
A class of automata for the verification of
infinite, resource-allocating behaviours

Vincenzo Ciancia1 and Matteo Sammartino2

1 ISTI-CNR, Pisa
2 Dipartimento di Informatica, Università di Pisa, Pisa

Abstract. Process calculi for service-oriented computing often feature
generation of fresh resources. So-called nominal automata have been
studied both as semantic models for such calculi, and as acceptors of
languages of finite words over infinite alphabets. In this paper we investi-
gate nominal automata that accept infinite words. These automata are a
generalisation of deterministic Muller automata to the setting of nominal
sets. We prove decidability of complement, union, intersection, emptiness
and equivalence, and determinacy by ultimately periodic words. The key
to obtain such results is to use finite representations of the (otherwise
infinite-state) defined class of automata. The definition of such operations
enables model checking of process calculi featuring infinite behaviours,
and resource allocation, to be implemented using classical automata-
theoretic methods.

1 Introduction

This paper aims at contributing to the theory of formal verification of global
computing systems, by extending the classical theory of Muller automata to the
case of infinite alphabets, while retaining decidability. In this way, it is possible
to adapt the classical automata-theoretic approach to formal specification and
verification [1] to systems with resource generation capabilities, where the num-
ber of possibile resources is infinite, provided that these systems enjoy a finite
memory property.

Transition structures, in the form of automata, are used to represent logic
formalisms interpreted over finite and infinite words, dating back to [2,3]. The
possibility of translating modal logic formulas to automata led to the devel-
opment of model checking. Systems that feature resource allocation (e.g. [4]),
typically in the form of name allocation, pose specific challenges. For instance,
they have ad-hoc notions of bisimulation, which cannot be captured by standard
set-theoretic models. Transition structures that correctly model name allocation
have been proposed in various forms, including coalgebras over presheaf cate-
gories [5,6,7,8,9], history-dependent automata [10], and automata over nominal
sets [11]. Equivalence of these models has been established both at the level
of base categories [12,13,14] and of coalgebras [15]. More recently, the field of
nominal automata has essentially used the same structures, no longer as se-
mantic models, but rather as acceptors of languages of finite words (see e.g.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/286423638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[16,17,18,11]). In particular, the obtained languages are based on infinite alpha-
bets, but still enjoy finite memory (in fact, the well known register automata of
Francez and Kaminski can be regarded as nominal automata, see [11]).

The case of infinite words over nominal alphabets is more problematic, as
an infinite word over an infinite alphabet is generally not finitely supported.3

Consider a machine that reads any symbol from an infinite, countable alphabet,
and never stores it. Clearly, such a machine has finite (empty) memory. The set
of its traces is simply described as the set of all infinite words over the alphabet.
However, in the language we have various species of words. Some of them are
finitely supported, e.g. words that consist of the infinite repetition of a finite
word. Some others are not finitely supported, such as the word enumerating
all the symbols of the alphabet. Such words lay inherently out of the realm of
nominal sets. However, the existence of these words does not give to the language
infinite memory. More precisely, words without finite support can not be “singled
out” by a finite memory machine; if a machine accepts one of those, then it will
accept infinitely many others, including finitely supported words.

This work aims at translating the above intuitions into precise mathematical
terms, in order to define a class of languages of infinite words over infinite al-
phabets, enjoying finite-memory properties. We extend automata over nominal
sets to handle infinite words, by imposing a (Muller-style) acceptance condition
over the orbits (not the states!) of automata. By doing so, it turns out that our
languages not only are finite-memory, but they retain computational properties,
such as closure under boolean operations and decidability of emptiness (thus,
containment and equivalence), which we prove by providing finite representa-
tions, and effective constructions. As in the case of standard ω-automata, the
shift to infinite words requires these results to be proved from scratch, as it is not
possible to merely extend proofs from the finite words case. These results enable
automata-theoretic model checking to be performed on systems with infinite
resources, using traditional model-checking algorithms.

Furthermore, we prove that the defined languages are determined by their
ultimately-periodic fragments. This theorem is fundamental for learning logi-
cal properties (see e.g., [19], or [20]) and has been used to provide a complete
minimisation procedure for equivalent representations of Muller automata [21].
Establishing this theoretical result in the nominal case is an important step
towards the application of such techniques to global computing scenarios.

2 Example: peer-to-peer system

In order to introduce the presented topic, in this section we discuss an application
of nominal automata to distributed systems. Consider an idealized peer-to-peer
system where each peer receives queries from an arbitrary, unbounded number of
other peers, represented by an infinite set of unique identifiers. Each peer buffers
requests in a finite queue. Then one query is selected, among the buffered ones,

3 The notion of finite support, coming from the theory of nominal sets, will be clarified
later; roughly, finitely supported elements just use a finite set of names.

q0 q1 q2 . . . qn

s1 s2 . . . sn

q(?)
enq1

q(?)
enq2

q(?)
enq3

q(?)
enqn

s(1) id s(1) id s(1) id

q(?)

id

d(1) deq1 d(1) deq2 d(1) deqn

Fig. 1. Automaton for the FCFS policy.

and is served by establishing a temporary connection with the target. Peers
are not normally supposed to terminate, thus their relevant properties ought to
predicate on infinite words. On the other hand, actions executed by peers carry
information about other peers, which are drawn from an infinite set, therefore
the symbols constituting words are infinite. Finally, each peer has finite memory.
This is the key to maintain decidability, and is mathematically modeled by
the notion of finite support in nominal automata. Once established that our
languages are made of infinite words over an infinite alphabet, but retain a finite
memory property, we can use automata to characterize properties of local peers
in a global environment. We assume three kinds of observable actions for peers:
arrival of a new query from p, written q(p); selection of a query to serve and
connection to its sender p, written s(p); disconnection from p, written d(p).

Automata executing variants of a communication protocol in this setting may
have very different behaviors. For example, a system could give preference to a
small set of peers, thus making the execution of a global peer-to-peer algorithm
less effective. Using automata, we can specify policies (for example, fairness
requirements) that characterize desired behaviors. One key property that we
require is determinism: policies should always consider all possible actions from
a given state (even if not all of them will be accepted) and each action should
have a unique outcome. These are desirable properties for the specification of
a policy, with a nice technical consequence: the automaton modeling the policy
is closed under all boolean operations, which is essential for verification. Our
main example will be the specification of a “first come first serve” peer selection
policy for queries, named FCFS fair policy ; we shall also discuss a policy that
takes into account a number of locally identified “friend peers” taking priority
over the others, that we call friend policy.

FCFS fair policy. We want to model query selection in a FCFS style. Moreover,
we want to capture fairness: queries from already buffered peers are discarded.
We assume that the buffer has size n.

The automaton is shown in Figure 1. Each state qi, si is equipped with i
registers, for i = 1, . . . , n, and q0 has no registers. Registers can store identifiers,
and are local to states (we will discuss this aspect throughout the paper), thus
each transition is equipped with a function expressing how registers in the target

state take values from those of the source state. We have two such functions:
enqi(x), mapping i to ? and x < i to x, and deqi, mapping x to x + 1. The
intuition is that transitions from qi to qi+1 labeled with ? correspond to buffering
a “fresh” query, from a peer whose identiy is not already known, and thus it is
stored in register i + 1. The loop on qn discards new peers when the buffer is
full. The transition from qi to si picks the query p from register 1, that is always
the oldest one, and establishes a connection to p; the transition from si to qi−1
removes p from the buffer, and shifts the registers’ content so that now register
1 contains the query that arrived right after the one of p. Our automaton should
(1) be deterministic and (2) have a Muller-style accepting condition. For (1),
we assume each state has all possible outgoing transitions: those not shown in
Figure 1 are assumed to go to a sink state. For (2), we take all subsets of the
states, excluding the sink one, as Muller sets; that is: behaviors that go through
states and transitions depicted in Figure 1 are all accepted. All these notions
will be clearer after we formally introduce nominal Muller automata.

Friend queries. A friend query is a query coming from a “friend” peer, which
should be served as soon as possible, that is: after the current query has been
served. To model such scenarios, one can introduce an action qf (p) to model a
friend query from p. An automaton that correctly handles such queries can be
obtained from the one of Figure 1 as follows: we add a transition from qi to qi+1,
for each i = 0, . . . , n − 1, labelled with qf (?) and with the map topi, sending 1
to ? and x > 1 to x − 1; furthermore, a looping transition on qn is added with
label qf (?) and map id, which discards friend queries when the buffer is full.
Intuitively, topi always stores the friend query in register 1, so that transitions
s(1) will always pick it, and shifts the priority of all the other peers.

3 Background

Notation. For X, Y sets, we let f : X → Y be a total function from X to Y ,
f : X � Y be a total injective function and f : X ⇀ Y a partial function. We
write dom(f) for the subset of X on which f is defined, and Im(f) for the image
of f . For f injective, the expression f−1 : Y ⇀ X denotes the the partial inverse
function {(y, x) | f(x) = y}. We let f |X′ , with X ′ ⊆ X, be the domain restriction
of f to X ′. (Partial) function composition is written f ◦ g: it maps x to f(g(x))
only if x ∈ dom(g); fn is the n-fold composition of f with itself. We denote the
natural numbers with ω. For s a sequence, we let si or s(i) denote its ith element,
for i ∈ ω. Given a binary relation R, we denote by R∗ its symmetric, transitive
and reflexive closure. We say that x and y are R-related whenever (x, y) ∈ R. We
use ◦ also for “relational” composition, as usual, by seeing functions as relations.

We shall now briefly introduce nominal sets; we refer the reader to [22] for
more details on the subject. We assume a countable set of names N , and we
write P for the group of finite-kernel permutations of N , namely those bijections
π : N → N such that the set {a | π(a) 6= a} is finite.

Definition 1. A nominal set is a set X along with an action for P, that is a
function · : P×X → X such that, for all x ∈ X and π, π′ ∈ P, idN · x = x and
(π ◦ π′) · x = π · (π′ · x). Also, it is required that each x ∈ X has finite support,
meaning that there exists a finite S ⊆ N such that, for all π ∈ P, π|S = idS
implies π · x = x. We denote the least4 such S with supp(x). An equivariant
function from nominal set X to nominal set Y is a function f : X → Y such
that, for all π and x, f(π · x) = π · f(x).

Definition 2. Given x ∈ X, the orbit of x, denoted by orb(x), is the set {π ·x |
π ∈ P} ⊆ X. For S ⊆ X, we write orb(S) for {orb(x) | x ∈ S}. We call X
orbit-finite when orb(X) is finite.

Note that orb(X) is a partition of X. The prototypical nominal set is N with
π · a = π(a) for each a ∈ N ; we have supp(a) = {a}, and orb(a) = N .

4 Nominal regular ω-languages

In the following, we extend Muller automata to the case of nominal alphabets.
Traditionally, automata can be deterministic or non-deterministic. In the case
of finite words, non-deterministic nominal automata are not closed under com-
plementation, whereas the deterministic ones are; similar considerations apply
to the infinite words case. Thus, we adopt the deterministic setting in order to
retain complementation.

Definition 3. A nominal deterministic Muller automaton (nDMA) is a tuple
(Q,−→, q0,A) where:

– Q is an orbit-finite nominal set of states, with q0 ∈ Q the initial state;
– A ⊆ P(orb(Q)) is a set of sets of orbits, intended to be used as an acceptance

condition in the style of Muller automata.
– −→ is the transition relation, made up of triples q1

a−→ q2, having source

q1, target q2, label a ∈ N ;
– the transition relation is deterministic, that is, for each q ∈ Q and a ∈ N

there is exactly one transition with source q and label a;
– the transition relation is equivariant, that is, invariant under permutation:

there is a transition q1
a−→ q2 if and only if, for all π, also the transition

π · q1
π(a)−→ π · q2 is present.

In nominal sets terminology, the transition relation is an equivariant function of
type Q×N → Q. Notice that nDMA are infinite state, infinitely branching ma-
chines, even if orbit finite. For effective constructions we employ equivalent finite
structures (see Section 5). Definition 3 induces a simple definition of acceptance,
very close to the classical one. In the following, fix a nDMA A = (Q,−→, q0,A).

4 It is a theorem that whenever there is a finite support, there is also a least support.

Definition 4. An infinite word α ∈ Nω is an infinite sequence of symbols in N .
Words have point-wise permutation action, namely (π · α)i = π(αi), making a
word finitely supported if and only if it contains finitely many different symbols.

Definition 5. Given a word α ∈ Nω, a run of α from q ∈ Q is a sequence
of states r ∈ Qω, such that r0 = q, and for all i we have ri

αi−→ ri+1. By
determinism (see Definition 3), for each infinite word α, and each state q, there
is exactly one run of α from q, that we call rα,q, or simply rα when q = q0.

Definition 6. For r ∈ Qω, let Inf (r) be the set of orbits that r traverses in-
finitely often, i.e., orb(q) ∈ Inf (r) iff. for all i, there is j > i s.t. rj ∈ orb(q).

Definition 7. A word α is accepted by state q whenever Inf (rα,q) ∈ A. We let
LA,q be the set of all accepted words by q in A; we omit A when clear from the
context, and q when it is q0, thus LA is the language of the automaton A. We
say that L ⊆ Nω is a nominal ω-regular language if it is accepted by a nDMA.

Remark 1. We useN as alphabet. One can chose any orbit-finite nominal set; the
definitions of automata and acceptance are unchanged, and finite representations
are similar. Using N simplifies the presentation, especially in Section 5.

Example 1. Consider the nDMA in Figure 2(a). We have Q = {q0} ∪ {qa |
a ∈ N}. For all π, we let π · q0 = q0, π · qa = qπ(a). We have supp(q0) =

∅, and supp(qa) = {a}. For all a, let q0
a−→ qa, qa

a−→ q0, and for b 6= a,

qa
b−→ qa. Each of the infinite “legs” of the automaton rooted in q0 remembers

a different name, and returns to q0 when the same name is encountered again.
There are two orbits, namely orb0 = {q0} and orb1 = {qa | a ∈ N}. We let
A = {{orb0, orb1}}. For acceptance, a word needs to cross both orbits infinitely
often. Thus, Lq0 = {aua | a ∈ N , u ∈ (N \ {a})∗}ω. This is an idealized version
of a service, where each in a number of potentially infinite users (represented by
names) may access the service, reference other users, and later leave. Infinitely
often, an arbitrary symbol occurs, representing an “access”; the next occurrence
of the same symbol denotes a “leave”. One could use an alphabet with two
infinite orbits to distinguish the two kinds of action (see Remark 1), or reserve
two distinguished names of N to be used as “brackets” before the different
occurrences of other names, adding more states.

Accepted words may fail to be finitely supported. However, languages are. This
adheres to the intuition that a machine running forever may read an unbounded
amount of different pieces of data, but still have finite memory.

Theorem 1. For L a language, and π ∈ P, let π · L = {π ·α | α ∈ L}. For each
state q of an nDMA, Lq is finitely supported.

5 Finite automata

In this section, we introduce finite representations of nDMAs. These are similar
to classical finite-state automata, but each state is equipped with local regis-
ters. There is a notion of assignment to registers, and it is possible to accept,

q0

qa

qb qc

. . .

A = {{{q0}, {qa | a ∈ N}}}

a

b

c

. . .a
b, c, d, . . .

b

a, c, d, . . .
c

a, b, d, . . .

. . .

(a)

x0 y0 z0 x1 y1 z1

y2x2 z2

q0 q1

q2

z0

?x2

(b)

q0

A = {{q0}}

?

(c)

q0 q1
x

A = {{q0, q1}}

?

?

x

(d)

Fig. 2. Some automata, together with their accepting conditions.

and eventually store, fresh symbols. Technically, these structures extend history-
dependent automata (see [23]), introducing acceptance of infinite words.

Definition 8. A history-dependent deterministic Muller automaton (hDMA) is
a tuple (Q, | − |, q0, ρ0,−→,A) where:

– Q is a finite set of states;
– for q ∈ Q, |q| is a finite set of local names (or registers) of state q;
– q0 ∈ Q is the initial state;
– ρ0 : |q0|� N is the initial assignment;
– A ⊆ P(Q) is the accepting condition, in the style of Muller automata;

– −→ is the transition relation, made up of quadruples q1
l−→
σ

q2, having

source q1, target q2, label l ∈ |q1|] {?}, and history σ : |q2|� |q1|] {l};
– the transition relation is deterministic in the following sense: for each q1 ∈
Q, there is exactly one transition with source q1 and label ?, and exactly one
transition with source q1 and label x for each x ∈ |q1|.

Remark 2. To keep the notation lightweight, we do not use a symmetry attached
to states of an hDMA. It is well known (see [10]) that symmetries are needed
for existence of canonical representatives; we consider this aspect out of the
scope of this work. Note that (classical) Muller automata do not have canonical
representatives up-to language equivalence. To obtain those, one can use two-
sorted structures as in [21]. Even though this idea could be applied to hDMAs,
this is not straightforward, and requires further investigation.

In the following we fix an hDMA A = (Q, | − |, q0, ρ0,−→,A). We overload

notation (e.g., for the inf-set of a word) from section 4, as it will be always
clear from the context whether we are referring to an nDMA or to an hDMA.
Acceptance of α ∈ Nω is defined using the configuration graph of A.

Definition 9. The set C(A) of configurations of A consists of the pairs (q, ρ)
such that q ∈ Q and ρ : |q|� N is an injective assignment of names to registers.

Definition 10. The configuration graph of A is a graph with edges of the form
(q1, ρ1)

a−→ (q2, ρ2) where the source and destination are configurations, and

a ∈ N . There is one such edge iff there is a transition q1
l−→
σ

q2 in A and either

l ∈ |q1|, ρ1(l) = a, and ρ2 = ρ1 ◦ σ, or l = ?, a /∈ Im(ρ1), ρ2 = (ρ1 ◦ σ)[a/σ−1(?)].

The definition deserves some explanation. Fix a configuration (q1, ρ1). Say
that name a ∈ N is assigned to the register x ∈ |q1| if ρ1(x) = a. When a
is not assigned to any register, it is fresh for a given configuration. Then the

transition q1
l−→
σ

q2, under the assignment ρ1, consumes a symbol as follows:

either l ∈ |q1| and a is the name assigned to register l, or l is ? and a is fresh. The
destination assignment ρ2 is defined using σ as a binding between local registers
of q2 and local registers of q1, therefore composing σ with ρ1 and eventually
adding a freshly received name, whenever ? is in the image of σ. For readability,
we assume that the functional update [a/σ−1(?)] is void when ? /∈ Im(σ). The
following lemma clarifies the notion of determinism that we use.

Lemma 1. For each configuration (q1, ρ1) and symbol a ∈ N , there is exactly

one configuration (q2, ρ2) such that (q1, ρ1)
a−→ (q2, ρ2).

We use the notation (q1, ρ1)
v

=⇒ (q2, ρ2) to denote a path that spells v in the
the configuration graph. Furthermore, we define runs of infinite words.

Definition 11. A run r of an infinite word α ∈ Nω from configuration (q, ρ)
is a sequence (qi, ρi) of configurations, indexed by ω, such that (q0, ρ0) = (q, ρ)

and for all i, in the configuration graph, we have (qi, ρi)
αi−→ (qi+1, ρi+1).

The following is a simple corollary of Lemma 1.

Proposition 1. Given (q1, ρ1) ∈ C(A) and v ∈ Nω, there exists a unique path

(q1, ρ1)
v

=⇒ (q2, ρ2) in the configuration graph of A. Similarly, for each word α
and configuration (q, ρ), there is a unique run rα,q,ρ from (q, ρ). We omit q and
ρ from the notation, when dealing with the initial configuration (q0, ρ0).

Finally, we define acceptance of hDMAs.

Definition 12. Consider the unique run r of an infinite word α from configura-
tion (q, ρ). Let Inf (r) denote the set of states that appear infinitely often in the
first component of r. By finiteness of Q, Inf (r) is not empty. The automaton
A accepts α whenever Inf (r) ∈ A. In this case, we speak of the language LA of
words accepted by the automaton.

As an example, the language Nω of all infinite words over N is recognised by the
hDMA in Figure 2(c); the initial assignment ρ0 is necessarily empty, and so is
the history σ along the transition. Differently from nDMAs, hDMAs have finite
states. Finite representations are useful for effective operations on languages, as
we shall see later. The similarity between configuration graphs of hDMAs, and
nDMAs, is deep and is the essence of the proof of Proposition 2 below. These
are similar to the categorical equivalence results in [12,13]; however, notice that
representing infinite branching systems using “allocating transitions” requires
further machinery, similar to what is studied in [15].

Proposition 2. For each (orbit-finite) nDMA there is a finite hDMA accepting
the same language, and vice versa.

Example 2. Consider the hDMA in Figure 2(d), where the labelled dot within
q1 represents its register, and the dashed line depicts the history from q1 to q0
(we omit empty histories). This automaton accepts the language of Example 1.
In fact, q0 is the only element in the orbit of the initial state of the nDMA, and
q1 canonically represents all qa, a ∈ N . This notation for hDMAs will be used
throughout the paper.

6 Synchronized product

The product of finite automata is a well-known operation: in the binary case, it
produces an automaton whose states are pairs (q1, q2) of states of the original
automata and transitions are those both states do. In this section we define
a similar operation on the underlying transition structures of hDMAs, i.e. on
tuples T = (Q, | − |, q0, ρ0,−→) (we want to be parametric w.r.t. the accepting
condition). One should be careful in handling registers. When forming pairs of
states, some of these registers could be constrained to have the same value. Thus,
states have the form (q1, q2, R), where R is a relation telling which registers of q1
and q2 contain the same value, representing the same register in the composite
state. This is implemented by quotienting registers w.r.t. the equivalence relation
R∗ induced by R; the construction is similar to the case of register automata,
and to the construction of products in named sets given in [15].

Given two transition structures Ti = (Qi, | − |i, qi0, ρi0,−→i), i = 1, 2, we
define their synchronized product T1⊗T2. Given q1 ∈ Q1,q2 ∈ Q2, Reg(q1, q2) is
the set of relations that are allowed to appear in states of the form (q1, q2, R),
namely those R ⊆ |q1|1 × |q2|2 such that, for each (x, y) ∈ R, there is no other
(x′, y′) ∈ R with x′ = x or y′ = y. This avoids inconsistent states where the
individual assignment for q1 or q2 would not be injective. In the following we
assume [x]R∗ (the canonical representative of the equivalence class of x in R∗)
to be {x} when x does not appear in any pair of R.

Definition 13. T1 ⊗ T2 is the transition structure (Q⊗, | − |⊗, q⊗0 , ρ
⊗
0 ,

//⊗)

defined as follows:

– Q⊗ := {(q1, q2, R) | q1 ∈ Q1, q2 ∈ Q2, R ∈ Reg(q1, q2)};

– |(q1, q2, R)|⊗ := (|q1|1 ∪ |q2|2)/R∗ , for (q1, q2, R) ∈ Q⊗;

– q⊗0 := (q10 , q
2
0 , R0), where R0 := {(x1, x2) ∈ |q10 |1 × |q20 |2 | ρ10(x1) = ρ20(x2)};

– ρ0([x]R∗0) = ρi0(x) whenever x ∈ |qi0|i, i ∈ {1, 2};
– transitions are generated by the following rules

(Reg)

q1
l1−→1
σ1

q′1 q2
l2−→2
σ2

q′2

∃i ∈ {1, 2} : li ∈ N ∧ [li]R∗ = {l1, l2} ∩ N

(q1, q2, R)
[li]R∗

σR
//⊗ (q′1, q

′
2, S)

(Alloc)

q1
l1−→1
σ1

q′1 q2
l2−→2
σ2

q′2 l1, l2 = ?

(q1, q2, R)
?

σA
//⊗ (q′1, q

′
2, S)

where the relation S and the mappings στ , for τ ∈ {A,R}, are as follows

S := σ−12 ◦R ∪ {(l1, l2)} ◦ σ1

στ ([x]S∗) :=

[σi(x)]R∗ x ∈ |q′i|i ∧ σi(x) 6= ?

[l3−i]R∗ x ∈ |q′i|i ∧ σi(x) = ? ∧ τ = R

? x ∈ |q′i|i ∧ σi(x) = ? ∧ τ = A

Before explaining in detail the formal definition, we remark that the relation
S is well defined, i.e. it belongs to Reg(q′1, q

′
2): the addition of {(l1, l2)} to R

is harmless, as will be explained in the following, and σ1 and σ−12 can never
map the same value to two different values (as they are functions) or vice versa
(as they are injective). The definition of q⊗0 motivates the presence of relations
in states: R0-related registers are the ones that are assigned the same value
by ρ10 and ρ20; these form the same register of q⊗0 , so ρ⊗0 is well-defined. The
synchronization mechanism is implemented by rules (Reg) and (Alloc): they
compute transitions of (q1, q2, R) ∈ Q⊗ from those of q1 and q2 as follows.

Rule (Reg) handles two cases. First, if the transitions of q1 and q2 are both
labelled by registers, say l1 and l2, and these registers correspond to the same one
in (q1, q2, R) (condition [li]R∗ = {l1, l2}), then (Reg) infers a transition labelled
with [li]R∗ (the specific i is not relevant). The target state of this transition is
made of those of the transitions from q1 and q2, plus a relation S obtained by
translating R-related registers to S-related registers via σ1 and σ2. In this case,
adding the pair (l1, l2) to R in the definition of S has no effect, as it is already
in R. The inferred history σR just combines σ1 and σ2, consistently with S∗.

The other case for (Reg) is when a fresh name is consumed from just one
state, e.g. q2. This name must coincide with the value assigned to the register
l1 labelling the transition of q1. Therefore the inferred label is [l1]R∗ . The target
relation S changes slightly. Suppose there are l′1 ∈ |q′1| and l′2 ∈ |q′2| such that
σ1(l′1) = l1 and σ2(l′2) = ?; after q1 and q2 perform their transitions, both
these registers are assigned the same value, so we require (l′1, l

′
2) ∈ S. This pair

is forced to be in S by adding (l1, ?) to R when computing S. This does not
harm well-definedness of S, because [l1]R∗ is a singleton (rule premise [l1]R∗ =
{l1, ?} ∩ N = {l1}), so no additional, inconsistent identifications are added to
S∗ due to transitivity. If either l1 or ? is not in the image of the corresponding

history map, then augmenting R has no effect, as the relational composition
discards (l1, ?). The history σR should map [l′2]S∗ to [l1]R∗ : this is treated by the
second case of its definition; all the other values are mapped as before.

Transitions of q1 and q2 consuming a fresh name on both sides are turned by
(Alloc) into a unique transition with freshness: S is computed by adding (?, ?)
to R, thus the registers to which the fresh name is assigned (if any) form one
register in the overall state; the inferred history σA gives the freshness status to
this register, and acts as usual on other registers.

Remark 3. T1 ⊗ T2 is finite-state and deterministic. In fact, every set in the
definition of Q⊗ is finite. As for determinism, given (q1, q2, R) ∈ Q⊗, each l ∈
|(q1, q2, R)|⊗ ∪ {?} uniquely determines which labels l1 and l2 should appear
in the rule premises (e.g. if l = {l1}, with l1 ∈ |q1|1, then l2 = ?), and by
determinism each qi can do a unique transition labeled by li.

We shall now relate the configuration graphs of T1 ⊗ T2, T1 and T2.

Definition 14. Let ((q1, q2, R), ρ) ∈ C(T1 ⊗ T2). Its i-th projection, denoted πi,
is defined as πi((q1, q2, R), ρ) = (qi, ρi) with ρi := λx ∈ |qi|i.ρ([x]R∗)

Projections always produce valid configurations in C(T1) and C(T2): injectivity of
ρi follows from the definition of Reg(q1, q2), ensuring that two different x1, x2 ∈
|qi|i cannot belong to the same equivalence class of R∗, i.e. cannot have the same
image through ρi. The correspondence between edges is formalized as follows.

Proposition 3. Given C ∈ C(T1 ⊗ T2),

(i) if C
a−→ C ′ then πi(C)

a−→ πi(C
′), i = 1, 2;

(ii) if πi(C)
a−→i Ci, i = 1, 2, then there is C ′ s.t. C

a−→ C ′ and πi(C) = Ci.

Corollary 1. Let C0 = (q⊗0 , ρ0). We have a path C0
a0−→ . . .

an−1−→ Cn in the

configuration graph of T1 ⊗ T2 if and only if we have paths πi(C0)
a0−→ . . .

an−1−→
πi(Cn) in the configuration graphs of Ti, for i = 1, 2. The correspondence clearly
holds also for infinite paths, i.e. runs.

This result allows us to relate the Inf of runs in the defined transition structures.

Theorem 2. Given α ∈ Nω, let r be a run for α in the configuration graph of
T1 ⊗T2, and let r1 and r2 be the corresponding runs for T1 and T2, according to
Corollary 1. Then π1(Inf(r)) = Inf(r1) and π2(Inf(r)) = Inf(r2).

7 Boolean operations and decidability

Let L1 and L2 be ω-regular nominal languages, and let A1 = (T1,A1) and A2 =
(T2,A2) be automata for these languages, where T1 and T2 are the underlying
transition structures. The crucial tool is Theorem 2: constructing an automaton
for a boolean combination of L1 and L2 amounts to defining an appropriate
accepting set for T1 ⊗ T2.

Theorem 3. Using the transition structure T1⊗T2, define the accepting condi-
tions A∩ = {S ⊆ Q⊗ | π1(S) ∈ A1 ∧ π2(S) ∈ A2}, A∪ = {S ⊆ Q⊗ | π1(S) ∈
A1 ∨ π2(S) ∈ A2} and AL1

= P(Q1) \ A1, where Q1 are the states of A1. The

obtained hDMAs accept, respectively, L1 ∩ L2, L1 ∪ L2, and L1.

Theorem 4. Emptiness, and, as a corollary, equality of languages are decidable.

8 Ultimately-periodic words

An ultimately periodic word is a word of the form uvω, with u, v finite words.
Given a language of infinite words L, let UP (L) be its ultimately periodic frag-
ment {α ∈ L | α = uvω ∧ u, v are finite}. It has been proven in [24,25] that, for
every two ω-regular languages L1 and L2, UP (L1) = UP (L2) implies L1 = L2,
i.e. ω-regular languages are characterised by their ultimately periodic fragments.
In this section we aim to extend this result to the nominal setting.

The preliminary result to establish, as in the classical case, is that every non-
empty nominal ω-regular language L contains at least one ultimately periodic
word. For ω-regular languages, this involves finding a loop through accepting
states in the automaton and iterating it. For hDMAs, freshness constraints could
forbid consuming the same name in consecutive traversals of the same transition.
We first show that, given a loop in a hDMA, there always is a path induced by
consecutive traversals of the loop, such that its initial and final configurations
coincide. Thus, such path can be taken an arbitrary number of times.

Fix a loop L := p0
l0−→
σ0

p1
l1−→
σ1

. . .
ln−1−→
σn−1

p0 (the specific hDMA is not

relevant). We write i for i mod n. For all i = 0, . . . , n − 1, let σ̂i : |pi+1| ⇀ |pi|
be the partial maps telling the history of old registers and ignoring the new
ones, formally σ̂i := σi \ {(x, y) ∈ σi | y = ?}, and let σ̂ : |p0| ⇀ |p0| be their
composition σ̂0 ◦ σ̂1 · · · ◦ σ̂n−1. We define the set I as the greatest subset of
dom(σ̂) such that σ̂(I) = I, i.e. I are the registers of p0 that “survive” along
L. We denote by T all the other registers, namely T := |p0| \ I. These are
registers whose content is eventually discarded (not necessarily within a single
loop traversal), as the following lemma states.

Lemma 2. Given any x ∈ T , let {xj}j∈Jx be the smallest sequence that satisfies
the following conditions: x0 = x and xj+1 = σ−1j (xj), where j + 1 ∈ Jx only if

σ−1j (xj) is defined. Then Jx has finite cardinality.

Now, consider any assignment ρ̂0 : |p0| → N . We give some lemmata about
paths that start from (p0, ρ̂0) and are induced by consecutive traversals of L.
The first one says that the assignment for I given by ρ̂0 is always recovered after
a fixed number of traversals of L, regardless of which symbols are consumed. In
the following, given a sequence of transitions P , we write (q1, ρ1)

v
=⇒P (q2, ρ2)

whenever (q1, ρ1)
v

=⇒ (q2, ρ2) and such path is induced by P .

Lemma 3. There is θ ≥ 1 such that, for all v0, . . . , vθ−1 satisfying (p0, ρ̂0)
v0=⇒L

(p0, ρ̂1)
v1=⇒L . . .

vθ−1
=⇒L (p0, ρ̂θ) we have ρ̂θ|I = ρ̂0|I .

The second one says that, after a minimum number of traversals of L, a config-
uration can be reached where the initial values of T , namely those assigned by
ρ̂0, cannot be found in any of the registers.

Lemma 4. There is ε ≥ 1 s.t., for all γ ≥ ε ,there are v0, . . . , vγ−1 satisfying

(p0, ρ̂0)
v0=⇒L (p0, ρ̂1)

v1=⇒L . . .
vγ−1
=⇒L (p0, ρ̂γ), with Im(ρ̂γ) ∩ ρ̂0(T) = ∅.

We give the dual of the previous lemma: if we start from a configuration where
registers are not assigned values in ρ̂0(T), then these values can be assigned back
to T in a fixed number of traversals of L, regardless of the initial assignment.

Lemma 5. There is ζ ≥ 1 such that, for any ρ̃0 : |p0| → N with Im(ρ̃0) ∩
ρ̂0(T) = ∅, there are v0, . . . , vζ−1 satisfying (p0, ρ̃0)

v0=⇒L (p0, ρ̃1)
v1=⇒L . . .

vζ−1
=⇒L

(p0, ρ̃ζ), with ρ̃ζ |T = ρ̂0|T .

Finally, we combine the above lemmata. We construct a path where: (1) the
values assigned to T are forgotten and then recovered (2) the values assigned
to I are swapped, but the initial assignment is periodically regained. Therefore,
the length of such path should allow (1) and (2) to “synchronize”, so that the
final assignment is again ρ̂0.

Theorem 5. For each loop L with initial state p0, and assignment ρ̂0 : |p0| →
N , there are v0, . . . , vn such that (p0, ρ̂0)

v0=⇒L (p0, ρ̂1)
v1=⇒L · · ·

vn=⇒L (p0, ρ̂0).

Example 3. We justify the above construction on the hDMA of Figure 2(b), with
initial assignment ρ0(x0) = a,ρ0(y0) = b and ρ0(z0) = c. Consider the loop L
formed by all the depicted transitions. We have I = {x0, y0} and T = {z0}. Look

at the path (q0, [a/x0, b/y0, c/z0])
c−→ (q1, [b/x1, a/y1, c/z1])

d−→ (q2, [b/x2, a/y2, d/z2])
b−→

(q0, [b/x0, a/y0, d/z0]) where d 6= a, b, c. The values of x0 and y0 are swapped ac-
cording to the permutation (a b), and d is assigned to z0. Our aim is to recover
ρ0 again. According to Lemma 3, x0 and y0 get their assignment back in θ = 2
traversals of L (in fact (a b)2 = (a b)). As for z0, its assignment is established in
the second transition, but c should not have been assigned to any register of q1 in
order for it to be consumed during this transition. This is where Lemma 4 comes
into play: it says that in at least ε = 1 traversals of L the name c is discarded.
This is exactly what happens in the path shown above. Then we can assign c to
z0 in another ζ = 1 traversal of L, according to Lemma 5. Since ε+ ζ = θ = 2,
traversing L twice is enough (e.g., consider the path cdbdca).

Finally we introduce the main results of this section.

Theorem 6. When L is a non-empty ω-regular language, UP (L) 6= ∅.
Theorem 7. For L1,L2 nominal ω-regular, UP (L1) = UP (L2) =⇒ L1 = L2.

Note that a similar result could not be achieved in the presence of so-called global
freshness [16], e.g. the one-state automaton accepting only globally fresh symbols
would have empty ultimately periodic fragment, just like the empty language.
As a concluding remark, we note that, by Theorem 7, every ω-regular language
is characterized by a sublanguage of finitely supported words (the support of
uvω just contains the finitely many symbols in u and v). We find this result
appealing, given the central role of the notion of support in the nominal setting.

9 Conclusions

This work is an attempt to provide a simple definition that merges the theories
of nominal automata and ω-regular languages, retaining effective closure under
boolean operations, and decidability of emptiness, and language equivalence. We
sketch some possible future directions. A very relevant application of formal ver-
ification in the presence of fresh resources could be model-checking of nominal
process calculi. However, the presented theory only accommodates the deter-
ministic case; undecidability issues arise for non-deterministic systems. Future
work will be directed to identify (fragments of) nominal calculi that retain decid-
ability. For this, one needs to limit not only non-determinism, but also parallel
composition (again, again, decidability may be an issue otherwise). A calculus
that could be handled by the current theory is a deterministic, finite-control
variant of the π-calculus; capturing analogous versions of more recent calculi,
e.g., ψ-calculi [26], should be possible, as they are based on nominal structures
with notions of permutation action, support, orbits. As mentioned in section 2,
we argue that deterministic behavior is enough to specify meaningful policies.
Furthermore, recall that automata correspond to logic formulae: hDMAs could
be used to represent logic formulae with binders; it would also be interesting to
investigate the relation with first-order logic on nominal sets [27]. There may
be different logical interpretations of hDMAs, where causality or dependence
[28,29] between events are made explicit. Finally, extending the two-sorted coal-
gebraic representation of Muller automata introduced in [21] to hDMAs would
yield canonical representative of automata up to language equivalence.

Related work. Automata over infinite data words have been introduced to prove
decidability of satisfiability for many kinds of logic: LTL with freeze quantifier
[30]; safety fragment of LTL [31]; FO with two variables, successor, and equal-
ity and order predicates [32]; EMSO with two variables, successor and equality
[33]; generic EMSO [34]; EMSO with two variables and LTL with additional
operators for data words [35]. The main result for these papers is decidability of
nonemptiness. These automata are ad-hoc, and often have complex acceptance
conditions, while we aim to provide a simple and seamless nominal extension
of a well-known class of automata. We can also cite variable finite automata
(VFA) [36], that recognize patterns specified through ordinary finite automata,
with variables on transitions. Their version for infinite words (VBA) relies on
Büchi automata. VBA are not closed under complementation and determinism
is not a syntactic property. For our automata, determinism is easily checked and
we have closure under complementation. On the other hand, VBA can express
“global” freshness, i.e. symbols that are different from all the others.

References

1. Clarke, E.M., Schlingloff, B.H.: Model checking. In: Handbook of Automated
Reasoning. Elsevier (2001) 1635–1790

2. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math. 6 (1960) 66–92

3. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. (98) (1961) 21–51

4. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I/II. Inf.
Comput. 100(1) (1992) 1–77

5. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: 16th Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Society (2001) 93–104

6. Bonchi, F., Buscemi, M.G., Ciancia, V., Gadducci, F.: A presheaf environment for
the explicit fusion calculus. J. Autom. Reasoning 49(2) (2012) 161–183

7. Miculan, M.: A categorical model of the fusion calculus. Electr. Notes Theor.
Comput. Sci. 218 (2008) 275–293

8. Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of
mobile processes. Electr. Notes Theor. Comput. Sci. 106 (2004) 105–120

9. Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coalge-
braic semantics. To appear in Theor. Comput. Sci. (2014)

10. Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for
the π-calculus. Theor. Comput. Sci. 340(3) (2005) 539–576

11. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proceedings
of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011,
IEEE Computer Society (2011) 355–364

12. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras,
(pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3)
(2006) 283–304

13. Fiore, M.P., Staton, S.: Comparing operational models of name-passing process
calculi. Inf. Comput. 204(4) (2006) 524–560

14. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models
of resource binding. Electr. Notes Theor. Comput. Sci. 264(2) (2010) 63–81

15. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation
of names. Inf. Comput. 208(12) (2010) 1349 – 1367

16. Tzevelekos, N.: Fresh-register automata. In: Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, ACM (2011) 295–306

17. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In:
Foundations of Software Science and Computational Structures - 15th International
Conference, FOSSACS 2012, Springer (2012) 255–269

18. Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with
names. In: FOSSACS. (2011) 365–380

19. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2) (1995) 316–326

20. Farzan, A., Chen, Y.F., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In
proc. TACAS’08/ETAPS’08, Berlin, Heidelberg, Springer-Verlag (2008) 2–17

21. Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: Coalgebraic Methods
in Computer Science. Volume 7399 of LNCS. Springer (2012) 90–108

22. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Asp. Comput. 13(3-5) (2002) 341–363

23. Pistore, M.: History Dependent Automata. PhD thesis, University of Pisa (1999)
24. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-

languages. In Brookes, S.D., Main, M.G., Melton, A., Mislove, M.W., Schmidt,

D.A., eds.: MFPS. Volume 802 of Lecture Notes in Computer Science., Springer
(1993) 554–566

25. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the 1960 International Congress on Logic, Methodology and Philosophy
of Science, Stanford University Press (1962) 1–11

26. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Logical Methods in Computer
Science 7(1) (2011)

27. Bojanczyk, M.: Modelling infinite structures with atoms. In Libkin, L., Kohlen-
bach, U., de Queiroz, R.J.G.B., eds.: WoLLIC. Volume 8071 of Lecture Notes in
Computer Science., Springer (2013) 13–28

28. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly
Logic. Volume 70 of London Mathematical Society student texts. Cambridge Uni-
versity Press (2007)

29. Galliani, P.: The Dynamics of Imperfect Information. PhD thesis, University of
Amsterdam (September 2012)

30. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

31. Lazic, R.: Safety alternating automata on data words. ACM Trans. Comput. Log.
12(2) (2011) 10

32. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4) (2011) 27

33. Kara, A., Schwentick, T., Tan, T.: Feasible automata for two-variable logic with
successor on data words. In Dediu, A.H., Mart́ın-Vide, C., eds.: LATA. Volume
7183 of Lecture Notes in Computer Science., Springer (2012) 351–362

34. Bollig, B.: An automaton over data words that captures EMSO logic. In Ka-
toen, J.P., König, B., eds.: CONCUR. Volume 6901 of Lecture Notes in Computer
Science., Springer (2011) 171–186

35. Kara, A., Tan, T.: Extending Büchi automata with constraints on data values.
CoRR abs/1012.5439 (2010)

36. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite
alphabets. In Dediu, A.H., Fernau, H., Mart́ın-Vide, C., eds.: LATA. Volume 6031
of Lecture Notes in Computer Science., Springer (2010) 561–572

A Proofs

Proof (of Theorem 1). By properties of nominal sets, for x finitely supported
and f equivariant, f(x) is finitely supported with supp(f(x)) ⊆ supp(x). Let
h : Q → P(Nω) be the function mapping each q to Lq. We need to show that
h is equivariant, that is, h(π · q) = {π · α | α ∈ Lq}. Without loss of generality,
we shall prove the right-to-left inclusion. Then, since π and q are arbitrary,
one can prove the left-to-right inclusion starting from the state π · q and the
permutation π−1. Let α ∈ Lq. We shall prove that π · α ∈ Lπ·q. Consider the
unique (accepting) run r of α from q, and the unique run r′ of π ·α from π ·q. By
equivariance of the transition function, and definition of run, for all i, we have
r′i = π · ri, thus orb(r′i) = orb(ri), therefore Inf (r′) = Inf (r). ut

Proof (of Lemma 1). For each a, if a ∈ Im(ρ1), recalling that ρ1 is injective,
there is l ∈ |q1| with ρ1(l) = a. By definition of hDMA, there is exactly one

transition labelled with l, let it be q1
l−→
σ

q2. Then by definition of configuration

graph, we have (q1, ρ1)
a−→ (q2, ρ1 ◦ σ). Since ρ1 is injective, there can not

be other transitions labelled with a in the configuration graph. If a /∈ Im(ρ1),

consider the only transition with label ? from q1, namely q1
?−→
σ

q2. Then we

have (q1, ρ1)
a−→ (q2, (ρ1 ◦σ)[a/σ−1(?)]) in the configuration graph; this transition

is unique by definition.

Proof (of Proposition 2). Fix an hDMA A. To find the corresponding nDMA,
observe that the configuration graph of A, equipped with the permutation action
π · (q, ρ) = (q, π ◦ ρ) forms the transition structure of an nDMA. The orbits of
the obtained nDMA are in one to one correspondence with states in Q; thus the
acceptance condition on states can be used as an acceptance condition on the
orbits of the configuration graph. When the configuration (q0, ρ0) is chosen as
initial state, the obtained nDMA accepts the same language as A.

A run r in the configuration graph clearly is also a run in the obtained
automaton. As orb(q, ρ) = {(q, ρ′) | ρ′ : |q| � N}, also acceptance is the same
on both sides. By Lemma 1 we get determinism. The proof is completed by
noting that the obtained transition function is equivariant. For this, chose an
edge (q1, ρ1)

a−→ (q2, ρ2) in the configuration graph, and look at Definition 10,

thus consider a corresponding hDMA transition q1
l−→
σ

q2. The case when l ∈ |q1|

is straightforward. When l = ?, thus (q1, ρ1)
a−→ (q2, (ρ1 ◦ σ)[a/σ−1(?)]) consider

the permuted configuration (q1, π◦ρ1), for any permutation π. Since a /∈ Im(ρ1),

also π(a) /∈ Im(π ◦ ρ1), thus we have a transition (q1, π ◦ ρ1)
π(a)−→ (q2, (π ◦ ρ1 ◦

σ)[π(a)/σ−1(∗)]), which is precisely the required permuted transition.
For the other direction, fix an nDMA (Q,−→, q0,A). for q ∈ Q , let oq be

a chosen canonical representative of orb(q), oS⊆X = {oq | q ∈ S} and ρq be a
chosen permutation such that ρq · oq = q. Construct the hDMA (oQ, | − |,−→
, oq0 , ρq0 ||oq0 | , {{oq | q ∈ A} | A ∈ A}), with |oq| = supp(oq). For each nDMA

transition oq1
a−→ oq2 , if a ∈ supp(oq1), let oq1

a−→
σ

oq2 ; otherwise, let oq1
?−→
σ?

oq2 ,

where σ = ρq2 ||oq2 | and σ? = σq2 [∗/a]||oq2 |. The defined hDMA accepts the same

language as the original nDMA.
The proof is similar to the equivalence results between categories of coalge-

bras given in [15]. First, we need to show that, for each transition q1
a−→ q2

in the original nDMA, there is an edge (oq1 , ρq1 ||q1|)
a−→ (oq2 , ρq2 ||q2|) in the

configuration graph of the derived hDMA. We look at the case a ∈ supp(q1);
the case with allocation is similar, even though technically more involved. By

equivariance, from q1
a−→ q2, we have oq1

ρ−1
q1

(a)
−→ ρ−1q1 (q2). Then we have an

hDMA transition oq1
ρ−1
q1

(a)
−→
σ

oq2 where σ = ρρ−1
q1

(q2)

∣∣∣
|o2|

. By looking at the used

permutations, we have σ = ρ−1q1 ◦ ρq2
∣∣
|o2|

. Then, in the configuration graph, we

have (oq1 , id)
ρ−1
q1

(a)
−→ (oq2 , σ), thus by equivariance, we have (oq1 , ρq1 ||q1|)

a−→

(oq2 , ρq1 ◦ ρ−1q1 ◦ ρq2
∣∣
|q2|

), thus (oq1 , ρq1 ||q1|)
a−→ (oq2 , ρq2 |q2). Accordance of the

accepting conditions is straightforward. ut

Proof (of Proposition 3). Let C = ((q1, q2, R), ρ) and πi(C) = (qi, ρi), i = 1, 2.

Part (i). Let C ′ = ((q′1, q
′
2, R

′), ρ′) and let

(q1, q2, R)
l

σ
//⊗ (q′1, q

′
2, S)

be the transition inducing C
a−→ C ′. We proceed by cases on the rule used to

infer this transition:

– (Reg): then the transition is inferred from qi
li−→i
σi

q′i, i = 1, 2, such that

either l1 or l2 is in N . Suppose, w.l.o.g., l1 ∈ N . Then l = [l1]R∗ and ρi(l1) =

ρ([l1]R∗) = a, so there is an edge (q1, ρ1)
a−→1 (q′1, ρ

′
1) in the configuration

graph of T1. The following chain of equations shows that π1(C ′) = (q′1, ρ
′
1):

ρ′1(x) = ρ1(σ1(x))
= ρ([σ1(x)]R∗)
= ρ(σr([x]S∗))
= ρ′([x]S∗)

(†)

To prove the existence of an edge (q2, ρ2)
a−→2 (q′2, ρ

′
2) in the configuration

graph of T2, we have to consider the following two cases:
• If l2 ∈ N , then ρ2(l2) = ρ([l2]R∗) = ρ([l1]R∗) = a, by the rule premise

[l2]R∗ = {l1, l2};
• If l2 = ?, then a should be fresh, so we have to check a /∈ Im(ρ2).

Suppose, by contradiction, that there is x ∈ |q2|2 such that ρ2(x) = a,
then ρ([x]R∗) = a = ρ([l1]R∗), by definition of ρ, which implies [x]R∗ =
[l1]R∗ , by injectivity of ρ, i.e. {l1, x} ∈ [l1]R∗ , but the premise of the rule
states [l1]R∗ = {l1, ?} ∩ N = {l1}, so we have a contradiction.

Now we have to check π2(C ′) = (q′2, ρ
′
2). Since we have ρ′2(x) = (ρ2 ◦

σ2)[a/σ−1
2 (?)](x), for x 6= σ−12 (?) the equations (†) hold. For x = σ−12 (?)

we have:

ρ′2(x) = (ρ2 ◦ σ2)[a/x](x)

= a

= ρ([l1]R∗)

= (ρ ◦ σr)([x]S∗)

= ρ′([x]S∗)

– (Alloc): then we have l = ? and the transition is inferred from qi
?−→i
σi

q′i,

i = 1, 2. Since a /∈ Im(ρ), we also have a /∈ Im(ρi), so there are (qi, ρi)
a−→i

(q′i, ρ
′
i) with ρ′i = (ρi◦σi)[a/σ−1

i (?)], for i = 1, 2. Finally, we have to check that

each ρ′i(x) is as required: if x 6= σ−1i (?) equations (†) hold; for x = σ−1i (?)
we have

ρ′i(x) = (ρi ◦ σi)[a/x](x)

= a

= (ρ ◦ σa)[a/σ−1
a (?)](σ−1a (?))

= (ρ ◦ σa)[a/[x]S∗]([x]S∗)

= ρ′([x]S∗)

Part (ii). Since T1 ⊗ T2 is deterministic, there certainly is C
a−→ C ′, for any

a ∈ N . This edge, by the previous part of the proof, has a corresponding edge
πi(C)

a−→i πi(C
′), for each i = 1, 2. But then πi(C

′) = Ci, by determinism of
Ti.

ut

Proof (of Theorem 3). We just consider L1 ∩ L2, the other cases are analogous.
Let A∩ be (T1 ⊗ T2,A∩); this is a proper hDMA, thanks to Remark 3. Given
α ∈ Nω, let r∩,r1 and r2 be the runs for α in the configuration graphs of A∩, A1

and A2, respectively. Then, by Theorem 2, we have πi(Inf (r∩)) = Inf (ri), for
each i = 1, 2. From this, and the definition of A∩, we have that Inf (r∩) ∈ A∩ if
and only if Inf (r1) ∈ A1 and Inf (r2) ∈ A2, i.e. α ∈ LA∩ if and only if α ∈ LA1

and α ∈ LA2
. ut

Proof (of Theorem 4). Let A = (Q, | − |, q0, ρ0,−→,A) be a hDMA for L.

Consider the set ΣA = {(l, σ) | ∃q, q′ ∈ Q : q
l−→
σ

q′}. This is finite, so

we can use it as the alphabet of an ordinary deterministic Muller automaton
MA = (Q ∪ {δ}, q0,−→s,A), where δ /∈ Q is a dummy state, and the transition

function is defined as follows: q
(l,σ)−→s q

′ if and only if q
l−→
σ

q′, and q
(l,σ)−→s δ for

all other pairs (l, σ) ∈ ΣA. Clearly LMA
= ∅ if and only if L = ∅, as words in

LMA
are sequence of transitions of A that go through accepting states infinitely

often, and thus produce a word in L, and vice versa. The claim follows by de-
cidability of emptiness for ordinary deterministic Muller automata. Finally, to
check equality of languages, observe that the language (L1 ∪ L2) \ (L1 ∩ L2) is
ω-regular nominal, thanks to Theorem 3. Then we just have to check its empti-
ness, which is decidable. ut

We give one straightforward lemma about configuration graphs.

Lemma 6. For all edges (p1, ρ1)
a−→ (p2, ρ2) we have Im(ρ2) ⊆ Im(ρ1) ∪ {a}.

We give one additional lemma about I defined in section 8.

Lemma 7. Given x ∈ dom(σ̂), suppose there is a positive integer k such that
x = σ̂k(x). Then x ∈ I.

Proof. Suppose x /∈ I. I = σ̂(I) implies I = σ̂k(I), so I ∪{x} = σ̂k(I ∪{x}), but
this is against the assumption that I is the largest set satisfying I = σ̂(I). ut

Proof (of Lemma 2). Observe that this sequence is such that xkn 6= xk′n, for
all k, k′ ≥ 0 such that k 6= k′. In fact, suppose there are xkn = xk′n, with
k < k′. Then we would have xkn−1 = xk′n−1, because σn is injective. In general,
xkn−l = xk′n−l, for 0 ≤ l ≤ kn, therefore x = x0 = x(k′−k)n. This means that

σ̂(k′−k)(x) = x which, by Lemma 7, implies x ∈ I, against the hypothesis x ∈ T .
Now, suppose that Jx = N. Then we would have an infinite subsequence

{xjn}j∈Jx of pairwise distinct names that belong to |p0|, but |p0| is finite, a
contradiction. ut

Proof (of Lemma 3).
Let π : I → I be the function σ̂|I with its codomain restricted to I. Then π is
an element of the symmetric group on I, so it has an order θ, that is a positive
integer such that πθ = idI . Hence ρ̂θ|I = ρ̂0|I ◦ πθ = ρ̂0|I . ut

Proof (of Lemma 4). Let J be

J := max{|Jx| | x ∈ T}+ 1.

This gives the number of transitions it takes to forget all the names assigned
to T . Let ε be dJn e. For any γ ≥ ε, we can choose v0, . . . , vγ−1 as any γ-tuple
of words that are recognized by the loop and such that, whenever lj = ?, then
(vi)j is different from Im(ρ̂0) and all the previous symbols in v0, . . . , vi, for all
i = 0, . . . , γ−1 and j = 0, . . . , n−1. Let us verify Im(ρ̂γ)∩ ρ̂0(T) = ∅ separately
on I and T (recall I∪T = |p0|): we have ρ̂γ(T)∩ρ̂0(T) = ∅, because all the names
assigned to T have been replaced by fresh ones; and we have ρ̂γ(I) = ρ̂0(I), so
ρ̂γ(I) ∩ ρ̂0(T) = ∅. ut

Proof (of Lemma 5). For each name x ∈ T , define a tuple (x, i, j) where i is
the index of the transition that consumes the fresh name that will be assigned
to x, and j is how many traversals of L it takes for this assignment to happen
(including the one where the transition i is performed). Formally, j is the smallest
integer such that there are xjn, . . . , xi defined as follows

xjn = x σk+1(xk+1) = xk σi(xi) = ? .

Let X be the set of such tuples and let ζ := max{j | (x, i, j) ∈ X}. Then we can
construct v0, . . . , vζ−1 as follows

(vk)i :=

y fresh li = ? ∧ i /∈ π2(X)

ρ̂0(x) (x, i, ζ − k) ∈ X
ρ̃k(li) li 6= ?

where by y fresh we mean different from elements of Im(ρ̃0)∪Im(ρ̂0) and previous
symbols in v0, . . . , vk.

The second case in the definition of (vk)i is justified as follows. Suppose ρ̃k,i

is the register assignment for (pi, ρ̃k,i)
(vk)i−→ . . . , then we have to show (vk)i =

ρ̂0(x) /∈ Im(ρ̃k,i). Suppose, by contradiction, that ρ̂0(x) ∈ Im(ρ̃k,i), then by
Lemma 6 and by how we defined the symbols consumed we have ρ̂0(x) ∈ Im(ρ̃0)∪
Y ∪ρ̂0(T ′), for some T ′ ⊆ T , and some set of fresh (in the mentioned sense) names
Y . But ρ̂0(x) /∈ Y , by construction, and x cannot already be in T ′, because
there cannot be two distinct tuples in X that coincide on the first component.
Therefore we must have ρ̂0(x) ∈ Im(ρ̃0), which implies ρ̂0(T) ∩ Im(ρ̃0) 6= ∅,
because x ∈ T , but this contradicts our hypothesis.

It is easy to check that this constructions reaches a configuration where all
x ∈ T have been assigned the desired value. ut

Proof. (of Theorem 5) We can take any path of the form

(p0, ρ̂0)
v0=⇒L (p0, ρ̂1)

v1=⇒L · · ·
vγ−1
=⇒L (p0, ρ̂γ)

vγ
=⇒L · · ·

vγ+ζ−1
=⇒ L (p0, ρ̂γ+ζ)

where the part from (p0, ρ̂0) to (p0, ρ̂γ) is given by Lemma 4 and the remaining
subpath is given by Lemma 5, with ρ̃0 = ρ̂γ . The only constraint about γ is
that there should be a positive integer λ such that γ + ζ = λθ, where θ is given
by Lemma 3. The claim follows from ρ̂γ+ζ |T = ρ̂0|T and ρ̂γ+ζ |I = ρ̂0|I which,
together with I ∪ T = |p0|, imply ρ̂γ+ζ = ρ̂0. ut

Proof. (of Theorem 6) Let A be the automaton for L. Take any α ∈ L and let
I = Inf (rα) (recall rα is the run for α in A), so I ∈ A. A path spelling α in

the configuration graph of A must begin with (q0, ρ0)
u

=⇒ (q1, ρ1)
v

=⇒P (q1, ρ2),

where q1 ∈ I and (q1, ρ1)
v

=⇒P (q2, ρ2) is such that P goes through all the states
in I. Since P is a loop, we can replace its induced path with a new one given
by Theorem 5 (q0, ρ0)

u
=⇒ (q1, ρ1)

v0=⇒P · · ·
vn=⇒P (q1, ρ1). The subpath from

(q1, ρ1) can be traversed any number of times, so we have u(v0 . . . vn)ω ∈ L. ut

Proof. (of Theorem 7) The proof mimics the one from [24]. Assume L1 6= L2

and consider the language (L1∪L2)\ (L1∩L2). By Theorem 3, this is a nominal
ω-regular language (set difference can be expressed via intersection and comple-
ment) and, by L1 6= L2, it is not empty, so by Theorem 6 it contains at least
one ultimately periodic word, which implies UP (L1) 6= UP (L2). ut

	A class of automata for the verification of infinite, resource-allocating behaviours

