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Point of View: Directions for Research

Introduction

It has been appreciated since Hippocrates that the strongest 
predictor of final motor impairment after stroke is initial 
impairment (Aphorisms of Hippocrates, Section 2: 42). A 
prominent poststroke motor impairment in humans is the 
intrusion of unwanted synergies, with synergy referring to a 
systematic pattern of either joint co-articulation or muscle 
co-activation. The Fugl-Meyer Assessment (FMA) was 
explicitly developed to track progression of recovery from 
such synergies. A seminal study tracking the recovery of 
patients using the upper extremity subscale of the Fugl-
Meyer Assessment (FMA-UE) demonstrated that more 
severely affected patients saw greater recovery  in this out-
come, on average, than more mildly affected patients in the 
immediate poststroke recovery period1; however, the aver-
age final score of the FMA-UE among the severly affected 
still trailed behind the mildly affected. The authors of this 
study stated, “The most dramatic recovery in motor func-
tion occurred over the first 30 days, regardless of the initial 
severity of the stroke.” On the basis of this study and other 

considerations, Krakauer et al2 sought to investigate the 
nature of this FMA-UE change early after stroke; work that 
led to the formulation of the proportional recovery rule 
(PRR).2 The PRR states that patients recover approximately 
70% of their maximal potential reduction in impairment as 
measured by the FMA.2
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Since it was introduced, the PRR has been applied in a 
broad range of studies that involve recovery from stroke, 
both for FMA-UE and for other outcomes. Claims related 
to the PRR have been made for upper and lower limb 
impairment measured by the FMA,3-10 aphasia measured 
with the Western Aphasia Battery (WAB),11 the resting 
motor threshold (RMT) of the extensor carpi radialis,6 and 
visuospatial neglect measured with the Letter Cancellation 
Test (LCT),12 among others. Applications of the PRR typi-
cally distinguish between two distinct subgroups of 
patients, referred to as “recoverers” and “nonrecoverers”: 
the former subgroup is composed of patients who recover a 
significant amount of lost function, and the latter is com-
posed of those who do not. The PRR is thought to usefully 
characterize the recovery process among recoverers only. 
Although the methods by which the PRR was applied and 
evaluated have differed substantially across publications, 
many authors have argued that their findings are evidence 
for a PRR that accurately describes an underlying biologi-
cal process that arises across neurolocical domains. 
Recently, however, the PRR has been the subject of criti-
cism related to the validity of the statistical methods under-
lying its implementation and to the degree to which data 
are consistent with claims in support of the PRR.13,14 Much 
of the critique on the PRR articulated by these articles was 
focused on specific statements associated with the PRR 
followed by a general dismissal of all findings.

Our goal in this work is to provide a critical reexamina-
tion of the literature pertaining to the PRR. We focus first 
on the interpretation and implementation of PRR as a sta-
tistical model, and on data-driven concerns about the use 
of the PRR in studies of recovery. We then reexamine data 
reported in the literature and the extent to which past stud-
ies provide evidence for the PRR with these considerations 
in mind. Our hope is that this will serve as an instructive 
overview of issues that can arise in the application of the 
PRR to studies of recovery, aiming to improve future 
investigations into the PRR. Although our primary pur-
pose is not to provide direct response to recent cri-
tiques,13,14 we are mindful of the concerns raised and 
address these directly in the Discussion section.

The breadth of work on the PRR introduces a commen-
surate range of methodological concerns one might con-
sider. We attempt to be complete in our discussion but prefer 
to focus on overarching concerns regarding the statistical 
validity of the PRR instead of point-by-point inspections of 
the existing literature. Two themes we will revisit while 
pursuing the main goals of this paper are the identification 
of recoverers and the distinction between describing bio-
logical mechanisms and making patient-level predictions. 
The manner in which nonrecoverers are identified is a point 
of legitimate concern, as some statistical approaches can 
artifactually create evidence for the PRR. The PRR was 
originally intended to describe biological mechanisms at 

the population level, although implicitly it is expected that 
the PRR may be useful for predicting recovery of individual 
patients. Both of these are related to recent concerns regard-
ing the PRR.

The next section provides an overview of the statistical 
formulation of the PRR and introduces three simulated 
datasets to illustrate scenarios over which the PRR shows 
varying degrees of validity. Subsequent sections conduct a 
selective review of the literature, reevaluating specific arti-
cles in the light of the three scenarios, comment on recent 
criticisms of the PRR, and end with our current view on the 
veracity of the PRR.

Model Formulation and Simulated 
Examples

As a statistical model, the PRR can be expressed as a linear 
regression with the initial impairment as the main or only 
predictor and the observed recovery as the response. The 
slope of the regression line is interpreted as the proportion 
of recovery.

Notationally, we formulate the PRR using FMA-UE; the 
measure for which it was originally intended. We define ini-
tial impairment (FMA-UE

ii
) by subtracting the initial mea-

surement of the FMA-UE early after stroke (FMA-UE
i
) 

from the ceiling of the FMA-UE (FMA-UE
ii
 = 66 − FMA-

UE
i
). Change in FMA-UE (ΔFMA-UE) is calculated by 

subtracting initial impairment FMA-UE
ii
 from the FMA-UE 

measured at the end of the subacute phase (FMA-UE
f
), so 

that ΔFMA-UE = FMA-UE
f
 − FMA-UE

i
.

The PRR posits that, among those identified as “recover-
ers,” patients are expected to regain a fixed proportion of 
the initial impairment:

∆FMA-UE = prop  FMA-UE + errorii∗

When applying the PRR, a typical approach is to fit a linear 
regression model relating initial impairment to change in 
impairment to produce an estimate of the proportion recov-
ered. Under the PRR there is no intercept; this can be con-
strained in the model fitting by excluding an intercept, or an 
intercept can be estimated and compared to the 0-value 
anticipated by the PRR. We leave aside the issue of identi-
fying and removing “nonrecoverers” from analyses but 
return to this in the Discussion section.

As for other linear models, careful regression diagnos-
tics using a strict examination of residuals is essential when 
using the PRR. We highlight two main areas for attention: 
possible heteroscedasticity in errors and potential nonlinear 
associations between recovery and initial impairment. 
Usual approaches to linear models assume constant vari-
ance of the residuals across levels of the predictor; when 
this assumption is not met, the usual techniques for estima-
tion, inference, and summarizing goodness-of-fit will not 
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be suitable. Separately, the PRR suggests that the recovery 
proportion is constant across the range of initial impairment 
values; if this is inaccurate, the single estimated recovery 
proportion will oversimplify the true association. In both 
cases, departures from assumptions could be obscured 
through summary statistics like the estimated recovery pro-
portion and its confidence interval.

We introduce three simulated examples to illustrate the 
PRR and to provide context for our discussion of the pub-
lished literature (code generating each is available in a 
supplement). In each case, initial impairment is drawn 
uniformly between 0 and 66. The first simulated example 
assumes the 70% PRR with a relatively narrow error 

distribution (Figure 1a). This simulation represents a 
canonical example of proportional recovery, wherein the 
recovery proportion can be interpreted biologically and is 
useful in making specific patient-level predictions. In the 
second simulated dataset, ΔFMA-UE is generated ran-
domly between 0 and FMA-UE

ii
—that is, between no 

recovery and full recovery (Figure 1b). This simulation is 
consistent with the PRR using a recovery proportion of 
50% and an error distribution that violates usual assump-
tions of error homogeneity in linear regression models. 
The third simulated example implements a version of 
recovery to ceiling in which all patients approach full 
recovery and many patients do fully recover (Figure 1c).

Figure 1. Three simulated datasets illustrating appropriate and nonappropriate application of the proportional recovery rule (PRR). 
Red line: Ceiling line, data points cannot lie above the ceiling line. Blue dots: Simulated datapoints. Blue line: Linear regression line 
of the simulated datapoints. (1a): Simulated canonical PRR. (1b): Randomly distributed data drawn from a uniform distribution. (1c): 
Simulated data of close to full recovery; UE, upper extremity subscale.
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The PRR is written and can be interpreted as a standard 
linear model. The expected ΔFMA-UE is a fixed proportion 
of FMA-UE

ii
, and that proportion is shared across 

patients; in that sense, the PRR is appropriate for sum-
marizing population-level patterns related to recovery. As 
noted, before, though, there is an implicit expectation that 
significant associations in the PRR will result in accurate 
predictions of subject-level recovery and, in turn, subject-
level final outcomes. Individual predictions based on fit-
ted values from the PRR can be obtained, but their 
accuracy will depend heavily on the error distribution. 
Indeed, direct applications of the PRR to both our first 
and second simulated datasets will produce estimated 
recovery proportions that differ significantly from zero 
but only the first simulated dataset could be used to make 
meaningful subject-level predictions. In settings where a 
primary goal is to make accurate subject-level predictions 
for tailoring rehabilitation and informing patients, pairing 
usual regression diagnostics with formal assessments of 
prediction accuracy is necessary.

Data Reported in the Literature

In this section, we revisit the datasets on which the PRR 
is based and then reexamine subsequent datasets that 
have applied the rule prospectively. We undertake this 
review with a particular emphasis on the methods applied 
and the interpretation of the data in order to clarify those 
that do and do not support the PRR. For this purpose, we 
examine articles that led to the formulation of the PRR 
and its subsequent popularity, specifically, we examine 
them through the lens of the simulated scenarios in the 
previous section.

The publications discussed in Krakauer and Marshall,2 
as well as publications directly building on these that were 
published since that time, were considered in the following. 
Data were extracted from the figures in the original publica-
tions. This extraction does not create an exact replica of the 
dataset because some data points overlap, and it is not pos-
sible to know which those are. However, there are not many 
overlapping data points and so our extraction is a fair repre-
sentation of the reported data. Reported data were trans-
formed to the same coordinate system as the simulated data 
to enable consistent comparison between datasets. We first 
consider examples from the literature that focus on the 
FMA-UE as the primary outcome and then move on to 
those that look at other outcomes.

FMA-UE Examples

The PRR was first reported by Prabhakaran et al3 for the 
FMA-UE in patients suffering from a first-time ischemic 
stroke. A multivariate linear regression analysis with 
ΔFMA-UE as the outcome variable and several covariates 

was fit (see Figure 2). Outliers, formally identified, of the 
regression analysis were classified as nonrecoverers and 
excluded from the analysis; for the resulting data, backward 
selection identified subcortical lesion volume, age, time to 
reassessment and initial FMA-UE measured within three 
days after stroke as significant predictors of recovery. 
Fixing subcortical lesion volume, age and time to reassess-
ment at their averaged values produced a univariate rela-
tionship interpretable as the association between ΔFMA-UE 
and FMA-UE

ii
:

∆FMA-UE=0.7 FMA-UE +0.4,ii∗

which is the first formulation of the PRR.
This formulation of the PRR was, therefore, not a pre-

specified model with FMA-UE
ii
 as the sole predictor and 

ΔFMA-UE as the outcome; an approach that evolved in 
subsequent work. Rather, the PPR resulted from a multi-
variate regression in which three of four covariates were 
evaluated at their mean value to emphasize the recovery 
proportion as a variable of interest. Many of the results in 
Prabhakaran et al,3 including Figure 2, refer to the multi-
variate regression. Consequently, these can offer only lim-
ited support of the PRR: a more formal assessment of the 
PRR as a univariate model would give more formal evi-
dence. Prabhakaran et al3 concluded that as the intercept of 
the equation is close to zero, the relation between FMA-
UE

ii
 and ΔFMA-UE must be a proportional one; this state-

ment is based on the model for an “average” subject, and 
thus may only be partially true in these data.

Figure 2. The relation between predicted FMA-UE (upper 
extremity subscale of the Fugl-Meyer Assessment) recovery and 
observed recovery shown in Prabhakaran et al.3 The data shown 
represents the results of the multivariate linear regression and 
not the results of the univariate equation ΔFMA-UE = 0.7 * 
FMA-UE

ii
 + 0.4 leading to the formulation of the proportional 

recovery rule (PRR). Adapted from Prabhakaran et al3 copyright 
© 2008 by The American Society of Neurorehabilitation. 
Reprinted by permission of SAGE Publications, Inc.
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Figure 3. Overview of publications replicating and extending the results of the proportional recovery rule (PRR) proposed by 
Prabhakaran et al.3 Red line: Ceiling line. Blue dots: Recoverers. Red dots: Nonrecoverers. Blue line: Linear regression line as 
computed from the measured datapoints. The data points were measured from the following table and figures in the respective 
articles: Zarahn et al4 (Table 1), Winters et al5 (Figure 2), Byblow et al (A and B)6 (Figure 1e, Figure 3a), Feng et al7 (Figure 5), Stinear 
et al8 (Figure A); UE, upper extremity subscale.
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After the initial formulation of the PRR, several publica-
tions sought to replicate and extend the results4-8 (Figure 3 
and Table 1). All publications looked at first-time ischemic 
stroke survivors, with Stinear et al8 also considering hemor-
rhagic and recurrent stroke survivors. These studies all dis-
tinguish between recoverers and nonrecoverers although 
methods for identifying these groups differed; this has an 
impact on the interpretation of the data and will be dis-
cussed in later sections. In the following, we compare stud-
ies based only on models and findings for the recoverers.

In early work,3-5 as the formulation of the PRR was pro-
posed and refined, different methods were used to calculate 
the recovery proportion; it was only after Byblow et al6 that 
the method using a linear regression with FMA-UE

ii
 as the 

independent variable and ΔFMA-UE as the dependent vari-
able solidified as an approach.7,8 Building on the seminal 
work described above,3 Zarahn et al4 postulated a propor-
tional model that estimated the conditional expectation of 
ΔFMA-UE given FMA-UE

ii
 using a hierarchical frame-

work. They assumed the population was comprised of a 
mixture of recovery groups and identified three subgroups 
with distinct recovery proportions. Winters et al5 used a lin-
ear regression in which the response was predicted recovery 
(based on the PRR with the proportion set to 0.7) and the 
predictor was observed recovery.

Across these articles, the reported recovery proportion 
appears quite close to the proposed 70% (see Table 1), with 
some exceptions. After implementing their hierarchical 
model, Zarahn et al4 report three different estimates (0.55, 
0.81, and 0.93), from groups with close to equal size in the 
population. These estimates may suggest some underlying 
variability in the recovery proportion across subjects, or 
they could reflect a degree of heteroscedasticity in the error 
structure of the model (or both). Winters et al5 report a 78% 
proportion in their linear regression; translating this to our 
standardized version of the PRR using data extracted from 
figures suggests an estimated recovery proportion as high 
as 85%, which is noticeably higher than others.

Looking only at the estimated recovery proportion can 
mask issues related to goodness of fit; as we argue above, 
inspections of the underlying data or use of regression diag-
nostics can clarify whether a method is valid for a given 
dataset. Heuristically, we compare each of the datasets in 
Figure 3 to our simulated examples as a way to qualitatively 
assess the appropriateness of the PRR for this collection of 
published studies. Several studies plausibly resemble the 
canonical version of the PRR as simulated in model 1, 
including Zarahn et al,4 Winters et al,5 and Byblow et al,6 
although issues of heteroscedasticity and ceiling effects are 
present in some cases as well. Our simulated model 2 exag-
gerates the issue of heteroscedasticity; the studies for which 
this is most obviously an issue are Feng et al7 and Stinear 
et al.8 That patients with low initial impairment are close to 
ceiling is trivial, but in the canonical PRR, moderate and 
severely affected patients are not at ceiling. Especially in 

Winters et al7 and Feng et al,7 the ceiling effect, exaggerated 
in our simulated Model 3, has a pronounced impact on the 
observed data. Finally, visual inspection of several datasets 
supports the conclusion that there are “recoverers” and 
“nonrecoverers” with the latter designation being strongly 
related to severe initial impairment.4-8

A more formal summary of the datasets, estimated 
recovery proportions, statistics regarding homoscedasticity, 
and other key points of the discussed articles can be found 
in Table 1.

PRR for Other Outcomes

Although the PRR was originally posed for the FMA-UE, it 
has been applied to outcomes beyond FMA-UE, with the 
implication that the PRR denotes a more general biological 
recovery process after stroke. We now consider some illus-
trative examples of these analyses on other outcomes.

Smith et al9 and Veerbeek et al10 presented recovery data 
for the Fugl-Meyer Assessment Lower Extremity subscale 
(FMA-LE) for survivors of ischemic,9,10 hemorrhagic and 
recurrent strokes9 (Figure 4). Among recoverers, these stud-
ies fit linear regressions and reported estimated recovery 
proportions of 74% and 64%, respectively. In Smith et al,9 
corticospinal tract integrity was assessed in a subset of 
patients but did not lead to a clear separation of patients into 
recovers and nonrecoverers; instead, data points with the 
ΔFMA-LE differing 4 or more points from the predicted 
value were classified as outliers. In Veerbeek et al,10 nonre-
coverers were identified through hierarchical clustering.

Winters et al12 reported the PRR in the LCT for visuo-
spatial neglect in first-ever ischemic stroke patients (Figure 
4). The slope of the regression line was 0.97, and nonrecov-
erers were identified through hierarchical clustering. Lazar 
et al11 reported a proportional relation for language recov-
ery as measured using the WAB in patients suffering from a 
first-time ischemic stroke (Figure 4). No distinction was 
made between responders and nonresponders, and it is 
unclear how the reported slope of 70% is derived.

For non-FMA-UE domains, there is no dataset that 
closely resembles the canonical PRR in our simulated 
Model 1, although data in Winters et al12 and Byblow et al6 
contain some features of this model. In the other data, the 
high variance and heteroscedasticity accentuated in our 
simulated model 2 is an issue. All datasets in Figure 4 are 
also subject to ceiling effects, with the data from Winters 
et al12 resembling a variable heavily affected by the ceiling 
as simulated in model 3 most clearly.

Discussion

What the PRR Is and What It Is Not

The PRR is a linear regression describing population-level 
recovery of patients in the subacute phase after stroke; it 
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Figure 4. Proportional recovery rule (PRR) applied to lower extremity motor function, visuospatial neglect, aphasia and  
resting motor threshold. Red line: Ceiling line. Blue dots: Recoverers. Red dots: Nonrecoverers. Blue line: Linear regression  
line as computed from the measured datapoints. The data datapoints were measured from the following figures in the respective 
articles: Smith et al9 (Figure B), Veerbeek et al10 (Figure 2), Winters et al12 (Figure 2), Lazar et al11 (Figure), Byblow et al6  
(figure 2d).
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was originally proposed for upper limb function measured 
with the FMA-UE but has since been extended to other 
domains. As outlined in the Introduction section, the PRR 
can be interpreted in a strictly statistical sense: from this 
perspective, the PRR is a particular model with parameters 
that can be estimated using standard tools. There are two 
major concerns. First, whether studies demonstrating or 
confirming the PPR have used appropriate statistical meth-
ods and paid sufficient attention to the data distribution and 
to associated underlying assumptions (eg, homoscedastic-
ity)—failure to justify methods empirically or conduct ade-
quate regression diagnostics may lead to unfounded or 
overly strong conclusions. Second, whether the implicit 
biological and clinical assertions of the PRR are supported 
by observed data—these are difficult to formulate precisely 
but generally relate to the idea that individual-level predic-
tions made by the PRR should be meaningful.

In the rest of this section, we discuss remaining concerns 
related to the PRR and the implications of our literature 
review for biological questions about recovery. We also 
comment on recent critiques of the PRR; the most plausible 
of which address the subject-level accuracy of the PRR, in 
some detail.

Suggestions for Improved Analysis

A wide range of relationships might satisfy a statistical 
interpretation of the PRR, but only a narrower collection 
would satisfy the implicit biological and clinical expecta-
tions for the rule. It may therefore be helpful to acknowl-
edge prediction accuracy as a distinct conceptual goal that 
can be assessed independently. With that in mind, we 
believe that support for the PRR would be bolstered 
through comparisons to other potential recovery models 
using out-of-sample prediction. Competing models might 
be naïve, such as using the out-of-sample mean change in 
impairment to predict recovery for new patients. More sta-
tistically complex methods might also be considered. A 
method may perform well relative to others and nonethe-
less provide poor overall prediction accuracy. For that rea-
son, we also encourage authors to report quantities like the 
mean absolute prediction error for clinically meaningful 
patient populations (eg, mild, moderate, and severe initial 
impairment groups) or including prediction intervals, 
which combine uncertainty in parameter estimates with 
residual variance to provide the estimated recovery range 
for new patients, to improve on presenting only confidence 
intervals for the estimated slopes.

Throughout, we have focused on the PRR as it applies 
to “recoverers.” This focus is predicated on the existence 
of biologically and statistically distinct subpopulations—
those that recover according to the PRR in a way that 
allows reasonably accurate patient-level predictions, and 
those that do not recover predictably. A distinction of this 

kind was originally made by Prabhakaran et al,3 although 
it was framed in terms of initial severity: Initial impair-
ment was strongly correlated with change in impairment 
for mild and moderate patients, but much less strongly 
correlated in severely affected patients. Building on the 
observation that some but not all severely affected patients 
recover as expected under the PRR led to the recoverer/
nonrecoverer partitions of the variety shown in Figure 3 
(panel Winters et al5). Later work on the PPR for the 
FMA-UE suggested that in patients with initial severe 
impairments, nonrecoverers can be identified by examin-
ing integrity of the corticospinal tract, which has valuable 
implications for patient care.6

The methods that have been applied to identify nonre-
coverers have been varied, which could influence results 
and hamper comparisons across studies. A useful thought 
experiment builds on the second simulated dataset. If one 
excludes “nonrecoverers” with high initial impairment and 
low recovery, the resulting data for “recoverers” may almost 
certainly be consistent with the PRR (in both the statistical 
and biological sense). Although nonrecoverers are not 
reported, the removal of outliers as in Smith et al9 is ques-
tionable in the presence of heteroscedasticity as it might 
reshape the distribution of retained data. More concern-
ingly, the direct application of more sophisticated analysis 
techniques (eg, hierarchical clustering or mixture modeling, 
as in Winters et al5,12 and Veerbeek et al10) may effectively 
carry out the partitioning just described. Indeed, as shown 
by Hawe et al,14 hierarchical clustering in data similar to our 
simulated model 2 can lead to patterns emergent solely 
from the properties of the data and methods that not reflect 
the PRR as an underlying mechanism. We emphasize that 
the possibility of these issues does not in itself invalidate 
the hypothesis of recoverers who follow the PRR and non-
recoverers who do not: The fact that one can generate data 
that reproduces some findings of the PRR does not mean 
that the PRR is invalid or that the observed data does not 
represent biologically meaningful associations. However, 
we do suggest rigor in identifying nonrecovers, as was done 
in the original PRR article3 and as validated by analysis of 
motor-evoked potentials.6

Is Recovery Bounded and Domain-General?

To the extent that the 70% recovery rule has been sup-
ported by published studies, it has been interpreted by 
some as an upper limit to recovery given the current prac-
tice of rehabilitation medicine; hence, it has been sug-
gested that there is substantial room for improvement for 
most patients that is currently not being achieved.2 At the 
time of the publication of Krakauer and Marshall,2 only 
slopes of around 70% were published, which made the 
assumption of a benchmark which has yet to be surpassed 
a reasonable proposition. Despite the statistical issues 
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discussed in the previous sections, the slope of 70% as 
hypothesized in the formulation of the PRR can still serve 
as a benchmark for different therapy interventions as pro-
posed by Krakauer and Marshall.2

In the literature we reviewed, reported recovery propor-
tions were generally near the 70% value hypothesized when 
the PRR was formed, but sometimes exceeded this value. In 
the articles by Winters et al,5,12 the slopes appear to be 
somewhat higher, up to 90% or more, although variation in 
the applied analyses make direct comparisons difficult. 
These percentages are substantially different from 70% and 
cannot be ignored given the large sample size (N > 200). 
There are several potential explanations for the differences 
found in the slope, including a difference in the patient pop-
ulation, the possibility that patients received superior treat-
ment, or possibly, systematic differences between study 
sites introducing the observed disparities. Regardless, the 
value of 70% as a recovery proportion is less important than 
whether recovery is systematic.

The PRR has also been thought by some to describe a 
domain-general underlying biological process of recovery. 
We first note that two (WAB, FMA-LE) out of four (WAB, 
RMT, visuospatial neglect, FMA-LE) measures which 
were not the FMA-UE either did not reliably distinguish 
between recoverers and nonrecoverers or did not report an 
identifiable cluster of patients recovering differently or 
poorly. For the WAB, no analysis of nonrecoverers was 
presented.11 For the FMA-LE, Smith et al9 found no iden-
tifiable subset of nonrecoverers based on corticospinal 
tract integrity, while Veerbeek et al10 found a subset of 
nonrecoverers for the FMA-LE based on hierarchical clus-
tering. Veerbeek et al10 used the same data as Winters 
et al.5 Interestingly, all the nonrecoverers found in the 
FMA-LE were also nonrecovers in the FMA-UE. However, 
only around 30% of the FMA-UE nonrecoverers were 
FMA-LE nonrecoverers. Veerbeek et al10 proposed that 
this might be due to greater redundancy in descending 
pathways for lower extremities compared with upper 
extremities. For the RMT, it is not known if there is an 
identifiable cluster since the non-recoverers were excluded 
a priori. The lack of obvious nonrecoverers in the WAB, 
FMA-LE, and RMT could be viewed as evidence against a 
unified underlying biological process, although a system-
atic recovery process in recoverers (like the PRR) is likely 
attributable to a distinct mechanism from the reason for 
the existence of nonrecoverers. In the discussed literature, 
data for the FMA-UE more often resembled the “canoni-
cal” PRR than did other outcomes. This is perhaps unsur-
prising, because FMA-UE is the outcome the PRR was 
intended for in initial work. Overall, while there is some 
limited evidence for a domain-general recovery process, it 
appears that additional conceptual and methodological 
work is needed to draw conclusions about a domain-gen-
eral recovery mechanism.

Recent Concerns About the PRR

As addressed above, the PRR can be seen as a statistical tool 
to understand population-level mechanisms and/or make 
subject-level predictions. In recent publications, Hope et al13 
and Hawe et al14 raise concerns mainly concerned with sin-
gle-subject-level prediction properties of the PRR.

The central argument of Hope et al13 is that correlations 
between initial impairment and recovery, defined as the 
change between initial and follow-up values, are “spurious 
when (nontrivially) stronger than correlations between ini-
tial impairments and follow-up values.” The authors raise 
this issue because of the common but inaccurate assump-
tion that strong correlations between the former will neces-
sarily imply strong correlations in the latter. Indeed, Hawe 
et al14 seem to be making the same point when they say, “In 
theory, if proportional recovery can accurately predict 
change, it should also be able to accurately predict final 
score, since they are intrinsically linked.” The scenario 
Hope et al13 are most concerned with is one in which initial 
values have much higher variability than follow-up values, 
which is common in studies of stroke recovery. For exam-
ple, if initial FM values are disturbed uniformly over [0, 66] 
and follow-up values are uniformly distributed over [60, 
66] independently of initial values, one will observe strong 
correlations between initial impairment and recovery but a 
correlation approximately 0 between baseline and follow-
up. This scenario would reflect a dataset where most patients 
recover close to the ceiling as in our simulated Model 3. 
This would still describe a proportional relationship with a 
slope close to 100% and therefore suggest a uniform predic-
tion that each patient recovers almost completely from their 
initial impairment.

In contrast to the broader statistical concerns we have 
raised, Hope et al13 are more explicitly focused on the abil-
ity to accurately predict individual patient outcomes based 
on initial values (and, potentially, other baseline data). They 
also emphasize correlations between variables of interest 
and the statistical properties of those correlations, rather 
than viewing the PRR as a linear regression subject to con-
cerns like heteroscedasticity, nonlinearity, and width of 
confidence and prediction intervals. Hope et al13 “[do not 
claim] that the proportional recovery rule is wrong”, but 
also suggest that “empirical studies to date do not demon-
strate that the rule holds.” They propose a reevaluation of 
existing data and standard reporting for studies moving for-
ward, keeping in mind the scenario described above and 
considering alternative hypotheses for the biological mech-
anisms underlying recovery. These are points we generally 
agree with, although we think that for the FMA-UE a case 
can be made that echoes our own more regression-minded 
suggestions in previous sections.

Hawe et al14 emphasize the issue of mathematical cou-
pling, which is a well-known source of concern in the 
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statistical literature. Briefly, coupling arises when one 
variable is directly or indirectly included in a second; cor-
relations or associations between these may reflect their 
nonindependence rather than a “true” underlying relation-
ship. They, and Hope et al,13 mention the canonical exam-
ple in which independent variables with equal variance 
are used to create “baseline” and “difference” variables; 
the correlation between the variables derived from inde-
pendent samples will be approximately −0.71. In the con-
text of the PRR, this issue appears to arise because the 
response (recovery) is computed in a way that seems to 
directly include the predictor (initial impairment).

Krakauer and Marshall2 addressed this canonical ver-
sion of mathematical coupling in the context of the PRR as 
applied to FMA-UE. In short, they argue that because (a) 
baseline and follow-up measurements assess a stable bio-
logical impairment and (b) FMA-UE has been shown to 
have relatively low measurement error, the canonical 
example of mathematical coupling is not a large concern 
in this setting. As a contrasting example, blood pressure 
may vary widely within a person in a short period of time 
and is subject to relatively large measurement error, both 
of which are more consistent with the canonical example 
of coupling. Hope et al13 acknowledge the counterargu-
ment in Krakauer and Marshall,2 and then emphasize the 
scenario described above as a source of “spurious” corre-
lations; perhaps tellingly, a previous version of the article 
posted online was much more concerned about mathemat-
ical coupling in the canonical sense.

Hawe et al,14 after introducing mathematical coupling 
as proposed by the canonical example, focus largely on 
simulations analogous to our second scenario. In that set-
ting, the initial impairment creates an upper bound for 
possible recovery. This is a much more indirect example 
of coupling than one in which baseline is subtracted from 
follow-up to create recovery, and the statistical implica-
tions are much less clear. Instead of a derivation for the 
expected correlation between initial impairment and fol-
low-up, Hawe et al14 apply hierarchical clustering to the 
simulated datasets to partition recovers and nonrecover-
ers. The results of these analyses are bimodal distribu-
tions for estimated slopes and R2 values with one mode 
roughly corresponding to the PRR. To the extent that 
these simulations quantify concerns raised above regard-
ing identifying recoverers and nonrecoverers in highly 
heteroskedastic datasets with ceiling effects, we find 
them informative and useful. We do not, however, find 
these results compelling as an argument against findings 
based on applications of the PRR: The ability to produce 
results similar to the PRR via simulation does not pre-
clude the applicability of the PRR as a linear regression 
model in real datasets. Indeed, as we have seen, while the 
statistical issues in our simulated model 2 are apparent in 
some cases, there are many datasets in which they are 

not. Moreover, although Hawe et al14 glancingly acknowl-
edge that corticospinal tract integrity is a likely bio-
marker for nonrecoverers they do not discuss how this 
relates to their simulations14.

After these simulations, Hawe et al14 examine real data-
sets similar to (and overlapping somewhat with) those we 
have presented. Rather than arguing that these datasets 
sometimes exhibit the concerns raised in their preceding 
simulations (ie, that evidence in support of the PRR is pos-
sibly the result of heteroscedasticity and improper identifi-
cation of nonrecoverers), they focus on new issues. First, 
they note that variability in observed recovery for individ-
ual patients is high, and that nearly half had recovery over 
80%. Second, they note that the goodness of fit of the PRR 
is lower than the goodness of fit for a regression of follow-
up values on initial impairment. These are important obser-
vations regarding (a) the ability of the PRR to explain 
observed recovery for each patient and (b) the difference 
between predicting recovery and predicting follow-up val-
ues. We agree that these should be considered both in 
reviewing the existing literature and in evaluating the PRR 
in future studies. We disagree that these observations are, in 
themselves, indictments of the PRR as a statistical and bio-
logical model for recovery.

These two critical articles13,14 are valuable investiga-
tions into issues that can arise in studies of recovery and 
echo long-standing statistical concerns about relating 
baseline scores to changes. Our disagreements with these 
articles fall in two principal areas. First, we hold that 
models for recovery such as the PRR can be informative 
in themselves and do not depend on patient-level predic-
tions, although certainly models that can do both are pref-
erable. Patient-level prediction is the issue that both Hope 
et al13 and Hawe et al14 appear primarily interested in. 
Second, we view many (but not all) existing studies as 
largely consistent with the PRR as a statistical and bio-
logical model; Hope et al13 are relatively agnostic on this 
point, but Hawe et al14 conclude evidence supporting the 
70% PRR is “too good to be true.” We find the former 
article a good deal more convincing than the latter, which 
appears to be on somewhat of a crusade.

Conclusions

With the preceding concerns in mind, and using simulated 
datasets as points of reference, we critically reexamined 
published applications of the PRR. Visual inspection and 
formal analysis of reported data are often, although not uni-
formly, consistent with the “canonical” example of the 
PRR; see, for example, Figure 3 (panels Zarahn et al,4 
Winters et al,5 Byblow et al6 A and B). Other cases are sug-
gestive of the simulated datasets featuring heteroscedastic 
errors and ceiling effects; examples include data in Figure 3 
(panels Feng et al,7 Stinear et al8). Inconsistencies in the 
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methods used in reporting the PRR make it difficult to draw 
conclusions across studies; in cases where ceiling effects 
and/or heteroscedasticity of variance of residuals in the 
underlying data are an issue, the validity of the linear regres-
sions has to be questioned. In our view, these results neither 
conclusively demonstrate the existence of a universal PRR 
applicable across neurological modalities (which was never 
the claim in the original two articles3,4), nor do they refute 
the PRR and its usefulness in at least some settings. Instead, 
many of the examples support the PRR as a statistically and 
biologically meaningful model for spontaneous recovery, 
especially with regard to the FMA-UE. That said, we agree 
that caution is required with regard to other measures and 
non-motor impairments.

Future applications of the PRR should be conducted in a 
statistically uniform way, consistently using best practices 
for evaluating linear regression models, and include quanti-
tative comparisons to alternative models of recovery to 
assess validity. More nuanced experimental and statistical 
methods will be needed to clarify the biological mecha-
nisms involved in the recovery process. This is important, 
because at the very least there does seem to be a systematic 
nonartifactual relationship between initial impairment and 
the motor recovery process (ΔFMA-UE). Combining mul-
tiple datasets across sites could help to strengthen the argu-
ments for the (non)existence of a PRR and may also reveal 
interesting differences in the effectiveness of rehabilitation 
in different settings. While the PRR was not intended to 
inform patients about their recovery potential or derive sub-
ject-level predictions, it has been implicitly assumed that 
the PRR should be useful in this way. This has emerged as 
an important consideration; in light of the heteroscedastic-
ity in many of the underlying datasets, single subject-level 
recovery prediction should be evaluated as a distinct goal 
moving forward.
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