
Robotic Kiwifruit Harvesting using Machine Vision,
Convolutional Neural Networks, and Robotic Arms

Henry Williamsa,∗, Mahla Nejatia, Jamie Bella, Nicky Penhalla, Ho Seok
Ahna, JongYoon Lima, Bruce MacDonalda, Mark H. Jonesb,∗∗, Matthew

Seabrightb, Josh Barnettb, Mike Dukeb, Alistair Scarfec

aFaculty of Engineering, University of Auckland, Auckland, New Zealand
bSchool of Engineering, University of Waikato, Hamilton, New Zealand
cRobotics Plus Ltd, Newnham Innovation Park, Tauranga, New Zealand

Abstract

As labor requirements in horticultural increase, so too does the feasibility of

increased automation in these industries. This paper presents a performance

evaluation of a kiwifruit harvesting robot designed to operate autonomously

in pergola style orchards. The robot consists of four harvesting arms, end-

effectors designed specifically for kiwifruit detachment, and a machine vision

system employing convolution neural networks. Performance evaluations are

presented for the harvester as a whole, as well as the machine vision system.

We show the system as a whole is capable of harvesting over half of all fruit

within three test orchards, equating a substantial reduction in peak harvesting

labor requirements.
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1. Introduction

The New Zealand government is targeting a two-fold increase in primary

exports for the thirteen year period ending 2025 [1]. Pressure from this growth
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is driving demand for new technologies and approaches to handle the increas-

ing demand on manual labor forces to ensure high quality exports. Research5

presented here focuses on kiwifruit, which represents the largest share of New

Zealand’s exports by value and 30% of the market-share globally.

Kiwifruit are harvested in New Zealand from late March to mid-June and

currently demand upwards of 2,500 people over a 50 day period. Timely, effi-

cient, and careful harvesting of this fruit is critical to ensure optimum returns10

with export quality fruit. The kiwifruit industry, like most horticultural sec-

tors, struggles to attract and retain laborers, especially during seasonal high

demand periods. To meet peak labor demands of the harvesting and pollination

seasons, migrant workers are often sourced through government assisted work

programmes. However, relying on these seasonal workers can pose reliability,15

quality, and socioeconomic challenges.

Development of robotic solutions to assist manual labor is emerging as a

strategic necessity to harvest desired yields at a high quality within the short

harvesting time-frame. This is reflected by the investment programmes the

New Zealand government is engaging in to fund research with the potential to20

increase those export figures. Furthermore, automated harvesting systems have

the potential to provide more reliable and consistent harvest quality over their

human counterparts.

Kiwifruit are most commonly grown in pergola style frames with rows sep-

arated by 3 m to 5 m. This creates a relatively flat overhead canopy that sits25

approximately 1.7 m above the ground. Fruit generally hang below the leafy

canopy, but are also able to grow within the canopy area where obstructions are

common. Such obstructions may be a cane of the plant itself, wires used to tie

the canopy down, or the cross-beams that hold the canopy up.

The project to develop the harvester (along with the base platform and30

pollinator) is jointly funded by the New Zealand Government, and industry

investment. It is a collaboration between two universities, a government funded

research organisation, and an early stage technology development company. A

photo of the developed harvesting system is presented as figure 1.
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This system combines Convolutional Neural Networks (CNN), stereo vision,35

and robotic harvesting arms on a robotic platform as a means of harvesting

individual fruit. An end-effector that mimics the harvesting action of a human is

used to ensure that fruit detachment minimises force and promotes detachment

of the fruit from its stem. Each arm has been designed to pick continuously at

a rate of one fruit per second. It is expected that the system will be unable40

to harvest all fruit in a given canopy area due to obstructions and/or occlusion

from the canopy itself.

Figure 1: The robotic harvesting system sitting under a kiwifruit canopy.

2. Related Work

Traditionally, object recognition for machine vision applications is based on

combinations of processes such as thresholding, masking, colour segmentation,45

edge detection, and filtering. These approaches work well when lighting is pre-

dictable, the object’s appearance is well defined, and occlusions are minimal,

such as in consumer-goods factories. However, in the agricultural environment

it is often the case that none of these conditions are met. With regards to

detecting kiwifruit, cameras face a canopy which is often back-lit by the sun,50
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kiwifruit grow in a number of shapes, hang on various angles, and be obstructed

by canes and other kiwifruit. Harvesting these fruit complicates matters further

by adding the need for a robotic positioning system, a suitable end-effector,

precise localisation of target fruit, and obstacle detection.

Research toward overcoming these problems is gaining in popularity as de-55

mand for agricultural automation increases globally [2, 3, 4, 5, 6]. A compre-

hensive review on harvesting systems investigated over 50 projects reported in

the last three decades [4]. It was found that on average a system would locate

85%, detach 75%, harvest 66%, and damage 5% of the fruit.

A key challenge to convert this research into a commercial product is de-60

veloping a system with a commercially viable operational time. Currently an

average cycle time of 33 s is being reported [4]. This ‘cycle time’ refers to the

time to complete an average full harvest operation. This may include ripeness

determination (if used), localization, fruit detachment, transport of detached

fruit, wasted time from failed pick attempts, and movements between fruit.65

This indicator is relevant to determine the economic feasibility of the robot.

A kiwifruit harvesting system intended to be capable of picking four kiwifruit

per second has previously been reported [7], but the final system presented in

that work was unable to meet the target figures. The work presented in this

paper is a continuation of the earlier work by Scarfe et. al that attempts to70

meet those targets.

2.1. Fruit Detection

Accurate fruit detection and locating is currently considered the biggest

hurdle for development of commercial level harvesting systems [8]. Detection

systems should be capable of dealing with variations in fruit shape and lighting,75

as well coping with clustering and occlusion of fruit.

A wide range of sensor types have been investigated for a variety of fruit

types in an attempt to overcome these issues. An extensive review of fruit

detection systems can be found in [8].

The most common approach to fruit detection utilises colour cameras for80
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fruit detection and stereo cameras to determine position. Colour images provide

a range of information for detection including colour, geometric, and textural

information about the fruit [9]. However, uncontrolled lighting conditions make

it difficult to develop robust detection approaches using traditional computing

algorithms [8].85

Soft computing methods are often used to perform modeling and analysis of

complex problems, and to provide solutions, which are tolerant to imprecision,

uncertainty, partial truth and approximation [10]. This makes them ideal for

the detection of fruit. Work has even showing the feasibility for using soft

computing methods for the detection of kiwifruit [5], however it is limited for90

use in night time conditions where the light can be controlled.

Recent advancements in Convolutional Neural Networks (CNNs) have shown

improvements in classification accuracy and robustness [11]. Having been utilised

in autonomous cars [12] for detection in uncontrolled environments, they could

provide a robust and effective means of fruit detection.95

2.1.1. Convolutional Neural Networks

In machine learning, a CNN is a type of feed-forward neural network for

analyzing visual imagery developed in the 1990s [13, 14]. Recent developments

by Krizhevsky et al. in 2012 [15] have rekindled interest in CNNs by showing

substantially higher image classification accuracy on the ImageNet Large Scale100

Visual Recognition Challenge (ILSVRC) [11].

A typical CNN is comprised of one or more convolutional layers (often with

a subsampling step) and then followed by one or more fully connected layers

as in a standard multi-layer neural network [15]. The architecture of a CNN is

designed to take advantage of the 2D structure of an input image (or other 2D105

input such as a speech signal). This is achieved with local connections and tied

weights followed by some form of pooling which results in translation invariant

features. One benefit of CNNs relative to fully connected networks is a reduced

number of input parameters, leading to faster training times.

Another advantage of CNNs, and deep learning in general, is that the self-110
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generated feature extraction model only requires ground-truth images of the

desired operating environment. Given images in a wide range of operating

conditions, the system can learn a robust means of classifying objects. One

downside however is the time and computing power required to train the model

and the gathering of the ground truth data itself.115

2.2. Fruit detachment methods

Once the fruit is located in the canopy, the next challenge is picking the fruit

without causing damage to the fruit or canopy. Bulk harvesting approaches,

such as shaking techniques [16, 17], are already used in the industry. Such

techniques are unsuitable for harvesting fruit that are further processed before120

being sold to customers, such as fresh kiwifruit. In the case of kiwifruit the stem

of a kiwifruit can damage other fruit when packed in a bin it is important for

the stems to be detached during the harvest process. Furthermore, care must

be taken to prevent bruising or piercing to the kiwifruit.

Mechanisms for selectively picking the fruit are required where the fruit must125

be handled with care to ensure the quality of the fruit. To achieve this, picking

arms with gripping hands [18] or even vacuum based methods [19] have been

developed. Both approaches have shown the ability to effectively harvest apples

[2, 20], pears [20], grapes [21], and kiwifruit [3, 7] without harm.

2.3. Base Robotic Platform130

In addition to the kiwifruit harvesting unit, a base robotic platform has

been developed that is capable of moving the harvesting unit through an or-

chard. This platform is a second generation unit of what has previously been

published by [7]. Modularity has been increased over the previous design, al-

lowing the unit to be used for both pollination and harvesting. It is electrically135

driven with four in-wheel hub motors that allow the harvesting unit to be moved

with greater precision than a hydraulic or combustion driven system. Between

each harvesting cycle the harvester must move forward approximately 300 mm

– this equates to a high number of stop-start cycles which the electric drive is
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well suited to. This base platform contains all the power conversion necessary to140

power the harvesting module electrically as well as provide compressed air. Fur-

ther details of this platform and its specifications will be published separately

[22].

3. Harvesting System

Lighting

Kiwifruit chute

Grippers

Stereo cameras

Figure 2: Photo showing the harvester as mounted on the base robotic platform.

Figure 2 shows the arrangement of arms, cameras, lights and fruit chutes on145

the harvesting system. The overall system is comprised of four sub-units spaced

across the width of the base platform. Each sub-unit consists of a servo driven

three-axis articulated arm, servo controllers, computing hardware, and stereo

camera pair. The computers in each sub-unit are linked via ethernet connection

which allows them to be coordinated with one another. The module as a whole150

receives electrical power and pneumatic pressure from the base robotic platform,

which also provides the ability to cut power in an emergency.
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Conceptually, the harvester can be broken down into the following sub-

systems: machine vision for object recognition, stereo depth calculation, a pick-

order scheduler, arm path-planning and servo control, and fruit grip-and-detach.155

Functionally, the harvester takes an image of the canopy which is processed

by the vision system to detect fruit in the image and locate their positions in 3D

space. The system then determines the order in which it will pick the located

fruit. Next, optimised movement profiles are generated and streamed to each

of the servo-motor controllers. When in position, the end-effector is actuated160

so as to detach the target fruit from the canopy. Finally, the harvested fruit

roll down a chute into a conveyor contained within the harvester and the arm

moves onto the next fruit in the schedule. When the schedule is empty the arms

return to a home position and the systems starts again, this process is referred

to as a sub-cycle.165

The system repeats these sub-cycles until the system determines there are no

kiwifruit available to harvest, or is unable to locate any harvestable fruit. The

base platform then advances 300 mm completing a full harvesting cycle. A new

harvesting cycle then begins and continues until the harvester has completed

the entire orchard.170

3.1. Machine Vision

The vision system needs to be capable of accurately locating the position

of the kiwifruit to correctly place the hand for a successful pick. It may also

detect obstructions as a means of protecting itself and reducing damage to the

canopy. Furthermore, it is required to operate in a wide range of lighting and175

weather conditions.

To achieve this the presented system utilities a CNN1 to perform semantic

segmentation [23, 24] on images of the canopy. The network was trained on

a total of 63 hand-labeled images collected across a range of conditions and

locations. These images varied by time of day, the camera settings used, and180

1https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/

8



location. Each were labeled for kiwifruit calyxes, canes, and guide wires. An

example of the network’s output is shown in figure 3.

Figure 3: Output from the trained neural network. Blue represents a kiwifruit’s calyx, green

represents canes, and red shows wires.

The network used here is capable of performing inference on a 500x500 pixel

image with a Nvidia GTX-1080 8GB graphics card in 250 ms. As the network is

limited in its image input resolution, the input images are fed through in smaller185

chunks (500x500 pixels) and then reassembled post-inference. The cameras used

on the harvester have a resolution of 1900 by 1200 and so each image is broken

into 12 pieces to cover the whole image. Therefore, performing inference on a

full image takes 3 s, a significant amount of time per sub-cycle.

The position of each kiwifruit is then determined through standard stereo190

point matching methods. The cameras are spaced with a baseline of 170 mm

to minimize the positional error at the working distance of 900 mm. The posi-

tions of detected kiwifruit and any obstructions are subsequently passed to the

scheduling system.

9



3.2. Scheduling195

The kiwifruit are first filtered to remove kiwifruit not within reach of the

arms, based on the arm’s kinematic profile. The remaining kiwifruit are then

ordered into a picking list that represents the order each kiwifruit will be picked

in. That list is ordered in such a way that the risk of damaging adjacent fruit

from actuation of harvesting mechanism is minimised. Figure 6 shows the har-200

vesting action of the end-effector as a sequence of images. The image shows how

parts of the mechanism protrude from the initial profile during the harvesting

action, which could damage neighbouring fruit.

An example of fruit clustering and the resulting order in which they are

picked is shown as figure 4. A cluster is picked in the following order: lowest205

hanging fruit that is furtherest away and to the right relative to the picking arm,

progressing toward the closest left. The picking order between clusters happens

from the closest to the furtherest away from the arm.

Figure 4: Three clusters of kiwifruit and the order in which the arm will harvest the kiwifruit.

If the system locates a kiwifruit numerous times it will only attempt to pick

it twice before marking it as not pickable and removing it from the pick list.210

This happens if the arm is repeatedly prevented from picking the fruit, due

to obstructions, or the system has detected a false positive. This prevents the

10



system from repeatedly attempting to pick false positives or fruit placed behind

obstructions.

3.3. Path Planning and Control215

Each arm is controlled using three Festo EMME-AS series servo motors

and three CMMP-AS series motor controllers. Theses controllers support the

CiA 402 CANopen device profile which is used as the control interface. To

ensure each axis remains synchronised during movements, the controllers are

set to operate using an interpolated position mode. This allows the controlling220

computer to stream sets of axis positions to the controllers in near real-time.
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Figure 5: Plot showing a generated ‘U-move’ path (left) and its associated motor velocities

(right). The visualised path is represented in units of a millidegree.

The design of the fruit detachment mechanism necessitates vertical move-

ment both when approaching and detaching a fruit. Figure 5 represents a typical

instance of this movement. The end-effector begins at the black circle (top left)

where it first retracts from the canopy before moving under the next fruit, then225
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moves vertically onto the fruit. Fruit detachment is performed each end of the

move.

Each of the white circles on the path represent points that the arm must

pass through as part of the ‘U-move’. Between those points a series of positions

are generated that represent a time-optimal path based on velocity and acceler-230

ation limits for each axis. This path is generated using the Time-Optimal Path

Parameterization library (TOPP) [25]. This ensures the arm moves smoothly

and reduces the amount of time spent moving between fruit.

During the move, positions and torques applied by each axis are monitored.

If excessive torque is being applied, the scheduler will be notified so it can abort235

the picking operation and move on to the next fruit. The fruit that caused the

excessive torque is then marked as unsafe and removed from the pick list. This

reduces damage to the arm, end-effector, and the canopy.

3.4. Fruit Grip and Detachment

Simply pulling a kiwifruit away from the canopy places excessive force on240

the fruit and causes unnecessary shaking of the canopy. Excessive force can

lead to bruising or piercing of the fruit. Shaking causes other fruit to swing

and often leads to fruit dropping out of the canopy. Minimising dropped fruit

is important for the economic operation of the harvester as it is a source of

unrecoverable loss. Additionally, the fruit locations previously determined by245

the machine vision system are only valid as long as the fruit remain still.

One way to reduce the amount of force needed to detach a kiwifruit is to

rotate the fruit about its stem before pulling it away form the canopy. This

concentrates the force at the fruit-stem interface into a smaller region, which

promotes tearing between the fruit and stem. That tearing reduces the peak250

force required to detach the fruit and ensures the fruit is separated from its

stem. As kiwifruit stems can damage other fruit post-harvest, e.g., when placed

in bins, ensuring they are detached is important to the design of the end-effector.

A custom end-effector has been developed that produces this rotation using an

asymmetrical four bar linkage. This end-effector and its harvesting action is255
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shown in figure 6, where a kiwifruit like object is detached from a magnetic rod

and dropped through the hand mechanism.

The gripping mechanism is made of food-grade silicon molded around a 3D-

printed digit. The molded silicon sections contain channeled air pockets that

allow the silicon to conform to the shape of the kiwifruit. By conforming to the260

shape of the fruit, the contact area between the fruit and gripper is increased,

thus reducing the peak pressure applied, thereby reducing the chance of bruising.

A single pneumatic cylinder actuates both the clasp and rotate actions of the

hand. Adjusting the pressure applied to that cylinder therefore controls the

total force being applied to the fruit.265

Figure 6: Picking action of harvesting hand, viewed from left to right. The hand grips the

fruit and then rotates to gently snap the kiwifruit off the stem before releasing the fruit down

the chute.
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4. Evaluation

The harvesting system is evaluated in two parts: the machine vision system,

and the system as a whole. As results of system as a whole include those

of the machine vision system, simple subtraction yields an evaluation of the

hardware. Firstly, an evaluation of the vision system is presented, followed by270

the remainder of the system.

4.1. Machine Vision

The performance of the machine vision system was evaluated over three

static tests in separate locations within a single orchard. The tests were static

in that the harvesting arms were disengaged and the platform remained station-275

ary. During the test the harvesting unit captured images of the canopy, which

were fed through the detection and localisation system. The source and output

images from the system were then analysed offline to assess performance. An

example of this is shown in figure 7, where the kiwifruit are labeled with col-

ored circles to represent whether the kiwifruit was detected, matched, and/or280

reachable.

Prior to capturing data, the canopy area visible to the four stereo camera

pairs was marked out with red tape. Kiwifruit outside the visible area were

manually picked before the image data was captured to make a final count

easier to measure. Once images of the canopy were captured, all fruit within285

the region were hand-picked and counted.

Table 1 shows the progression of of kiwifruit identification rates. It shows an

average of 96.7 % of kiwifruit can be seen by the harvester’s cameras; a relatively

high figure considering the frequency of occlusion in individual images. Because

the cameras have a wide field of view, with overlap between adjacent camera290

pairs, fruit occluded in one image are generally visible in other images.

The detection system is then shown to be capable of detecting 76.3% of all

the kiwifruit in the region, including kiwifruit not visible in the images. Of

those kiwifruit visible in the images (by human inspection) the system was able

14



Figure 7: Resulting photo after being processed on-line by the harvesting vision system. Blue

circles mark detected kiwifruit, green circles show fruit which have been matched between

stereo images, and yellow circles indicate that the fruit’s position lies within the picking area

of the respective harvesting arm.

to detect 79.0% of the visible fruit. Of those kiwifruit that are detected in the295

left and right camera images, 99.7% were correctly stereo matched to generate

a location for the arm to pick. Leading to a final localisation rate of 76.1% of

all kiwifruit in the canopy within the field of view of the cameras.

As can be seen in figure 7, the lighting intensity decreases towards the edge

of the image. This reduction in lighting quality tends to result in a lower300

detection rate in these areas using the current network. Increasing the detection

rate should be possible with further training of the detection networks as more

training data in these conditions are acquired.

The false positive count of the system adds another 1.2% of false kiwifruit

to be harvested. This does effect the picking time as time is wasted picking305

non-existent fruit, but it is substantially lower than the real value and does not

significantly effective the overall time to harvest.

These figures were obtained from a single capture of the canopy images. Dur-
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Trial Total Visible Detected Localised False Positive

1 70 70 59 59 1

2 182 176 137 136 1

3 162 154 120 120 3

Total 414 400 316 315 5

Cumulative 100% 96.7% 76.3% 76.1% 1.2%

Step loss 0% 3.3% 21.0% 0.3%

Table 1: Breakdown of identification and steps from processed canopy images. ‘Total’ refers to

the number of hand counted fruit, ‘visible’ refers to the number of human identified fruit from

the images, ‘detected’ refers to the number of fruit identified by the system, and ‘localised’

refers to the number of fruit matched between stereo images to give a position. ’False positive’

refers to the number of non-kiwifruit objects localised as kiwifruit by the vision system.

ing operation, images are captured and processed at the start of every harvest

sub-cycle. Fruit not detected in one sub-cycle have a chance of being detected310

on subsequent sub-cycles due small changes in the image, e.g. clusters thin

out and reveal more fruit. Additionally, between each harvest cycle the base

platform advances by approximately one third of the viewable area. Any fruit

missed in the first round are likely to be seen in the next due to the change in

viewpoint and lighting.315

Finally, a manual detection approach was used to determine the localisation

rate of the reachable fruit in the canopy, these results are shown in table 2. It

was found that 55.0% of all the kiwifruit visible in the field of view of the cameras

were considered reachable by the arm system. Of those that are reachable 89.6%

were correctly Localised by the vision system. Effectively this means that the320

cameras have a much wider field of view than the reachable area of the harvesting

arms.

4.2. Harvesting System

The harvester was evaluated in three orchards near Tauranga, in the Bay

of Plenty region of New Zealand. Each contained plantations of the Hayward325

variety, commonly known as ‘green’ kiwifruit. Two of the orchards were main-
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Trial Total fruit Reachable fruit Localised reachable fruit

1 70 59 57

2 182 97 84

3 162 75 66

Total 414 231 207

Cumulative 100% 55.8% 89.6%

Table 2: Comparison between the number of fruit in the harvester’s viewing window (hand

counted), the number determined to be reachable by the arms, and the number of reachable

fruit correctly localised

tained to a standard commonly found in the kiwifruit industry, while the third

was particularly well maintained in terms of its canopy.

Evaluation was by way of operating the harvester through a pre-defined

part of each orchard and recording its performance. These regions were chosen330

based on how well they appeared to represent the orchard as a whole. Each

were marked out with tape prior to testing and the kiwifruit within the region

counted by hand multiple times as a check.

The test regions spanned the full width of a row, which were between 4.0 m

and 4.5 m. Because the harvester is roughly 2.4 m wide, it was driven through335

each area twice; once along the left-hand edge, then along the right. Doing so

allowed it, in theory, to reach all points within the designated area, allowing the

possibility of a 100 % pick. A photo of the unit at the beginning of an evaluation

run is presented as figure 8.

Primarily, evaluation of the system is based on the number of fruit picked ver-340

sus those lost or left in the canopy. Lost fruit includes fruit successfully detached

but subsequently dropped, and non-targeted fruit which were knocked from the

canopy. These numbers were determined by in-field counts of kiwifruit retrieved

from the harvester, found on the ground, or left in the canopy. Secondly, the

use of video analysis provided a means of quantifying other performance related345

metrics such as: the ratio of fruit picked then dropped, versus those knocked

directly from the canopy; or the frequency of obstacles being encountered during

17



Figure 8: Photo showing the harvesting unit and base robotic platform before performing an

evaluation run. Red tape has been used to mark the evaluated region.

harvest; or the frequency of the gripper failing to detach fruit.

The primary evaluation results, as shown in table 3, are relatively consis-

tent between each trial. They show that approximately one half of fruit are350

successfully harvested, a quarter are left on the canopy, and a quarter are lost.

Calculation based on the total duration, fruit count, and percentage harvested,

yields an average cycle time of 5.5 s/fruit across all four arms. This figure also

takes into account the time taken for the platform to move forward between

harvest cycles; estimated to be around 3 s at a speed of 100 mm s−1.355

Secondary results, taken from video analysis and presented as table 4, show

a much greater variation between orchards. ‘Grip failure’ occurs when the har-

vester attempts to pick kiwifruit but fails to detach the fruit from the canopy.

Possible causes are interference with obstacles, positioning error of the end-

effector, or a lack of friction between the gripper and the fruit. A lack of360

friction was responsible for most of the grip failures during the first trial due to

the addition of plastic skins over the silicone grippers. The skins were intended

18



Orchard Kiwifruit Harvested Lost Remaining Duration

(total) (%) (%) (%) (s)

1 340 48.5 28.0 23.5 1155

1 285 53.0 22.0 25.0 669

2 444 55.0 20.0 25.0 1140

3 387 47.5 28.0 24.5 1098

Total 1456 51.0 24.6 24.5 4062

Table 3: Primary evaluation results from in-orchard harvesting trials. Total duration: 67 min

and 42 s. Lost includes target kiwifruit dropped by the harvester and non-target fruit being

knocked out of the canopy.

Orchard Grip Failure Obstacle Drops/Lost Cycles Sub-cycles

1 138 48 71% 17 68

1 14 29 59% 12 41

2 52 102 70% 13 57

3 54 31 66% 14 67

Table 4: Secondary evaluation results from in-orchard harvesting trials. A sub-cycle refers to

an image acquisition, detection, and harvest sequence. A cycle refers to a set of sub-cycles

being carried out until no reachable fruit remain followed by the system moving forward.

to allow the gripper to slip into clusters of fruit without gripping onto non-

target fruit and knocking them from the canopy. The reduction of grip failures

in subsequent trials is due in-part to adjustment of those skins.365

‘Obstacle’ represents a count of the times the end-effector came into contact

with anything that limited its ability to move. In some cases encountering an

obstacle had no negative effect, i.e. the target fruit was still harvested, but it

often means the harvest move was aborted. While this count offers little insight

into the performance of the harvester, it does give some idea of an orchard’s370

suitability for automated harvesting.

Across all four trials the average cycle time for the harvester is 5.5 s/fruit

with all four arms. The biggest contributor to the cycle time is currently the

detection system, at 3.0 s/image at each detection step. As the robot harvests
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the system checks if any fruit have become visible or are still in the canopy375

after a picking step. With the vision system being a constant 3.0 s, there is a

diminishing returns on the time spent in the same location checking for viable

fruit after each attempt at picking.

5. Discussion

The vision system has been demonstrated to be sufficient to detect up to380

89.6% of the pick-able kiwifruit, based on the current harvesting arm, and de-

tecting up to 76.0% of all the kiwifruit in the canopy in the field of view of the

cameras. Further improvements are required to reduce processing time of the

system, currently contributing a significant detriment to the overall cycle time.

With decreasing costs in GPU memory this problem could be solved with more385

advanced GPU’s in the future, however it is not guaranteed. A less complex

model targeted at kiwifruit may be capable of the same performance with less

memory requirements.

The overall system can currently pick on average 51.0% of all the kiwifruit

successfully. The results and observations of the system indicate that a pick390

rate above 70.0% may be feasible if the drop rate of 15.7% and knock off rate of

7.7% can be resolved. This may be achievable with small improvements to the

positional accuracy of the vision system, and design of the hand used to pick

the fruit.

To achieve higher than 70% pick rates, further considerations about the395

design of the harvesting arm appear to be required. Adding more degrees of

freedom to the hand may allow the system to pick around obstacles, for example

rotating the hand via a wrist joint. However, increased complexity to the overall

system may lower the cycle time of the system.

The cycle time of 5.5 s/fruit appears to rate highly compared to other re-400

ported systems [4]. Overall, the biggest time constraint is processing time of

the CNN in the detection system. However, the high detection performance

indicates it is a viable means of fruit and object detection.
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6. Conclusion

This paper has reported the design and performance of a novel robotic ki-405

wifruit harvesting system. Measurement of its in-orchard performance shows

that it is capable of picking 51.0% of kiwifruit in the three test orchards. Dur-

ing those tests the unit harvested fruit with an average cycle time of 5.5 s/fruit.

Currently about 25 % of fruit are lost during harvesting. These drops are a

form of unrecoverable loss for the harvesting system and future work should410

prioritise reducing this number. We estimate that with further development the

unit may be capable of harvesting 70.0% of kiwifruit grown in orchards similar

to the orchards used in this work.
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