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Abstract—The strive for performance, low power consumption,

and less chip area have been diminishing the reliability and the

time to fault occurrences due to wear out of electronic devices.

Recent research has shown that functional units within processors

usually execute a different amount of operations when running

programs. Therefore, these units present different individual

wear out during their lifetime. Most existent schemes for re-

configuration of processors due to fault detection and other pro-

cessor parameters are done at the level of cores which is a costly

way to achieve redundancy. This paper presents a low latency

(approximately 1 clock cycle) software controlled mechanism to

reconfigure units within processor cores according to predefined

parameters. Such reconfiguration capability delivers features like

wear out balance of processor functional units, configuration of

units according to the criticality of tasks running on an operating

system and configurations to gain in performance (e.g. parallel

execution) when possible. The focus of this paper is to show

the implemented low latency reconfiguration mechanism and

highlight its possible main features.

Keywords—functional units, fine-grained, reconfiguration, low

latency, software.

I. INTRODUCTION

Electronic devices have been decreasing their reliability and
lifetime due to technology aims like high performance, low
power consumption, and less chip area.

However, recent works have been done in multiple areas of
research to counter these drawbacks. Some of these techniques
are applied in the lower levels of electronic systems [1] [2] [3],
and others are software frameworks running on top of Operat-
ing Systems (OSs) [4] [5]. Yet other measures are also applied
to operating systems resulting in partially fault tolerant OSs
like MINIX3 [7], dOSEK [8], SAFERTOS [9] and ERIKA
Enterprise [10]. At the same time, standards like ISO26262
and operating systems specifications (e.g. AUTOSAR [11]
and OSEK/VDX [12]) were established to cope with critical
systems which demand high levels of reliability, and a fault
event must not result in harmful effects.

Looking into processors of electronic systems, works have
proposed management techniques and redundancy in the level
of cores [14] [16]. However, recent research has shown that
internal units of processors (e.g. ALU, multipliers, shifters,
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dividers...) do not execute the same number of operations
while running any kind of program [13]. Thus, each of these
units presents different individual levels of wear out during
their lifetime. This means that core level redundancy is costly.

This paper presents a low latency mechanism capable to
configure and reconfigure processor internal Functional Units
(FU). The aim of this mechanism is to enable an efficient
configuration of hardware (HW) resources from software (SW)
level routines. And, as a consequence, allow SW routines in
OSs to perform optimized configurations for critical and non-
critical applications.

This article exposes, in the following sections, some of
the works related to this topic (II), the proposed reconfigu-
ration mechanism (III) and its implementation details (IV),
the preliminary results (V), the use cases and the integration
possibilities for the implemented mechanism (VI) and, finally,
a conclusion (VII).

II. RELATED WORK

Recent work presented in [18] proposes an extension
to a dynamically scheduled processor architecture in or-
der to increase fault-tolerance against transient and perma-
nent faults. The work relies on operation mode configura-
tion: high-performance, fail-safe and fault-tolerant. The high-
performance mode is already provided by multiple functional
units available in the superscalar processor architecture. In
addition, it uses these available HW resources to implement
the other two operation modes. The fail safe mode is based
on concurrent checking which executes the same instruction
in two different units; the fault tolerant mode extends the fail-
safe one performing majority voting on demand. Additionally,
an extension to this work was proposed by the same authors in
[19]. It proposed the use of error corrections codes, rollback
and recovery approaches to protect processor components,
which are not covered by the replication scheme, and critical
signals against temporary and permanent faults.

The work proposed in [20] shows a health monitoring
and management system infrastructure for Systems on Chip
(SoCs) based in the IEEE 1687 standard [21]. It mainly uses
the interface provided by the standard, the Internal JTAG
(IJTAG), to exchange messages between HW instruments and
software routines. However, due to the communication latency



of the IJTAG interface, the authors implemented an additional
asynchronous signal to trigger operating system interruptions
in case of uncorrected errors.

Further research has been done by companies to improve the
dependability of their processor architectures. As a result, pro-
cessors with lock-step capabilities were released. This capabil-
ity enables redundant execution of operations and comparison
of results by the multiple cores of these designs. Related to
the results comparison, there are approaches which perform it
at every clock cycle [15] [16] and others periodically [17].

Finally, in [14], a common of the shelf (COTS) processor
was extended to make it more fault tolerant with the Triple
Core Lock-Step (TCLS) scheme. However, the control logic
was built in such a way that it is possible to start the recovery
process on demand by a software issuing an interrupt to the
CPU design.

III. RECONFIGURATION MECHANISM

To enable integration of hardware units and software rou-
tines, a mechanism to configure processor internal functional
units was built and is being presented in this paper. Then
an optimized way to configure HW resources can be used in
the struggle for dependable execution of critical tasks running
under an OS.

Fig. 1 shows the main implemented units of the mechanism
and its context in the processor pipeline. The ”Pre-Decoder”
and the ”Units Controller” block was designed to allow the
reconfiguration of the functional units. These blocks will be
explained further in detail in sections IV-B and IV-C respec-
tively. Although these units were introduced in the processor
pipeline, specific signals were added allowing the Pre-Decoder
block to send requests to Units Controller. Additionally, new
instructions and new registers were defined, respectively, to
allow SW routines command HW reconfiguration actions, and
to store data about events on functional units and their status.

The whole mechanism works as follows (Fig. 2):

• The reconfiguration command is stated in SW as a raw
operation code (OpCode) and the compiler keeps it as it
is after compilation.

• The OpCode is fetched from memory, and the Pre-
Decoder block is responsible to recognize the reconfigu-
ration commands, writes in the reconfiguration registers
(explained in section IV-D) and, when necessary, forward
the required configuration to the Units Controller block.

• The Units Controller receives these signals and configures
the adequately Switches to connect and disconnect the
functional units from the pipeline. Also, it configures the
multiplexer to only forward the signal from the active
FU or enable the voter to perform majority voting when
required.

• Once the reconfiguration is finished the Pre-Decoder
clears one predefined architecture register. So that, the
SW routine can use this register to get feedback from
HW to recognize when the reconfiguration is done.

Fig. 1. General overview of the processor design and the reconfiguration
mechanism blocks.

Fig. 2. Reconfiguration actions performed by the mechanism.

A. Mechanism Operation Modes

Since critical and non-critical applications may run under
the application scenario, as well as requirement for perfor-
mance. Three different operation modes were foreseen. So,
the mechanism can be used to configure FU in the following:

1) Generic Operation Mode: in this mode, the processor
units are working as usual with no redundancy and no paral-
lelism.

2) Dependable Operation Mode: this is the mode for de-
pendable execution. Units are switched on to work on double
or triple redundancy schemes. Thus, the Units Controller is
responsible to connect the required number of units to the
pipeline and perform the majority voting.

3) Performance Operation Mode: for future expansion, not
implemented in the design by now. This mode is to target
performance, it can mainly be used for applications which
present mixed tasks with different criticality requirements. For
example, a non-critical task can use multiple functional units
to increase its performance with parallel execution.

IV. MECHANISM IMPLEMENTATION DETAILS

The following sections explain in detail each reconfiguration
element and how it works.



A. Reconfiguration Commands

New commands were defined to be able to reconfigure
and control HW fine-grained units from software. These
commands are OpCodes explicitly stated in the software and
expected by the Pre-Decoder block. As a requirement, these
commands should not match any other OpCode from the
already running Instruction Set Architecture (ISA).

Table I shows these commands and their operations. The
first column represents the first two bytes of the command; it
defines the OpCode Identifier which is used to identify it as
a reconfiguration command by the Pre-Decoder. The second
column shows the third byte as the operation command. And,
finally, the third column shows the fourth byte which defines
an index of a register when necessary.

The actions performed by each command are the following:
1) 0x55AF 0x00 - READ FAULTS: read statistics about the

functional unit correspondent to the register specified in the
last byte of this command;

2) 0x55AF 0x01 - READ UNITS STATUS: read the status
register (described in section IV-D);

3) 0x55A0 0x00 - OFF UNIT: switch off the correspondent
unit specified in the last byte of this command. When receiving
this command, right after switching off the required unit the
Units Controller will automatically switch on another spare
unit to overcome the missing one;

4) 0x55A0 0x01 - ON UNIT: switch on the specified unit;
5) 0x55A1 0x00 - OPMODE GENERIC: switch the oper-

ation mode to the generic mode.
6) 0x55A1 0x01 - OPMODE DEPENDABLA: switch to

dependable operation mode.
7) 0x55A1 0x02 - OPMODE PERFORMANCE: switch to

performance operation mode.
As can be noticed these commands are not fully explored,

so there is space left for easy extensions in the future.

TABLE I
OPCODE COMMANDS CREATED FOR SW CONTROL OF PROCESSOR

FUNCTIONAL UNITS.

OpCode Identifier Operation Units Index Register

0x55AF
0x00 - READ FAULTS 0x00 - 0xff

0x01 - READ UNITS STATUS Don’t Care (D.C.)

0x55A0
0x00 - OFF UNIT 0x00 - 0xff
0x01 - ON UNITS 0x00 - 0xff

0x55A1

0x00 - OPMODE GENERIC D.C.
0x01 - OPMODE DEPENDABLE D.C.

0x02 - OPMODE PERFORMANCE D.C.

B. Pre-Decoder

In order to modify as little as possible the original processor
design, a combinational Pre-Decoder unit was built to decode
the reconfiguration commands. It was introduced right before
the original decoder of the design. This way to build this
element has the advantage that only the Pre-Decoder unit
needs to be prepared to receive and decode the reconfiguration
commands OpCode.

Additionally, the evaluation of this unit becomes easier and
its extension for future improvements and features is also
facilitated due to this design choice.

Once this unit receives an instruction it will perform differ-
ent actions in three different situations:

1) Normal ISA OpCode: in this situation it simply forwards
the OpCode as it is to the next units in the pipeline. And
because it was built using combinational logic it does not
generate additional clock cycles for that.

2) Reconfiguration command to read data: when it receives
one of the commands to read any data from the Reconfigu-
ration Registers the Pre-Decoder generates and forwards an
original instruction from the ISA to write the required data in
the monitored original architecture register. Then it is possible
to get this data from software by reading this register.

3) Reconfiguration command to perform action: when re-
ceiving one of the OpCodes to perform any reconfiguration
action, the Pre-Decoder forward the signals to the Units
Controller to tell it which action to perform. After that, the
Pre-Decoder itself generates and forwards an instruction to
clear the monitored register which is used by SW as operation
feedback.

C. Units Controller

This controller is responsible to configure the functional
units under his control according to the reconfiguration signals
from Pre-Decoder. It means that according to these signals
it will configure the Switches to connect the inputs and the
multiplexer to connect the outputs of the units to pipeline
signals, or disconnect them assigning High Impedance status
- ”Z”.

In the Generic Operation Mode only one unit is connected
to the pipeline, then the controller only needs to configure
the input switches and the output multiplexer accordingly. On
the other hand, for the dependable mode, three units need to
be connected. Then, despite the switches configuration, this
controller also needs to configure the output voter to perform
majority voting of the results obtained from the connected
units.

For the performance mode, this controller should be ex-
tended with appropriate buffers, dispatcher, and registers to
enable parallel execution and re-ordering of instructions.

D. Registers

Two types of Reconfiguration Registers were defined:
1) Units Status Register: it is a register to keep track of

units status. Each register bit represents a unit, and its status
represents if it is in ”On” or ”Off” state. This register can be
read and as well configured by software using the commands
mentioned in section IV-A.

2) Individual units Stats Register: each functional unit has
its own Stats Register which is used to keep track of events
(e.g. faults). These registers can be read by software, but only
configured by specific hardware mechanisms. For example,
fault detection mechanisms can use these registers to record
faults detected in monitored units and allow SW routines to
keep track of this data.



E. Software Feedback

A register from the original processor architecture was
reserved by the software routines to keep track of the results
and data about the hardware reconfiguration actions. Thus,
once the software sends one of the reconfiguration commands
it waits until it gets the results on this reserved register.

V. RESULTS

The described mechanism was implemented over the Plasma
processor, which is a synthesizable 32-bits RISC microproces-
sor design. It is able to execute all MIPS I(TM) user mode
instructions except unaligned load and store operations [22].
This design and the reconfiguration mechanism were synthe-
sized, implemented and simulated using Xilinx development
tools.

Also, as the first target of this implementation, the functional
unit taken into consideration was the Arithmetical Logic Units
(ALU), so it was replicated and placed under control of the
Units Controller.

A computer simulation was done using the built design
to evaluate the latency of the reconfiguration. As a result,
the mechanism described above was able to perform a low
latency reconfiguration of the functional unit of the processor
design. Fig. 3 shows the right moment of the simulation when
one ALU is switched off and another one is switched on.
The wave forms described by a in, b in, alu function and
c alu are the input signals coming from the pipeline arriving
at the Units Controller. The a in1, b in1, alu function1
and c alu1 correspond to ALU1 signals and a in2, b in2,
alu function2 and c alu2 to ALU2. The signals clk and
opcode out represent, respectively, the clock signal and the
current OpCode just fetched from memory. Finally, the signals
opcode in p and opcode out p are, respectively, the incom-
ing and the outgoing OpCode from the Pre-Decoder block.

As can be noticed in Fig. 3, just after fetching a reconfig-
uration command from memory (0x55a00000 - OFF UNIT)
which can be found in the opcode out and opcode in p
signal, the ALU1 input and output signals were switched to
high impedance state ”Z”, and the ALU2 ones switched from
”Z” to working state within the period of only one clock cycle.
It means that the actions showed in Fig. 2 were performed
within this measured latency.

To evaluate the hardware overhead generated by the mech-
anism the design was synthesized and mapped for a Xilinx
FPGA device XC7Z020-CLG484-1 available in the ZynqTM -
7000 SoC. Table II shows the usage of FPGA primitives for
the following: an original central processing unit (CPU) of
the Plasma design (one core), an original Plasma ALU, and
the implemented Pre-Decoder and Units Controller. Table III
shows the overhead percentage of the ALU, the Pre-Decoder
and the Units Controller when compared to the original Plasma
CPU.

As can be noticed the biggest introduced element added an
overhead of no more than 13%. When comparing to a full core
level redundancy, a work based on an ARM processor showed
a control logic overhead of 18% compared to a Cortex-R5

CPU, despite the overhead incurred by duplicating/triplicating
the whole core itself [14].

Fig. 3. Signals overview of the reconfiguration performed by the implemented
mechanism in the simulated environment.

TABLE II
FPGA PRIMITIVES USAGE BY PLASMA CPU AND INDIVIDUAL UNITS

FPGA Primi-

tive

CPU Plasma

(Original De-

sign)

Plasma ALU Pre-decoder
Units

Controller

Slice LUTs 1815 276 72 270
Slice Registers 273 0 51 0
Muxes 47 0 0 0
Total 2135 276 123 270

TABLE III
PRIMITIVE USAGE PERCENTAGE RELATED TO OVERALL ORIGINAL

PLASMA DESIGN

FPGA Primitive Plasma ALU Pre-decoder Units Controller

Slice LUTs 15,2% 4,0% 14,9%
Slice Registers 0% 18,7% 0%

Muxes 0% 0% 0%
Overhaed Total 12,9% 5,8% 12,6%

VI. USE CASES AND INTEGRATION POSSIBILITIES

According to the results shown in section V, the mechanism
was able to perform a low-latency functional units reconfigura-
tion. Therefore, this mechanism becomes suitable for real-time
systems, and real-time OSs may use this mechanism to add
HW controllability to their routines. Thereby, features like the
ones mentioned below emerge.

A. Criticality Aware execution Path Configuration

It is possible to extend OS functions assigning critical-
ity levels to threads. Then, the OS scheduler can use this
information to program the processor design to use more
reliable functional units when necessary. Moreover, it can
switch ON fault tolerant mechanisms like TMR on individual
units. The scheduler only needs to use the reconfiguration
commands described in this work to perform this operation,
which becomes possible because of the low latency of the
mechanism.



The OS can use the reliability calculations and measure-
ments used in [5] to get units’ reliability estimations and,
according to this data, perform units’ reconfiguration. Addi-
tionally, numbers about detected faults are available using the
READ FAULTS command.

B. Units usage balancing

As soon it is possible to keep track the usage of functional
units, a routine could be created and added to the OS to
perform usage balancing of HW resources in fine-grained
mode.

C. Parallelism for performance

A mode to target performance using parallelism becomes
possible due to the spare units expected in this mechanism. So
it can be another feature of the OS scheduler to find out that
the upcoming task does not have criticality requirements but
aims for performance. So the OS can use the reconfiguration
commands to switch between the operation modes.

D. Application specific configurations

The low latency of the mechanism enabled the capability
of units configuration according to application targets. Since
different algorithms can be created on the higher levels of elec-
tronic systems, possibilities like wear out aware algorithms,
execution of operations by specific units and other ones arise.

VII. CONCLUSION

This paper presented a mechanism to reconfigure fine-
grained processor internal functional units. As exposed in the
results section (V), the mechanism was able to effectively
reconfigure the execution path with the desired unit within
a latency of one clock cycle. Due to the low latency, this
mechanism becomes suitable for real-time systems and can
be useful for run-time configuration of HW resources (in fine-
grained mode) targeting a reliable execution path.

Additionally, the hardware overhead incurred by the im-
plemented units (Pre-Decoder and Units Controller) was less
than 13% of the Plasma CPU design each. This overhead
is noticeable lower when compared to core level redundancy
schemes.
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