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Abstract

Recombination in mammals is not uniformly distributed along the chromosome but
concentrated in small regions known as recombination hotspots. Recombination starts
with the double-strand break of a chromosomal sequence and results in the transmission
of the sequence that does not break (preventing recombination) more often than the
sequence that breaks (allowing recombination). Thus recombination itself renders indi-
vidual recombination hotspots inactive and over time should drive them to extinction
in the genome. Empirical evidence shows that individual recombination hotspots die
but, far from being driven to extinction, they are abundant in the genome: a contra-
diction referred to as the Recombination Hotspot Paradox. What saves recombination
hotspots from extinction? The current answer relies in the formation of new recombi-
nation hotspots in new genomic sites driven by viability selection in favour of recombi-
nation. Here we formulate a population genetics model that incorporates the molecular
mechanism initiating recombination in mammals (PRDM9-like genes), to provide an
alternative solution to the paradox. We find that weak selection allows individual re-
combination hotspots to become inactive (die) while saving them from extinction in the
genome by driving their re-activation (resurrection). Our model shows that when selec-
tion for recombination is weak, the introduction of rare variants causes recombination
sites to oscillate between hot and cold phenotypes with a recombination hotspot dying
only to come back. Counter-intuitively, we find that low viability selection leaves a hard
selective sweep signature in the genome, with the selective sweep at the recombination
hotspot being the hardest when fertility selection is the lowest. Our model can help to
understand the rapid evolution of PRDM9, the co-existence of two types of hotspots,
the life expectancy of hotspots, and the volatility of the recombinational landscape (with
hotspots rarely being shared between closely related species).
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1. Introduction

The distribution of recombination in the genome - and thus crossover events - is key1

to our understanding of the molecular mechanisms controlling recombination, the role2

of recombination on evolution, and the implementation of tests linking genetic markers3

with human disease (genome-wide association studies) (Boulton et al., 1997; Hey, 2004;4

Rosenberg et al., 2010). In many mammals, recombination is not uniformly distributed in5

the genome but concentrated in small chromosomal regions —known as recombination6

hotspots— where recombination is ten to a thousand times more frequent than the7

genome’s average (Lichten and Goldman, 1995; Petes, 2001; Myers et al., 2005; Paigen8

and Petkov, 2010). While recombination hotspots are abundant in the mammalian9

genome (for example, in the human genome there are more than twenty five thousand),10

their mere existence is paradoxical and their life cycle is not fully understood (Boulton11

et al., 1997; Pineda-Krch and Redfield, 2005; Myers et al., 2005).12

Recombination is initiated by a double-strand break (DSB) and may result in the13

conversion of the allelic sequence that breaks (active allele, enabling recombination)14

into the allelic sequence that does not break (inactive allele, disabling recombination)15

(Lichten and Goldman, 1995; Petes, 2001). The conversion of the allele that enables16

recombination into the one that disables recombination should be faster in genomic re-17

gions where recombination is higher (recombination hotspots). As a result individual18

recombination hotspots should become inactive (this process is often referred as the19

death of a hotspot; Coop and Myers (2007)) and, over evolutionary time, recombina-20

tion hotspots should disappear from the genome (Boulton et al., 1997; Pineda-Krch and21

Redfield, 2005). Empirical work shows that individual recombination hotspots die (Ptak22

et al., 2004, 2005; Winckler et al., 2005; Coop et al., 2008; Myers et al., 2010; Stevison23

et al., 2015) but, despite their self-destructive nature, recombination hotspots are abun-24

dant in the mammalian genome (Myers et al., 2005; Baudat et al., 2013), thus posing25

the Recombination Hotspot Paradox (Boulton et al., 1997; Pineda-Krch and Redfield,26

2005): what saves recombination hotspots from extinction?27

Due to its molecular, evolutionary and medical implications the Recombination28

Hotspot Paradox has received much attention. Initial work aimed to test whether the29

known beneficial effects of recombination —in particular how recombination may favor30

proper chromosomal segregation during meiosis; thus avoiding the formation of aneu-31

ploidy gametes (Hassold et al., 2000; Louis and Borts, 2003; Brick et al., 2012; Alves et al.,32

2017)— can solve the paradox (Boulton et al., 1997; Pineda-Krch and Redfield, 2005;33

Calabrese, 2007; Peters, 2008). These mathematical models found that the strength of34

viability selection needed to maintain active alleles at recombination hotspots over evolu-35

tionary time was too high to be realistic (Boulton et al., 1997; Pineda-Krch and Redfield,36

2005; Calabrese, 2007; Peters, 2008). Furthermore, in these models when viability se-37

lection prevents the extinction of hotspots in the genome, it does so by preventing the38

death of individual hotspots, which is contrary to empirical observations (Ptak et al.,39

2004, 2005; Winckler et al., 2005; Coop et al., 2008; Myers et al., 2010; Stevison et al.,40

2015). Therefore, far from providing solutions to the Recombination Hotspot Paradox,41

previous work demonstrates that the paradox is well grounded.42
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Recent advances in our understanding of the molecular mechanisms initiating re-43

combination include the identification of gene PRDM9 in humans (and many mammals)44

coding for protein PRDM9 that may bind a specific sequence at a target recombination45

hotspot (Myers et al., 2010; Baudat et al., 2010). Binding specificity between PRDM946

and its target site is required for the initiation of recombination (Myers et al., 2010;47

Baudat et al., 2010). This finding led to the verbal argument that when a target site has48

its binding motif (active allele) replaced by the non-binding motif (inactive allele) due49

to biased gene conversion, a mutant PRDM9 could create a new target site by coding50

for a new binding motif (Myers et al., 2010; Baudat et al., 2010). Natural selection51

would thus favor this rare mutant PRDM9 as long as recombination is advantageous for52

the individual (Myers et al., 2010; Baudat et al., 2010). Lacking a mathematical model53

to back this claim, it remained unclear whether selection would favor such mutant to54

the extent of allowing the formation (henceforth birth) of new recombination hotspots55

before an inactive allele arose. Furthermore, would the strength of selection required for56

the birth of new hotspots be too high to be realistic?57

Úbeda and Wilkins (2011) modeled a trans acting modifier locus with binding speci-58

ficity —like PRDM9— showing that, for a strength of selection lower than in previous59

models, new recombination hotspots can be born at new target sites, while existing re-60

combination hotspots die (Úbeda and Wilkins, 2011). These findings were consistent61

with empirical observations regarding the persistence of recombination hotspots in the62

genome in spite of the death of individual recombination hotspots (Úbeda and Wilkins,63

2011). The Red Queen hypothesis of recombination hotspots evolution refers to the64

balance between death and birth of new hotspots driven by conversion and viability65

selection (Úbeda and Wilkins, 2011), and is the prevailing explanation to the recombi-66

nation hotspots paradox (Lesecque et al., 2014; Latrille et al., 2017).67

In many respects, however, the Red Queen hypothesis needs further theoretical in-68

vestigation (Latrille et al., 2017). One of these key theoretical aspects is the role of69

viability selection in maintaining recombination hotspots, and the evolution of PRDM970

and target sequences (Ségurel et al., 2011; Latrille et al., 2017). Recent models include71

variables that mask the effect of selection; for example drift, recurrent mutation, and72

multiple locus targets (Úbeda and Wilkins, 2011; Latrille et al., 2017). While the intro-73

duction of these variables is justified to make the models more realistic, they complicate74

our understanding of the interplay between the key variables of these models, namely75

conversion and selection.76

Here we formulate a population genetics model aimed to explore the interplay be-77

tween conversion and selection in the resolution of the Recombination Hotspot Paradox.78

We start by considering an infinite population, without recurrent mutation and with a79

single target locus, to eliminate the above mentioned confounding variables. We build on80

the insight gained from this minimal model to interpret the results of an extended model81

with a finite population and recurrent mutation. In doing so, we find an alternative solu-82

tion to the Recombination Hotspot Paradox, one that does not require the formation of83

new hotspots but relies on existing hotspots. Counter-intuitively, in our novel solution, it84

is low viability selection regimes that allow the persistence of recombination hotspots in85
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spite of the death of individual ones (contrary to previous models) (Latrille et al., 2017).86

Furthermore, sometimes, low viability selection accelerates the turnover of hotspots. We87

also find that viability selection can maintain polymorphisms at the PRDM9 and target88

loci. We apply these findings to explore the molecular signatures of selection in PRDM989

and target loci and consider their implications for genome-wide association studies.90

2. Methods91

2.1. Two-locus n-alleles model92

We follow the classic Wright-Fisher population genetics framework Wright (1969);93

Bürger (2000) to formulate a discrete time mathematical model of an infinite population94

of diploid individuals carrying two loci with an arbitrary number of alleles in each locus.95

This model represents the interaction between a gene (PRDM9-like) producing a96

protein that binds a specific motif at a target recombination site (Figure 1), as it is97

observed in humans and many mammals (Myers et al., 2010; Baudat et al., 2010, 2013).98

The modifier locus A may carry alleles A1, A2, ..., AI each encoding a protein that at-99

tempts to bind a motif at a target locus B. Locus B may carry alleles B1, B2, ..., BK100

each corresponding to a base pair motif that the protein produced by locus A may at-101

tempt to bind. In each generation, both modifier alleles in each diploid individual show102

the same level of expression producing proteins that have equal probability of binding103

the two target motifs (Figure 1). Therefore, in an individual with genotype AiBk
AjBl

, the104

probability that a protein produced by alleles Ai or Aj attempts to bind the motif of105

alleles Bk or Bl is 1
4 (Figure 1). The binding attempt of the protein Ai to the motif Bk106

results in binding and a double-strand break of allele Bk with probability bi,k. However,107

the binding attempt may result in failure to bind and lack of any double-strand break108

with probability 1− bi,k (where 0 < bi,k < 1) (Figure 1).109

A double-strand break initiates recombination and the chromatid that breaks is often110

repaired using its homologous chromatid as a template (Lichten and Goldman, 1995;111

Petes, 2001) (Figure 1). During the repair process there might be a crossover event in or112

near the target locus with probability r and none with probability 1−r (where 0 < r < 1)113

(Lichten and Goldman, 1995; Petes, 2001) (Figure 1). In our model, we assume that114

a crossover event between the modifier and target loci requires a double-strand break115

at the target locus. However, if the modifier and target loci are far apart in the same116

chromosome or in separate chromosomes, a crossover event between these loci may not117

require a double-strand break. Whether a crossover event between the modifier and118

target loci require a double-strand break at the target locus or not does not change any119

of the qualitative results of our model (see the Supplemental Material for a formulation120

of this model and Figure 2 for a summary of the results). During the repair process121

there might also be conversion of the allelic motif that breaks into the allelic motif that122

does not break with probability c and restoration to the allelic motif that breaks with123

probability 1 − c (where 0 < c < 1) (Szostak et al., 1983; Sun et al., 1991; Lichten and124

Goldman, 1995; Petes, 2001) (Figure 1). Typically c takes the value 1
2 (Szostak et al.,125

1983; Sun et al., 1991; Lichten and Goldman, 1995; Petes, 2001). Notice that biased126

4



gene conversion results in the over-transmission of the allele that is less likely to break127

(Boulton et al., 1997; Petes, 2001) (Figure 1).128

Recombination ends up with Mendelian segregation of alleles into gametes. Following129

previous models (Boulton et al., 1997; Pineda-Krch and Redfield, 2005; Peters, 2008;130

Úbeda and Wilkins, 2011; Latrille et al., 2017), we assume that individuals undergoing131

recombination at the target locus have proper chromosomal segregation and do not132

suffer any fitness cost, while individuals that do not undergo recombination at the target133

locus have defective chromosomal segregation producing aneuploid (non-viable) gametes134

with probability f (where 0 < f < 1) (Figure 1). Therefore, the fitness of individuals135

experiencing a recombination event is 1 but the fitness of individuals not experiencing136

a recombination event is 1 − f (Figure 1). Proper chromosomal segregation, however,137

often requires a crossover event rather than a recombination event (Baker et al., 1976;138

Koehler et al., 1996; Hassold and Hunt, 2001; Louis and Borts, 2003; Brick et al., 2012;139

Alves et al., 2017). Whether it is a crossover or a recombination event that determine140

the probability of proper chromosomal segregation does not change any of the qualitative141

results of our model (see the Supplemental Material for a formulation of this model and142

Figure 2 for a summary of the results).143

Let xi,k be the frequency of haplotype AiBk in gametes. Notice that 0 ≤ xi,k ≤ 1 and144 ∑
i,k xi,k = 1. Random union of gametes results in an embryo with genotype AiBk

AjBl
with145

frequency xi,kxj,l. The probability that this embryo reaches adulthood is independent of146

its genotype, but its genotype determines the outcome of meiosis in adults. In particular,147

the probability that during meiosis the protein produced by the modifier locus breaks148

targets Bk and Bl are b̄ij,k = 1
2(bi,k + bj,k) and b̄ij,l = 1

2(bi,l + bj,l) respectively, and the149

probability that it breaks one of the targets is ¯̄bij,kl = 1
2(b̄ij,k+ b̄ij,l). The probability that150

during meiosis a double-strand break is followed by a crossover event between alleles at151

locus A and B is r, and the probability that the motif that breaks is converted into the152

motif that does not break is c. Recombination at the target locus is followed by correct153

Mendelian segregation of haplotypes into gametes but in the absence of recombination154

segregation of haplotypes is incorrect with probability f . Haplotype segregation brings155

us back to the beginning of our census.156

The frequency of haplotype AiBk in gametes in the next generation is:157

x′i,k = 1
w̄

∑
j,l

1
2 [(¯̄bij,kl + (1− ¯̄bij,kl)(1− f))xi,kxj,l

− 1
4c(b̄ij,kxi,kxj,l − b̄ij,lxi,lxj,k)

− 1
2(1− c)r¯̄bij,kl(xi,kxj,l − xi,lxj,k)]

(1)

where prime represents the next generation and:158

w̄ =
∑
i,k

∑
j,l

1
2 [¯̄bij,kl + (1− ¯̄bij,kl)(1− f)]xi,kxj,l (2)
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is the population mean fitness. These changes in haplotype frequency underpin changes159

in the population mean crossover rate at the target locus:160

r̄ = 1
2r
∑
i,k

∑
j,l

¯̄bij,klxi,kxj,l (3)

which is the phenotype whose evolution we are interested in.161

Our model greatly differs from all other attempts to incorporate binding specificity162

(PRDM9-like genes) into the mechanism of recombination hotspots (Úbeda and Wilkins,163

2011; Latrille et al., 2017), as previous models relied on simulations while we present164

analytic results (although see Latrille et al. (2017) for a one locus model approximating165

the frequency of PRDM9-like alleles in an infinite population).166

2.2. Two-locus two-allele model167

We consider the above model in the particular case when there are two alleles (A1, A2)168

at the modifier locus and two alleles (B1, B2) at the only target locus, resulting in four169

different haplotypes (A1B1, A1B2, A2B1, A2B2). Henceforth, we assume that a match170

between the subscripts of the modifier allele producing the binding protein and the171

allelic sequence that is the target of this protein results in a double-strand break with172

probability b (where 0 < b < 1) and a mismatch between the subscripts prevents a173

double-strand break. For our modelling purposes this translates into:174

bi,k =

{
b if i = k

0 if i 6= k.

Notice that two of these haplotypes (A1B1, A2B2) correspond to haplotypes produc-175

ing a protein that matches its own recognition sequence (recombination enabling hap-176

lotypes) and the other two (A1B2, A2B1) correspond to haplotypes producing a protein177

that does not match its own recognition sequence (recombination disabling haplotypes).178

The dynamic system describing the change in frequency over time of each of these179

haplotypes can be obtained from replacing generic subscripts i and k by specific sub-180

scripts 1 and 2 in equation (1). The frequency of haplotype AiBk in gametes in the next181

generation is:182

w̄x′1,1 =(1
4b+ 1

2(1− 1
2b)(1− f) + 1

4bfx1,1 − 1
8bcx1,2)x1,1 − 1

8b(
1
2c+ (1− c)r)D

w̄x′1,2 =(1
4b+ 1

2(1− 1
2b)(1− f)− 1

4bfx1,2 + 1
8bcx1,1)x1,2 + 1

8b(
1
2c+ (1− c)r)D

w̄x′2,1 =(1
4b+ 1

2(1− 1
2b)(1− f)− 1

4bfx2,1 + 1
8bcx2,2)x2,1 + 1

8b(
1
2c+ (1− c)r)D

w̄x′2,2 =(1
4b+ 1

2(1− 1
2b)(1− f) + 1

4bfx2,2 − 1
8bcx2,1)x2,2 − 1

8b(
1
2c+ (1− c)r)D

(4)
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where183

w̄ = 1
4b+ 1

2(1− 1
2b)(1− f) + 1

4bf(x2
1,1 + x2

2,2 − x2
1,2 − x2

2,1) (5)

is the population mean fitness and:184

D = x1,1x2,2 − x1,2x2,1 (6)

is the linkage disequilibrium.185

To simplify the analysis, we define parameters α, β, γ, and δ as follows:186

w̄x′i,k = (1
4b+ 1

2(1− 1
2b)(1− f)︸ ︷︷ ︸

α

± 1
4bf︸︷︷︸
β

xi,k ± 1
8bc︸︷︷︸
γ

xi,l)xi,k ± 1
8b(

1
2c+ (1− c)r)︸ ︷︷ ︸

δ

D (7)

which allows us to re-write the system of equations (4) as follows:187

w̄x′1,1 =(α+ βx1,1 − γx1,2)x1,1 − δD

w̄x′1,2 =(α− βx1,2 + γx1,1)x1,2 + δD

w̄x′2,1 =(α− βx2,1 + γx2,2)x2,1 + δD

w̄x′2,2 =(α+ βx2,2 − γx2,1)x2,2 − δD

(8)

with population mean fitness:188

w̄ = α+ β(x2
1,1 − x2

1,2 − x2
2,1 + x2

2,2). (9)

Notice that 0 < α, β, γ, δ < 1. This two-locus two-allele model shares some similarities189

with the well-known symmetric viability model of Karlin and Feldman (Karlin et al.,190

1970; Bürger, 2000), albeit our model is not symmetrical and therefore the results of the191

symmetric viability model do not carry over.192

3. Results193

3.1. Equilibria194

We apply the equilibrium conditions (x′i,k = xi,k = x∗i,k for all i, k) to system (8) to195

find five equilibria with biological meaning; where all haplotype frequencies lie between196

(and including) 0 and 1. Let x∗e = (x∗e1,1, x
∗e
1,2, x

∗e
2,1, x

∗e
2,2) denote the haplotype frequencies197

at equilibrium e where e is between one and five.198

The first four equilibria correspond to the corners of the three dimensional simplex:199
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x∗1 = (1, 0, 0, 0)

x∗2 = (0, 1, 0, 0)

x∗3 = (0, 0, 1, 0)

x∗4 = (0, 0, 0, 1).

(10)

Notice that equilibria 1 and 4, x∗1 and x∗4, correspond to the fixation of one of the two200

recombination enabling haplotypes, x1,1 and x2,2 respectively. Equilibria 2 and 3, x∗2201

and x∗3, correspond to the fixation of one of the two recombination disabling haplotypes,202

x1,2 and x2,1 respectively (Figure 2).203

The last equilibrium can be obtained by noticing some symmetries of our model. In204

particular, if at any point x1,1 = x2,2 and x1,2 = x2,1, this remains so in the future.205

To see this, notice that if x1,1 = x2,2 and x1,2 = x2,1, the difference equations become206

x′1,1 = x′2,2 and x′1,2 = x′2,1 and the changes in x1,1 and x1,2 are equal to the changes in207

x2,2 and x2,1 respectively. Also note that if x1,1 = x2,2 and x1,2 = x2,1 and keeping in208

mind that x1,1 + x1,2 + x2,1 + x2,2 = 1, we also have that 2x1,1 + 2x1,2 = 1 and thus209

x1,2 = 1
2 − x1,1.210

The existence of a one dimensional manifold which is invariant in the interior of211

the state space implies that there is a symmetric equilibrium. The dynamics on this212

manifold are described by a single difference equation:213

w̄x′1,1 = (α+ βx1,1 − γ(1
2 − x1,1))x1,1 − δ(x1,1 − 1

4) (11)

with population mean fitness:214

w̄ = α+ 2β(x1,1 − 1
4). (12)

Applying the equilibrium condition (x′1,1 = x1,1 = x∗1,1) to the previous equation215

yields the symmetric equilibrium:216

x∗5 = (x∗51,1,
1
2 − x

∗5
1,1,

1
2 − x

∗5
1,1, x

∗5
1,1)

x∗51,1 = 1
4 + 1

4

2δ−
√

(2δ)2+(γ−β)2

γ−β .

(13)

At this equilibrium, the linkage disequilibrium is:217

D∗ = x∗51,1 − 1
4 = 1

4

2δ−
√

(2δ)2+(γ−β)2

γ−β , (14)

and the population mean fitness is:218

8



w̄∗ = α+ 2β(x∗1,1 − 1
4) = α+ 2βD∗. (15)

Notice that equilibrium x∗5 corresponds to a polymorphism where all haplotypes (re-219

combination enablers and disablers) are preserved.220

Finally, we can re-write the expression for equilibrium x∗5 in terms of the original221

parameters of our model:222

x∗51,1 = 1
4 + 1

4

1
2 c+(1−c)r−

√
(
1
2 c+(1−c)r)2+(

1
2 c−f)2

1
2 c−f

(16)

3.2. Stability223

The stability of an equilibrium x∗e of a map x′ = g(x) is determined by studying the224

eigenvalues λe of the Jacobian matrix J of the map evaluated at the equilibrium, that is225

J|x=x∗e . For brevity, we will refer to the eigenvalues λei as the eigenvalues of equilibrium226

x∗e. If the modulus of all eigenvalues of equilibrium x∗e are less than one (|λei | < 1 for227

all i = 1, ...n), the equilibrium is linearly stable (where |z| denotes the modulus of a228

number z that may have real Re(z) and imaginary Im(z) components and is defined as229

|z| =
√

Re(z)2 + Im(z)2). If the modulus of at least one eigenvalue of equilibrium x∗e is230

greater than one (|λei | > 1 for any i = 1, ...n), the equilibrium is linearly unstable.231

The specifics of our model simplify the calculation of the Jacobian at equilibrium.
In particular, our model describes changes in haplotype frequencies. To ensure that all
frequencies add up to one at all times, the changes in frequency are normalized and the
system is of the form:

x′ =
g(x)

w̄(x)
(17)

where w̄(x) = 1Tg(x), 1 is a vector with all entries equal to one, and subscript T is the
transpose operator. The Jacobian of this system is:

J = Dx
g(x)

w̄(x)
=
Dxg(x)

w̄(x)
− g(x)

w̄(x)

1TDxg(x)

w̄(x)
, (18)

where Dx is the total derivative with respect to x. Evaluated at equilibrium x∗ the
Jacobian reduces to:

J|x=x∗ =
1

w̄(x∗)
(I− x∗1T ) Dxg(x)|x=x∗ . (19)

where I is the identity matrix.232
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3.2.1. Corner equilibria233

The eigenvalues of corner equilibria x∗1 and x∗4 are equal and given by:

{λ1
1, λ

1
2, λ

1
3, λ

1
4} = {λ4

1, λ
4
2, λ

4
3, λ

4
4} =

(
0, α

α+β ,
α+γ
α+β ,

α−δ
α+β

)
. (20)

All eigenvalues of corner equilibrium x∗1 are real numbers, and x∗1 is stable if all234

λ1
1−4 lie between 1 and −1.235

1. Condition −1 < λ1
2 < 1 is always satisfied.236

2. Condition −1 < λ1
3 < 1 implies the satisfaction of:237

i. λ1
3 < 1 which requires that β > γ.238

ii. λ1
3 > −1 which is always satisfied.239

3. Condition −1 < λ1
4 < 1 implies the satisfaction of:240

i. λ1
4 < 1 which is always satisfied.241

ii. λ1
4 > −1 which requires that 2α + β − δ > 0 which is always satisfied for the242

original parameters of our model.243

To summarize, corner equilibria x∗1 and x∗4 are stable (−1 < λ1
2−4 < 1) if β > γ244

(f > 1
2c in terms of the original parameters) but unstable (saddles) (−1 < λ1

2,4 < 1 but245

λ1
3 > 1) if β < γ (f < 1

2c) (see Table 1 and Figure 2).246

The eigenvalues of corner equilibria x∗2 and x∗3 are equal and given by:

{λ2
1, λ

2
2, λ

2
3, λ

2
4} = {λ3

1, λ
3
2, λ

3
3, λ

3
4} =

(
0, α

α−β ,
α−γ
α−β ,

α−δ
α−β

)
. (21)

All eigenvalues of corner equilibrium x∗2 are real numbers, and x∗2 is stable if all247

λ2
1−4 lie between 1 and −1.248

1. Condition −1 < λ2
2 < 1 implies the satisfaction of:249

i. λ2
2 < 1 which is never satisfied.250

ii. λ2
2 > −1 which is always satisfied.251

2. Condition −1 < λ2
3 < 1 implies the satisfaction of:252

i. λ2
3 < 1 which requires that β < γ.253

ii. λ2
3 > −1 which is always satisfied for the original parameters of our model.254

To summarise, corner equilibria x∗2 and x∗3 are unstable (λ2
2 > 1). If β < γ (f < 1

2c)255

these equilibria are saddles (λ2
2 > 1 but −1 < λ2

3 < 1) (see Table 1 and Figure 2).256

3.2.2. Heteroclinic orbit257

Here we show the existence of a heteroclinic orbit between the corner equilibria in
our state space: ...x∗1 → x∗2 → x∗4 → x∗3 → x∗1... . To do so, we need to show
that the subspaces in which the heteroclinic orbit travels are invariant. A set, C ⊆ Rn,
is an invariant set with respect to the map x′ = g(x) if, for every orbit φ it is true
that φt(x) ∈ C =⇒ φτ (x) ∈ C for all τ > t where t, τ ∈ N+. The subspaces in
which our heteroclinic orbit travels are described by the lines joining each of the corners
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of our simplex, namely: (x1,1, 1 − x1,1, 0, 0), (0, x1,2, 0, 1 − x1,2), (0, 0, 1 − x2,2, x2,2),
(1− x2,1, 0, x2,1, 0). Our system can be written in the form:

w̄x′i,k = (α+ εβxi,k − εγxi,l)xi,k − εδ(xi,kxj,l − xi,lxj,k), (22)

where ε = 1 for (i, k) = (1, 1) and (2, 2), and ε = −1 for (i, k) = (1, 2) and (2, 1). From258

the system written in this form, it is easy to see that if xi,k = 0 and xi,l = 0 or xj,k = 0259

for (i, k, j, l) ∈ 1, 2 then x′i,k = 0. In particular for the heteroclinic orbit we consider,260

either when x2,2 = 0 then x2,1 = 0 and x′2,2 = 0, when x2,1 = 0 then x1,1 = 0 and261

x′2,1 = 0, when x1,1 = 0 then x1,2 = 0 and x′1,1 = 0, and when x1,2 = 0 then x2,2 = 0262

and x′1,2 = 0. This means that any subspace where xi,k = 0 and xi,l = 0 or xj,k = 0 is263

invariant and thus all subspaces considered in our system are invariants.264

When β < γ (f < 1
2c in terms of the original parameters) all corner equilibria265

are saddles with one incoming and one outgoing eigenvector situated within the lines266

connecting the corner equilibria. Under the action of our system, the invariant subspaces267

have orbits which tend always away from one saddle equilibrium and towards another268

saddle equilibrium, thus implying the existence of a heteroclinic orbit. When β < γ,269

this heteroclinic orbit is stable (Russell et al., 2019).270

3.2.3. Internal equilibrium271

Calculating the eigenvalues of the internal equilibrium x∗5 using the original Jacobian
matrix in (19) leads to intractable results. To attain eigenvalues that are tractable, we
transform the vector x into the vector y using the linear transformation y = Mx where:

M =


1 1 1 1
1 −1 −1 1
1 1 0 0
1 0 1 0

 . (23)

The dynamics in the vicinity of the equilibrium for the transformed variables are:

y′ = Mx′ = MJx = MJM−1y, (24)

where the matrix MJM−1 is given by:

MJM−1 = M 1
w̄∗ (I− x∗1T ) Dxg(x)|x=x∗ M−1

=


0 0 0 0

β−γ−8D∗(w̄∗+δ)
2w̄∗ −4D∗(β−γ)−2(w̄∗−δ)

2w̄∗ 0 0

− w̄∗+ 1
2
β

2w̄∗ 0 1 β
2w̄∗

−
1
2

(β−γ)+2D∗+w̄∗

2w̄∗ 0 β−γ
2w̄∗

4D∗γ+2w̄∗

2w̄∗

 .
(25)

The eigenvalues of the transformed matrix MJM−1 are equivalent to the eigenvalues
of the original matrix J but they are easier to find. In particular, the eigenvalues of
matrix MJM−1 are:

{λ5
1, λ

5
2, λ

5
3, λ

5
4} =

(
0, 1 + γD∗+

√
∆∗

w̄∗ , 1 + γD∗−
√

∆∗

w̄∗ , 1− δ+2D∗(β−γ)
w̄∗

)
(26)
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where ∆∗ = (γD∗)2 + 1
4β(β − γ).272

The eigenvalues of internal equilibrium x∗5 can be either real or imaginary numbers.273

1. Stability conditions derived from the second and third eigenvalues λ5
2,3.274

(a) Eigenvalues λ5
2,3 are real numbers when ∆∗ > 0. If β > γ, the later condition275

is always satisfied, eigenvalues λ5
2,3 are real numbers, and the stability of the276

internal equilibrium requires that −1 < λ5
2,3 < 1. This requirement implies277

the satisfaction of four conditions:278

279

i. Condition λ5
2 < 1 requires that γD∗ +

√
∆∗ < 0 which is never satisfied.280

281

ii. Condition λ5
2 > −1 requires that γD∗ +

√
∆∗ > −2w̄∗ which is always282

satisfied.283

284

iii. Condition λ5
3 < 1 requires that γD∗ −

√
∆∗ < 0 which is always satisfied285

because γD∗ < (γD∗)2 + 1
4β(β − γ).286

287

iv. Condition λ5
3 > −1 requires that γD∗ −

√
∆∗ > −2w̄∗ which is always288

satisfied because α > β given the parametrisation of our model.289

290

Notice that β > γ implies that D∗ > 0. In particular, from (14) we know that291

D∗ = 1
2(β−γ)

(√
δ2 + 1

4 (β − γ)2 − δ
)

and given that δ2 + 1
4 (β − γ)2 > δ2 the292

sign of D∗ is always equal to the sign of β − γ.293

294

(b) Eigenvalues λ5
2,3 are complex conjugate numbers when ∆∗ < 0 and thus con-295

dition β < γ is necessary for having complex eigenvalues. If β > γ and the296

eigenvalues λ5
2,3 are complex numbers, the stability of the internal equilibrium297

requires that |λ5
2,3| < 1. This requirement implies the satisfaction of a single298

condition.299

300

i. Condition |λ5
2| = |λ5

3| < 1 requires that 2γw̄∗D∗− 1
4β(β−γ) < 0. Replac-301

ing w̄∗ andD∗ with their definitions from (15) and (14) respectively, yields302

the new condition α−Ω < 4δ < α+ Ω where Ω =
(2γ−β)

√
γ(β3−β2γ+α2γ)

βγ .303

The term Ω is equal to α if β = γ but is greater than α if β < γ. This304

can be shown by calculating the derivative of Ω with respect to β, ∂Ω
∂β ,305

which is negative when β < γ. This is true when α > β, 2δ as is the306

case given the parametrisation of our model. Because Ω is greater than α307

when β < γ, the stability condition α−Ω < 4δ < α+ Ω can be replaced308

by 0 < 4δ < 2α which is always satisfied given the parametrisation of our309

model. Therefore, when eigenvalues λ5
2,3 are complex, their modulus is310

always less then one.311

312
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2. Stability conditions derived from the fourth eigenvalue λ5
4. Eigenvalue λ5

4 is a real313

number and the stability of the internal equilibrium requires that −1 < λ5
4 < 1.314

This requirement implies the satisfaction of two conditions:315

i. Condition λ5
4 < 1 requires that −δ − 2D∗(β − γ) < 0 which is always satisfied316

because β − γ and D∗ have the same sign and thus their product is always317

positive.318

319

ii. Condition λ5
4 > −1 requires that δ + 2D∗(β − γ) < 2w̄∗. Replacing D∗ and320

w̄∗ with their definitions from (14) and (15) respectively, yields the new con-321

dition 2(α + 2βD∗) >
√

1
4(β − γ)2 + δ2. Because 2 (α+ 2βD∗) > 2α− β and322

1
2(γ − β) + δ >

√
1
4(β − γ)2 + δ2 the later condition is true when 2α − β >323

1
2(γ − β) + δ which is always satisfied for the parametrisation of our model.324

325

To summarize, internal equilibrium x∗5 is unstable (saddle) (λ5
2 > 1 but −1 < λ5

3,4 <326

1) if β > γ (f > 1
2c) but stable (|λ5

2,3| < 1 and −1 < λ5
4 < 1) if β > γ (f < 1

2c) (see327

Table 1 and Figure 2).328

3.3. Dynamics329

3.3.1. Infinite population330

When viability selection is strong (f > 1
2c) the dynamics of our system tend towards331

the fixation of one of the recombination enabling haplotypes (x∗1 or x∗4) (Figure 2332

and 3.a). In these two corner equilibria, an individual recombination hotspot remains333

inactive and the genomic recombinational landscape remains unchanged (Figure 3.a).334

Furthermore, the PRDM9-like gene does not evolve and remains monomorphic. An335

unchanging recombinational landscape and a non-evolving PRDM9 gene, are inconsistent336

with empirical observations on the life history of recombination hotspots controlled by337

PRDM9 (Ptak et al., 2004, 2005; Winckler et al., 2005; Coop et al., 2008; Myers et al.,338

2010; Stevison et al., 2015).339

When viability selection is weak (f < 1
2c) and initially all haplotypes are present in340

the population, the dynamics of our system oscillate towards a polymorphic equilibrium341

where all haplotypes (enabling and disabling) are present (x∗5)(Figure 2 and 3.b). At342

this interior equilibrium, an individual recombination hotspot will see its activity reduced343

but not extinguished, and the genomic recombinational landscape remains unchanged344

(Figure 3.b). Furthermore, the PRDM9-like gene does not evolve but remains polymor-345

phic. An unchanging recombinational landscape and a non-evolving PRDM9 gene, are346

inconsistent with empirical observations (Ptak et al., 2004, 2005; Winckler et al., 2005;347

Coop et al., 2008; Myers et al., 2010; Stevison et al., 2015).348

When viability selection is weak (f < 1
2c) and initially one haplotype is present while349

the others are rare mutants, the dynamics of our system oscillate towards a heteroclinic350

cycle where fixation of one of the recombination enabling haplotypes alternates with351

fixation of one of the recombination disabling haplotypes (...x∗1 → x∗2 → x∗4 → x∗3 →352
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x∗1...) (Figure 2 and 3.c). Along this cycle, an individual recombination hotspot will353

alternate between becoming inactive (die) and becoming active (resurrect) (Figure 3.c).354

Therefore, the recombinational landscape becomes highly dynamic (Figure 3.c). Fur-355

thermore, the PRDM9-like gene is evolving fast with selective sweeps that are harder356

when viability selection is higher within the lower range (f < 1
2c). A changing recombi-357

national landscape and a rapidly evolving PRDM9 gene, are consistent with empirical358

observations on the life history of recombination hotspots controlled by PRDM9 (Ptak359

et al., 2004, 2005; Winckler et al., 2005; Coop et al., 2008; Myers et al., 2010; Stevison360

et al., 2015).361

3.3.2. Finite population362

We finaly modelled the cases of an infinite population without recurrent mutation, to363

better characterize the interaction between selection and conversion. In nature however,364

the population is finite and mutations are introduced recurrently. We carried out the365

numerical analysis of a model for a finite population with recurrent mutations at the366

modifier and target locus to gain insight on the effect of these two variables in our367

conclusions. The typical dynamics are summarized in Figure 4. In this figure it can be368

observed that the cycling remains with an alternation of hotspots and coldspots.369

In particular, when viability selection is weak (f < 1
2c) and initially one of the370

haplotypes is much more frequent than all the others, the haplotypes fluctuate around371

the boundary of the simplex, what is the heteroclinic cycle in the corresponding infinite372

population model (x∗1 → x∗2 → x∗4 → x∗3 → x∗1) (Figure 4.b). Intuitively, selection373

and conversion favor the oscillation of haplotypes towards the boundary of the simplex374

where genetic drift pushes some of them to extinction (Figure 4.b). Extinction slows375

down the oscillatory dynamics but does not put an end to them, recurrent mutations376

re-introduce the missing variation and the system finds itself in the initial conditions377

that favor the heteroclinic cycle (Figure 4.b).378

When viability selection is weak (f < 1
2c) and initially all the haplotypes are frequent,379

the haplotypes fluctuate around the interior of the simplex, what is the polymorphic380

equilibrium in the infinite population model (x∗5) (Figure 4.a). Intuitively, selection and381

conversion favor the oscillation of haplotypes towards the interior of the simplex but382

genetic drift prevents them from settling (Figure 4.a). Because these oscillations remain383

far from the boundary the extinction of haplotypes is rarely observed (Figure 4.a). In384

the absence of extinction, hotspots and coldspots alternate rapidly. Genetic drift allows385

the transition from wide oscillations around the boundary to narrower oscillations within386

the interior and back.387

4. Discussion388

We find that strong selection (defined as selection bigger than conversion) fixes hap-389

lotypes which enable double-strand breaks (this translates into individual recombination390

hotspots that exhibit high activity and do not die over time (Figure 3.a)). This finding391

recovers the result of previous models (Boulton et al., 1997; Pineda-Krch and Redfield,392

2005; Calabrese, 2007; Peters, 2008). In our model however, weak selection (defined393
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as selection smaller than conversion) does not fix any particular haplotype; it either394

maintains all haplotypes in constant proportions (which translates into individual re-395

combination hotspots that exhibit moderate activity and do not die (Figure 3.b)), or396

the proportion of each haplotype cycles over time (which translates into individual re-397

combination hotspots that exhibit low and high activity, dying and resurrecting in a398

constant cycle (Figure 3.c)). These two types of recombination hotspots are novel. An399

equilibrium that maintains a polymorphism at a PRDM9-like locus and its target has400

not been described (Latrille et al., 2017). A cycle whereby the same set of alleles at a401

PRDM9-like locus and its target site rotate has not yet been described.402

It is possible to gain an intuitive interpretation of our formal results if we consider403

a mutant gene playing a game against another gene from a gamete pool in a diploid404

individual. A mutant gene can play four strategies (A1B1, A1B2, A2B1, A2B2) and the405

gamete pool is formed by the same four strategies. The payoff of each gene interac-406

tion is summarized in the payoff matrix provided in Figure 5 and is determined by the407

individual fitness cost of not experiencing a DSB (Fk = f > 0), the allelic conversion408

benefit (or cost) of not experiencing (or experiencing) a DSB (Cb = 1
2c > 0), and a409

recombination shuffling factor that determines which alleles benefit from conversion in410

double heterozygotes (Rs = f(r) > 0). Lets start by considering a population almost411

fixed for a recombination enabling haplotype A1B1. If fitness cost is greater than con-412

version benefit (Fk > Cb), our resident population of A1B1 cannot be invaded by any413

alternative strategy (1 > 1 − 1
2Fk + 1

2Cb; Figure 5.a). Therefore strong selection favors414

highly active permanent recombination hotspots (Figure 3.a). If fitness cost is lower415

than conversion benefit (Fk < Cb; Figure 5.b), our resident population of A1B1 can be416

invaded by the rare mutant A1B2 (1− 1
2Fk + 1

2Cb > 1− 1
2Fk +Rs > 1 when Cb > 2Rs;417

Figure 5.b) as it gains a transmission advantage that more than compensates for its fit-418

ness cost; once A1B2 becomes the resident haplotype, it can be invaded by rare mutant419

A2B2(1 − 1
2Fk > 1 − Fk; Figure 5.b) as it gains a fitness benefit and does not suffer a420

transmission disadvantage, once A2B2 becomes the resident it can be invaded by rare421

mutant A2B1(1 − 1
2Fk + 1

2Cb > 1; Figure 5.b), and once A2B1 becomes the resident422

it can be invaded by rare mutant A1B1(1 − 1
2Fk > 1 − Fk; Figure 5.b) thus complet-423

ing a recurrent cycle. Therefore weak selection and abundance of only one haplotype,424

can favor recombination hotspots that alternate between low and high activity; dying425

and resurrecting in cyclic succession (Figure 3.c). When all haplotypes are frequent in426

the initial population, the abundance of double heterozygotes results in the shuffling427

of the transmission advantage between different haplotypes. Depending on intensity of428

the shuffling. either the previous cycle is maintained or the best strategy becomes to429

play a fixed proportion of each strategy. Therefore weak selection and abundance of all430

haplotypes, can favor recombination hotspots that exhibit moderate activity and do not431

die (Figure 3.b), providing an intuitive interpretation of our analysis.432

These findings provide an alternative solution to the recombination hotspots paradox433

(Boulton et al., 1997). In the prevailing explanation (the Red Queen theory), individ-434

ual recombination hotspots die and are saved from extinction in the genome by the435

birth of new recombination hotspots at new target sites in the genome (Myers et al.,436
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2010; Baudat et al., 2010; Úbeda and Wilkins, 2011). Viability selection favors mutant437

PRDM9 alleles that bind new target sites (Úbeda and Wilkins, 2011). In our model,438

viability selection does not prevent the death of individual recombination hotspots but439

saves them from extinction in the genome by driving their resurrection in homozygous440

targets where the effect of conversion is negligible (Figure 3, 4). Selection favors mutant441

PRDM9 alleles that bind the alternative target allele within the same target site. Both442

theories succeed in explaining the life history of recombination hotspots characterized443

by: i. the death of individual recombination hotspots not leading to the their extinction444

in the genome (notice however that in principle the Red Queen theory would require a445

never ending supply of targets to prevent the extinction); ii. rapid change of the recom-446

binational landscape; iii. rapid evolution of PRDM9. In our model however, this life447

history is explained by the bottom range of viability selection parameters which seems448

more plausible from an empirical perspective). Furthermore, our model makes novel449

predictions that the Red Queen (at least in its present formulation) does not. In partic-450

ular, our model predicts that: i. the molecular signature near recombination hotspots451

should be the one of multiple recurrent events of high crossover activity as opposed to a452

single even of high crossover activity; ii. viability selection can maintain polymorphisms453

in PRDM9 (Latrille et al. (2017)); iii. the same genetic architecture under the same se-454

lection regime can result in two different families of recombination hotspots, one family455

with alternation of high and low activity and another family with constant intermediate456

activity.457

For the purpose of characterizing the interplay between selection and conversion458

on the evolution of recombination hotspots, our model makes a series of simplifying459

assumptions provided in the Methods section. Many of these assumptions are stan-460

dard in population genetics models and relaxing all of them is beyond the scope of this461

manuscript. However, relaxing some of them will help us to better understand the em-462

pirical relevance of our model. In particular, we discuss the implications of considering463

multiple alleles and target loci and a finite population.464

Our analysis assumes one modifier and one target locus with two alleles in each locus.465

In humans there are multiple alleles segregating at locus PRDM9 and multiple alleles466

at each of many target sites. We numerically explored how our conclusions change467

when either the number of alleles in each locus is increased or the number of target468

loci is increased. The dynamics in a model with three alleles remains very similar. If469

viability selection is weaker than gene conversion, the cycling is still observed although470

the fluctuations become irregular and unpredictable. This is consistent with intuition, as471

a modifier converts its specific target, it amplifies the frequency of any of the remaining472

targets. If one of the remaining targets attains a sufficiently high frequency, it will473

then allow selection on the accompanying modifier. The dynamics in a model with two474

targets also remains very similar. If viability selection is weaker than gene conversion,475

the cycling is still observed and the fluctuations between different targets can be either476

synchronized or not. Multiple targets allows selection on modifiers that match one of477

both targets. More realistic models would require considering larger number of alleles478

and target sites.479
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Our analysis assumes an infinite population without recurrent mutations, however480

real populations are finite and mutations are recurrent. We numerically explored how481

our conclusions change when we consider a finite population with recurrent mutations.482

If viability selection is weaker than gene conversion, the cycling is still observed although483

the cycles now drift in amplitude due to the stochastic effects. The dynamics may spend484

more time in the vicinity of the interior of the simplex (the interior equilibrium in the485

infinite population), where genetic drift rarely pushes any allele to extinction (Figure486

4.a). The dynamics may spend more time in the vicinity of the boundary of the simplex487

(the heteroclinic cycle in the infinite population), where genetic drift often pushes some488

of alleles to extinction and that the dynamics become stuck. Once a suitable mutation489

occurs the dynamics continue fluctuating (Figure 4.b). Stochasticity allows transitions490

from oscillations mostly around the interior to mostly around the boundary.491

Relaxing some of our assumptions in our model, suggests that in a finite population492

with multiple alleles and target locus our main result holds; individual hotspots will die493

but they will resurrect later in evolutionary time, thus precluding their extinction from494

the genome in the long term. Population size, mutation rates, and number of target will495

affect the turnover rate of recombination hotspots but not the qualitative behavior of496

the selection conversion dynamics mediated by haplotype matching.This suggests that497

our solution to the recombination hotspot paradox is robust although larger numbers498

of target sites and their interplay with population size need to be modelled before any499

conclusion can be reached.500

Acknowledgements501
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Figure Captions507

Figure 1. Model for recombination initiated by specificity of the double strand break.508

Summary of the sequence of events modelled. We start with the production of a PRDM9-509

like protein with a recognition sequence that may match the target motif (same color510

sequence in recognition and motif) or not (different color sequence in recognition and511

motif). If protein and target bind, we follow the canonical DSB repair model for the512

initiation of recombination (Szostak et al., 1983; Sun et al., 1991). Once recombination513

(including crossover and conversion effects) has been completed, we model Mendelian514

segregation of haplotypes with no fitness cost. If protein and target do not bind, there is515

no recombination and we model Mendelian segregation of haplotypes with a fitness cost.516
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Notice that sister chromatids are represented at the beginning and end of the figure but517

are omitted from the middle part for clarity.518

Figure 2. Equilibria and heteroclinic cycle. Summary of the equilibria with biologi-519

cal meaning, their stability and the basin of attraction of the heteroclinic cycle for three520

alternative models. Each panel corresponds to a different model given a specific value521

of the conversion rate c. Shades of green correspond to different values of the crossover522

rate r = {0, 1
2 , 1} (with darker green corresponding to no-crossover r = 0). For each pair523

of values (c, r), the equilibrium frequency of haplotype x∗1,1 is plotted as a function of524

the fitness cost f . Red lines depict corner equilibria x∗1 and x∗4 corresponding to the525

fixation of recombination enabling haplotypes (notice that these are independent of the526

values of c and r). Blue lines depict corner equilibria x∗2 and x∗3 corresponding to the527

fixation of recombination disabling haplotypes (notice that these are independent of the528

values of c and r). Green lines depict twice corner equilibrium x∗5 corresponding to a529

polymorphism between recombination enabling and disabling haplotypes. Continuous530

lines depict stable equilibria while dashed lines depict unstable equilibria. The green531

colored area corresponds to the region in the space formed by the initial frequencies532

(x0
1,1, 0, 0, 1 − x0

1,1) and the fitness cost f where the system tends to the heteroclinic533

cycle (...x∗1 → x∗2 → x∗4 → x∗3 → x∗1...) as opposed to the internal equilibrium x∗5.534

Shades of green correspond to different values of the crossover rate r = {0, 1
2 , 1} (with535

darker green corresponding to no-crossover r = 0). (i) The first panel corresponds to the536

case presented in the main text where selection is determined by double-strand breaks,537

and crossover events between the PRDM-9 and its target loci require a double-strand538

break at the target locus. (ii) The second panel corresponds to the case where selection539

is determined by crossover events, and crossover events between the PRDM-9 and its540

target loci require a double-strand break at the target locus. (iii) The third panel corre-541

sponds to the case where selection is determined by double-strand breaks, and crossover542

events between the PRDM-9 and its target loci do not require a double-strand break at543

the target locus.544

Figure 3. Dynamics of the system. Examples of the three types of dynamics we find545

in our system. Each panel corresponds to a different combination of parameter values546

(f, b) and initial conditions (x0
1,1, x

0
1,2, x

0
2,1, x

0
2,2), while parameter values r, c remain fixed547

across panels, in particular (r, c) = (1, 1
2). Sub-panel (i) depicts the frequency of all548

haplotypes (x1,1, x1,2, x2,1, x2,2) at time t as a point in the three dimensional simplex.549

Arrows indicate in which direction the dynamics progress as time goes by. The color of550

the line depicts the population mean recombination activity of the target (see legend).551

Sub-panel (ii) stacks three plots, namely: each of the haplotype frequencies against gen-552

erational time, the population mean recombination activity as a line against time, and553

the population mean recombination activity as heat map against time. Panel (a) corre-554

sponds to parameter values (f, b) = (0.44, 0.50) and initial conditions (0, x0
1,2, 1−x0

1,2, 0)555

where x0
1,2 = 0.33 or x0

1,2 = 0.66. (a.i) shows that when the initial condition is x0
1,2 = 0.33556

the system tends to corner equilibrium x∗1. When the initial condition is x1,2 = 0.66 the557

system tends to the other stable corner equilibrium x∗4. In both cases the target site558

at equilibrium is a recombination hotspot (target colored). (a.ii) shows that when the559

18



initial condition is x0
1,2 = 0.33 the recombination enabling haplotype x1,1 becomes fixed.560

There are no changes at the modifier locus coding for PRDM9-like proteins. The popu-561

lation mean recombination activity reaches and remains over time at its highest (1). The562

target site becomes and remains a recombination hotspot over time. Panel (b) corre-563

sponds to parameter values (f, b) = (0.22, 0.25) and initial conditions (x0
1,1, 0, 0, 1−x1,1)564

where x1,1 = 0.80. (b.i) shows that the system tends to internal equilibrium x∗5 where565

the target site is what we called a recombination warmspot. (b.ii) shows that the fre-566

quency of all haplotypes oscillate in their approach to equilibrium where all haplotypes567

(recombination enabling and disabling) are present. There are oscillations at the locus568

coding for PRDM9-like proteins in the approach to equilibrium but these changes cease569

when equilibrium is reached. The population mean recombination activity oscillates be-570

tween high and low as it approaches an intermediate value (0.5) at equilibrium. The571

target site oscillates between hot and cold phenotypes as it approaches a warm pheno-572

type at equilibrium. Panel (c) corresponds to parameter values (f, b) = (0.22, 0.75) and573

initial conditions (x0
1,1, 0, 0, 1−x0

1,1) where x0
1,1 = 0.90. (c.i) shows that the system tends574

to the heteroclinic cycle (...x∗1 → x∗2 → x∗4 → x∗3 → x∗1...). (c.ii) shows that the575

frequency of all haplotypes oscillate in their approach to the heteroclinic cycle where576

there is an alternation between near fixation of one of the recombination enabling hap-577

lotypes and near fixation of one of the recombination disabling haplotypes. There are578

oscillations at the locus coding for PRDM9-like proteins, oscillations that become in-579

creasingly pronounced as the system approaches the heteroclinic cycle. The population580

mean recombination activity oscillates between high and low, oscillations that become581

increasingly pronounced as the system approaches the heteroclinic cycle. The target582

site oscillates between hot and cold phenotypes with it hot and cold character becoming583

more marked as the system approaches the heteroclinic cycle.584

Figure 4. Comparison with finite populations. Examples of the correspondence585

between dynamics in the infinite and finite population models. Each panel corresponds586

to a different combination of parameter values (f, b) and (µ,N) where µ is the mutation587

rate and N is the population size. Parameter values (r, c) = (1, 1
2) and initial conditions588

(x0
1,1, x

0
1,2, x

0
2,1, x

0
2,2) = (0.99, 1

30.01, 1
30.01, 1

30.01) remain fixed across panels. Sub panel589

(i) stacks three plots, namely: each of the haplotype frequencies against generational590

time, the population mean recombination activity against time, and the population mean591

recombination activity as a heat map against time. Sub panel (ii) depicts the frequency of592

all haplotypes (x1,1, x1,2, x2,1, x2,2) at time t as a point in the three dimensional simplex.593

Arrows indicate in which direction the dynamics progress as time goes by. The color594

of the line depicts the population mean recombination activity of the target site (see595

legend). Panel (a) corresponds to parameter values (f, b) = (0.22, 1.00) and (µ,N) =596

(10−5, 104). The target site oscillates between hot and cold phenotypes rapidly and no597

haplotype becomes fixed. Panel (b) corresponds to parameter values (f, b) = (0.22, 1.00)598

and (µ,N) = (10−6, 104). The target site oscillates between hot and cold phenotypes599

slowly and haplotypes often become fixed.600

Figure 5. Evolutionary game. Payoff matrix of a game played by each haplotype601

against a haplotype pool. The payoff is determined by the possibility of a diploid geno-602
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type containing that haplotype experiencing a fitness cost (Fk) due to the absence of a603

double-strand break , a conversion benefit (Cb) —or conversion cost (−Cb)— due to the604

conversion of the opponent’s haplotype into the player’s haplotype —or the conversion605

of the player’s haplotype into the opponent’s haplotype, and a reshuffling benefit or cost606

due to the formation of the player’s or the opponent’s haplotype due to the formation of607

new combinations of alleles. In the first matrix we assume that the fitness cost is greater608

than the conversion benefit (Fk > Cb). Starting with a population fixed for haplotype609

A1B1, A1B1 is the mutant strategy that gives the highest payoff (in grey in the matrix).610

No mutant haplotype can invade and A1B1 is the only evolutionary stable strategy. In611

the second matrix we assume that the fitness cost is smaller than the conversion benefit612

(Fk < Cb). Starting with a population fixed for haplotype A1B1, A1B2 is the mutant613

strategy that gives the highest payoff (in grey in the matrix) and should take over the614

population. When A1B2 has become the resident strategy, A2B2 is the mutant strategy615

that gives the highest payoff (in grey in the matrix) and should take over the popula-616

tion. Using the same logic becomes obvious that in this second game there is no pure617

evolutionary stable strategy but a continuous cycling of strategies.618

Table 1. Stability. The eigenvalue column contains the eigenvalues corresponding to619

each equilibrium with biological meaning (x∗1−5). The stability column summarizes the620

analysis of the stability of each equilibrium using their eigenvalues. This analysis shows621

that the stability of all equilibria is determined by a single condition, namely whether622

β > γ or not .623

Alves, I., Houle, A. A., Hussin, J. G., Awadalla, P., 2017. The impact of recombination624

on human mutation load and disease. Phil. Trans. R. Soc. B 372 (1736), 20160465.625

Baker, B. S., Carpenter, A. T., Esposito, M. S., Esposito, R. E., Sandler, L., 1976. The626

genetic control of meiosis. Annual review of genetics 10 (1), 53–134.627

Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., Coop, G.,628

De Massy, B., 2010. Prdm9 is a major determinant of meiotic recombination hotspots629

in humans and mice. Science 327 (5967), 836–840.630

Baudat, F., Imai, Y., De Massy, B., 2013. Meiotic recombination in mammals: localiza-631

tion and regulation. Nature Reviews Genetics 14 (11), 794.632

Boulton, A., Myers, R. S., Redfield, R. J., 1997. The hotspot conversion paradox and the633

evolution of meiotic recombination. Proceedings of the National Academy of Sciences634

94 (15), 8058–8063.635

Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R. D., Petukhova, G. V., 2012.636

Genetic recombination is directed away from functional genomic elements in mice.637

Nature 485 (7400), 642.638

Bürger, R., 2000. The mathematical theory of selection, recombination, and mutation.639

John Wiley & Sons.640

20



Calabrese, P., 2007. A population genetics model with recombination hotspots that are641

heterogeneous across the population. Proceedings of the National Academy of Sciences642

104 (11), 4748–4752.643

Coop, G., Myers, S. R., 2007. Live hot, die young: transmission distortion in recombi-644

nation hotspots. PLoS genetics 3 (3), e35.645

Coop, G., Wen, X., Ober, C., Pritchard, J. K., Przeworski, M., 2008. High-resolution646

mapping of crossovers reveals extensive variation in fine-scale recombination patterns647

among humans. science 319 (5868), 1395–1398.648

Hassold, T., Hunt, P., 2001. To err (meiotically) is human: the genesis of human aneu-649

ploidy. Nature Reviews Genetics 2 (4), 280.650

Hassold, T., Sherman, S., Hunt, P., 2000. Counting cross-overs: characterizing meiotic651

recombination in mammals. Human Molecular Genetics 9 (16), 2409–2419.652

Hey, J., 2004. What’s so hot about recombination hotspots? PLoS biology 2 (6), e190.653

Karlin, S., Feldman, M. W., et al., 1970. Linkage and selection: two locus symmetric654

viability model. Theoretical population biology 1 (1), 39–71.655

Koehler, K. E., Hawley, R. S., Sherman, S., Hassold, T., 1996. Recombination and656

nondisjunction in humans and flies. Human molecular genetics 5 (Supplement 1),657

1495–1504.658

Latrille, T., Duret, L., Lartillot, N., 2017. The red queen model of recombination hot-spot659

evolution: a theoretical investigation. Phil. Trans. R. Soc. B 372 (1736), 20160463.660
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