
Decomposition Structures for Soft Constraint
Evaluation Problems: an Algebraic Approach

Ugo Montanari1, Matteo Sammartino2, and Alain Tcheukam3

1 University of Pisa
2 University College London

3 New York University, Abu Dhabi

Abstract. (Soft) Constraint Satisfaction Problems (SCSPs) are ex-
pressive and well-studied formalisms to represent and solve constraint-
satisfaction and optimization problems. A variety of algorithms to tackle
them have been studied in the last 45 years, many of them based on
dynamic programming. A limit of SCSPs is the lack of compositionality
and, consequently, it is not possible to represent problem decompositions
in the formalism itself. In this paper we introduce Soft Constraint Evalu-
ation Problems (SCEPs), an algebraic framework, generalizing SCSPs,
which allows for the compositional specification and resolution of (soft)
constraint-based problems. This enables the systematic derivation of
efficient dynamic programming algorithms for any such problem.

1 Introduction

(Soft) Constraint Satisfaction Problems (SCSPs) are expressive and well-studied
formalisms [19, 23] to represent and solve constraint-satisfaction and optimization
problems [4]. A CSP consists of a network of hyperedges, interpreted as predi-
cates on (variables associated to) the adjacent vertices. A solution is a variable
assignment satisfying all the predicates (or providing a “best” level of satisfaction,
in the soft version).

Finding a solution for a SCSP is in general an NP-complete problem. A
variety of algorithms have been studied in the last 35 years, many of them based
on dynamic programming [2]. Dynamic programming is a well-known method
for solving optimization problems. It consists in: a) decomposing repeatedly the
problem into smaller subproblems; b) solving subproblems in a bottom-up order,
by combining solutions of smaller problems into those of bigger problems.

Key to the approach is the fact that repeated subproblems are only solved
once. Different decompositions can have substantially different computational
costs, and choosing a best one is known as secondary optimization problem of
dynamic programming [3]. This is also an NP-complete problem. When the
problem has a graphical representation, as in the case of CSPs, a class of tree-
shaped structures, called tree decompositions [21, 18], have been used to represent
dynamic programming hierarchies. The solution process corresponds to a bottom-
up visit of the tree decomposition (see e.g. [12] for algorithms for CSPs based on
tree decompositions).
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A limit of SCSPs is the lack of compositionality and, consequently, of mech-
anisms to represent problem decompositions for dynamic programming in the
formalism itself. In this paper we introduce a new, compositional framework for a
wide class of constraint-based problems, which we call Soft Constraint Evaluation
Problems (SCEPs), generalizing SCSPs. In this framework, both the structure
and the solution process can be represented at the same time, with a formal
connection between the two. This provides a correct-by-construction mechanism
to decompose and solve SCEPs via dynamic programming.

SCEPs are specified via a simple syntax inspired by process algebras, with a
natural interpretation in terms of constraints. As an example, the term:

p = (y)((x)A(x, y) ‖ (z)B(y, z))

represents a problem made of two constraints A and B, over x, y and y, z
respectively, where ( ) precedes ‖ . Notice that y is shared.

The syntax is expressive enough to represent both the structure of the problem
and a decomposition into subproblems. For instance, A(x, y) being in the scope
of (x) means that it must be solved w.r.t. x, which will produce a solution
parametric in y. A fundamental role is played by the axiom of scope extension

(x)(p ‖ q) = (x)p ‖ q (x not free in q)

which allows for the the manipulation of the subproblem structure of terms.
Given a SCEP, represented as the term p above, its solution is just the

evaluation of p in a given SCEP algebra, i.e., an algebra providing an interpretation
of basic constraints and operations. In other words, the solution can be computed
via structural recursion on terms, using the interpreted operations. For instance,
in a typical optimization problem, ‖ is interpreted as summing up each
subproblem’s contribution, and (x) as minimizing w.r.t. the variable x.

A key challenge here is achieving structural recursion in the presence of
variable binding, such as the restriction operator (x) described above. In fact, if
treated naively, variable binding leads to possibly ill-defined recursive definitions,
where notions such as “free/bound variable” and “variable capture” need to be
consistently taken into account. To tackle this, SCEP algebras are permutation
algebras [14], including explicit variable permutations that enable a proper
treatment of free and bound variables. This approach is equivalent to abstract
syntax with binding via nominal sets (see, e.g., [20]).

The main contributions of this paper are as follows:

– In Section 3 we propose a strong axiomatization of SCEPs, and we present one
of the main results of the paper: soundness and completeness of constraint
networks w.r.t. our strong specification, namely networks form its initial
algebra. Then we introduce a weak specification, where each term describes
a specific decomposition. This enables decomposing and solving SCEPs, and
in particular traditional constraint networks, in a unified framework.

– In Section 4 we show how SCSPs are an instance of SCEPs.
– In Section 5 we introduce the notion of complexity of term evaluation, and

we characterize terms that are local optima w.r.t. complexity.
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– In Section 6 we give a formal translation from tree decompositions to weak
terms, which enables applying algebraic techniques to the former, and im-
proving their complexity via the results of Section 5.

– In Section 7 we give a simple algorithm, inspired by bucket elimination [22,
5.2.4]. We show that our algorithm can achieve better decompositions than
the latter one.

– Finally, in Section 8 we give a non-trivial example of a problem which can
be represented and solved as a SCEP, but not as a SCSP.

2 Background

We recall some basic notions. A ranked alphabet E is a set equipped with an
arity function ar : E → N. A labelled hypergraph over a ranked alphabet E is a
tuple G = (VG, EG, aG, labG), where: VG is the set of vertices; EG is the set of
(hyper)edges; aG : EG → V ?G assigns to each hyperedge e the tuple of vertices
attached to it (V ?G is the set of tuples over VG); labG : EG → E is a labeling
function, assigning a label to each hyperedge e such that |aG(e)| = ar(labG(e)).

Given two hypergraphs G1 and G2 over E , a homomorphism between them is a
pair of functions h = (hV : VG1

→ VG2
, hE : EG1

→ EG2
) preserving connectivity

and labels, namely: hV ◦ aG1 = aG2 ◦ hE and labG2 ◦ hE = labG1 . It is an
isomorphism whenever hV and hE are bijections. We write G1 ] G2 for the
component-wise disjoint union of G1 and G2.

2.1 Soft Constraint Satisfaction Problems

Let V be an enumerable set of variables and let EC be a ranked alphabet of
soft constraints (or just constraints). We assume that EC also has a function
var : EC → V? (with ar(A) = |var(A)|, for all A ∈ EC), assigning a tuple of
distinct canonical variables to each constraint. Canonical variables are such that
var(A)∩ var(B) = ∅ if A 6= B. The structure of soft constraint problems can be
described as a particular kind of hypergraphs labelled over EC .

Definition 1 (Concrete network). A concrete network (of constraints) is a
pair I IN , where:

– N = (VN , EN , aN , labN ) is a labelled hypergraph over EC such that VN ⊆ V
and there are no isolated vertices, i.e., vertices v such that v /∈ aN (e), for all
e ∈ EN ;

– I ⊆ VN is a finite set of interface variables.

In a concrete network, for every edge e ∈ EN there is a substitution of variables
σe mapping component-wise the tuple of canonical variables var(labN (e)) to
the actual variables aN (e) e is connected to. Hyperedges can be understood as
instances of constraints, where canonical variables are replaced by concrete ones,
describing how subproblems are connected. Interface variables are “external”, in
the sense that they allow networks to interact when composed.
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Example 1. Let A and B be two constraints with ar(A) = ar(B) = 2 and
var(A) = 〈x1, x2〉, var(B) = 〈x3, x4〉. Consider the labelled hypergraph N , with
VN = {x, y, z}, EN = {e1, e2}, aN (e1) = 〈x, y〉, aN (e2) = 〈y, z〉, labN (e1) = A,
labN (e2) = B. The concrete network {y}IN is depicted below:

x

A B

y z

x1 x2 x3 x4

Labels are placed inside the corresponding edge and connections to vertices are
labelled with the corresponding canonical variable. Canonical variables will be
often omitted in pictures of networks. Interface vertices, namely y, have solid
outline, and non-interface ones, namely x and z, have dashed outline. We have
σe1 = {x1 7→ x, x2 7→ y}, σe2 = {x3 7→ y, x4 7→ z}.

We now introduce Soft Constraint Satisfaction Problems (SCSPs in short) [4].
They are based on c-semirings, which are semirings (S,+,×, 0, 1) such that
the additive operation + is idempotent, 1 is its absorbing element and the
multiplicative operation × is commutative.

Definition 2 (SCSP). A SCSP is a tuple (IIN,D, S, val) of a concrete network
I I N , a finite set D, a c-semiring S and a set of functions valA : (var(A) →
D)→ S, one for each constraint A occurring in the network.

In a SCSP, every constraint A is assigned a value valA, that is a function giving
a cost in S to every assignment in D of canonical variables of A. As a shorthand,
for e ∈ EN and A = labN (e), we write vale : (aN (e)→ D)→ S for the function
vale = valA(− ◦ σe), giving a cost to every assignment to variables e is attached
to, according to varA. Variables I are those of interest, i.e., those of which we
want to know the possible assignments compatible with all the constraints. Values
for each constraint are used to compute the solution for the SCSP, using the
semiring operations, plus an operation of projection over variable assignments:
given ρ : X → D and Y ⊆ X, ρ ↓Y is the restriction of ρ to Y .

The solution is a function sol : (I → D)→ S: for each ρ : I → D

sol(ρ) =
∑

{ρ′ : VN→D | ρ′↓I=ρ}

(
vale1(ρ′ ↓aN (e1))× · · · × valen(ρ′ ↓aN (en))

)
where EN = {e1, . . . , en}. Notice that the function sol is computed via the point-
wise application of semiring operations: each value function is applied to the
(relevant part of the) variable assignment ρ, and then × is used on the results. In
other words, × can be lifted to value functions, giving a natural interpretation of
composition of two constraint networks N1 and N2:

valN1
⊗ valN2

= (λρ : (VN1
∪ VN2

→ D)→ S).valN1
(ρ ↓VN1

)× valN2
(ρ ↓VN2

)

In SCSPs the solution does not depend on the identity of non-interface variables,
and this will also be true in our framework. We can then abstract away from
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those variables and take networks up to isomorphism. We say that two concrete
networks I1IN1 and I2IN2 are isomorphic, written I1IN1

∼= I2IN2, whenever
I1 = I2 and there is an isomorphism ϕ : N1 → N2 such that ϕ(x) = x, for all
x ∈ I1.

Definition 3 (network). A(n abstract) network I BC is an isomorphism class
of concrete networks. We also write I BN to mean that I IN is a canonical
representative of its class.

In the following, we will depict abstract networks in the same way as concrete
networks (see Example 1), implicitly assuming the choice of a canonical represen-
tative.

2.2 Tree decomposition

A decomposition of a graph can be represented as a tree decomposition [21, 18],
i.e., a tree where each vertex is a piece of the graph. We introduce a notion
of rooted tree decomposition. Recall that a rooted tree T = (VT , ET ) is a set of
vertices VT and a set of edges ET ⊆ VT × VT , such that there is a root, i.e. a
vertex r ∈ VT :

– with no ingoing edges: there are no edges (v, r) in ET ;
– such that, for every v ∈ VT , v 6= r, there is a unique path from r to v, i.e., a

unique sequence of edges (r, u1), (u1, u2), . . . , (un, v), n ≥ 0.

Definition 4 (Rooted tree decomposition of a hypergraph). A rooted
tree decomposition of a hypergraph G is a pair T = (T,X), where T is a rooted
tree and X = {Xt}t∈VT

is a family of subsets of VG, one for each vertex of T ,
such that:

1. for each vertex v ∈ VG, there exists a vertex t of T such that v ∈ Xt;
2. for each hyperedge e ∈ EG, there is a vertex t of T such that aG(e) ⊆ Xt;
3. for each vertex v ∈ VG, let Sv = {t | v ∈ Xt}, and Ev = {(x, y) ∈ ET | x, y ∈

Sv}; then (Sv, Ev) is a rooted tree.

We gave a slightly different definition of tree decomposition: the original one
refers to a non-rooted, undirected tree. All tree decomposition in this paper are
rooted, so we will just call them tree decompositions, omitting “rooted”.

Tree decompositions are suited to decompose networks: we require that
interface variables are located at the root.

Definition 5 (Decomposition of a network). The decomposition of a net-
work I BN is a decomposition of N rooted in r, such that I ⊆ Xr.
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2.3 Dynamic programming via tree decompositions

The general issue of assigning a tree-like structure to graphs and networks in order
to efficiently solve optimization problems is an issue of paramount importance
in optimization theory. It is known as the dynamic programming secondary
optimization problem [3].

The dynamic programming strategy of reducing problems to subproblems
needs to express optimal solutions in terms of parameters, which represent shared
variables between subproblems. Such a decomposition can be formalized via a
tree decomposition T of the graph, where each node t is a problem, its children
are subproblems, and Xt are the problem’s variables. The dynamic programming
algorithm then is based on a bottom-up visit of the tree.

Usually, time and space requirements for computing parametric solutions
are at least exponential in the number of variables. Thus the complexity of
a problem is defined as the maximal number of parameters in its reductions,
called width. Formally, we have width(T ) = maxt∈T {|Xt|}. The treewidth of a
graph is the minimal width among all of its tree decompositions4. If graphs in a
certain class have bounded treewidth, then their complexity becomes linear in
their size - possibly with a big coefficient which depends on the treewidth bound
– usually a tremendous achievement. Finding the treewidth, which involves a
minimization over all the decomposition of a graph, is NP-complete. Even if
expensive, an efficient solution of the secondary optimization problem may be
essential whenever the original problem must be solved many times with different
data and thus several approaches have been proposed for solving the secondary
problem approximately.

3 Soft Constraint Evaluation Problems (SCEPs)

In this section we introduce Soft Constraint Evaluation Problems (SCEPs). They
are problems involving soft constraints, generalizing SCSPs. We work in an
algebraic setting: elements of the initial algebra describe the structure of SCEPs,
and evaluations of such structure can be given in any other algebra satisfying
the SCEP specification.

We write Perm(V) for the set of permutations over V, i.e., bijective functions
π : V→ V. A permutation algebra is an algebra for the signature comprising all
permutations and the formal equations x id = x and (x π1) π2 = x (π2 ◦π1) (the
application of a permutation is written in postfix notation). The SCEP signature
equips permutation algebras with additional operators.

Definition 6 (SCEP signature). Recall that EC is the ranked alphabet of
constraints. The SCEP signature (s-signature in short) is given by the following
grammar

p, q := p ‖ q | (x)p | p π | A(x̃) | nil

where A ∈ EC , π ∈ Perm(V), {x} ∪ x̃ ⊆ V and |x̃| = ar(A).

4 Width is conventionally defined as maxt∈T {|Xt|} − 1. We drop “−1” so that it gives
the actual number of parameters.
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(AX‖)

p ‖ q ≡s q ‖ p (p ‖ q) ‖ r ≡s p ‖ (q ‖ r) p ‖ nil ≡s p

(AX(x)) (AXα)

(x)(y)p ≡s (y)(x)p (x)nil ≡s nil (x)p ≡s (y)p[x 7→ y] (y /∈ fv(p))

(AXSE) (AXπ)

(x)(p ‖ q) ≡s (x)p ‖ q (x /∈ fv(q)) p id ≡s p (pπ′)π ≡s p(π ◦ π′)

(AXp
π)

A(x1, . . . , xn)π ≡s A(π(x1), . . . , π(xn)) nilπ ≡s nil (p ‖ q)π ≡s pπ ‖ qπ
((x)p)π ≡s (x)(pπx) (πx(x) = x, πx(y) = π(y) for x 6= y)

Fig. 1: Axioms of the strong SCEP specification.

The parallel composition p ‖ q represents the problem consisting of two subprob-
lems p and q, possibly sharing some variables. The restriction (x)p represents
the fact that p has been solved w.r.t. x. The permutation pπ is p where variables
have been renamed according to π. The atomic SCEP A(x̃) only involves an
instance of the constraint A over variables x̃ (notice that the same variable may
occur more than once in x̃). The constant nil represents the empty problem.

The free variables fv(p) of p are

fv(p ‖ q) = fv(p) ∪ fv(q) fv((x)p) = fv(p) \ {x} fv(pπ) = π(fv(p))

fv(A(x̃)) = x̃ fv(nil) = ∅

We write v(p) for the set of all the variables occurring in p.

Definition 7 (Strong SCEP specification). The strong SCEP specification
(s-specification, in short) is formed by the signature in Definition 6 and the axioms
in Fig. 1.

The operator ‖ forms a commutative monoid, meaning that problems in
parallel can be solved in any order (AX‖). Restrictions can be α-converted
(AXα), i.e., the name of the variable w.r.t. which we solve the problem is
irrelevant. Restrictions can also be swapped, i.e., we can solve w.r.t. variables in
any order, and can be removed, whenever their scope is nil (AX(x)). The scope
of restricted variables can be narrowed to terms where they occur free (AXSE).
Axioms regarding permutations say that identity and composition behave as
expected (AXπ) and that permutations distribute over syntactic operators
(AXp

π). Permutations are assumed to behave in a capture avoiding way when
applied to (x)p. Notice that restriction is idempotent, namely (x)(x)p ≡s (x)p.

We assume a standard operation of definition P (x1, . . . , xn)
def
= p where

x1, . . . , xn is a sequence of distinct variables including fv(p). We write
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P (y1, . . . , yn) for p[x1 7→ y1, . . . , xn 7→ yn], where the substitution (not just
a permutation) on p acts syntactically in a capture avoiding way. In this paper,
we are interested in non-recursive (but possibly well founded) definitions only. Def-
initions respect permutations, namely P (x1, . . . , xn)π ≡s P (π(x1), . . . , π(xn)).

We call s-algebras the algebras of the s-specification. Given an operation op
in the s-specification, opA denotes the interpretation of op in the s-algebra A.
Terms freely generated, modulo axioms of Fig. 1, are called s-terms. They form
an initial s-algebra Ts. By initiality, for any s-algebra A and p ∈ Ts, there is a
unique interpretation JpKA of p as an element of A, inductively defined as follows:

Jp ‖ qKA = JpKA ‖A JqKA J(x)pKA = (x)A JpKA JpπKA = JpKA πA

JA(x̃)KA = A(x̃)A JnilKA = nilA

Here we use infix, prefix or postfix notation for functions opA to reflect the syntax
of s-terms. We use the expression concrete terms to indicate syntactic terms that
are not up to axioms.

Permutations in the specification allow computing the set of “free” variables,
called (minimal) support, in any s-algebra.

Definition 8 (Support). Let A be a s-algebra. We say that a finite X ⊂ V
supports a ∈ A whenever, for all permutations π acting as the identity on X,
we have aπA = a. The minimal support supp(a) is the intersection of all sets
supporting a.

For instance, given a s-term p ∈ Ts, pπTs applies π to all free names of p in a
capture avoiding way. It is easy to verify that supp(p) = fv(p).

An important property of SCEP algebras, following from the theory of
permutation algebras, is that JpKA depends on (at most) the free variables of p,
formally:

Lemma 1. supp(JpKA) ⊆ supp(p), for all s-terms p and s-algebras A.

3.1 Weak specification

Our syntax is expressive enough to describe both the problem’s structure and
its decomposition into subproblems. For instance, the structurally congruent
concrete terms

(y)(x)(z)(A(x, y) ‖ B(y, z)) (y)((x)A(x, y) ‖ (z)B(y, z))

are equivalent s-terms, and so they describe the same problem, but the information
about which subproblems to solve w.r.t. x and z, represented as the subterms
in the scope of (x) and (z), is different. To distinguish different decompositions,
we introduce a weak SCEP specification where (AXSE) is dropped to avoid the
rearrangement of restrictions.
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Definition 9 (Weak SCEP specification). The weak SCEP specification
(w-specification, in short), is the s-specification without (AXSE), and where the
axiom (x)nil ≡s nil is replaced with

(AXw
(x)) (x)p ≡w p (x /∈ fv(p)) .

The axiom (AXw
(x)) is needed to discard “useless” variables. In the s-specification,

it can be derived using other axioms, including (AXSE). This is not possible in
the w-specification, so we need to state it explicitly.

Algebras of the w-specification are called w-algebras and the terms modulo
its axioms are called w-terms, forming the initial w-algebra; w-terms can be
understood as having a hierarchical structure, made of scopes determined by
restrictions. We are interested in two forms of w-terms.

Definition 10 (Normal and canonical forms). A w-term is said to be in
normal form whenever it is of the form (x̃)(A1(x̃1) ‖ A2(x̃2) ‖ · · · ‖ An(x̃n)),
where x̃ ⊆ x̃1 ∪ · · · ∪ x̃n. It is in canonical form whenever it is obtained by the
repeated application of the directed version of (AXSE): (x)(p ‖ q) → (x)p ‖
q (x /∈ fv(q)) until termination. For both forms, we assume that subterms of the
form (x̃)nil (where x̃ may be empty) are removed using (AX(x)) and (AX‖).
Normal and canonical forms exist in both concrete (no axioms) and abstract (up
to weak axioms) versions.

Normal and canonical forms are somewhat dual: normal forms have all restrictions
at the top level, whereas in canonical forms every restriction (x) is as close as
possible to the atomic terms where x occurs. Notice that a s-term may have
more than one canonical form, whereas normal forms are unique (both up to
w-specification axioms).

3.2 Soundness and completeness of networks

We now show that networks form a s-algebra, and that this algebra is isomorphic
to Ts. In other words, we show that the s-specification is sound and complete
w.r.t. networks.

Theorem 1. Let N be the smallest algebraic structure defined as follows. Con-
stants are:

AN (x1, x2, . . . , xn) =
A

x1 x2 xn…

nilN = ∅B 0N

and operations are:

(I BN)πN = π(I) BNπ
I (x)N (I BN) = I \ {x}BN

I1 BN1 ‖N I2 BN2 = I1 ∪ I2 BN1 ]I1,I2 N2
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where: Nπ
I is N where v ∈ I is replaced with π(v); N1 ]I1,I2 N2 is the disjoint

union of N1 and N2 where vertices in I1 ∪ I2 with the same name are identified;
and 0N is the network with no vertices and edges. Then N is a s-algebra.

Even if not depicted, when the same variable x occurs twice in A(x1, x2, . . . , xn),
the corresponding hyperdge has two tentacles connected to the same vertex x.
Theorem 1 implies that there is a unique evaluation of s-terms: given p, the
corresponding network JpKN can be computed by structural recursion. We show
that any network is the evaluation of an s-term. In order to do this, we first give
translations between concrete networks and s-terms in normal forms over the
same set of variables, which will also be useful later.

Definition 11 (Translation functions). Let IIN be a concrete network. Let
e1, . . . , en be its edges, and let Ai = labN (ei), x̃i = aN (ei). Then we define

term(I IN) = (VN \ I)(A1(x̃1) ‖ · · · ‖ An(x̃n))

Vice versa, given a concrete term in normal form p = (x̃)(A1(x̃1) ‖ · · · ‖ An(x̃n))
we define net(p) = fv(p) INp, where:

– VNp = v(p);

– ENp
= {e(i)Ai(x̃i)

| Ai(x̃i) is an atomic subterm of p};
– aNp

and labNp
map e

(i)
Ai(x̃i)

to x̃i and Ai, respectively.

Notice that we assume an indexing on atomic subterms of p. This allows net to
map two identical subterms to different edges.

Example 2. Consider the term in normal form p = (x)(z)(A(x, y) ‖ B(y, z)),
then net(p) is the concrete network depicted in Example 1.

Completeness is a consequence of the following theorem.

Theorem 2. Given two s-terms in normal form n1 and n2, if net(n1) ∼= net(n2)

then n1 ≡s n2. As a consequence, Jp1K
N

= Jp2K
N

implies p1 ≡s p2, for any two
s-terms.

4 SCSPs as SCEPs

We now show how SCSPs are represented and solved as SCEPs. Consider the
SCSPs definable over a fixed c-semiring S, a fixed domain of variable assignments
D and a fixed family of value functions valA, one for each atomic constraint.
SCEPs for such SCSPs can be defined as follows: networks are the underlying ones
of SCSPs, and the SCEP algebra for evaluations is formed by value functions. Here
by value function we mean functions of the form (V→ D)→ S. This is different
from Section 2.1, where domain of value functions are variable assignments I → D,
with I a finite set. We will see that the new formulation is equivalent, and allows
for simpler algebraic operations, because they do not depend on the “types” of
assignments.
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Theorem 3. Let V be the smallest algebraic structure defined as follows. For
any ρ : V→ D, constants are:

AV(x1, x2, . . . , xn)ρ = valA(ρ ↓{x1,x2,...,xn} ◦ σ̂) nilVρ = 1

and operations are:

((x)Vφ)ρ =
∑
d∈D

φ(ρ[x 7→ d]) (φπV)ρ = φ(ρ ◦ π) (φ1 ‖V φ2)ρ = φ1ρ× φ2ρ

where σ̂ maps var(A) to 〈x1, x2, . . . , xn〉, component-wise. Then V is a s-algebra.

Notice that ‖V is the extension of the ⊗ operator of Section 2.1 to arbitrary value
functions, but it is simpler: projections are not needed here, because variable
assignments all have the same type, namely V→ D.

Now we show that the evaluation function J−KV , applied to a network I BN ,

gives the solution of the SCSP defined over that network. Notice that JI BNKV

has type (V→ D)→ S, but its domain should be of the form I → D. However,

JI BNKV has the following property.

Property 1 (Compactness). We say that φ : (V → D) → S is compact if
ρ ↓supp(φ)= ρ′ ↓supp(φ) implies φρ = φρ′, for all ρ, ρ′ : V→ D.

Now, by Lemma 1, we have supp(JI BNKV) ⊆ supp(I B N) = I. Therefore

compactness means that JI BNKV only depends on assignments to interface
variables. The interpretation of constants is clearly compact and, by structural
induction, we can show that compound terms are. We have our main result.

Theorem 4. Given a SCSP with underlying network I BN and value functions
valA, we have that I BN evaluated in V, namely JI BNKV , is its solution.

We stress that SCEPs are more general than SCSPs: an example will be shown
in Section 8.

5 Evaluation complexity

Although all the s-terms corresponding to the same network have the same
evaluation in any algebra A, different ways of computing such an evaluation,
represented as different w-terms, may have different computational costs. As
already mentioned, finding the best one amounts to giving a solution for the
secondary optimization problem.

We introduce a notion of complexity of w-terms to measure the computational
costs of such evaluations.

Definition 12. Given a w-term p, its complexity 〈〈p〉〉 is defined as follows:

〈〈p ‖ q〉〉 = max {〈〈p〉〉, 〈〈q〉〉, |fv(p ‖ q)|} 〈〈(x)p〉〉 = 〈〈p〉〉 〈〈pπ〉〉 = 〈〈p〉〉
〈〈A(x̃)〉〉 = |x̃| 〈〈nil〉〉 = 0
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The complexity of p is the maximum “size” of elements of A computed while
inductively constructing JpKA, the size being given by the number of variables
in the support. Notice that all the concrete terms corresponding to the same
abstract w-term have the same complexity.

The soundness of this definition follows from Lemma 1: if Jp′KA is computed

while constructing JpKA, we have supp(Jp′KA) ⊆ supp(p′), and this relation among
supports does not depend on the choice of A. The interesting cases are (x)p and

p ‖ q: the computation of J(x)pKA relies on that of JpKA, whose support may be

bigger, so we set the complexity of (x)p to that of p; computing Jp ‖ qKA requires

computing JpKA and JqKA, but the support of the resulting element of A is (at
most) the union of those of p and q, so we have to find the maximum value
among 〈〈p〉〉, 〈〈q〉〉 and the overall number of free variables.

Complexity is well-defined only for w-terms, because applying (AXSE) may
change the complexity. Indeed, we have the following results for w-terms.

Lemma 2. Given (x)(p ‖ q), with x /∈ fv(q), we have 〈〈(x)p ‖ q〉〉 ≤ 〈〈(x)(p ‖ q)〉〉.

As an immediate consequence, all the canonical forms of a term always have
lower or equal complexity than the normal form.

Theorem 5. Given a term p, let n be its normal form. Then, for all canonical
forms c of p we have 〈〈c〉〉 ≤ 〈〈n〉〉.

Of course, different canonical forms may have different complexities. However, due
to Lemma 2, canonical forms may be considered as local minima of complexity
w.r.t. the application of axioms of the strong specification.

6 Tree decompositions as w-terms

In this section we provide a translation from tree decompositions to w-terms.
This enables applying algebraic techniques to tree decompositions, and improving
their complexity by bringing the corresponding w-terms in canonical form.

Given a network I BN , let T = (T,X) be one of its tree decompositions. Its
completed version CT = (T , {tx}x∈EN∪VN

) explicitly associates components of
N to vertices of T : for each v ∈ VN (resp. e ∈ EN ), tv (resp. te) is the closest
vertex to the root of T such that v ∈ Xtv (resp. aN (e) ⊆ Xte). By the definition
of rooted tree decomposition (Definition 4), such vertices tx exist (properties 1
and 2), and can be characterized as the roots of the subtrees of T induced by x
(by aN (x), if x is an edge), according to property 3.

We now translate CT into a w-term. Given a vertex t of T , let

V (t) = {v ∈ VN | tv = t} E(t) = {e ∈ EN | te = t} .

Suppose t has children t1, . . . , tn and E(t) = {e1, . . . , ek}, with n, k ≥ 0. Let
x̃ = V (t) \ I. The w-term χ(t) is inductively defined as follows:

χ(t) = (x̃)(A1(x̃1) ‖ · · · ‖ Ak(x̃k) ‖ χ(t1) ‖ · · · ‖ χ(tn))

12
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Fig. 2: Example network and tree decomposition.

where Ai = labN (ei) and x̃i = aN (ei). When k = 0 and/or n = 0, the corre-
sponding part of the parallel composition degenerates to nil. We assume that
subterms of the form (x̃)nil are removed via (AX(x)) and (AX‖).

Example 3. Consider the network in Fig. 2a, whose underlying graph is taken
from [6]. A tree decomposition for it is shown in Fig. 2b. Recall that interface
variables have solid outline, namely they are a and c. Its completed version has:
ta = tc = tf = t1, tb = t2, te = td = t3, th = t5 and tg = t4, t(a,b) = t2, t(a,c) = t1,
t(a,g) = t4, t(b,c) = t2, t(c,d) = t3, t(c,e) = t3, t(c,f) = t1, t(d,e) = t3, t(f,g) = t4,
t(g,h) = t5. Therefore we have

χ(t1) = (f)(C(a, c) ‖ H(c, f) ‖ χ(t2) ‖ χ(t3) ‖ χ(t4))

χ(t2) = (b)(A(a, b) ‖ B(b, c))

χ(t3) = (e)(d)(D(c, d) ‖ E(d, e) ‖ F (c, e))

χ(t4) = (g)(I(f, g) ‖ G(a, g) ‖ χ(t5))

χ(t5) = (h)L(g, h)

Again, notice that interface variables a and c are not restricted in χ(t1).

Definition 13 (wterm). Given a tree decomposition T rooted in r, the corre-
sponding w-term wterm(T ) is χ(r) computed on the completed version of T .

We have that wterm(T ) correctly represents the network T decomposes.

Proposition 1. Let T be a rooted tree decomposition for I B N . Then
Jwterm(T )KN = I BN .

We now have one of our main results, relating the width of T and the complexity
of the corresponding w-term.

Proposition 2. Given a tree decomposition T , 〈〈wterm(T )〉〉 ≤ width(T ).

7 Computing canonical decompositions

We now give a simple algorithm to compute canonical term decompositions. The
algorithm is shown in Fig. 3. It is based on bucket elimination [22, 5.2.4], also
known as adaptive consistency. However, we will show that bucket elimination
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Inputs: s-term (R)A in normal form; a total order OR over R.
Output: w-term P in canonical form.

1 P ← (R)A
2 while OR 6= ∅
3 x← extract maxOR
4 find all terms A′ ⊆ A such that x ∈ fv(A′)
5 if A′ = {(R′)P ′} where P ′ has no top-level restriction
6 Q← call the algorithm on (x)P ′ with order {(x, x)}
7 P ′′ ← (R′)Q
8 else P ′′ ← (x)A′

9 P ← (R \ {x})A \A′ ∪ {P ′′}
10 return P

Fig. 3: Algorithm to compute canonical w-terms: P, P ′, P ′′ and Q denote w-terms,
R and R′ are sets of restricted variables, and A, A′ are multisets of atomic or
restriction-rooted w-terms.

may also produce non-canonical decompositions, whereas our algorithm produces
all and only canonical terms.

Bucket elimination works as follows. Given a CSP network of constraints, its
variables are ordered, and constraints are partitioned into buckets: each constraint
is placed in the bucket of its last variable in the order. At any step the bucket of
the last variable, say x, is eliminated by synthesising a new constraint involving
all and only the variables in the bucket different than x. This constraint is put
again in the bucket of its last variable. The solution is produced when the last
bucket is eliminated. Notice that one can also eliminate a subset of the variables,
and obtain a solution parametric in the remaining variables.

In our algorithm, putting a constraint in the bucket of its last variable
corresponds to applying the scope extension axiom. The algorithm takes a s-term
in normal form as input, represented as (R)A, where A is a multiset of atomic
terms and R is the set of variables to be eliminated. This notation amounts
to taking the term up to weak axioms. A total order on R is given as input
as well. The algorithm operates as follows. It picks the max variable (line 3)
and partitions the input w-term into subterms according to whether the chosen
variable occurs free or not (line 4). When line 4 returns a singleton {(R′)P ′},
the algorithm attempts at pushing the variable x further inside P ′, achieving the
same effect as (AXSE). This is done by first calling the algorithm on (x)P ′ and
then restricting R′ in the resulting term. This operation can be understood as a
sequence of restriction swaps that bring x closer to P ′.

We have that the algorithm returns all and only the canonical forms of (R)A.

Theorem 6. C is a canonical form of (R)A if and only there is OCR such that
the algorithm in Fig. 3 with inputs (R)A and OCR outputs C.
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It is easy to see that the worst case complexity for the algorithm is given by the
product of the number of variables by the number of atomic terms. In fact, this
is the maximal number of times the test x ∈ fv(A′) is executed in line 4. The
same worst case complexity holds for the ordinary bucket algorithm.

Example 4. Let us apply the algorithm to the following term in normal form:

P = ({x1, x2, x3, x4}){A(x1, x2), B(x1, x4), C(x1, x3), D(x3, x4)}

with OR = x4 < x3 < x2 < x1. Line 3 picks x1 and line 4 gives A′ =
{A(x1, x2), B(x1, x4), C(x1, x3)}. As A′ is not a singleton, P becomes

({x2, x3, x4}){D(x3, x4), (x1){A(x1, x2), B(x1, x4), C(x1, x3)}} .

In the next iteration x2 is picked from OR, and we have A′ =
(x1){A(x1, x2), B(x1, x4), C(x1, x3)}. Now A′ is a singleton, so the algorithm
is called on

(x2){A(x1, x2), B(x1, x4), C(x1, x3)}

with {(x2, x2)} order. The restriction (x2) is pushed further inside, and the term

{(x2)A(x1, x2), {B(x1, x4), C(x1, x3)}}

is returned. Line 7 will prepend (x1) to the term above, and line 8 will construct
the following term

({x3, x4}){D(x3, x4), (x1){(x2)A(x1, x2), {B(x1, x4), C(x1, x3)}}}.

which is then returned. The next two iterations will pick x3 and x4, and the
then and else cases of line 5 are executed respectively. In the end we get the
term (in usual notation):

C = (x4)(x3)(D(x3, x4) | (x1)((x2)A(x1, x2) | B(x1, x4) | C(x1, x3)))

Bucket elimination corresponds to always executing line 8, even when A′ is a
singleton. In this case the result would be:

P ′ = (x4)(x3)(D(x3, x4) | (x1)(x2)(A(x1, x2) | B(x1, x4) | C(x1, x3)))

which is not in canonical form and has worst complexity. In fact, we have
〈〈C〉〉 = 3 < 〈〈P ′〉〉 = 4.

8 Example

In this section we present an example of an optimization problem which is a
SCEP and cannot be represented as a SCSP.

Consider a social network, based on an overlay network, where certain meeting
activities for a group of sites require the existence of routing paths between every
pair of collaborating sites. Under the assumption that the network is composed
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of end-to-end two-way connections with independent probabilities of failure, we
want to find the probability of a given group of sites staying connected.

We formalize the problem as a SCEP as follows. We consider networks
that are undirected, binary graphs with no loops (but possibly with circuits),
modelling the overlay network. Each edge has an associated probability of failure.
The solution of the problem is the probability of some interface vertices staying
connected. To achieve this, the idea is evaluating networks IBN into an algebra of
probability distributions P on the partitions Part(I) of I. Thus every partition
of I, characterizing a certain level of connectivity, is assigned a probability.
Consequently, if J is the group of sites we are interested in and N is the
hypergraph for the whole network, then the solution is obtained by computing
the probability distribution P for J BN and by selecting P ({J}). Notice that
the size of the values of our algebra grows very rapidly with the cardinality n
of I. In fact, the number of possible partitions for a set of n elements is the
Bell number, inductively given by B0 = 1, Bn+1 =

∑n
k=0

(
n
k

)
Bk. Thus if a vector

representation is chosen, the amount of memory needed to represent a value of
the algebra grows very rapidly with the number of interface vertices.

We now define the evaluation from networks and we show that it induces a
s-algebra. For the case of constants, we assume for simplicity that we have two
kinds of edges: A-labelled ones (more reliable) and B-labelled ones (less reliable),
both with two vertices x, y. Given Π1 = {{x}, {y}} and Π2 = {{x, y}}, we have

JI BNAKDΠ1 = qA JI BNAKDΠ2 = pA

JI BNBKDΠ1 = qB JI BNBKDΠ2 = pB

where NA (resp. NB) is a network with a single A-labelled (resp. B-labelled)
hyperedge. We have nilD∅ = 1. Permutations are defined straightforwardly:

JI BNπKDΠ = JI BNKDΠπ−1 ,

where Π ∈ Part(Iπ). Permutations are applied to sets and partitions in the
obvious way. Parallel composition is more complicated:

JI1 BN1 ‖ I2 BN2K
D
Π =

∑
{(Π1,Π2)|Π1∪Π2=Π}

JI1 BN1K
D
Π1 × JI2 BN2K

D
Π2.

where Π ∈ Part(I1∪I2), and each Π1,Π2 must belong to Part(I1) and Part(I2),
respectively. Here the union operation ∪ produces the finest partition coarser
than the two components and × is the multiplication on reals. The last operation
is restriction:

J(x)I BNKDΠ =
∑

{Π′∈Part(I∪{x})|Π′−x=Π}

JI BNKDΠ ′

where Π ′−x removes x from its set in Π ′. Here probability values are accumulated
for all the cases where a certain partition of interface vertices is guaranteed,
independently of the set where variable x is located.

Theorem 7. The image of J−KD is a s-algebra.
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R0(x, y, z) = A(x, y) ‖ B(x, z)

Ri+1(x, y, z) = (v)(Ri(x, v, z) ‖ Ri(v, y, z))

Wk(v, x) = (z)(Rk(x, v, z) ‖ A(v, x) ‖ B(v, z))

FWk(v, x) = (z)(Rk(x, v, z) ‖ B(v, z))

A"

A" A"

A"

B"
B" B"

B" B"

v" x"
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B" B"
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a)" b)"

Fig. 4: Formal specification of a wheel network and depiction of W2.

Remark. As mentioned, the problem does not fit in the SCSP format: the
codomain of value functions would be [0, 1], and thus their composition ⊗ would
be interpreted pointwise as an operation on real numbers within the unit interval.
Instead, a manipulation of partitions is also required to achieve the desired result.

As a family of overlay networks we choose wheels of N vertices where each vertex
is also connected to a central control vertex. Accordingly, connections in the ring
have low failure probability (label A), while the connections to the center have
high failure probability (label B). We want to find out how much the connection
probability between two adjacent vertices in the ring deteriorates when the direct
link between them breaks down.

The formal definition of our networks is given in Fig. 4. They consist of radius
elements Ri, recursively composed in parallel; rings are closed (Wk(v, x)) by
connecting the last (v) and the first (x) radius; the failed network is FWk(v, x)
where the ring is interrupted because A(v, x) is missing. Fig. 4 shows W2(v, x).

It is easy to see that Wk(v, x) is a wheel with N = 2k + 1 radii, which is
specified by a number of simple well-founded non-recursive defining equations
linear in k. The top-down recursive evaluation of Wk(v, x) is clearly exponential
in k. However, the bottom-up dynamic programming evaluation is much more
efficient: its complexity is linear in k and logarithmic in the size N of the
problem, thanks to the presence of repetitive subterms. A dynamic programming
algorithm has been implemented in Java taking advantage of merge-find-like data
representations to handle partitions (see Appendix B for details).

9 Conclusion

We have presented a class of constraint algebras, which generalize SCSPs. Ver-
tices of constraint networks are implicitly represented as support elements of
a permutation algebra. This allows for the evaluation of terms of the algebras
in rather abstract domains. Applying directionally the scope extension axiom
until termination yields terms for efficient dynamic programming strategies. An
example has also been shown about computing the connection probability of
communication networks. This problem can be represented using our algebras,
but not as a SCSP.
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Our framework is a significant step towards the use of existing techniques and
tools for algebraic specifications in the context of constraint-based satisfaction
and optimization. While some evidence of the approach we foresee are given
in the paper (improved bucket elimination and doubly exponential speed up in
a recursive, well-founded definition), further results are left for future work. A
direction to explore is using more sophisticated term substitutions (e.g., second
order substitutions, in the line of [13]) for defining complex networks inductively.
In this paper definitions are restricted to deterministic, non-recursive instances:
dropping these restrictions would lead us to the realm of DATALOG constraint
programming, with tabling, possibly suggestive in the presence of programmable
evaluation strategies.

Related work. Other compositional constraint definitions have been proposed
in the literature: in [7] constraints are modeled in a named semiring, and in [4]
the semiring operations are extended point-wise to functions mapping variable
assignments to semiring values. However, in the former case no explicit evaluation
is performed, while in the latter no restriction operation is considered. Other
approaches are: [5], where compositionality is achieved via complex categorical
structures, and [24], where compositionality is not tackled. In a previous workshop
paper [17], some early results were given by two of the authors. However, while
the algebraic specification is essentially the same, the interpretation domain was
restricted to SCSPs for optimization, without reference to SCEPs. Moreover, no
proof was given that SCSPs actually satisfy the specification. Furthermore, the
connection with the classical tree decomposition was just hinted.

The problem of how to represent parsing trees for (hyper)graphs has been
studied in depth in the literature. In particular, we mention the notion of Courcelle
graph algebras [9] and of graph grammars for hyperedge replacement [8], which
assign a complexity value to the parsing steps. Typical results are about classes
of graphs with parsings of bound complexity, having properties that can be
proved or computed in linear time. While these results are analogous to ours for
some aspects, they do not apply specifically to SCSPs or SCEPs. Instead, tree
decomposition and secondary optimization problems have been studied for CSP
in [15]. However our approach has a simpler and more effective compositional
structure and an up-to-date foundation for name handling.

The role of bounded treewidth CSP has been studied also in connection with
the general area of computing homomorphisms between relational structures [11,
10, 16] and k-consistency [1].

Acknowledgements. We thank Nicklas Hoch and Giacoma Valentina Monreale
for their collaboration in an earlier version of this work. We also thank an
anonymous reviewer for suggesting the example where bucket elimination does
not produce a canonical term.
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A Omitted results and proofs

Lemma A.1. supp(I BN) = I.

Proof. Let us spell out the definition of the support of a network. A finite X ⊆ V
supports I BN whenever, for all permutations π that act as the identity on X,

(I BN)πN = π(I) BNπ
I = I BN

Clearly I supports IBN : if π does not touch I, it maps IBN to IBN ′ ∼= IBN ′.
Now, to prove that I is indeed the minimal support, suppose supp(IBN) = I\{x},
with x ∈ VN , and take a permutation π that is the identity on I \ {x} and swaps
x and y, with y /∈ VN . Then π(I) BNπ

I\{x} is I BN where the interface vertex x
has been replaced with y, but this is a different abstract network from I BN . In
fact, there is no isomorphism between the two networks, as isomorphisms must
fix interface vertices. Therefore x must be part of the minimal support. ut

Proof (of Theorem 1). We have to check that all the axioms hold. We assume
the following interpretation of substitutions of variables: (IBN)[x 7→ y] = I[x 7→
y] BN [x 7→ y], where N [x 7→ y] is N with the vertex x replaced by y.

(AX‖) commutativity and associativity follow from the same properties of set
union, and the fact that abstract networks are up to isomorphism, so disjoint
union of networks is commutative and associative as well. For the unity, we
have

I BN ‖N nilN = I ∪ ∅BN ]I,∅ 0N = I BN

(AX(x)) for (x)N (y)N I BN , both sides of the axiom are I \ {x, y}BN .
(AXα) given (x)N I BN , we can assume y is not a vertex of N . If it is, we can

apply an isomorphism to the network, mapping y to some z /∈ VN . In fact,
y /∈ supp(I BN) = I, so isomorphisms need not fix it.

(x)N I BN = I \ {x}BN
∼= (I \ {x})[x 7→ y] BN [x 7→ y]

= I[x 7→ y] \ {y}BN [x 7→ y]

= (y)N I[x 7→ y] BN [x 7→ y]

= (y)N (I BN [x 7→ y])

(AXSE) take I1 BN1 and I2 BN2, with x /∈ supp(I1 BN1) = I1.

(x)N (I1 BN1 ‖N I2 BN2) = (x)N (I1 ∪ I2 BN1 ]I1,I2 N2)

= I1 ∪ I2 \ {x}BN1 ]I1,I2 N2

= I1 BN1 ‖N I2 \ {x}BN2 (x /∈ I1)

= I1 BN1 ‖N (x)N I2 BN2
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(AXπ) the identity axiom is obvious. For composition we have

(I BNπ′N )πN = (π′(I) BNπ′

I )πN

= π(π′(I)) B (Nπ′

I )ππ′(I)

= (π ◦ π′)I BNπ◦π′
I

= I BN(π ◦ π′)N

(AXp
π) It is obvious for constants. For the other axioms we have:

(I1 BN1 ‖N I2 BN2)πN = (I1 ∪ I2 BN1 ]I1,I2 N2)πN

= π(I1) ∪ π(I2) B (N1)πI1 ]π(I1),π(I2) (N2)πI2

= π(I1) B (N1)πI1 ‖
N π(I2) B (N2)πI2

= (I1 BN1)πN ‖N (I2 BN2)πN

((x)N I BN)πN = (I \ {x}BN)πN

= π(I) \ {π(x)}BNπ
I\{x}

∼= π′(I) \ {x}BNπ′

I\{x} (1)

= (x)N (π′(I) BNπ′

I\{x})

= (x)N (I BNπ′)

where π′ in (1) fixes x and acts as π on the other variables: it holds because
x /∈ I, thus π(x) /∈ π(I), so a network isomorphism need not fix π(x). ut

Lemma A.2. Given a s-term p, JpKN = fv(p) BN , for some N .

Proof. It it is easy to check that Jterm(I IN)KN and I IN only differ from the
identity of non-interface variables, which correspond in a structure-preserving
way.

Proof (of Theorem 2). Let Ii INi = net(ni), for i = 1, 2. Then, by hypothesis,
I1 IN1

∼= I2 IN2, therefore:

– fv(p1) = I1 = I2 = fv(p2);
– they have the same number of edges;
– if the isomorphism maps e1 ∈ EN1

to e2 ∈ EN2
, then these edges are attached

to the same interface variables, in the same order. Non-interface variables
can be arbitrary, but still in bijective correspondence.

By definition of the net function, these statements imply that n1 has an atomic
subterm A(x̃) if and only n2 has an atomic subterm A(x̃′), where components of
x̃ and x̃′ that belong to fv(n1) (or, equivalently, to fv(n2)) are equal. All other
components are bound variables, corresponding up to α-conversion. In other
words, n1 ≡s n2, as required. ut
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Proof (of Theorem 3). Given a substitution of variables [x 7→ y], its interpretation
on cost functions is (φ[x 7→ y])ρ = φ(ρ ◦ [x 7→ y]), where [x 7→ y] is extended to
be a function V→ V in the obvious way.

We have to check all the axioms.

(AX‖) follows from monoidality of ×.
(AX(x)) we have

( (x)V((y)Vφ) )ρ =
∑
d1∈D

∑
d2∈D

φρ[x 7→ d1][y 7→ d2]

which is not affected by swapping x and y, and

((x)VnilV)ρ =
∑
d∈D

nilVρ =
∑
d∈D

0 = 0 = nilVρ

(AXα) suppose y /∈ supp(φ), then we have

((x)Vφ)ρ =
∑
d∈D

φ(ρ[x 7→ d])

=
∑
d∈D

φ(ρ[y 7→ d] ◦ [x 7→ y]) (2)

=
∑
d∈D

φ[x 7→ y](ρ[y 7→ d])

= ((y)Vφ[x 7→ y])ρ

where (2) follows from compactness of φ and the fact that ρ[x 7→ d] and
ρ[y 7→ d] ◦ [x 7→ y] have the same action on supp(φ).

(AXSE) suppose x /∈ supp(φ1),then we have

((x)V(φ1 ‖V φ2))ρ =
∑
d∈D

φ1(ρ[x 7→ d])× φ2(ρ[x 7→ d])

=
∑
d∈D

φ1ρ× φ2(ρ[x 7→ d]) (3)

= φ1ρ×
∑
d∈D

φ2(ρ[x 7→ d]) (4)

= (ρ1 ‖V (x)Vφ2)ρ

where (3) follows from compactness of φ1 and (4) from distributivity.
(AXπ) we have

((φπ′V)πV)ρ = φ((ρ ◦ π) ◦ π′) = φ(ρ ◦ (π ◦ π′)) = (φ(π ◦ π′)V)ρ

by associativity of function composition. The other axiom is obvious.
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(AXp
π) we omit the obvious axioms:

(AV(x1, . . . , xn)π)ρ = AV(x1, . . . , xn)(ρ ◦ π)

= valA((ρ ◦ π) ↓{x1,...,xn} ◦σ̂)

= valA(ρ ↓{π(x1),...,π(xn)} ◦([x1 7→ π(x1), . . . , xn 7→ π(xn)] ◦ σ̂)

= AV(π(x1), . . . , π(xn))ρ

((φ1 ‖V φ2)πV)ρ = (φ1 ‖V φ2)(ρ ◦ π)

= φ1(ρ ◦ π)× φ2(ρ ◦ π)

= (φ1π
V ‖V φ2πV)ρ

(((x)Vφ)πV)ρ =
∑
d∈D

φ(ρ ◦ π)[x 7→ d]

=
∑
d∈D

φ(ρ[x 7→ d] ◦ π̃)

=
∑
d∈D

(φπ̃V)(ρ[x 7→ d])

= ((x)V(φπ̃V))ρ

where π̃(x) = x and acts as π on V \ {x}.

Proof (Proof of Theorem 4). By compactness, JI BNKV can be regarded as a
function of type (I → D)→ S. Now, consider the normal form n for (the concrete

version of) I B N (so JI BNKV = JnKV). It is straightforward to check that

JnKV = sol, as defined in Section 2.1.

Lemma A.3. Let r be the root of T . Then fv(χ(r)) = I.

Proof. Straightforward, observing that I are the only variables that are not
restricted in the inductive computation of χ(r).

Proof (of Proposition 1). Let r be the root of T . By definition of completed
rooted tree decomposition, for ever edge e ∈ EN there is a unique vertex t of T
such that e ∈ E(t). It follows by a simple induction that edges e ∈ EN and atomic
subterms in wterm(T ) are in one-to-one correspondence: each atomic subterm
A(x̃) corresponds to an edge e in N such that labN (e) = A and aN (e) = x̃. Notice
that there may be many occurrences of the same A(x̃), corresponding to different
edges with the same label and vertices. Therefore the hypergraph component of
Jwterm(T )KN is exactly N . It remains to prove that its inteface is I. This follows
from Lemma A.2 and Lemma A.3.

Proof (of Proposition 2). By definition, wterm(T ) = χ(r) is of the form

(x̃)(A1(x̃1) ‖ · · · ‖ Ak(x̃k) ‖ χ(t1) ‖ · · · ‖ χ(tn)) . (5)
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Let p′ = A1(x̃1) ‖ · · · ‖ Ak(x̃k) ‖ χ(t1) ‖ · · · ‖ χ(tn). Then we have:

〈〈wterm(T )〉〉 = 〈〈p′〉〉 (definition of 〈〈〉〉)
= max{〈〈A1(x̃1)〉〉, . . . , 〈〈Ak(x̃k)〉〉, 〈〈χ(t1)〉〉, . . . , 〈〈χ(tn)〉〉, fv(p′)}
= max{|x̃1|, . . . , |x̃k|, 〈〈χ(t1)〉〉, . . . , 〈〈χ(tn)〉〉, fv(p′)}
= max{〈〈χ(t1)〉〉, . . . , 〈〈χ(tn)〉〉, fv(p′)}

where the last equations follow from x̃i ⊆ fv(p′), for i = 1, . . . , k.
We will prove the claim for a weaker form of tree decompositions. We say that

T is a pre-decomposition of a network IBN whenever it agrees with Definition 4,
except that Xt is allowed to contain vertices than are not in VN , i.e., VN ⊆

⋃
Xt.

Clearly a tree decomposition is a pre-decomposition. Moreover, it makes sense to
compute the w-term wterm(T ) for a pre-decomposition T , because additional
vertices not in VN become restrictions of variables that do not occur anywhere
in the term; these restrictions can be dropped using (AXw

(x)).
We proceed by induction on the structure of a pre-decomposition T . Given a

vertex t′ of T , we denote by Tt′ the sub-pre-decomposition rooted in t′: it is easy to
check that Tt′ is a pre-decomposition for the network Jχ(t′)KN = Jwterm(Tt′)KN .
Notice that, even if T is a proper tree decomposition, Tt′ may still be a pre-
decomposition, because some variables in Xt′′ , with t′′ an ancestor of t′ in T ,
may be in Xt′ , by (3) of Definition 4, but not in χ(t′), thus they are not vertices

of Jwterm(Tt′)KN .
Suppose T has only one vertex. Then wterm(T ) is of the form

(x̃)(A1(x̃1) ‖ · · · ‖ Ak(x̃k))

and we have

〈〈wterm(T )〉〉 = max{|x̃1|, . . . , |x̃k|} ≤ |x̃|+ |x̃1|+ . . . |x̃k| = width(T ).

For the induction step, let the root r of T have children t1, . . . , tn. The term
wterm(T ) is of the form (5) and, for i = 1, . . . , n and j = 1, . . . , k, we have:

– 〈〈χ(ti)〉〉 = 〈〈wterm(Tti)〉〉 ≤ width(Tti) ≤ width(T ), by induction hypothesis.
– |fv(p′)| ≤ width(T ), because fv(p′) is the union of fv(wterm(T )) and x̃,

which are both contained in Xr: the former because T pre-decomposes a
network whose interface vertices are fv(wterm(T )), by Proposition 1 and
Lemma A.2; the latter by definition of wterm(T ). By definition of width,
|Xr| ≤ width(T ).

By definition, width(T ) is the maximum of the values listed above. Since these
values are all bound by width(T ), we get the claim. ut

Proof (of Theorem 6).

=⇒ : We can compute an ordering on R using the inductive structure of C. If

C = (R){A1(x̃1), . . . , An(x̃n)}
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then OCR can be any ordering, as A′ in line 4 will always be
{A1(x̃1), . . . , An(x̃n)}. Otherwise, if

C = (R′){A1(x̃1), . . . , An(x̃n), C1, . . . , Cm}

Then Ci = (Ri)Pi and, by induction, there is a normal form (R′i)Ai for them
and an ordering Oi for R′i. Clearly we have R = R′ ∪

⋃
i=1,...,mR

′
i, so we can

form an ordering OR for R as follows: x <OR
y if and only if

– there is R′i such that x ∈ R′i and y ∈ R, or;
– x <O y, O ∈ {OR, O1, . . . , On}, or;
– there are R′i and R′j , with i < j, such that x ∈ R′i and y ∈ R′j .

This is well-defined, as R,R′1,. . . ,R′n are pairwise disjoint. To see that the
algorithm in Fig. 3 produces C, observe that (R)A can be written as

(R′1) . . . (R′m)(R′)({A1(x̃1), . . . , An(x̃n)} ∪A1 ∪ · · · ∪Am)

Therefore line 4 will subsequently pick all variables in R′1 until line 9 produces

(R′2) . . . (R′m)(R′)({A1(x̃1), . . . , An(x̃n), C1} ∪A2 ∪ · · · ∪Am)

then R′2, and so on, until all Ai all turned into Ci. Finally, C is returned.
⇐= : suppose, by contradiction, that C is not canonical. Then there are a

subterm (R){P1, . . . , Pn} in C, x ∈ R and Pi such that x /∈ fv(Pi). Consider
the step of the algorithm where x is selected by line 3. After the selection,
line 4 returns A′ = {(R′){P1, . . . , Pn}}, with R′ ⊆ R. We must have:
– R′ 6= ∅, because otherwise line 4 would have returned a set of terms

without Pi, as x /∈ fv(Pi).
– Px = {Pi | x ∈ fv(Pi)} 6= ∅, because x ∈ fv({(R′){P1, . . . , Pn}}) ⊂
fv({P1, . . . , Pn}) =

⋃
i fv(Pi).

Then the guard of line 5 holds, so the algorithm is called on {P1, . . . , Pn}
and {x} (line 6).
During the recursive call, x is selected again by line 3, but now line 4 returns
Px. Finally, possibly after other recursive calls, line 9 is reached and the
algorithm returns some term S ∪ {S′}, where S = {P1, . . . , Pn} \ Px.
Now we are back in the original call of the algorithm. The term S ∪ {S′}
is assigned to Q in line 6. Then (R′)(S ∪ {S′}) is assigned to P ′′, which
becomes a subterm of C in line 9. This is a contradiction: we assumed that
(R){P1, . . . , Pn} is a subterm of C, but the algorithm cannot construct it in
a subsequent step of the algorithm, because its terms in parallel have already
been partitioned within (R′)(S ∪ {S′}). Notice that S is neither empty nor
the whole {P1, . . . , Pn}, because S ∩ Px = ∅ and Pi ∈ S.

Proof (of Theorem 7). We have to check all the axioms. Instead of networks, we
will use terms to simplify notation. Recall that, by Lemma A.2, p corresponds to
a network with interface variables supp(p).
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(AX‖) Commutativity and identity are immediate: union on partitions and prod-
uct on reals are commutative; composing with nil does not change neither
partitions (the empty set has only one possible partition) nor their probabili-
ties (multiplied by 1). Finally, parallel composition is associative. Consider

terms p1, p2, p3, and let Ii = supp(pi), i = 1, 2, 3. Both J(p1 ‖ p2) ‖ p3KD

and Jp1 ‖ (p2 ‖ p3)KD return the same value: after coercion to I1 ∪ I2 ∪ I3,
both of them consider all the triples Π1 ∈ Part(I1), Π2 ∈ Part(I2) and

Π3 ∈ Part(I3) with Π1 ∪ Π2 ∪ Π3 = Π, multiply the values of Jp1K
D
Π1,

Jp2K
D
Π2 and Jp3K

D
Π3 and sum up all of them.

(AX(x)) Both J(x)(y)pKD and J(y)(x)pKD return the same value: probabilities
values are accumulated for a certain partition of interface vertices indepen-
dently of the set where variables x and y are located. If the interface set is
empty, restriction has no effect.

(AXπ) The identity axiom is obvious. For the composition axiom, we have:

Jpπ′πKDΠ = Jpπ′KD (Ππ−1)

= JpKD (Ππ−1π′−1)

= JpKD (Π(π ◦ π′)−1)

= Jp(π ◦ π′)KDΠ.

(AXp
π) They hold obviously for constants. For parallel composition we have:

J((p1 ‖ p2)π)KDΠ = J(p1 ‖ p2)KDΠπ−1

=
∑

{(Π1,Π2)|Π1∪Π2 =Ππ−1}

Jp1K
D
Π1 × Jp2K

D
Π2

=
∑

{(Π′1,Π′2)|Π1∪Π2=Π}

Jp1K
D
Π ′1π

−1 × Jp2K
D
Π ′2π

−1

=
∑

{(Π′1,Π′2)|Π1∪Π2=Π}

Jp1K
D
πΠ ′1 × Jp2K

D
πΠ ′2

= J((p1π ‖ p2π)KDΠ.

For restriction we have:

J((x)p)πKDΠ = J((x)p)KDΠπ−1

=
∑

{Π′|Π′−x=Ππ−1}

JpKDΠ ′

=
∑

{Π′′|Π′′−x=Π}

JpKDΠ ′′π′−1

=
∑

{Π′′|Π′′−x=Π}

Jpπ′KDΠ ′′

= J(x)(pπ′)KDΠ.
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(AXα) We have:

J(y)p[x 7→ y]KDΠ = J(y)p[x 7→ y]KDΠ

=
∑

{Π′|Π′−y=Π}

Jp[x 7→ y]KDΠ ′

=
∑

{Π′|Π′−y=Π}

JpKDΠ ′[y 7→ x]

=
∑

{Π′′|Π′′−x=Π}

JpKDΠ ′′ (6)

= J(x)pKDΠ

where, for (6), we have Π ∈ Part(supp(p[x 7→ y]\{y}), so Π ′−y = Π if and
only if Π ′[y 7→ x]− x = Π[y 7→ x] = Π. Then we can set Π ′′ = Π ′[y 7→ x].

(AXSE) We have:

J(x)(p1 ‖ p2)KDΠ

=
∑

{Π′|Π′−x=Π}

∑
{(Π′1,Π′2)|Π′1∪Π′2=Π′}

Jp1K
D
Π ′1 × Jp2K

D
Π ′2

=
∑

{(Π′1,Π′2)|(Π′1∪Π′2)−x=Π}

Jp1K
D
Π ′1 × Jp2K

D
Π ′2

=
∑

{(Π′1,Π′2)|Π′1−x∪Π′2−x=Π}

Jp1K
D
Π ′1 × Jp2K

D
Π ′2 (x /∈ supp(p2))

=
∑

{(Π′′1 ,Π′2)|Π′′1 ∪Π′′2 =Π}

Jp1K
D
Π ′′1 − x× Jp2K

D
Π ′′2 − x

=
∑

{(Π′′1 ,Π′2)|Π′′1 ∪Π′′2 =Π}

(
∑

{Π′′′|Π′′′−x=Π′′1 }

Jp1K
D
Π ′′′1 )× Jp2K

D
Π ′′2

= J((x)p1) ‖ p2KDΠ.

B Implementation

The main issue in the implementation is how to represent the values of the
domain and how to implement the operations. Probability distributions can
be represented as vectors indexed by the partitions of the set of the interface
vertices, which grow very rapidly with the number of vertices. To allow for fast
insertion and retrieval, it is convenient to represent partitions as strings and to
order them. A simple representation starts ordering the vertices within the sets
of vertices, and eventually the sets of vertices in the partitions according to their
first element. It is interesting to observe that it is convenient not to represent
sets of vertices which are singletons. Omitting them makes partitions untyped,
and thus simplifies the computation of parallel composition.
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k N A B F msec W msec A B F msec W msec

1 3 0.01 0.1 0.00002 17 0.00217 22 0.1 0.3 0.00704 17 0.07043 19
2 5 0.01 0.1 0.00031 78 0.03154 105 0.1 0.3 0.03081 74 0.30817 80
3 9 0.01 0.1 0.00069 183 0.0697 190 0.1 0.3 0.00546 172 0.54609 184
4 17 0.01 0.1 0.00141 409 0.14157 426 0.1 0.3 0.00804 435 0.8046 452
5 33 0.01 0.1 0.00269 620 0.26908 623 0.1 0.3 0.09637 625 0.96379 661

Table 1: Example values.

A natural way to compute parallel composition takes all pairs (Π1, Π2) of
partitions, determines their union Π1 ∪Π2 = Π and increments of p1Π1 × p2Π2

the entry of Π in the result. The union can be computed efficiently with merge-
find-like algorithms, thus the cost of multiplication is essentially quadratic with
the number of partitions. Similarly, the cost of (x)p is essentially linear with the
number of partitions of p: every value pΠ increments the entry Π − x of the
result.

We ran experiments on a 2.2 GHz Intel Core i7 with 4 GB RAM. In Table 1 we
see the connection probability between v and x with and without failure (i.e. for
Fk and Wk) for various values of k, together with the corresponding computing
time. Each case is computed for failure probabilities qA = 0.01, qB = 0.1, and
qA = 0.1, qB = 0.3. Notice that it is always the case that failure probability for
Wk equals the product of the failure probability for Fk and of qA. This is obvious,
since the edge A and the network Fk are composed in parallel to obtain Wk, and
thus their failure probabilities should be multiplied.
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