopamine (6-OHDA), tumor-bearing mice no
longer showed hyperglycemia, or the aberrant expression of genes involved in gluconeogenesis and
glycolysis. These data demonstrate a bidirectional communication pathway between tumors in the
periphery and the brain, with signals being relayed by endocrine, metabolic, and sympathetic pathways.
Additionally, these data suggest that dual hypocretin receptor antagonists (e.g., Suvorexant; Belsomra)
need to be assessed as potentially novel therapies for sleep and metabolic disruption in cancer.

This study built upon prior work indicating that lung adenocarcinoma itself is able to distally
alter hepatic circadian gene expression [238]. Masri and colleagues demonstrated that lung tumors
similarly promote hepatic IL-6 signaling, leading to aberrant rhythms in gluconeogenesis/glycolysis
gene expression in the liver. However, no evidence was presented indicating that tumors deregulate
homeostatic signaling in the brain, or any specific action on discrete neural populations (such as HO).
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Recently, HO neurons have been linked to sleep fragmentation-induced cardiovascular
disease [239]. McAlpine and colleagues demonstrated that chronically fragmented sleep drastically
reduces the number of lateral hypothalamic HO neurons, a phenotype associated with atherosclerosis
development. To delve into the mechanism linking the brain to changes in peripheral vascular
physiology, they examined hematopoietic cell populations in the bone marrow. Here, they discovered
a subset of pre-neutrophils that express hypocretin receptor 1 (Hcrt-R1). Importantly, these cells secrete
the critical molecule colony stimulating factor 1 (CSF1), which promotes the egress of myeloid cells from
the bone marrow into circulation. Sleep-disruption induced impairments in these functions (via Hcrt-R1)
resulted in downstream immune dysregulation and the development of atherosclerosis. Whether a
similar mechanism could explain the association of poor sleep with cancer development [8,240] remains
to be determined. Importantly, this experiment directly linked arousal circuitry with hematopoiesis
and systemic immunity via Hcrt-R1.

Inflammatory signaling likely lies at the nexus of brain-tumor cross-talk, with effects relevant to
sleep. Additionally, sleep apnea, a disease characterized by chronic sleep fragmentation and systemic
inflammation, has been continuously linked to cancer development [241,242]. For example, chronic
sleep disruption accelerates tumor growth and progression in multiple mouse models [11]. Hakim
and colleagues examined interactions between sleep, immunity, and cancer using multiple syngeneic
cancer models. Mice undergoing the sleep disruption protocol had higher numbers of tumor associated
macrophages (TAMs) and engagement of TLR4 signaling pathways, suggesting an inflammatory
mechanism. They tested whether inflammatory signaling is necessary for this effect using TRIF and
MyD88 knockout mice, where sleep fragmentation-induced cancer growth was blunted, but still
occurred. In TLR4 knockout mice however, the effect of sleep fragmentation on tumor progression
was completely abolished. Further studies are needed to examine the reciprocal pathway, that is,
to determine how the tumor itself influences sleep through these inflammatory mechanisms.

Stress circuits are also play a key role in energy mobilization and arousal. Recent research
has provided substantial evidence on how psychological or metabolic stress influence cancer
growth. For example, Thaker, Sood & colleagues demonstrated that psychosocial stress enhances
tumor progression in several animal models through promotion of glucocorticoid and andrenergic
signaling [243–245]. In vitro, several ovarian cancer cell lines (EG, SKOV3, 222, and HeyA8) became
more invasive upon exposure to norepinephrine alone or in combination with glucocorticoids.
This effect was driven (in part) via the induction of MMPs, which serve as essential regulators
of angiogenesis and tissue remodeling. Inhibition of adrenergic signaling or MMP action was
able to prevent the observed increase in invasiveness. When tumor phenotypes were examined
in vivo, behavioral stress (restraint) enhanced tissue catecholamines, angiogenesis, tumor mass, and
invasiveness (orthotopic syngeneic ovarian cancer model). Again, these effects were dependent on
adrenergic signaling (via the β2-adrenergic receptor). Downstream signaling at this receptor engaged
cAMP-protein kinase A (PKA) pathways, resulting in the transcription of genes integral in angiogenesis
and tissue remodeling (VEGF family and MMPs). As psychological stress predictably interacts with
arousal circuitry (resulting in anxiety and insomnia), therapeutic approaches (pharmacological and/or
behavioral) to reduce stress and improve sleep could significantly boost the effectiveness of traditional
cancer therapies.

Independent of psychological factors, metabolic stress induced by cancer-induced changes in
energy balance can promote aberrant glucocorticoid signaling which suppresses anti-tumor immunity.
Fearon and colleagues demonstrated that inflammation (IL-6) alters ketogenesis pathways in the liver,
leading to glucocorticoid secretion, impaired anti-tumor immunity, and failure of immunotherapy
(anti-PD-1/anti-PD-L1) [246]. Obradović and colleagues further demonstrated that breast cancer thrives
on stress, as glucocorticoids promote tumor cell heterogeneity and metastatic seeding [247]. Importantly,
this suggests that caution must be taken when using glucocorticoid-based anti-inflammatory drugs.

Disrupted glucocorticoid secretion pattern is consistently observed in multiple cancer types,
and can be used to predict subsequent mortality [4,6]. As glucocorticoid action is controlled
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by interactions between central and peripheral circadian clocks (in the suprachiasmatic nucleus,
pineal and adrenal glands), circadian and/or sleep-targeted therapies could greatly aid in anti-cancer
immunity and promote the success of cancer immunotherapy [248,249]. Additionally, stress- and sleep
disruption induced adrenergic signals from the sympathetic nervous system (which are predominantly
pro-tumorigenic) are also under circadian control, an aspect that could be leveraged to improve
treatment effectiveness and limit side effects.

As we alluded to earlier, the ventral tegmental area is involved in the regulation of wakefulness,
motivation, and reward. It has also recently been implicated in tumor growth and progression.
This connection was probed with designer receptors exclusively activated by designer drugs
(DREADDs; chemogenetics). Adeno-associated viruses (AAVs) carrying cre-dependent excitatory
DREADD transgenes (AAV-DJ-EF1a-DIO-hM3Dq-mCherry) were infused into the ventral tegmental
area of tyrosine hydroxylase::Cre (TH::Cre) mice, allowing for specific transgene expression only
in dopaminergic VTA neurons. Using this approach, Rolls and colleagues demonstrated that
chemogenetic activation of VTA-DA neurons enhanced both innate and adaptive immunity 24 h
post-CNO administration [65]. When this manipulation was repeated throughout the course of
tumor growth (LLC or B16 syngeneic cells), VTA-DA ‘activated’ mice had smaller tumors and altered
immune systems characterized by reductions in tumor associated myeloid derived suppressor cells
(MDSCs) [66]. VTA activation promoted sympathetic (norepinephrine-mediated) inhibition of MDSCs
in the bone marrow, which normally act to suppress anti-tumor immunity. Finally, adoptive transfer of
‘VTA-activated’ MDSCs into naïve mice recapitulated the anti-tumor effect of DREADD activation.
These exciting findings need to be more thoroughly investigated, but they suggest that discrete
subcortical neural populations are able to influence anti-tumor immunity via the sympathetic nervous
system. In combination with findings involving HO neurons (discussed above), this links arousal
circuitry to both anti-tumor immunity and systemic energy balance.

Prior research suggests that chronic circadian disruption (e.g., via shift work, trans meridian flight)
is associated with the development and progression of a variety of cancer types in both humans and
rodent models [3,250–252]. In a proof-of-principle experiment, van Dycke and colleagues demonstrated
that chronic circadian disruption (through repeated inversions of the light/dark cycle) accelerated
spontaneous breast tumor development in a mouse model of breast cancer reflecting Li-Fraumeni
syndrome [253]. Using cre-dependent p53 deletion, researchers were able to restrict primary cancer
formation to mammary epithelial cells (WAP-Cre::p53fl/fl). In this model, mice normally develop breast
tumors spontaneously around 35 weeks of age. When exposed to the circadian disruption paradigm
for many weeks, which significantly disrupts behavioral rhythms and sleep/wake dynamics, they
developed tumors ~8 weeks sooner (~17% earlier) than littermates that were not exposed to the L/D
inversion protocol. This study was the first to provide causal evidence linking light-induced circadian
disruption and spontaneous tumor development in mice. Whether the tumors themselves further
exacerbated sleep/circadian disruption remains to be determined. However, the use of a ‘human like’
transgenic model in this study is a significant step above the syngeneic models we discuss previously,
which are sometimes described as an intermediate step between cell culture and cancer models (also
known as ‘animal culture’) [254].

Building on these findings, Papagiannakopoulos and colleagues examined the influence of genetic
and environmental circadian disruption on tumor development in a model of lung cancer [255].
The researchers used this model (K-rasLSL-G12D/+;p53flox/flox (KP) mice) to see the effects of a jet-lag
circadian disruption schedule on tumor growth, metabolism, and proliferation. Upon cre-mediated
recombination, chronic jet-lag enhanced tumor growth, energy consumption, and proliferation.
A nearly identical phenotype emerged when the mode of circadian disruption was via genetic deletion
of core clock genes Per2 and Arntl1 in tumor cells (using KrasLA2/+ mice to model spontaneous lung
cancer development). Cells lacking these clock genes were highly proliferative in culture and more
sensitive to transformation than cells with an intact clock. Additionally, Per2 deficient cells drastically
altered their energetic profiles and metabolic signature, secreting substantial amounts of the energy
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substrates glucose, lactate, and glutamine. When the authors examined human patient tumor samples,
they observed significant reductions in the expression of nearly all core clock components (except for
clock), suggesting that circadian disruption in cancer is conserved in humans. Using behavioral sleep
strategies (e.g., cognitive behavioral therapy (CBT) for insomnia) or circadian treatment modalities
(e.g., light therapy) may aid cancer elimination by enforcing rhythmic clock gene expression.

As we discussed previously, cancer-induced changes in energy balance are enacted in order
to sustain proliferative growth and meet metabolic demand [2]. Otto Warburg was the first to
systematically describe how tumors drastically alter their energy production strategies (i.e., rely on
glycolysis rather than oxidative phosphorylation; Warburg Effect) [256–258]. In many cancers, this
results in the accumulation of inflammatory molecules and metabolic ‘waste’ from the tumors, which
can influence systemic physiology. For example, cancer-induced elevations in circulating lactate can
influence the activity of neurons involved in energy balance and food intake, including agouti-related
protein (AgRP) neurons in the arcuate nucleus of the hypothalamus [259,260]. Tumor derived lactate
influences food intake via its actions on the adenosine monophosphate kinase/methylmalonyl CoA
(AMPK) signaling pathway within the hypothalamus, but it does not seem to be sole responsible for
cancer-induced anorexia/cachexia [259]. How tumor-induced changes in circulating lactate influences
the activity of arousal-related neural populations is completely undescribed and could lead to an
understanding of the interplay between tumors, immunity, metabolism, and sleep disruption.

More recently, several studies have implicated calcitonin-gene related peptide (CGRP)-expressing
neurons in the parabrachial nucleus (PBN) in general arousal, CO2 sensing, and cancer-associated
cachexia/anorexia. Activation of these cells promotes rapid arousal from sleep, and they play a
major role in the awakening effect of hypercapnia to putatively protect the sleeper from getting
inadequate oxygen [261]. Using a mouse model of cancer cachexia/anorexia, Schwartz and colleagues
investigated CGRP neural activity and its relation with food intake and metabolic state during tumor
progression [262]. In anorexic mice harboring cancer, CGRP neurons were aberrantly and constitutively
active, a phenotype that usually emerges after eating a large meal to signal meal termination [263].
This suggests that normal homeostatic mechanisms regulating food intake and energy balance become
deregulated by cancer, driving debilitating side effects like anorexia/cachexia and fatigue. Inhibition of
PBNCGRP neurons using cre-dependent tetanus toxin normalized food intake in tumor-bearing mice,
which was associated with improvements in downstream signaling pathway function in the oval
subnucleus of the bed nucleus of the stria terminalis (ovBNST; also called the extended amygdala)
and central amygdala (CeA). A similar rescue phenotype was observed when cellular inhibition was
achieved using DREADDs (hM4Di), suggesting that the improvements were not due to destruction
of these cells, but through their inhibition and downstream normalization of output. Further work
is needed to examine pre-synaptic partners of these neurons (including the hunger-inducing AgRP
neurons in the arcuate nucleus), and how they become deregulated in the context of cancer and/or
cancer treatment.

11. Conclusions and Unanswered Questions

Advances in technology (e.g., calcium imaging, optogenetics) that allow for the manipulation and
monitoring of neural circuitry has shed new light on how cancer-induced changes in physiology are
communicated to the brain. Depending on the timing and valence of these inputs, distinct subcortical
circuits (e.g., hypocretin/orexin) respond by altering their activity in an attempt to restore homeostasis.
As a consequence, cancer-associated co-morbidities develop, including sleep/circadian disruption,
systemic inflammation, metabolic reorganization, and anorexia/cachexia [1]. As many of these circuits
reciprocally contribute to systemic physiology (e.g., VTA-DA neurons), understanding how these
pathways operate in the context of cancer will undoubtedly lead to new therapeutic targets for cancer
inhibition and elimination.

Essential questions regarding brain-cancer crosstalk still remain unanswered. Specifically, three
broad areas need to be addressed: (1) What metabolites, cytokines, or other signals become deregulated
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in cancer and reach the brain?; (2) How do these (and neural) inputs influence the activity or
connectivity of the brain; and (3) How do cancer-induced changes in neural dynamics contribute to
changes in physiology and behavior? Beyond these, understanding the heterogeneity of tumor-brain
communication with respect to cancer types and stages will need to be addressed in order to develop
targeted and generalizable treatment strategies.

The targeted stimulation of specific nuclei/subnuclei that become deregulated by cancer is a
potential avenue for overcoming resistance to established anti-cancer therapies (e.g., immunotherapy).
Data on how central neural stimulation influences peripheral physiology is sorely needed to understand
how brain-centered therapies could augment anti-cancer immunity. As we discussed above, the
enhancement of midbrain dopaminergic signaling (via Gq-coupled DREADDs) alters both innate and
adaptive immunity, leading to tumor suppression via sympathetic modulation of myeloid-derived
suppressor cells in the bone marrow [65,66]. Expanding this approach to other nuclei will allow us to
construct a neuroimmune effector map that we can manipulate to enact specific changes in hematopoiesis
and physiology critical for anti-tumor immunity. In humans, deep brain stimulation of the subthalamic
nuclei safely and reversibly promotes sympathetic activation, with putative enhancements in immune
responses [264]. Advancements in non-invasive neuromodulation techniques (e.g., ultrasound) will
allow unobstructed access to immunologically-relevant circuits. Although beyond the scope of
this review, we appreciate that a variety of hormones and reactive oxygen/nitrogen species may
influence brain-tumor cross-talk. Further work should focus on these interactions in tandem with
other physiological signals. Additionally, behavioral therapies that promote positive and rewarding
experiences (e.g., engaging dopaminergic signaling, reducing stress) can be designed to facilitate cancer
suppression [265,266].

Cancer-induced changes in energy balance offer an opportunity to modulate relevant neural
circuits (e.g., AgRP, POMC, HO) to not only improve quality of life, but reduce energy availability to
the tumor. As we discussed above, the inhibition of HO signaling rescued metabolic abnormalities
and enhanced sleep in a mouse model of non-metastatic breast cancer [10]. Further, the inhibition of
aberrant parabrachial nucleus CGRP neural activity greatly improved measures of anorexia/cachexia
and fatigue in a mouse model of lung cancer [262]. Beyond direct neuromodulation, repurposing
drugs that influence food intake, appetite, and energy balance (e.g., metformin) provides attractive
approaches for adjuvant cancer therapy [267].

Cancer chronotherapy, which takes advantage of circadian rhythms in metabolism and
detoxification, allows treatment to be administered at times that coincide with peak effectiveness and
the lowest for potential side-effects [268,269]. Indeed, research has demonstrated that chronotherapy
can significantly limit liver toxicity and inflammation in response to chemotherapeutics like
cyclophosphamide and doxorubicin [253,270]. Efforts have turned to the development of novel
clock enhancing molecules (CEMs) that can phase-advance, delay, or increase the amplitude of
circadian rhythms. Nobiletin, a flavinoid found in citrus peel, acts to increase the amplitude of
circadian oscillations in a dose-dependent manner [271]. As discussed previously, blunted circadian
rhythms in physiology and behavior are strong predictors of mortality in cancer [4,6], suggesting that
boosting circadian amplitude could promote survival. Indeed, nobiletin administration is sufficient to
halt lung, breast, ovarian, and colorectal cancer progression in multiple mouse models [272–275], and
patents have been issued for the use of nobiletin in the treatment of cancer [276]. Combining CEMs
with chronotherapy offers a powerful approach to treat cancer with limited or negligible side-effects.
Pursuing these avenues of research will help us to develop anti-cancer treatments and will also lead to
basic discoveries relevant to brain-body cross-talk.
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5HT Serotonin
AKT Protein kinase B
BBB Blood brain barrier
Bcl-2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra large
bFGF Basic fibroblast growth factor
CCK Cholecystokinin
CCL C-C motif chemokine ligand
COX2 Cyclooxygenase-2
CRF Corticotropin releasing factor
CRFR1 Corticotropin releasing factor receptor 1
DR Dorsal raphe
EEG Electroencephalogram
EGF Epidermal growth factor
EMG Electromyogram
FGF Fibroblast growth factor
GABA Gamma-Aminobutyric acid
GH Growth Hormone
GHRH Growth hormone-releasing hormone
GHSR Growth hormone secretagogue receptor
GnRHR Gonadotropin releasing hormone receptor
HcrtR1 Hypocretin receptor 1
HGF Hepatocyte growth factor
HO Hypocretin/Orexin
IGF Insulin-like growth factor
IL-1 Interleukin-1
IL-10 Interleukin-10
IL-1R Interleukin-1 receptor
IL-2 Interleukin-2
IL-4 Interleukin-4
IL-6 Interleukin-6
IL-8 Interleukin-8
K-ATP ATP sensitive potassium channel
LC Locus coeruleus
LepRb Long-form leptin receptor
LH Lateral Hypothalamus
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinases
MCH Melanin concentrating hormone
MCHR1 Melanin concentrating hormone receptor 1
Mcl-1 Induced myeloid leukemia cell differentiation protein
mGluR Metabotropic glutamate receptor
MMP Matrix metalloproteinases
NE Norepinephrine
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
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NO Nitric oxide
NREM Non-rapid eye movement
NREM Non rapid eye movement
Ob-R Leptin receptor
PDGF Platelet-derived growth factor
PGE-2 Prostaglandin E2
PI-3K Phosphoinositide 3-kinase
REM Rapid eye movement
REM Rapid eye movement
sIL-6R Soluble interleukin-6 receptor
STAT3 Signal transducer and activator of transcription 3
TGF-b Transforming growth factor beta
TNF-a Tumor necrosis factor alpha
TNFR2 Tumor necrosis factor receptor 2
VEGF Vascular endothelial growth factor
VLPO Ventrolateral preoptic area
VTA Ventral tegmental area
WASO Wake after sleep onset
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110. Mizia-Malarz, A.; Sobol, G.; Woś, H. Proangiogenic factors: vascular-endothelial growth factor (VEGF) and
basic fibroblast growth factor–the characteristics and function. Przegl. Lek. 2008, 65, 353–357.

111. Baldwin, A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin.
Investig. 2001, 107, 241–246. [CrossRef]

112. Quan, N.; Banks, W.A. Brain-immune communication pathways. Brain Behav. Immun. 2007, 21, 727–735.
[CrossRef]

113. Quan, N. Immune-To-Brain Signaling: How Important are the Blood–Brain Barrier-independent Pathways?
Mol. Neurobiol. 2008, 37, 142–152. [CrossRef] [PubMed]

114. Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and
depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [CrossRef]
[PubMed]

115. Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.;
Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated
microglia. Nature 2017, 541, 481–487. [CrossRef] [PubMed]

116. Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity
2017, 46, 957–967. [CrossRef] [PubMed]

117. Gibson, E.M.; Nagaraja, S.; Ocampo, A.; Tam, L.T.; Wood, L.S.; Pallegar, P.N.; Greene, J.J.; Geraghty, A.C.;
Goldstein, A.K.; Ni, L.; et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that
Underlies Chemotherapy-Related Cognitive Impairment. Cell 2019, 176, 43–55.e13. [CrossRef] [PubMed]

118. Neuzillet, C.; Tijeras-Raballand, A.; Cohen, R.; Cros, J.; Faivre, S.; Raymond, E.; de Gramont, A. Targeting the
TGFβ pathway for cancer therapy. Pharmacol. Ther. 2015, 147, 22–31. [CrossRef] [PubMed]

119. Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61.
[CrossRef]

120. Lewis, A.M.; Varghese, S.; Xu, H.; Alexander, H.R. Interleukin-1 and cancer progression: The emerging role
of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med. 2006,
4, 48. [CrossRef]

121. Elaraj, D.M.; Weinreich, D.M.; Varghese, S.; Puhlmann, M.; Hewitt, S.M.; Carroll, N.M.; Feldman, E.D.;
Turner, E.M.; Alexander, H.R. The role of interleukin 1 in growth and metastasis of human cancer xenografts.
Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 1088–1096. [CrossRef]

http://dx.doi.org/10.1016/j.smrv.2015.08.005
http://dx.doi.org/10.1016/j.bbi.2014.11.012
http://dx.doi.org/10.7150/jca.17648
http://www.ncbi.nlm.nih.gov/pubmed/28382138
http://dx.doi.org/10.1038/nri1703
http://www.ncbi.nlm.nih.gov/pubmed/16175180
http://www.ncbi.nlm.nih.gov/pubmed/8840975
http://dx.doi.org/10.1186/bcr554
http://www.ncbi.nlm.nih.gov/pubmed/12559043
http://dx.doi.org/10.1016/S1471-4906(02)02302-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2065851/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2065851/
http://dx.doi.org/10.1016/j.cell.2010.03.014
http://www.ncbi.nlm.nih.gov/pubmed/20371344
http://dx.doi.org/10.1172/JCI39104
http://www.ncbi.nlm.nih.gov/pubmed/19487818
http://dx.doi.org/10.1172/JCI11991
http://dx.doi.org/10.1016/j.bbi.2007.05.005
http://dx.doi.org/10.1007/s12035-008-8026-z
http://www.ncbi.nlm.nih.gov/pubmed/18563639
http://dx.doi.org/10.1038/nrn2297
http://www.ncbi.nlm.nih.gov/pubmed/18073775
http://dx.doi.org/10.1038/nature21029
http://www.ncbi.nlm.nih.gov/pubmed/28099414
http://dx.doi.org/10.1016/j.immuni.2017.06.006
http://www.ncbi.nlm.nih.gov/pubmed/28636962
http://dx.doi.org/10.1016/j.cell.2018.10.049
http://www.ncbi.nlm.nih.gov/pubmed/30528430
http://dx.doi.org/10.1016/j.pharmthera.2014.11.001
http://www.ncbi.nlm.nih.gov/pubmed/25444759
http://dx.doi.org/10.1016/j.immuni.2014.06.010
http://dx.doi.org/10.1186/1479-5876-4-48
http://dx.doi.org/10.1158/1078-0432.CCR-05-1603


Int. J. Mol. Sci. 2019, 20, 2780 25 of 32

122. Gemma, A.; Takenaka, K.; Hosoya, Y.; Matuda, K.; Seike, M.; Kurimoto, F.; Ono, Y.; Uematsu, K.; Takeda, Y.;
Hibino, S.; et al. Altered expression of several genes in highly metastatic subpopulations of a human
pulmonary adenocarcinoma cell line. Eur. J. Cancer Oxf. Engl. 1990 2001, 37, 1554–1561. [CrossRef]

123. Voronov, E.; Shouval, D.S.; Krelin, Y.; Cagnano, E.; Benharroch, D.; Iwakura, Y.; Dinarello, C.A.; Apte, R.N.
IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 2645–2650.
[CrossRef] [PubMed]

124. Goehler, L.E.; Relton, J.K.; Dripps, D.; Kiechle, R.; Tartaglia, N.; Maier, S.F.; Watkins, L.R. Vagal
paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain
communication. Brain Res. Bull. 1997, 43, 357–364. [CrossRef]

125. Liu, X.; Nemeth, D.P.; McKim, D.B.; Zhu, L.; DiSabato, D.J.; Berdysz, O.; Gorantla, G.; Oliver, B.; Witcher, K.G.;
Wang, Y.; et al. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct
Neuroimmune Activities. Immunity 2019, 50, 317–333.e6. [CrossRef] [PubMed]

126. Imeri, L.; Opp, M.R.; Krueger, J.M. An IL-1 receptor and an IL-1 receptor antagonist attenuate muramyl
dipeptide- and IL-1-induced sleep and fever. Am. J. Physiol. 1993, 265, R907–R913. [CrossRef] [PubMed]

127. Opp, M.R.; Krueger, J.M. Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in
rats. Am. J. Physiol. 1994, 266, R688–R695. [CrossRef] [PubMed]

128. Takahashi, S.; Kapás, L.; Fang, J.; Krueger, J.M. Somnogenic relationships between tumor necrosis factor and
interleukin-1. Am. J. Physiol. 1999, 276, R1132–R1140. [CrossRef]

129. Nisticò, G.; De Sarro, G. Behavioral and electrocortical spectrum power effects after microinfusion of
lymphokines in several areas of the rat brain. Ann. N. Y. Acad. Sci. 1991, 621, 119–134. [CrossRef]

130. Alam, M.N.; McGinty, D.; Bashir, T.; Kumar, S.; Imeri, L.; Opp, M.R.; Szymusiak, R. Interleukin-1beta
modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep
regulation. Eur. J. Neurosci. 2004, 20, 207–216. [CrossRef]

131. Kapás, L.; Shibata, M.; Kimura, M.; Krueger, J.M. Inhibition of nitric oxide synthesis suppresses sleep in
rabbits. Am. J. Physiol. 1994, 266, R151–R157. [CrossRef]

132. Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer
Oxf. Engl. 1990 2005, 41, 2502–2512. [CrossRef]

133. Wang, Q.; Horiatis, D.; Pinski, J. Interleukin-6 inhibits the growth of prostate cancer xenografts in mice by
the process of neuroendocrine differentiation. Int. J. Cancer 2004, 111, 508–513. [CrossRef] [PubMed]

134. Michalaki, V.; Syrigos, K.; Charles, P.; Waxman, J. Serum levels of IL-6 and TNF-α correlate with clinicopathological
features and patient survival in patients with prostate cancer. Br. J. Cancer 2004, 90, 2312–2316. [CrossRef]
[PubMed]

135. Knüpfer, H.; Preiss, R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res. Treat.
2007, 102, 129–135. [CrossRef] [PubMed]

136. Songür, N.; Kuru, B.; Kalkan, F.; Ozdilekcan, C.; Cakmak, H.; Hizel, N. Serum interleukin-6 levels correlate
with malnutrition and survival in patients with advanced non-small cell lung cancer. Tumori 2004, 90, 196–200.
[CrossRef] [PubMed]

137. Knüpfer, H.; Preiss, R. Serum interleukin-6 levels in colorectal cancer patients—A summary of published
results. Int. J. Colorectal Dis. 2010, 25, 135–140. [CrossRef] [PubMed]

138. Becker, C.; Fantini, M.C.; Schramm, C.; Lehr, H.A.; Wirtz, S.; Nikolaev, A.; Burg, J.; Strand, S.; Kiesslich, R.;
Huber, S.; et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling.
Immunity 2004, 21, 491–501. [CrossRef] [PubMed]

139. Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.-W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKbeta
links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004, 118, 285–296.
[CrossRef]

140. Rose-John, S. IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory
Activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [CrossRef]

141. Gao, S.P.; Mark, K.G.; Leslie, K.; Pao, W.; Motoi, N.; Gerald, W.L.; Travis, W.D.; Bornmann, W.; Veach, D.;
Clarkson, B.; et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in
human lung adenocarcinomas. J. Clin. Investig. 2007, 117, 3846–3856. [CrossRef]

142. Sansone, P.; Storci, G.; Tavolari, S.; Guarnieri, T.; Giovannini, C.; Taffurelli, M.; Ceccarelli, C.; Santini, D.;
Paterini, P.; Marcu, K.B.; et al. IL-6 triggers malignant features in mammospheres from human ductal breast
carcinoma and normal mammary gland. J. Clin. Investig. 2007, 117, 3988–4002. [CrossRef]

http://dx.doi.org/10.1016/S0959-8049(01)00154-X
http://dx.doi.org/10.1073/pnas.0437939100
http://www.ncbi.nlm.nih.gov/pubmed/12598651
http://dx.doi.org/10.1016/S0361-9230(97)00020-8
http://dx.doi.org/10.1016/j.immuni.2018.12.012
http://www.ncbi.nlm.nih.gov/pubmed/30683620
http://dx.doi.org/10.1152/ajpregu.1993.265.4.R907
http://www.ncbi.nlm.nih.gov/pubmed/8238464
http://dx.doi.org/10.1152/ajpregu.1994.266.3.R688
http://www.ncbi.nlm.nih.gov/pubmed/8160860
http://dx.doi.org/10.1152/ajpregu.1999.276.4.R1132
http://dx.doi.org/10.1111/j.1749-6632.1991.tb16974.x
http://dx.doi.org/10.1111/j.1460-9568.2004.03469.x
http://dx.doi.org/10.1152/ajpregu.1994.266.1.R151
http://dx.doi.org/10.1016/j.ejca.2005.08.016
http://dx.doi.org/10.1002/ijc.20286
http://www.ncbi.nlm.nih.gov/pubmed/15239127
http://dx.doi.org/10.1038/sj.bjc.6601814
http://www.ncbi.nlm.nih.gov/pubmed/15150588
http://dx.doi.org/10.1007/s10549-006-9328-3
http://www.ncbi.nlm.nih.gov/pubmed/16927176
http://dx.doi.org/10.1177/030089160409000207
http://www.ncbi.nlm.nih.gov/pubmed/15237582
http://dx.doi.org/10.1007/s00384-009-0818-8
http://www.ncbi.nlm.nih.gov/pubmed/19898853
http://dx.doi.org/10.1016/j.immuni.2004.07.020
http://www.ncbi.nlm.nih.gov/pubmed/15485627
http://dx.doi.org/10.1016/j.cell.2004.07.013
http://dx.doi.org/10.7150/ijbs.4989
http://dx.doi.org/10.1172/JCI31871
http://dx.doi.org/10.1172/JCI32533


Int. J. Mol. Sci. 2019, 20, 2780 26 of 32

143. Reynaud, D.; Pietras, E.; Barry-Holson, K.; Mir, A.; Binnewies, M.; Jeanne, M.; Sala-Torra, O.; Radich, J.P.;
Passegué, E. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous
leukemia development. Cancer Cell 2011, 20, 661–673. [CrossRef] [PubMed]

144. Mauer, J.; Denson, J.L.; Brüning, J.C. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol.
2015, 36, 92–101. [CrossRef] [PubMed]

145. Wang, Y.; Niu, X.L.; Qu, Y.; Wu, J.; Zhu, Y.Q.; Sun, W.J.; Li, L.Z. Autocrine production of interleukin-6
confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett. 2010, 295, 110–123. [CrossRef]
[PubMed]

146. Gilbert, L.A.; Hemann, M.T. DNA damage-mediated induction of a chemoresistant niche. Cell 2010,
143, 355–366. [CrossRef] [PubMed]

147. Konsman, J.P.; Luheshi, G.N.; Bluthé, R.M.; Dantzer, R. The vagus nerve mediates behavioural depression,
but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur. J. Neurosci.
2000, 12, 4434–4446. [CrossRef] [PubMed]

148. Maier, S.F.; Goehler, L.E.; Fleshner, M.; Watkins, L.R. The role of the vagus nerve in cytokine-to-brain
communication. Ann. N. Y. Acad. Sci. 1998, 840, 289–300. [CrossRef] [PubMed]

149. Bauer, J.; Hohagen, F.; Ebert, T.; Timmer, J.; Ganter, U.; Krieger, S.; Lis, S.; Postler, E.; Voderholzer, U.;
Berger, M. Interleukin-6 serum levels in healthy persons correspond to the sleep-wake cycle. Clin. Investig.
1994, 72, 315. [CrossRef] [PubMed]

150. Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Lotsikas, A.; Zachman, K.; Kales, A.; Prolo, P.; Wong, M.-L.;
Licinio, J.; Gold, P.W.; et al. Circadian Interleukin-6 Secretion and Quantity and Depth of Sleep. J. Clin.
Endocrinol. Metab. 1999, 84, 2603–2607. [CrossRef] [PubMed]

151. Redwine, L.; Hauger, R.L.; Gillin, J.C.; Irwin, M. Effects of sleep and sleep deprivation on interleukin-6,
growth hormone, cortisol, and melatonin levels in humans. J. Clin. Endocrinol. Metab. 2000, 85, 3597–3603.
[CrossRef] [PubMed]

152. Späth-Schwalbe, E.; Hansen, K.; Schmidt, F.; Schrezenmeier, H.; Marshall, L.; Burger, K.; Fehm, H.L.; Born, J.
Acute Effects of Recombinant Human Interleukin-6 on Endocrine and Central Nervous Sleep Functions in
Healthy Men. J. Clin. Endocrinol. Metab. 1998, 83, 1573–1579. [CrossRef]

153. Opp, M.; Obal, F.; Cady, A.B.; Johannsen, L.; Krueger, J.M. Interleukin-6 is pyrogenic but not somnogenic.
Physiol. Behav. 1989, 45, 1069–1072. [CrossRef]

154. Hogan, D.; Morrow, J.D.; Smith, E.M.; Opp, M.R. Interleukin-6 alters sleep of rats. J. Neuroimmunol. 2003,
137, 59–66. [CrossRef]

155. Dimitrov, S.; Lange, T.; Benedict, C.; Nowell, M.A.; Jones, S.A.; Scheller, J.; Rose-John, S.; Born, J. Sleep
enhances IL-6 trans-signaling in humans. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006, 20, 2174–2176.
[CrossRef] [PubMed]

156. Bryant, P.A.; Trinder, J.; Curtis, N. Sick and tired: Does sleep have a vital role in the immune system? Nat. Rev.
Immunol. 2004, 4, 457–467. [CrossRef] [PubMed]

157. Irwin, M. Effects of sleep and sleep loss on immunity and cytokines. Brain Behav. Immun. 2002, 16, 503–512.
[CrossRef]

158. Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor
that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [CrossRef]

159. Brouckaert, P.G.; Leroux-Roels, G.G.; Guisez, Y.; Tavernier, J.; Fiers, W. In vivo anti-tumour activity of
recombinant human and murine TNF, alone and in combination with murine IFN-gamma, on a syngeneic
murine melanoma. Int. J. Cancer 1986, 38, 763–769. [CrossRef]

160. Balkwill, F.R.; Lee, A.; Aldam, G.; Moodie, E.; Thomas, J.A.; Tavernier, J.; Fiers, W. Human tumor xenografts
treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res.
1986, 46, 3990–3993.

161. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [CrossRef]
162. The antitumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established

murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. J. Exp. Med. 1988,
167, 1067–1085. [CrossRef]

163. Wallach, D. Preparations of lymphotoxin induce resistance to their own cytotoxic effect. J. Immunol. Baltim.
Md. 1950 1984, 132, 2464–2469.

http://dx.doi.org/10.1016/j.ccr.2011.10.012
http://www.ncbi.nlm.nih.gov/pubmed/22094259
http://dx.doi.org/10.1016/j.it.2014.12.008
http://www.ncbi.nlm.nih.gov/pubmed/25616716
http://dx.doi.org/10.1016/j.canlet.2010.02.019
http://www.ncbi.nlm.nih.gov/pubmed/20236757
http://dx.doi.org/10.1016/j.cell.2010.09.043
http://www.ncbi.nlm.nih.gov/pubmed/21029859
http://dx.doi.org/10.1046/j.0953-816X.2000.01319.x
http://www.ncbi.nlm.nih.gov/pubmed/11122354
http://dx.doi.org/10.1111/j.1749-6632.1998.tb09569.x
http://www.ncbi.nlm.nih.gov/pubmed/9629257
http://dx.doi.org/10.1007/BF00180048
http://www.ncbi.nlm.nih.gov/pubmed/8043981
http://dx.doi.org/10.1210/jcem.84.8.5894
http://www.ncbi.nlm.nih.gov/pubmed/10443646
http://dx.doi.org/10.1210/jc.85.10.3597
http://www.ncbi.nlm.nih.gov/pubmed/11061508
http://dx.doi.org/10.1210/jc.83.5.1573
http://dx.doi.org/10.1016/0031-9384(89)90239-4
http://dx.doi.org/10.1016/S0165-5728(03)00038-9
http://dx.doi.org/10.1096/fj.06-5754fje
http://www.ncbi.nlm.nih.gov/pubmed/16912152
http://dx.doi.org/10.1038/nri1369
http://www.ncbi.nlm.nih.gov/pubmed/15173834
http://dx.doi.org/10.1016/S0889-1591(02)00003-X
http://dx.doi.org/10.1073/pnas.72.9.3666
http://dx.doi.org/10.1002/ijc.2910380521
http://dx.doi.org/10.1038/nrc2628
http://dx.doi.org/10.1084/jem.167.3.1067


Int. J. Mol. Sci. 2019, 20, 2780 27 of 32

164. Moore, R.J.; Owens, D.M.; Stamp, G.; Arnott, C.; Burke, F.; East, N.; Holdsworth, H.; Turner, L.; Rollins, B.;
Pasparakis, M.; et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis.
Nat. Med. 1999, 5, 828–831. [CrossRef] [PubMed]

165. Szlosarek, P.W.; Grimshaw, M.J.; Kulbe, H.; Wilson, J.L.; Wilbanks, G.D.; Burke, F.; Balkwill, F.R. Expression
and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol. Cancer Ther.
2006, 5, 382–390. [CrossRef] [PubMed]

166. Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of tumor-associated macrophages in tumor
progression and invasion. Cancer Metastasis Rev. 2006, 25, 315–322. [CrossRef] [PubMed]

167. Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol.
2003, 3, 745–756. [CrossRef] [PubMed]

168. Chen, X.; Bäumel, M.; Männel, D.N.; Howard, O.M.Z.; Oppenheim, J.J. Interaction of TNF with TNF receptor
type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. Baltim.
Md. 1950 2007, 179, 154–161. [CrossRef] [PubMed]

169. Yang, S.; Wang, J.; Brand, D.D.; Zheng, S.G. Role of TNF–TNF Receptor 2 Signal in Regulatory T Cells and Its
Therapeutic Implications. Front. Immunol. 2018, 9. [CrossRef] [PubMed]

170. Pan, W.; Kastin, A.J.; Daniel, J.; Yu, C.; Baryshnikova, L.M.; von Bartheld, C.S. TNFα trafficking in cerebral
vascular endothelial cells. J. Neuroimmunol. 2007, 185, 47–56. [CrossRef]

171. Pan, W.; Stone, K.P.; Hsuchou, H.; Manda, V.K.; Zhang, Y.; Kastin, A.J. Cytokine signaling modulates
blood-brain barrier function. Curr. Pharm. Des. 2011, 17, 3729–3740. [CrossRef]

172. Opp, M.R.; Toth, L.A. Neural-immune interactions in the regulation of sleep. Front. Biosci. J. Virtual Libr.
2003, 8, d768–d779. [CrossRef]

173. Bredow, S.; Guha-Thakurta, N.; Taishi, P.; Obál, F.; Krueger, J.M. Diurnal variations of tumor necrosis factor
alpha mRNA and alpha-tubulin mRNA in rat brain. Neuroimmunomodulation 1997, 4, 84–90. [CrossRef]
[PubMed]

174. Floyd, R.A.; Krueger, J.M. Diurnal variation of TNF alpha in the rat brain. Neuroreport 1997, 8, 915–918.
[CrossRef] [PubMed]

175. Shoham, S.; Davenne, D.; Cady, A.B.; Dinarello, C.A.; Krueger, J.M. Recombinant tumor necrosis factor and
interleukin 1 enhance slow-wave sleep. Am. J. Physiol. 1987, 253, R142–R149. [CrossRef] [PubMed]

176. Fang, J.; Wang, Y.; Krueger, J.M. Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha
treatment. J. Neurosci. Off. J. Soc. Neurosci. 1997, 17, 5949–5955. [CrossRef]

177. Kubota, T.; Li, N.; Guan, Z.; Brown, R.A.; Krueger, J.M. Intrapreoptic microinjection of TNF-alpha enhances
non-REM sleep in rats. Brain Res. 2002, 932, 37–44. [CrossRef]

178. Zhan, S.; Cai, G.-Q.; Zheng, A.; Wang, Y.; Jia, J.; Fang, H.; Yang, Y.; Hu, M.; Ding, Q. Tumor necrosis factor-alpha
regulates the Hypocretin system via mRNA degradation and ubiquitination. Biochim. Biophys. Acta 2011,
1812, 565–571. [CrossRef] [PubMed]

179. De Sarro, G.; Gareri, P.; Sinopoli, V.A.; David, E.; Rotiroti, D. Comparative, behavioural and electrocortical
effects of tumor necrosis factor-alpha and interleukin-1 microinjected into the locus coeruleus of rat. Life Sci.
1997, 60, 555–564. [CrossRef]

180. Terao, A.; Matsumura, H.; Yoneda, H.; Saito, M. Enhancement of slow-wave sleep by tumor necrosis
factor-alpha is mediated by cyclooxygenase-2 in rats. Neuroreport 1998, 9, 3791–3796. [CrossRef] [PubMed]

181. Obal, F.; Krueger, J.M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci. J. Virtual Libr.
2003, 8, d520–d550.

182. Engle, S.J.; Hoying, J.B.; Boivin, G.P.; Ormsby, I.; Gartside, P.S.; Doetschman, T. Transforming growth factor beta1
suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 1999, 59, 3379–3386.

183. Padua, D.; Massagué, J. Roles of TGFbeta in metastasis. Cell Res. 2009, 19, 89–102. [CrossRef] [PubMed]
184. Chau, G.-Y.; Wu, C.-W.; Lui, W.-Y.; Chang, T.-J.; Kao, H.-L.; Wu, L.-H.; King, K.-L.; Loong, C.-C.; Hsia, C.-Y.;

Chi, C.-W. Serum Interleukin-10 But Not Interleukin-6 Is Related to Clinical Outcome in Patients With
Resectable Hepatocellular Carcinoma. Ann. Surg. 2000, 231, 552–558. [CrossRef] [PubMed]

185. König, A.; Vilsmaier, T.; Rack, B.; Friese, K.; Janni, W.; Jeschke, U.; Andergassen, U.; Trapp, E.; Jückstock, J.;
Jäger, B.; et al. Determination of Interleukin-4, -5, -6, -8 and -13 in Serum of Patients with Breast Cancer Before
Treatment and its Correlation to Circulating Tumor Cells. Anticancer Res. 2016, 36, 3123–3130. [PubMed]

http://dx.doi.org/10.1038/10552
http://www.ncbi.nlm.nih.gov/pubmed/10395330
http://dx.doi.org/10.1158/1535-7163.MCT-05-0303
http://www.ncbi.nlm.nih.gov/pubmed/16505113
http://dx.doi.org/10.1007/s10555-006-9001-7
http://www.ncbi.nlm.nih.gov/pubmed/16967326
http://dx.doi.org/10.1038/nri1184
http://www.ncbi.nlm.nih.gov/pubmed/12949498
http://dx.doi.org/10.4049/jimmunol.179.1.154
http://www.ncbi.nlm.nih.gov/pubmed/17579033
http://dx.doi.org/10.3389/fimmu.2018.00784
http://www.ncbi.nlm.nih.gov/pubmed/29725328
http://dx.doi.org/10.1016/j.jneuroim.2007.01.005
http://dx.doi.org/10.2174/138161211798220918
http://dx.doi.org/10.2741/1061
http://dx.doi.org/10.1159/000097325
http://www.ncbi.nlm.nih.gov/pubmed/9483199
http://dx.doi.org/10.1097/00001756-199703030-00020
http://www.ncbi.nlm.nih.gov/pubmed/9141064
http://dx.doi.org/10.1152/ajpregu.1987.253.1.R142
http://www.ncbi.nlm.nih.gov/pubmed/3496800
http://dx.doi.org/10.1523/JNEUROSCI.17-15-05949.1997
http://dx.doi.org/10.1016/S0006-8993(02)02262-X
http://dx.doi.org/10.1016/j.bbadis.2010.11.003
http://www.ncbi.nlm.nih.gov/pubmed/21094253
http://dx.doi.org/10.1016/S0024-3205(96)00692-3
http://dx.doi.org/10.1097/00001756-199812010-00005
http://www.ncbi.nlm.nih.gov/pubmed/9875706
http://dx.doi.org/10.1038/cr.2008.316
http://www.ncbi.nlm.nih.gov/pubmed/19050696
http://dx.doi.org/10.1097/00000658-200004000-00015
http://www.ncbi.nlm.nih.gov/pubmed/10749617
http://www.ncbi.nlm.nih.gov/pubmed/27272837


Int. J. Mol. Sci. 2019, 20, 2780 28 of 32

186. Goldstein, R.; Hanley, C.; Morris, J.; Cahill, D.; Chandra, A.; Harper, P.; Chowdhury, S.; Maher, J.; Burbridge, S.
Clinical Investigation of the Role of Interleukin-4 and Interleukin-13 in the Evolution of Prostate Cancer.
Cancers 2011, 3, 4281–4293. [CrossRef] [PubMed]

187. Mocellin, S.; Marincola, F.M.; Young, H.A. Interleukin-10 and the immune response against cancer:
A counterpoint. J. Leukoc. Biol. 2005, 78, 1043–1051. [CrossRef] [PubMed]

188. Mannino, M.H.; Zhu, Z.; Xiao, H.; Bai, Q.; Wakefield, M.R.; Fang, Y. The paradoxical role of IL-10 in immunity
and cancer. Cancer Lett. 2015, 367, 103–107. [CrossRef] [PubMed]

189. Wang, H.-W.; Joyce, J.A. Alternative activation of tumor-associated macrophages by IL-4. Cell Cycle 2010,
9, 4824–4835. [CrossRef] [PubMed]

190. Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009, 9, S3.
[CrossRef] [PubMed]

191. Gadani, S.P.; Cronk, J.C.; Norris, G.T.; Kipnis, J. IL-4 in the brain: A cytokine to remember. J. Immunol. Baltim.
Md. 1950 2012, 189, 4213–4219. [CrossRef]

192. Kushikata, T.; Fang, J.; Krueger, J.M. Interleukin-10 inhibits spontaneous sleep in rabbits. J. Interferon Cytokine
Res. Off. J. Int. Soc. Interferon Cytokine Res. 1999, 19, 1025–1030. [CrossRef]

193. Kushikata, T.; Fang, J.; Wang, Y.; Krueger, J.M. Interleukin-4 inhibits spontaneous sleep in rabbits. Am. J.
Physiol. 1998, 275, R1185–R1191. [CrossRef] [PubMed]

194. Opp, M.R.; Smith, E.M.; Hughes, T.K. Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central
nervous system of rats to reduce sleep. J. Neuroimmunol. 1995, 60, 165–168. [CrossRef]

195. Kubota, T.; Fang, J.; Kushikata, T.; Krueger, J.M. Interleukin-13 and transforming growth factor-beta1 inhibit
spontaneous sleep in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R786–R792. [CrossRef]
[PubMed]

196. Lin, T.-C.; Hsiao, M. Ghrelin and cancer progression. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 51–57.
[CrossRef] [PubMed]

197. Kojima, M.; Kangawa, K. Ghrelin: Structure and function. Physiol. Rev. 2005, 85, 495–522. [CrossRef]
198. Cassoni, P.; Ghé, C.; Marrocco, T.; Tarabra, E.; Allia, E.; Catapano, F.; Deghenghi, R.; Ghigo, E.; Papotti, M.;

Muccioli, G. Expression of ghrelin and biological activity of specific receptors for ghrelin and des-acyl ghrelin
in human prostate neoplasms and related cell lines. Eur. J. Endocrinol. 2004, 150, 173–184. [CrossRef]
[PubMed]

199. Toshinai, K.; Yamaguchi, H.; Sun, Y.; Smith, R.G.; Yamanaka, A.; Sakurai, T.; Date, Y.; Mondal, M.S.;
Shimbara, T.; Kawagoe, T.; et al. Des-acyl ghrelin induces food intake by a mechanism independent of the
growth hormone secretagogue receptor. Endocrinology 2006, 147, 2306–2314. [CrossRef]

200. Delhanty, P.J.D.; Neggers, S.J.; van der Lely, A.J. Mechanisms in endocrinology: Ghrelin: The differences
between acyl- and des-acyl ghrelin. Eur. J. Endocrinol. 2012, 167, 601–608. [CrossRef]

201. Au, C.C.; Furness, J.B.; Brown, K.A. Ghrelin and Breast Cancer: Emerging Roles in Obesity, Estrogen
Regulation, and Cancer. Front. Oncol. 2017, 6. [CrossRef]

202. Grönberg, M.; Fjällskog, M.-L.; Jirström, K.; Janson, E.T. Expression of ghrelin is correlated to a favorable
outcome in invasive breast cancer. Acta Oncol. Stockh. Swed. 2012, 51, 386–393. [CrossRef]

203. Banks, W.A.; Tschöp, M.; Robinson, S.M.; Heiman, M.L. Extent and direction of ghrelin transport across the
blood-brain barrier is determined by its unique primary structure. J. Pharmacol. Exp. Ther. 2002, 302, 822–827.
[CrossRef] [PubMed]

204. Tolle, V.; Bassant, M.-H.; Zizzari, P.; Poindessous-Jazat, F.; Tomasetto, C.; Epelbaum, J.; Bluet-Pajot, M.-T.
Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in
rats. Endocrinology 2002, 143, 1353–1361. [CrossRef] [PubMed]

205. Obal, F.; Alt, J.; Taishi, P.; Gardi, J.; Krueger, J.M. Sleep in mice with nonfunctional growth hormone-releasing
hormone receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R131–R139. [CrossRef] [PubMed]

206. Steiger, A. Ghrelin and sleep-wake regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R573–R574.
[CrossRef] [PubMed]

207. Szentirmai, E.; Hajdu, I.; Obal, F.; Krueger, J.M. Ghrelin-induced sleep responses in ad libitum fed and
food-restricted rats. Brain Res. 2006, 1088, 131–140. [CrossRef] [PubMed]

208. Weikel, J.C.; Wichniak, A.; Ising, M.; Brunner, H.; Friess, E.; Held, K.; Mathias, S.; Schmid, D.A.; Uhr, M.;
Steiger, A. Ghrelin promotes slow-wave sleep in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E407–E415.
[CrossRef] [PubMed]

http://dx.doi.org/10.3390/cancers3044281
http://www.ncbi.nlm.nih.gov/pubmed/24213139
http://dx.doi.org/10.1189/jlb.0705358
http://www.ncbi.nlm.nih.gov/pubmed/16204623
http://dx.doi.org/10.1016/j.canlet.2015.07.009
http://www.ncbi.nlm.nih.gov/pubmed/26188281
http://dx.doi.org/10.4161/cc.9.24.14322
http://www.ncbi.nlm.nih.gov/pubmed/21150330
http://dx.doi.org/10.1186/1471-2377-9-S1-S3
http://www.ncbi.nlm.nih.gov/pubmed/19534732
http://dx.doi.org/10.4049/jimmunol.1202246
http://dx.doi.org/10.1089/107999099313244
http://dx.doi.org/10.1152/ajpregu.1998.275.4.R1185
http://www.ncbi.nlm.nih.gov/pubmed/9756549
http://dx.doi.org/10.1016/0165-5728(95)00066-B
http://dx.doi.org/10.1152/ajpregu.2000.279.3.R786
http://www.ncbi.nlm.nih.gov/pubmed/10956235
http://dx.doi.org/10.1016/j.bbcan.2017.02.002
http://www.ncbi.nlm.nih.gov/pubmed/28238732
http://dx.doi.org/10.1152/physrev.00012.2004
http://dx.doi.org/10.1530/eje.0.1500173
http://www.ncbi.nlm.nih.gov/pubmed/14763915
http://dx.doi.org/10.1210/en.2005-1357
http://dx.doi.org/10.1530/EJE-12-0456
http://dx.doi.org/10.3389/fonc.2016.00265
http://dx.doi.org/10.3109/0284186X.2011.631576
http://dx.doi.org/10.1124/jpet.102.034827
http://www.ncbi.nlm.nih.gov/pubmed/12130749
http://dx.doi.org/10.1210/endo.143.4.8712
http://www.ncbi.nlm.nih.gov/pubmed/11897692
http://dx.doi.org/10.1152/ajpregu.00361.2002
http://www.ncbi.nlm.nih.gov/pubmed/12388430
http://dx.doi.org/10.1152/ajpregu.00618.2006
http://www.ncbi.nlm.nih.gov/pubmed/16946077
http://dx.doi.org/10.1016/j.brainres.2006.02.072
http://www.ncbi.nlm.nih.gov/pubmed/16631138
http://dx.doi.org/10.1152/ajpendo.00184.2002
http://www.ncbi.nlm.nih.gov/pubmed/12388174


Int. J. Mol. Sci. 2019, 20, 2780 29 of 32

209. Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short Sleep Duration Is Associated with Reduced Leptin,
Elevated Ghrelin, and Increased Body Mass Index. PLoS Med. 2004, 1. [CrossRef]

210. Schmid, S.M.; Hallschmid, M.; Jauch-Chara, K.; Born, J.; Schultes, B. A single night of sleep deprivation
increases ghrelin levels and feelings of hunger in normal-weight healthy men. J. Sleep Res. 2008, 17, 331–334.
[CrossRef]

211. Yamanaka, A.; Beuckmann, C.T.; Willie, J.T.; Hara, J.; Tsujino, N.; Mieda, M.; Tominaga, M.; Yagami, K.;
Sugiyama, F.; Goto, K.; et al. Hypothalamic Orexin Neurons Regulate Arousal According to Energy Balance
in Mice. Neuron 2003, 38, 701–713. [CrossRef]

212. Ahima, R.S.; Flier, J.S. Leptin. Annu. Rev. Physiol. 2000, 62, 413–437. [CrossRef]
213. Garofalo, C.; Surmacz, E. Leptin and cancer. J. Cell. Physiol. 2006, 207, 12–22. [CrossRef] [PubMed]
214. Baumann, H.; Morella, K.K.; White, D.W.; Dembski, M.; Bailon, P.S.; Kim, H.; Lai, C.F.; Tartaglia, L.A.

The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl.
Acad. Sci. USA 1996, 93, 8374–8378. [CrossRef] [PubMed]

215. Park, H.-K.; Ahima, R.S. Leptin signaling. F1000Prime Rep. 2014, 6. [CrossRef] [PubMed]
216. Somasundar, P.; Frankenberry, K.A.; Skinner, H.; Vedula, G.; McFadden, D.W.; Riggs, D.; Jackson, B.;

Vangilder, R.; Hileman, S.M.; Vona-Davis, L.C. Prostate cancer cell proliferation is influenced by leptin.
J. Surg. Res. 2004, 118, 71–82. [CrossRef] [PubMed]

217. Han, C.; Zhang, H.-T.; Du, L.; Liu, X.; Jing, J.; Zhao, X.; Yang, X.; Tian, B. Serum levels of leptin, insulin, and
lipids in relation to breast cancer in china. Endocrine 2005, 26, 19–24. [CrossRef]

218. Chen, D.-C.; Chung, Y.-F.; Yeh, Y.-T.; Chaung, H.-C.; Kuo, F.-C.; Fu, O.-Y.; Chen, H.-Y.; Hou, M.-F.; Yuan, S.-S.F.
Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006, 237, 109–114.
[CrossRef]

219. Stattin, P.; Palmqvist, R.; Söderberg, S.; Biessy, C.; Ardnor, B.; Hallmans, G.; Kaaks, R.; Olsson, T. Plasma
leptin and colorectal cancer risk: A prospective study in Northern Sweden. Oncol. Rep. 2003, 10, 2015–2021.
[CrossRef]

220. Banks, W.A.; Kastin, A.J.; Huang, W.; Jaspan, J.B.; Maness, L.M. Leptin enters the brain by a saturable system
independent of insulin. Peptides 1996, 17, 305–311. [CrossRef]

221. Schoeller, D.A.; Cella, L.K.; Sinha, M.K.; Caro, J.F. Entrainment of the diurnal rhythm of plasma leptin to
meal timing. J. Clin. Investig. 1997, 100, 1882–1887. [CrossRef]

222. Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young
men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite.
Ann. Intern. Med. 2004, 141, 846–850. [CrossRef]

223. Pan, W.; Kastin, A.J. Leptin: A biomarker for sleep disorders? Sleep Med. Rev. 2014, 18, 283–290. [CrossRef]
224. Sinton, C.M.; Fitch, T.E.; Gershenfeld, H.K. The effects of leptin on REM sleep and slow wave delta in rats are

reversed by food deprivation. J. Sleep Res. 1999, 8, 197–203. [CrossRef]
225. Laposky, A.D.; Bradley, M.A.; Williams, D.L.; Bass, J.; Turek, F.W. Sleep-wake regulation is altered in

leptin-resistant (db/db) genetically obese and diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008,
295, R2059–R2066. [CrossRef]

226. Lukey, M.J.; Katt, W.P.; Cerione, R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov.
Today 2017, 22, 796–804. [CrossRef]

227. Avril, N.; Menzel, M.; Dose, J.; Schelling, M.; Weber, W.; Jänicke, F.; Nathrath, W.; Schwaiger, M. Glucose
metabolism of breast cancer assessed by 18F-FDG PET: Histologic and immunohistochemical tissue analysis.
J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2001, 42, 9–16.

228. Poschke, I.; Mao, Y.; Kiessling, R.; de Boniface, J. Tumor-dependent increase of serum amino acid levels in
breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J. Transl. Med.
2013, 11, 290. [CrossRef]

229. Lin, X.; Hong, S.; Huang, J.; Chen, Y.; Chen, Y.; Wu, Z. Plasma Apolipoprotein A1 Levels at Diagnosis Are
Independent Prognostic Factors in Invasive Ductal Breast Cancer. Discov. Med. 2017, 23, 247–258. [PubMed]

230. Ryu, T.Y.; Park, J.; Scherer, P.E. Hyperglycemia as a Risk Factor for Cancer Progression. Diabetes Metab. J.
2014, 38, 330–336. [CrossRef] [PubMed]

231. Rohani, N.; Hao, L.; Alexis, M.S.; Joughin, B.A.; Krismer, K.; Moufarrej, M.N.; Soltis, A.R.; Lauffenburger, D.A.;
Yaffe, M.B.; Burge, C.B.; et al. Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations
Associated with Aggressive Phenotypes. Cancer Res. 2019, 79, 1952–1966. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pmed.0010062
http://dx.doi.org/10.1111/j.1365-2869.2008.00662.x
http://dx.doi.org/10.1016/S0896-6273(03)00331-3
http://dx.doi.org/10.1146/annurev.physiol.62.1.413
http://dx.doi.org/10.1002/jcp.20472
http://www.ncbi.nlm.nih.gov/pubmed/16110483
http://dx.doi.org/10.1073/pnas.93.16.8374
http://www.ncbi.nlm.nih.gov/pubmed/8710878
http://dx.doi.org/10.12703/P6-73
http://www.ncbi.nlm.nih.gov/pubmed/25343030
http://dx.doi.org/10.1016/j.jss.2004.01.017
http://www.ncbi.nlm.nih.gov/pubmed/15093720
http://dx.doi.org/10.1385/ENDO:26:1:019
http://dx.doi.org/10.1016/j.canlet.2005.05.047
http://dx.doi.org/10.3892/or.10.6.2015
http://dx.doi.org/10.1016/0196-9781(96)00025-3
http://dx.doi.org/10.1172/JCI119717
http://dx.doi.org/10.7326/0003-4819-141-11-200412070-00008
http://dx.doi.org/10.1016/j.smrv.2013.07.003
http://dx.doi.org/10.1046/j.1365-2869.1999.00158.x
http://dx.doi.org/10.1152/ajpregu.00026.2008
http://dx.doi.org/10.1016/j.drudis.2016.12.003
http://dx.doi.org/10.1186/1479-5876-11-290
http://www.ncbi.nlm.nih.gov/pubmed/28595037
http://dx.doi.org/10.4093/dmj.2014.38.5.330
http://www.ncbi.nlm.nih.gov/pubmed/25349819
http://dx.doi.org/10.1158/0008-5472.CAN-18-1604
http://www.ncbi.nlm.nih.gov/pubmed/30755444


Int. J. Mol. Sci. 2019, 20, 2780 30 of 32

232. Bailey, K.M.; Wojtkowiak, J.W.; Hashim, A.I.; Gillies, R.J. Targeting the Metabolic Microenvironment of
Tumors. Adv. Pharmacol. San Diego Calif. 2012, 65, 63–107.

233. Burdakov, D.; Jensen, L.T.; Alexopoulos, H.; Williams, R.H.; Fearon, I.M.; O’Kelly, I.; Gerasimenko, O.;
Fugger, L.; Verkhratsky, A. Tandem-Pore K+ Channels Mediate Inhibition of Orexin Neurons by Glucose.
Neuron 2006, 50, 711–722. [CrossRef] [PubMed]

234. Moriguchi, T.; Sakurai, T.; Nambu, T.; Yanagisawa, M.; Goto, K. Neurons containing orexin in the lateral
hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci. Lett.
1999, 264, 101–104. [CrossRef]

235. Kong, D.; Vong, L.; Parton, L.E.; Ye, C.; Tong, Q.; Hu, X.; Choi, B.; Brüning, J.C.; Lowell, B.B. Glucose
Stimulation of Hypothalamic MCH Neurons Involves KATP Channels, Is Modulated by UCP2, and Regulates
Peripheral Glucose Homeostasis. Cell Metab. 2010, 12, 545–552. [CrossRef] [PubMed]

236. Karnani, M.M.; Apergis-Schoute, J.; Adamantidis, A.; Jensen, L.T.; de Lecea, L.; Fugger, L.; Burdakov, D.
Activation of Central Orexin/Hypocretin Neurons by Dietary Amino Acids. Neuron 2011, 72, 616–629.
[CrossRef]

237. Williams, R.H.; Jensen, L.T.; Verkhratsky, A.; Fugger, L.; Burdakov, D. Control of hypothalamic orexin neurons
by acid and CO2. Proc. Natl. Acad. Sci. USA 2007, 104, 10685–10690. [CrossRef] [PubMed]

238. Masri, S.; Papagiannakopoulos, T.; Kinouchi, K.; Liu, Y.; Cervantes, M.; Baldi, P.; Jacks, T.; Sassone-Corsi, P.
Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis. Cell 2016, 165, 896–909. [CrossRef]
[PubMed]

239. McAlpine, C.S.; Kiss, M.G.; Rattik, S.; He, S.; Vassalli, A.; Valet, C.; Anzai, A.; Chan, C.T.; Mindur, J.E.;
Kahles, F.; et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019. [CrossRef]
[PubMed]

240. Van Dycke, K.C.G.; Rodenburg, W.; van Oostrom, C.T.M.; van Kerkhof, L.W.M.; Pennings, J.L.A.;
Roenneberg, T.; van Steeg, H.; van der Horst, G.T.J. Chronically Alternating Light Cycles Increase Breast
Cancer Risk in Mice. Curr. Biol. 2015, 25, 1932–1937. [CrossRef]

241. Ryan, S.; Taylor, C.T.; McNicholas, W.T. Selective activation of inflammatory pathways by intermittent
hypoxia in obstructive sleep apnea syndrome. Circulation 2005, 112, 2660–2667. [CrossRef]

242. Campos-Rodriguez, F.; Martinez-Garcia, M.A.; Martinez, M.; Duran-Cantolla, J.; Peña, M.L.; Masdeu, M.J.;
Gonzalez, M.; Campo, F.; Gallego, I.; Marin, J.M.; et al. Association between obstructive sleep apnea and
cancer incidence in a large multicenter Spanish cohort. Am. J. Respir. Crit. Care Med. 2013, 187, 99–105.
[CrossRef]

243. Thaker, P.H.; Han, L.Y.; Kamat, A.A.; Arevalo, J.M.; Takahashi, R.; Lu, C.; Jennings, N.B.; Armaiz-Pena, G.;
Bankson, J.A.; Ravoori, M.; et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model
of ovarian carcinoma. Nat. Med. 2006, 12, 939–944. [CrossRef] [PubMed]

244. Sood, A.K.; Bhatty, R.; Kamat, A.A.; Landen, C.N.; Han, L.; Thaker, P.H.; Li, Y.; Gershenson, D.M.;
Lutgendorf, S.; Cole, S.W. Stress Hormone–Mediated Invasion of Ovarian Cancer Cells. Clin. Cancer Res.
2006, 12, 369–375. [CrossRef] [PubMed]

245. Antoni, M.H.; Lutgendorf, S.K.; Cole, S.W.; Dhabhar, F.S.; Sephton, S.E.; McDonald, P.G.; Stefanek, M.;
Sood, A.K. The influence of bio-behavioural factors on tumour biology: Pathways and mechanisms. Nat. Rev.
Cancer 2006, 6, 240–248. [CrossRef] [PubMed]

246. Flint, T.R.; Janowitz, T.; Connell, C.M.; Roberts, E.W.; Denton, A.E.; Coll, A.P.; Jodrell, D.I.; Fearon, D.T.
Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity. Cell Metab. 2016,
24, 672–684. [CrossRef] [PubMed]
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