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Abstract  1 

The emergence of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae 2 

has been increasing rapidly across the world. The presence of virulence factors in ESBL 3 

producers further adds to the pathogenicity and severity of infection, which often complicate 4 

empirical therapy and sometimes result in treatment failures. In the present study, 227 non-5 

repeated clinical isolates of K. pneumoniae obtained from different clinical specimens from a 6 

tertiary care hospital in India were analyzed to detect the genes responsible for ESBL 7 

production (blaTEM, blaCTX-M, and blaSHV), virulence (fimH-1, mrkD, entB, irp-1), and 8 

capsule production (K1-K2). Phenotypically identified 72 ESBL producing K. pneumoniae 9 

isolates were further subjected to PCR based genotypic analysis but only 20 were found to have 10 

at least one of the ESBL producing genes. blaTEM was the most predominant gene (100%), 11 

followed by blaSHV (90%), and blaCTX-M (85%). Similarly, the most common virulence 12 

genes were fimH-1 (70%), entB (65%), markD (55%), irp-1 (25%), K1 (25%), and K2 (20%). 13 

REP-PCR profile separated them into five major clusters (I-V), indicating the existing 14 

heterogeneity among the isolates. The resistance profile data obtained from the present study 15 

can serve as the information base to understand the infection pattern prevailing in the hospital 16 

and for physicians to recommend suitable antibiotics for the patients.  17 

Keywords: Extended-spectrum β-lactamase (ESBL); Klebsiella pneumoniae; virulence 18 

genes; REP-PCR. 19 
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Introduction 1 

Klebsiella pneumoniae is the most important gram-negative pathogenic bacteria of the family 2 

Enterobacteriaceae, and it is frequently associated with several nosocomial infections. This 3 

bacteria has been reported to have developed resistance globally [1]. Hence, routine testing and 4 

reporting for this bacterium have been recommended by CLSI since 2006. The intensity of 5 

their pathogenicity and virulence depends on the presence of several other factors, including 6 

adhesion, lipopolysaccharide cell wall, serotype of the capsule, iron-scavenging mechanism, 7 

and biofilm-producing ability. The beta-lactam group of antibiotics is the most common 8 

treatment option worldwide for treating diseases caused by gram-negative bacterial isolates. 9 

However, frequent exposure of this group of antibiotics to bacterial isolates (including K. 10 

pneumoniae), have induced the diversification and production of the hydrolytic enzyme beta-11 

lactamase. Beta-lactamase enzymes are generally plasmid-encoded and can hydrolyze the beta-12 

lactam group of antibiotics. Only few bacteria can hydrolyze third-generation penicillins and 13 

cephalosporins [2], and they are called extended-spectrum beta-lactamase (ESBL)-producing 14 

bacteria. 15 

ESBL-producing bacteria are commonly identified using the double disk diffusion test, but the 16 

efficacy of this test is currently challenged by inconsistencies in the results produced[3]. Thus, 17 

detection of the specific resistance genes (blaCTX-M, blaSHV, and blaTEM) using PCR and 18 

sequencing is now being followed commonly as powerful tools for the validation of ESBL-19 

producing bacteria. In addition, the genes responsible for virulence (fimH-1, mrkD, entB and 20 

irp-1) [4, 5] and capsule production (K1 & K2) have been probed to understand their role in 21 

the severity of the infection. 22 

Previous studies from different countries, including India, have reported the frequency of 23 

ESBL-producing genes to range from 8–80% [6]. However, there is a paucity of scientific 24 
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information available to correlate the prevalence of genes with the range of ESBL producers 1 

in the species K. pneumoniae. Accordingly, the present study was conducted to detect the 2 

predominance of ESBL producers among K. pneumoniae isolates at our university hospital and 3 

their molecular characterization. 4 

Materials and methods 5 

Materials 6 

Antibiotic discs, growth media, and chemicals were purchased from HIMEDIA (India), 7 

Molecular biology reagents and PCR master mix kits were purchased from Thermo Fisher 8 

Scientific and Qiagen, India.   9 

Methods 10 

Sample collection 11 

Samples were collected from our University hospital (Institute of Medical Sciences and SUM 12 

hospital) from patients of the outpatient department (OPD) and intensive care unit (ICU). 13 

Written informed consent was obtained from all enrolled patients or their guardians/family 14 

members as per the guidelines approved by the Indian Council of Medical Research (ICMR), 15 

Government of India.  16 

Identification and antibiotic susceptibility test 17 

A total of non-repeated 227 clinical isolates were obtained from different clinical specimens 18 

(urine, blood, and pus) of patients of varying age (5–80 years) during a two month-period in 19 

2018 from the OPD and ICU of our university hospital. Isolates were identified using routine 20 

biochemical analysis. Phenotypical screening of ESBL producers was performed using 21 
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the double disc synergy test with cefotaxime (30 μg), cefotaxime/clavulanic 1 

20 acid (30/10 μg), ceftazidime (30 μg), and ceftazidime/clavulanic acid (30/10 μg) discs [7].  2 

Antibiogram was performed using antibiotic discs from Himedia Laboratories Pvt. Ltd. based 3 

on Kirby Bauer’s Method [8]. The antibiotics used were as follows: AK, amikacin (30 μg); 4 

AMC, amoxicillin with clavulanic acid (30 μg); CAZ, ceftazidime (30 µg); CFM, cefixime (30 5 

µg); COT, co-trimoxazole (25 μg); CXM- cefuroxime (30 µg); CTR, ceftriaxone (30 µg); CL, 6 

colistin (10 μg); CTX, cefotaxime (30 μg); MRP, meropenem (10 μg);,LE- levofloxacin (5 μg); 7 

NX, norfloxacin (5 μg); NET, netilimicin (30 μg); OF, ofloxacin (5 μg); PI, piperacillin (100 8 

μg); and PIT, piperacillin/tazobactam (100/10 μg). 9 

Resistance and virulence determinants detection 10 

Genomic DNA extraction was carried out using a modified ROSE method (Rapid one-step 11 

extraction) [9]. The concentration and purity of DNA was measured using UV-VIS 12 

spectrophotometer (Thermo Scientific, USA). ESBL positive isolates were tested for the 13 

presence of blaTEM, blaCTX-M, and blaSHV genes using gene-specific primers (Table S1) 14 

through a PCR-based method. About 25 ng of template DNA was mixed with PCR master mix, 15 

which contained 12.5 μL of 2X Taq PCR master mix (QIAGEN, India); 1 μL each forward and 16 

reverse primers and 9.5 μL of nuclease-free water. PCR amplification reactions were performed 17 

with the BIORAD thermal cycler (T100) using 30 cycles of 94°C for 1 min, 55°C for 45 s, and 18 

72°C for 1 min, with initial denaturation at 94°C for 5 min and a final extension at 72°C for 10 19 

min. Similarly, virulence-associated genes encoding type 1, type 3 adhesins (fimH-1, mrkD), 20 

enterobactin biosynthesis (entB), yersiniabactin biosynthesis (irp), and capsule serotypes (K1 21 

and K2) were screened through PCR assays. The PCR conditions were similar to those of ESBL 22 

genes except the annealing temperature described in Table S1. The amplified products were 23 

run with 1% (w/v) agarose gel and visualized under UV trans-illuminator. 24 
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Molecular typing 1 

The genetic relatedness among the ESBL-producing K. pneumoniae isolates was determined 2 

using REP-PCR (Repetitive element palindromic-PCR) [10]. PCR reactions were performed 3 

with 35 cycles of 94°C (1 min), 45°C (1 min), 72°C (2 min) with initial denaturation at 95°C (7 4 

min) and a final extension at 65°C (8 min).  5 

The PCR amplified bands were scored as ‘1’ for the presence and ‘0’ for the absence of bands. 6 

Using the binary data obtained from REP-PCR, a dendrogram was constructed using the 7 

distance matrix obtained by the Unweighted Pair-Group Method with Arithmetic Means 8 

(UPGMA) with 1000 bootstrap resampling using the Darwin 6.0 software [11].  9 

Biofilm testing 10 

The biofilm production test was performed using the microtiter plate method as described by 11 

Singh et al. [12]. Two hundred microliters of diluted (100 times dilution) cultures were poured 12 

in each of the microtiter plates and incubated at 37°C for 48 h. Next, the cultures were removed 13 

from each well and 25 µL of crystal violet (0.1% crystal violet in 90% ethanol) was added and 14 

incubated at 25-30oC for 30 min. The plate was dried after removing the crystal violet solution. 15 

A volume of 200 µL of 33% acetic acid was then added to each well and the absorbance was 16 

measured at 595 nm. The control experiment was performed without bacteria. The outcomes 17 

were categorized as strong (OD>0.5), moderate (OD<0.5–0.1), and weak (OD<0.1) biofilm 18 

producers. 19 

Results and Discussion 20 

Identification and antibiotic susceptibility profile 21 

In this study, out of 227 clinical isolates, 72 samples were found to be ESBL producers using 22 

the disc diffusion method. These 72 isolates also exhibited resistance to more than three classes 23 
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of antibiotics including third-generation cephalosporins. Out of 72 phenotypically confirmed 1 

ESBL producers, K. pneumoniae constituted the highest percentage of bacteria (43.06%), 2 

followed by 13.9% Escherichia coli (n=10), 12.5% Pseudomonas aeruginosa (n=9), 11.11% 3 

Proteus mirabilis (n=8), 6.94% Proteus vulgaris (n=5), 5.55% Acinetobacter baumannii (n=4), 4 

2.77% Enterobacter aerogenes (n=2), 2.77% Citrobacter freundi (n=2), and 1.38% 5 

Citrobacter koseri (n=1). K. pneumoniae has been reported to be the most common infectious 6 

agent in hospital-acquired as well as health-associated community infections. Therefore, K. 7 

pneumoniae isolates were subjected to further analysis.  8 

The distribution patterns of 31 ESBL-producing K. pneumoniae among different pathological 9 

specimens were as follows: urine (n=10), blood (n=15), and pus (n=6) as obtained from IMS 10 

and SUM Hospital, Bhubaneswar. The antibiotic susceptibility patterns of 31 MDR K. 11 

pneumoniae isolates showed the highest percentage (100%) of resistance to ceftazidime, 12 

followed by cefuroxime (83.87%), ofloxacin (83.87%), amoxicillin with clavulanic acid 13 

(70.96%), piperacillin (70.96%), and levofloxacin (64.51%). The lowest percentage of 14 

resistance was observed in meropenem and colistin (6.4%) (Fig.1). Percentage occurrence of 15 

ESBL K. pneumoniae isolates has been found to vary among different countries; Canada 16 

(4.90%) and United States (44%) [13], Algeria (20%) [14], Spain (20.80%) [15], Taiwan 17 

(28.40%) [16], China (51%) [17], and Turkey (78.60%) [18] whereas the highest percentage 18 

range (4–83%) [19,20] was reported from India. This shows the widespread occurrence of 19 

ESBL producers across the globe. 20 

Molecular detection of ESBL genes (blaTEM, blaCTX-M, blaSHV) 21 

All the 31 phenotypically confirmed ESBL-producing K. pneumoniae isolates were subjected 22 

to molecular detection of ESBL genes (blaTEM, blaCTX-M, and blaSHV) and 20 isolates 23 

(urine, n=7; blood, n=8 and pus, n=5) were identified as ESBL positive. The lack of correlation 24 
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between phenotypic and genotypic ESBL detection was evident in this study, which claims 1 

genotypic analysis as a prerequisite method for the detection of ESBL. Therefore, we believe 2 

it should be incorporated into all routine diagnostic tests. Among all these 20 K. pneumoniae 3 

isolates, blaTEM was the most predominant gene (100%), followed by blaSHV (85%), and 4 

blaCTX-M (50%). Similarly, the blaTEM genes were predominantly found in Portugal (40.9%) 5 

[21], Turkey (72.7%) [22], and Italy (45.4%) [23]. The co-existence of blaTEM+blaSHV was 6 

observed in 17 isolates (85%), blaTEM+blaCTX-M in 10 isolates (50%), blaCTX-M+blaSHV 7 

in 9 isolates (45%), and blaTEM+blaCTX-M+blaSHV in 9 isolates (45%). In this study, the 8 

co-occurrence of TEM and SHV was higher than that in a previous report from Lucknow, India, 9 

where the authors observed blaTEM and blaSHV in only 26.5% of K. pneumoniae isolates 10 

[24]. The co-existence of three ESBL genes was also higher (45%) than that in the reports by 11 

other authors who conducted similar studies [25,26]. The co-existence of the genes 12 

blaTEM+blaSHV was the highest in blood samples (Fig. 2). Similarly, blaTEM+blaCTX-M 13 

and blaCTX-M+blaSHV were equally distributed in both urine and blood samples. The co-14 

existence of blaTEM+blaCTX+blaSHV was the highest in urine samples, followed by blood, 15 

and pus samples. However, the predominance (100%) of the blaTEM type β-lactamase gene in 16 

K. pneumoniae in the present study concurs with those of previous studies [27-29]. ESBL-17 

producing K. pneumoniae infection results in ineffective therapy, treatment failure due to lack 18 

of alternate antimicrobial agents, and increased mortality.  19 

Detection of virulence genes 20 

Since the presence and expressional ability of the virulence factors in any bacteria add to the 21 

severity of infection, a myriad of genes contributing to virulence have been mined. Type 3 22 

fimbriae (mrkD) play a crucial role in the binding of infecting bacteria to the surface of collagen 23 

molecules of the host cells [30]. The gene for type 3 fimbriae (mrkD) was found to be the 24 

highest in blood (30%), followed by pus (20%), and urine (5%) samples (Table 1). In the 25 



 
 

 9 
 

present analysis, type 1 fimbriae (fimH-1) adhesions were detected in 70% isolates and were 1 

most prevalent in urine samples (Table 1). A similar predominance in urinary tract infections 2 

has also been reported in a previous study [31]. Expression of both Type 1 and type 3 fimbriae 3 

genes was normally found together in clinical isolates of K. pneumoniae in different specimens 4 

[32,33]. In our analysis, the siderophore genes (entB and irp-1 genes) were found among 65% 5 

and 25% of MDR K. pneumoniae, respectively, whereas their percentages were 85% and 28% 6 

for entB and irp-1 genes, respectively in an Egyptian hospital [32]. These siderophore genes of 7 

K. pneumoniae are responsible for the uptake of iron from the host for inhibition of T cell 8 

proliferation [34,35]. Such irp-1 genes are also located in high-pathogenicity island (HPI) in 9 

Yersinia strains [36] and also in other members of the family Enterobacteriaceae, such as E. 10 

coli, Enterobacter spp., and Citrobacter spp. [37, 38]. The virulence of K. pneumoniae is 11 

associated with capsular serotypes K1 and K2 [39]. We found 9 out of 20 ESBL-producing K. 12 

pneumonia isolates to be typable; 25% (n = 5) exhibited K1 type whereas 20% (n = 4) of them 13 

were K2 type. A varying percentage of K1 capsule types were observed among all different 14 

sample categories, but K2 capsule types were completely absent in isolates collected from pus 15 

samples. In a previous study, Feizabadi et al. depicted the percentage of K1 and K2 serotypes 16 

to be 11.2% and 14.6%, respectively out of the total K. pneumoniae isolates studied [40]. 17 

Phenotypic validation of biofilm production 18 

Biofilm formation is one of the most important virulence properties of K. pneumoniae, which 19 

help their attachment to live or abiotic surface, thereby protecting them from antimicrobial 20 

agents, phagocytosis, and opsonization by antibodies [41]. In vitro, experimental verification 21 

of biofilm formation by these isolates encourages phenotypic validation. Microplate crystal 22 

violet assay revealed 85% of our isolates had the biofilm forming ability out of 20 K. 23 

pneumoniae. A variable potential in biofilm formation was observed among all the ESBL K. 24 

pneumoniae members of the present study, ranging from weak (n=3) (15%), to moderate (n=8) 25 
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(40%), and to strong (n=6) (30%). K. pneumoniae isolates from urine and blood samples 1 

showed strong biofilm forming ability than the isolates from pus samples (Table 1). Our present 2 

results are consistent with those of previous studies, wherein the rates of biofilm production by 3 

K. pneumoniae were 96.2% and 77.8% [42], 77.7% [43], and about 50% [44].  4 

Our results showed a correlation between the ability of these isolates to form biofilm and the 5 

presence of genes contributing to biofilm formation, K1 and K2, and entB [40,45]. From table 6 

1, it is clear that almost all samples obtained from urine (n=7) and blood (n=8) do have either 7 

one or all of the three genes that contribute to the formation of biofilm and formed either strong 8 

or moderate amount of biofilm in vitro unlike samples collected from pus. The high potential 9 

of biofilm formation also enhances virulence and finally the severity of infection of the 10 

infecting agent.  11 

Molecular typing 12 

REP-PCR has been widely used as a well-accepted tool for molecular genotyping for 13 

understanding the heterogeneity among the ESBL-producing K. pneumoniae strains [46]. The 14 

dendrogram, obtained from REP-PCR fingerprints with amplicons ranging from 50–1500 bp 15 

of 20 ESBL positive K. pneumoniae isolates, formed five clusters (I-V) (Fig. 3). Cluster I 16 

consisted of eight isolates, out of which five isolates were from urine samples, two from blood, 17 

and one from pus sample. Cluster II consisted of two from urine samples, cluster III consisted 18 

of all two isolates from blood samples, and cluster V consisted of seven isolates including four 19 

from blood and three from pus. Cluster IV was separated from other clusters having one sample 20 

from pus. Existing genetic diversity among 20 K. pneumoniae isolates as observed from the 21 

multiple clustering patterns (figure 3) could be due the differences in their source and origin. 22 

Therefore, from this study, the possibility that the prevalence of ESBL-producing K. 23 

pneumoniae strains in different sample types was due to nosocomial infection may be ruled 24 
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out. However, to further confirm this, a highly precise, but costly, multi locus sequence typing 1 

of housekeeping genes of all the 20 isolates needs to be performed. Multiple clustering 2 

observed in our analysis also coincides with the highly heterogeneous nature of K. pneumoniae 3 

reported by Lai et al. [47].  4 

Conclusion 5 

The rapid emergence of ESBL-producing K. pneumoniae in a tertiary health care set up adds 6 

to the complex treatment of patients as well as the escalation of treatment costs. Routine 7 

surveillance is required for understanding the prevalence of resistance patterns at the genetic 8 

level to help monitor the pattern of dissemination of nosocomial or community-acquired 9 

infections in hospitals, as well as in recommending a better empirical drug regimen. However, 10 

long-term routine surveillance is desirable in hospital settings where the rate of emergence of 11 

resistance genes is expected to be considerably high. 12 
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Figure Captions 1 

Fig.1: Percentage of resistance by K. pneumoniae isolates against different antibiotics. AK-2 

Amikacin, AMC- Amoxicillin with clavulanic acid, CFM- Cefixime, COT- Co-trimoxazole, 3 

CXM- Cefuroxime, CTR- Ceftriaxone, CIP- Ciprofloxacin, CTX- Cefotaxime, MRP- 4 

Meropenem, LE- Levofloxacin, NX- Norfloxacin, NET- Netilmicin, OF-Ofloxacin, PI- 5 

Piperacillin, PIT- Piperacillin/Tazobactam. 6 

Fig. 2: Prevalence of ESBL producing gene types among different samples. 7 

Fig. 3: Dendrogram based on REP-PCR profile of Klebsiella pneumoniae. 8 

 9 
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Table 1: Prevalence and distribution pattern of virulence factors among clinical specimen in 

K. pneumoniae (n=20). 

Samples 

Virulence factors Biofilm formation 

FimH mrkD entB irp K1 K2 weak moderate strong 

No. % No. % No. % No. % No. % No. % No. % No. % No. % 

Urine (N=7) 5 25 1 5 5 25 3 15 2 10 1 5 0 0 4 20 2 10 

Blood (N=8) 5 25 6 30 5 25 1 5 1 5 3 15 1 5 3 15 4 20 

Pus (N=5) 4 20 4 20 3 15 1 5 2 10 0 0 2 10 1 5 0 0 

Total 14 70 11 55 13 65 5 25 5 25 4 20 3 15 8 40 6 30 
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Table S1: List of primers used in this study 

Target  

Region 
Primer Sequence 

Annealing 

Temperature 

(°C) 

Reference 

TEM 
F-5’-ATG AGT ATT CAA CAT TTC CGT G-3’ 

55 Essack et al. 2001 
R-5’-TTA CCA ATG CTT AAT CAG TGA G-3’ 

SHV 
F-5’-TTA TCT CCC TGT TAG CCA CC-3’ 

55 Essack et al. 2001 
R-5’-GAT TTG CTG ATT TCG CTC GG-3’ 

CTX-M 
F-5’-SCS ATG TGC AGY ACC AGT AA-3’ 

55 Saladin et al. 2002 
R-5’-CCG CRA TAT GRT TGG TGG TG-3’ 

K1 
F-5’-GGT GCT CTT TAC ATC ATT GC-3’ 

47 Fang et al. 2007 
R-5’-GCA ATG GCC ATT TGC GTT AG-3’ 

K2 
F-5’-GGA TTA TGA CAG CCT CTC CT-3’ 

45 Fang et al. 2007 
R-5’-CGA CTT GGT CCC AAC AGT TT-3’ 

mrkD 
F-5’-CCA CCA ACT ATT CCC TCG AA-3’ 

52 
El Fertas-Aissani et al. 

2013 R-5’-ATG GAA CCC ACA TCG ACA TT-3’ 

fimH-Type 1 
F-5’-ATG AAC GCC TGG TCC TTT GC-3’ 

55 
El Fertas-Aissani et al. 

2013 R-5’-GCT GAA CGC CTA TCC CCT GC-3’ 

irp1 
F-5’-TGA ATC GCG GGT GTC TTA TGC-3’ 

57 Pelludat et al. 2002 
R-5’-TCC CTC AAT AAA GCC CAC GCT-3’ 

entB 
F-5’-CTG CTG GGA AAA GCG ATT GTC-3’ 

57 Wasfi et al. 2016 
R-5’-AAG GCG ACT CAG GAG TGG CTT-3’ 

REP 
F-5’-III ICG ICG ICA TCI GGC-3’ 

47 Versalovic et al. 1991 
R-5’-ICG ICT TAT CIG GCC TAC-3’ 
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