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We report the existence of a new regime for domain wall motion in uniaxial and near-uniaxial 
ferromagnetic nanowires, characterised by applied magnetic fields sufficiently strong that one of the 
domains becomes unstable. There appears a new stable solution of the Landau-Lifshitz-Gilbert 
equation, describing a nonplanar domain wall moving with constant velocity and precessing with 
constant frequency. Even in the presence of thermal noise, the new solution can propagate for 
distances on the order of 500 times the field-free domain wall width before fluctuations in the 
unstable domain become appreciable.

The dynamical response of magnetic domains in fer-
romagnetic nanostructures to applied fields and spin-
polarized currents offers rich physics [1–5], presents un-
resolved mathematical challenges [6, 7], and promises ex-
citing technological applications [8, 9]. Of particular im-
portance is the problem of domain wall motion, in which
a ferromagnetic material has two neighbouring magnetic
domains, one expanding and the other contracting un-
der the action of an applied field. To date, this prob-
lem has been addressed, analytically and numerically,
in nanoscale systems with a variety of geometries and
topologies, including tubes, ribbons and films (see e.g.
Refs. [10–15]). Here we focus on the important case of
ferromagnetic nanowires [6, 16–18].

A common feature of most of these studies (but cf
Refs. [19, 20], discussed below) is the assumption that
the applied field is not strong enough to destabilise ei-
ther domain. Here, we consider the case of applied fields
sufficiently strong that one of the two domains becomes
intrinsically unstable. We show that there emerges a fast-
travelling precessing domain wall with nonplanar profile
– see Fig. 1, and calculate its velocity and precession fre-
quency. We estimate the lifetime of the domain wall in
the presence of thermal noise; for realistic parameters,
it can travel 500 times the field-free domain-wall width
before being overtaken by thermal fluctuations.
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FIG. 1. High-field domain wall with tail-to-tail boundary con-
ditions. The envelope (yellow curve) of the magnetisation (red
arrows) indicates a helical as opposed to planar profile. The
asymptotic sense and pitch of the helix may be interpreted in
terms of the chirality and wavelength of entrained spin waves.

We start from a standard model for domain wall dy-
namics under an applied field Haẑ, taking the wire to
be one dimensional along the z-axis. For definiteness,
we take Ha > 0. The evolution of the magnetisation,
Msm(z, t), where Ms is the fixed saturation magnetisa-
tion and the unit-vector m = (m1,m2,m3) determines
orientation, is governed by the Landau-Lifshitz-Gilbert
(LLG) equation,

∂tm = γH ×m + αm× ∂tm , (1)

where H = −(Ms)
−1δE/δm+Haẑ is the effective mag-

netic field, γ the gyromagnetic ratio and α the Gilbert
damping constant (typically α� 1). The micromagnetic
energy per unit cross-sectional area is given by

E = 1
2

∫ (
A |∂zm|2 +K(1−m2

3) +K2m
2
2

)
dz, (2)

where A is the exchange constant and K,K2 ≥ 0 are
the anisotropy constants along the (easy) z- and (hard)
y-axes. The spatially uniform domains m = ±ẑ are
global minimisers of the energy, so that boundary con-
ditions appropriate for a (head-to-head) domain wall are
m(±∞, ·) = ∓ẑ. This description incorporates several
simplifications, including reducing to one dimension and
incorporating the magnetostatic energy into the local
anisotropy; see [21, 22] for discussion and justification.

The model (1)–(2) has been extensively analysed in
the literature (see e.g. [17, 18, 23–28]). We will re-
strict our attention to the case of near-uniaxial wires,
for which K � K2 (eventually, we will take K2 = 0).
For applied fields Ha below the Walker breakdown field
HW = αK2/(2Ms), there appears an explicit stable trav-
elling wave solution, m∗(z−vt), with velocity depending
nonlinearly on Ha; for Ha = HW , the Walker breakdown

velocity is VW = γ
Ms

√
A

4K+2K2
K2 [23]. The Walker pro-

file m∗ lies in a fixed plane whose inclination to the x-axis
increases with Ha up to a maximum of 45◦ at breakdown.

For fields above breakdown, the dynamics is more
complicated. While there is no known explicit solu-
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tion, numerical simulations, collective coordinate mod-
els and asymptotic analysis reveal profiles in which the
magnetisation is no longer planar and executes periodic
motion, including translation, precession and breathing
(see e.g. [17, 18]). The mean velocity of the domain wall
actually decreases with increasing Ha. For large enough
applied fields so that K2 can be neglected (but still with
both domains stable), the behaviour approaches a simple
explicit solution in which the static planar uniaxial pro-
file moves with uniform velocity Vp = αγHa/Ms � VW
and precession frequency Ωp = γHa [27].

The preceding description of domain wall dynamics
applies when the spatially uniform domains m = ±ẑ
are energetically stable; the condition for stability is
|Ha| < K/Ms. For Ha > K/Ms, the uniform domain
m = −ẑ becomes unstable, and under perturbations,
e.g. thermal fluctuations, switches spontaneously to +ẑ.

A similar switching process takes place in the unstable
tail of a domain wall. However, as we report here, be-
fore this occurs, there emerges a new, persistent domain-
wall dynamics distinct from the well-known behaviour
for Ha < K/Ms. The high-field profile is strongly non-
planar; the tails are helical with pitches that may have
the same or opposite signs – see Fig. 2. The velocity of
the high-field domain wall scales nonlinearly with applied
field, and for suitable parameters is comparable to or may
substantially exceed the Walker breakdown velocity for
strongly anisotropic nanowires.

To simplify the analysis, we consider the strictly uni-
axial case K2 = 0, so that the problem has rotational
symmetry about ẑ; it turns out that the behaviour for
small, nonzero K2 is qualitatively similar. It is also con-
venient to introduce dimensionless variables ζ =

√
K/Az

and τ = (γK/Ms) t. Then the LLG equation (1) becomes

ṁ = (m′′ +m3ẑ + haẑ)×m + αm× ṁ, (3)

in which the only (dimensionless) parameters are α and
ha = (Ms/K)Ha, the rescaled applied field. In these
units, the static (field-free) domain wall has unit width.

We look for solutions of Eq. (3) travelling with fixed
(dimensionless) velocity v and precessing with fixed (di-
mensionless) frequency ω. These are of the form

m(ζ, τ) = R3(ωτ)n(ζ − vτ), (4)

where R3(φ) denotes the rotation about ẑ by angle φ,
and n is the domain wall profile. Substituting (4) into
(3), we get the following second-order ODE for n:

n′′ = (ω−n3−ha)ẑ−vn×n′+α(ωẑ×n−vn′)−λn, (5)

where λ = |n′|2 − (n3 + ha − ω)n3.
While the ODE (5) cannot be solved explicitly, we can

obtain the main qualitative features of the high-field pro-
file through a dynamical-systems analysis. To this end,
it is helpful to introduce the following mechanical anal-
ogy. We temporarily regard n(ζ) as the position of a

particle moving on the surface of a sphere, with ζ re-
garded as a fictitious time coordinate. From this point of
view, (5) describes the dynamics of a spherical pendulum
(of unit length, mass and charge) subject to a uniform
gravitational force −(ha − ω)ẑ as well as the following
additional forces: (i) a Lorentz force, vn × n′, arising
from a radial magnetic field of uniform strength (which
may be interpreted as the field of a magnetic monopole
of charge −v at the centre of the sphere); (ii) a har-
monic force arising from a potential 1

2n
2
3; (iii) a damp-

ing force, −αvn′; and (iv) a nonconservative azimuthal
torque, αωẑ × n. Finally, there is (v) a force of con-
straint, λn, ensuring that the length of the pendulum
remains fixed. We remark that for α = 0, Eq. (5), re-
garded as a Hamiltonian system, is integrable, with en-
ergy E = 1

2n
′2 + ( 1

2n3 +ha−ω)n3 and canonical angular
momentum L = ẑ ·(n×n′)−vn3 as conserved quantities.

The dynamics is no longer exactly solvable for α > 0.
However, it is easy to establish that Eq. (5) has just two
equilibria, namely n = σẑ, corresponding to the pendu-
lum at rest and either upright (σ = +1) or downright
(σ = −1). In fact, we are seeking a trajectory which
connects these two equilibria - a heteroclinic orbit n(ζ) -
with the pendulum upright at ζ = −∞ and downright at
ζ = +∞; this corresponds to a domain wall profile with
the specified boundary conditions.

In order for such a heteroclinic orbit to exist for a range
of values of v and ω, it turns out that we must require
+ẑ to be a saddle point and −ẑ to be a stable node. To
determine when these conditions hold, we consider the
linearised dynamics about the two equilibria. For conve-
nience, we write n = σ(ẑ + ε(η1x̂ + η2ŷ)) + O(ε2) and
introduce the complex coordinate η = η1 + iη2. Substi-
tuting into Eq. (5), we obtain the linearised equation

η′′ + rvη′ − (1 + σha + irω)η = 0, (6)

where r = α+ iσ. The associated characteristic equation
(obtained by substituting η = eikζ) is [29]

k2 − irvk + (1 + σha + irω) = 0. (7)

The stabilities of σẑ are determined by the imaginary
parts of the roots k± of (7). For σ = 1, it is straightfor-
ward to establish that Im k± have opposite signs provided
ha > 1, in which case +ẑ is a saddle point for all v and
ω. For σ = −1, it is straightforward to establish that
i) Im k± have the same sign provided ω2 < (ha − 1)v2,
in which case −ẑ is a node, and ii) −ẑ is a stable node
provided v > 0. Thus, the conditions for the existence of
a heteroclinic orbit over a range of values of v and ω are

v > 0 and ω2 < (ha − 1)v2. (8)

The heteroclinic orbit n(ζ) is unique up to rotation
about the ẑ-axis and translation in ζ. Via Eq. (4), it cor-
responds to a travelling-wave solution of the LLG equa-
tion with velocity v and precession frequency ω. Nu-
merical solution of Eq. (5) confirms the existence of this



3

heteroclinic orbit when Eq. (8) is satisfied; representative
examples are shown in Fig. 2 [30].

z(a) z (b)

FIG. 2. Two spherical pendulum trajectories, shown from
perspectives above and below the sphere. In (a), with ha =
2.3, the sense of the azimuthal rotation changes sign as the
trajectory passes from the north to the south pole. In (b),
with ha = 5, the sense of rotation stays the same. In both
cases, α = 0.1, and v and ω are given by Eq. (16).

Numerical solution of the LLG equation (3) reveals
the following surprising behaviour: For initial conditions
describing a sufficiently sharp head-to-head domain wall,
the evolving profile approaches a traveling wave solution
Eq. (4) with specific values of v and ω. The selected
velocity and precession frequency depend only on ha and
α, and not on the initial condition. This is illustrated
in Fig. 3, where the initial configuration is taken to be
the static (field-free) domain wall profile. At first, the
evolution follows the exact precessing solution [27]. The
precessing solution is unstable, however [31], and after a
short time, the new high-field profile emerges, with much
higher velocity.

FIG. 3. Emergence of high-field profile: the evolution of the
polar angle θ(ζ, τ) = cos−1(m3) obtained from numerical so-
lution of the LLG equation (3) with static (field-free) domain
wall profile as initial condition. Here ha = 3 and α = 0.1.

For scalar PDEs, there is a well-established method for

determining the selected velocity of travelling-wave solu-
tions based on the theory of front propagation into un-
stable states (see, eg, [32] and references therein). Here,
we adapt this method for the vector-valued LLG equa-
tion (3). The idea is to linearise the LLG equation in the
region of the unstable tail of the profile, ie where ζ � 1,
and find a frame of reference in which, at long times, the
propagating solution is nearly stationary. With

m = −(ẑ + iε(η1x̂ + η2ŷ)) +O(ε2), η = η1 + iη2,

the linearised LLG equation for η(ζ, τ) is given by

(1 + iα)η̇ = iη′′ + i(ha − 1)η. (9)

The solution is given explicitly by

η(ζ, τ) =

∫
η̂0(k)ei(kζ−Ω(k)τ) dk, where (10)

Ω(k) = −(ha − 1− k2)/(1 + iα). (11)

In a frame moving with velocity v and precessing with
frequency ω, the profile appears as η̃(ζ, τ) = e−iωτη(ζ −
vτ, τ), with integral representation

η̃(ζ, τ) =

∫
η̂0(k)ei(kv−Ω(k)−ω)τ eikζ dk. (12)

For long times τ , the integral in (12) may be evaluated by
the method of steepest descent; the contour is deformed
through the (complex) saddle point k∗, characterised by

Ω′(k∗) = v, Im k∗ > 0. (13)

Evaluation of (12) yields

η̃(ζ, τ) ≈ η̂0(k∗)

(2πΩ′′(k∗)τ)1/2
ei(k∗v−Ω(k∗)−ω)τ eik∗ζ . (14)

We choose v and ω so that η̃(ζ, τ) is τ -independent (apart
for a diffusive prefactor τ−1/2), ie so that

k∗v = Ω(k∗)− ω. (15)

With some calculation, Eqs. (11), (13) and (15) yield

v = 2

(
ha − 1

1 + α2

)1/2

, ω = 2
ha − 1

1 + α2
. (16)

We note that it is precisely when v and ω are given by
(16) that the roots of (7) with σ = −1 coincide. This
phenemenon is well known for scalar PDEs of reaction-
diffusion type, for example the KPP equation [33].

Confirmation of the preceding theory is provided in
Fig. 4. We solve the LLG equation (3) numerically
for a variety of initial conditions, using a finite differ-
ence scheme on a uniform rectangular grid, where spa-
tial derivatives are represented by central finite differ-
ences with Neumann boundary conditions. A time step
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is calculated via an explicit fourth-order Runge-Kutta
method. In order to exactly maintain the constraint on
the magnetization norm, the solution is renormalized af-
ter each time step. We determine the (initial-condition-
independent) velocity and precession frequency of the
emergent profile as functions of ha and of α. These are in
good agreement with the analytic formulas (16). Numer-
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FIG. 4. Velocity (circles) and precession frequency (dia-
monds) of the high-field profile obtained from numerical solu-
tion of the LLG equation (3), along with the analytic predic-
tions of Eq. (16), plotted as functions of (a) damping constant
α for ha = 3 and (b) applied field ha for α = 0.1.

ically computed profiles are shown in the Supplementary
Material. They coincide with solutions of the ODE (5)
with v and ω given by (16). In particular, the chiralities
of the domain wall tails are obtained from (7).

As noted previously, with ha > 1, the uniform pro-
file m = −ẑ is unstable. It follows that the high-field
profile is unstable to perturbations in the region ζ � 1,
for example due to thermal excitation of spin waves. To
estimate the time scale for this instability to set in, we
model this region as a cylindrical nanowire of finite length
L� δex, where the exchange length, δex =

√
A/K, is the

width of the field-free domain wall. (The estimate turns
out to be independent of the choice of L.) The magnetisa-
tion is governed by the linearised LLG equation (9) with
transverse component, η(ζ, τ), given by (10) but with
the k-integral replaced by a sum over spin wave modes
of wavenumber kj , with spin wave amplitudes η̂0(kj) and
(complex) frequencies Ω(kj). The phases arg η̂0(kj) are
uncorrelated, so that the mean squared amplitude |η|2 is
the sum of the squared amplitudes of the spin waves. We
suppose the magnetic field is applied from τ = 0 onwards,
and let τc denote the time required for |η|2 to equal one.

As a crude approximation, we suppose that only spin
waves with wavelengths greater than δex contribute;
the number of such spin waves is approximately L/δex.

Moreover, for these spin waves, we replace |η̂(kj)| and
Ω(kj) by their long wavelength limits |η̂0| and Ω0,
replacing kj by k0 = 1/L (more careful calculation
does not change the estimate appreciably). We obtain
|η(ζ, τ)|2 ≈ (L/δex)|η̂0|2e2 Im Ω0τ , so that 2 Im Ω0τc ≈
log((δex/L)/|η̂0|2). After time τc, the domain wall travels
a distance (in units of the exchange length)

dc = vτc =
1

α

√
1 + α2

ha − 1
log

δex/L

|η̂0|2
, (17)

where v is given by (16) and we have used (11) for Ω0.
The initial amplitude |η̂0| may be estimated from a

simple equipartition argument. The associated spin wave
energy is approximately |η̂0|2KSL, where S is the cross-
sectional area of the wire (for long wavelengths, the ex-
change energy is negligible). At temperature T , before
the magnetic field is applied, each spin wave mode has
energy kBT , where kB is Boltzmann’s constant. Thus,

|η̂0|2 = kBT/(KSL). (18)

To estimate dc, we take as representative values A =
10−11 J/m, MsHa = 2K = 106 J/m3, S = 100 nm2,
T = 100K and α = 0.01. (For Ms = 106A/m, this
corresponds to an applied field strength of 1 Tesla.) In
this case, the high-field domain wall propagates for ap-
proximately 500 static domain-wall widths before being
overtaken by thermal instabilities.

It is interesting to compare the (unscaled) high-field
domain wall velocity V in a uniaxial wire with easy-axis
anistropy K to the Walker velocity VW for a strongly
anisotropic wire with easy-axis anisotropy K and hard-
axis anisotropy K2 > K, For large applied field in the
uniaxial case and large K2 in the anisotropic case (and
weak damping for both),

V/VW ∼
√

8MsHa/K2. (19)

Thus, for Ha comparable to K2/Ms, the high-field do-
main wall velocity in the uniaxial wire is greater than
the Walker velocity in the anisotropic wire.

We have concentrated on the case of uniaxial
nanowires. Numerical calculations reveal qualitatively
similar behaviour for small nonvanishing hard-axis
anisotropy – ie, a new high-field domain wall profile with
characteristic velocity and precession frequency. A per-
turbative analysis can be developed for small K2 > 0.

The dynamics of domain walls in nanowires under
small applied fields and currents has been extensively
studied. Here we consider the response of a domain wall
to an applied magnetic field strong enough to make one
of the domains unstable. Naively one might imagine the
unstable domain to reorient itself spontaneously and in-
coherently. Surprisingly, we show that for small trans-
verse anisotropy, there emerges a coherent reorientation,
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whereby the energetically stable domain grows via the
propagation of a travelling and precessing domain wall.

The threshold for the high-field regime is Ha > K/Ms.
For an isotropic material such as permalloy, K ' 1

4µ0M
2
s

[34]. In particular, for permalloy, Ms ' 800 kA/m [35],
so that the threshold is given approximately by 1

4µ0Ms '
0.25 T. We note that early experiments on domain-wall
motion in iron-garnet films at applied fields above the
anisotropy threshold [36, 37] indicate a sublinear velocity
response compatible with (16). Radiation damping at
high fields is discussed in a related theoretical work [38].

The high-field domain wall profile has novel features.
Unlike the well-known Walker profile, it is nonplanar with
asymmetrical tails comprised of spin-wave trains of dif-
ferent characteristic wavenumbers and helicities. The co-
herent magnetization switching is eventually overtaken
by thermal fluctuations far into the unstable domain, but
can persist over length scales of many hundreds of widths
of the domain wall. For realistic parameters, the domain
wall velocity in the high-field regime can be comparable
to or larger than the Walker velocity.

Benguria and Depassier [19, 20] consider the comple-
mentary case of strong biaxial anisotropy K � K2, char-
acteristic of thin ferromagnetic films. There appear tran-
sitions (depending on α and K/K2) between the Walker
solution with velocity v ∼ Ha and a KPP-type solution
(for which one of the domains is necessarily unstable)
with v ∼ √Ha. In this regime, the magnetisation is
confined to a plane, and the LLG equation reduces to a
scalar equation of reaction-diffusion type, for which the
theory of unstable front propagation is highly developed
(see e.g. [32]). For the case of near-uniaxial wires con-
sidered here, the LLG equation is a vectorial equation;
much less is known about unstable front propagation for
systems as opposed to scalar equations.
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NUMERICALLY COMPUTED PROFILE OF A
HIGH-FILED DOMAIN WALL

Supplementary Figure 1 shows the profile of an emer-
gent high-field domain wall obtained from numerical so-
lution of the LLG eqution. The transverse oscillations in
the two tails of the profile can be regarded as entrained
helical spin waves with complex wavenumbers ks,u, where
s denotes the stable tail (ζ → −∞) and u the unstable
tail (ζ → +∞). The imaginary parts of ks,u determine
the spatial decay rate of the oscillations. The wavenum-
bers extracted from the computed profiles coincide with
the expressions

ks = i
2 [rsv − (8 + 2r2sv

2)1/2], ku = i
2ruv, (S1)

where rs = α + i and ru = α − i; these are obtained
from the roots of Eq. (6) with v and ω given by Eq. (15)
(ks corresponds to the root of Eq. (15) with negative
imaginary part). It is straightforward to show that for ha
greater than (resp. less than) 3− [2α2/(1+2α2)], the real
parts of ks and ku have the same (resp. opposite) signs; ie,
the spin waves in the tails have the same (resp. opposite)
chiralities – cf Fig. 2.

Supplementary Figure 1. Polar coordinates θ and φ of the
emergent high-field profile along with asymptotic wave num-
bers (the real parts of ks,u in Eq. (S1)), which determine the
rate of twisting in φ in the tails. In (a) (cf Fig. 2a), the
tails have opposite chirality, while in (b) (cf Fig. 2b), the
tails have the same chirality. The asymptotic approach is
slower in the unstable tail, due to the asymptotic behaviour
η ∼ (c1 + c2ζ)e

ikuζ as ζ → +∞. The parameters in (a) and
(b) are the same as in Fig. 2a and Fig. 2b respectively.


