View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

1807.11378v1 [cs.CR] 30 Jul 2018

arXiv

provided by University of Bedfordshire Repository

Parsec: A State Channel for the Internet of
Value

Amit Kumar Jaiswa][0000—0001-8848-7041]

University of Bedfordshire, Luton, UK
amitkumar. jaiswal@beds.ac.uk,

Abstract. We propose Parsec, a web-scale State channel for the Inter-
net of Value to exterminate the consensus bottleneck in Blockchain by
leveraging a network of state channels which enable to robustly trans-
fer value off-chain. It acts as an infrastructure layer developed on top
of Ethereum Blockchain, as a network protocol which allows coherent
routing and interlocking channel transfers for trade-off between parties.
A web-scale solution for state channels is implemented to enable a layer
of value transfer to the internet. Existing network protocol on State
Channels include Raiden for Ethereum and Lightning Network for Bit-
coin. However, we intend to leverage existing web-scale technologies used
by large Internet companies such as Uber, LinkedIn or Netflix. We use
Apache Kafka to scale the global payment operation to trillions of op-
erations per day enabling near-instant, low-fee, scalable, and privacy-
sustainable payments. Our architecture follows Event Sourcing pattern
which solves current issues of payment solutions such as scaling, trans-
fer, interoperability, low-fees, micropayments and to name a few. To the
best of knowledge, our proposed model achieve better performance than
state-of-the-art lightning network on the Ethereum based (fork) crypto-
coins.

Keywords: Blockchain - Payment Channels - Distributed Ledger - Event
Sourcing - Ethereum - Smart Contracts.

1 Introduction

The influence of data systems in finance has been so far focused on cutting
administrative costs. However, technology could transform business models in
finance. With the help of cryptography on distributed data systems, we can de-
sign infrastructure that not only keeps track of transactions and balances but
also allows transfer of assets and enforcement of contracts without the need of
clearinghouses, middle men, escrows and even some tasks performed by lawyers.
On these systems settlements are final and there is no possibility of repudiation
while smart contracts execute deterministically according to predefined inputs.
Institutions that enclasp this vision will have a competitive advantage. Invest-
ing in distributed cryptographic technology and regulatory oriented technology
will pay off in the form of less intermediation, less legal fees or exordium and

https://core.ac.uk/display/286423322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jaiswal

ultimately an accelerated innovation cycle where new financial services can be
provided with much less friction and where these services are much better tai-
lored to smaller market segments. These institutions will be able to compete in
the long tail of financial services and offer a much more competitive service for
the mainstream.

However, for the Internet of Value vision to happen, theres need for a whole
redesign of the architectural Information Technology (IT) principles used to build
new services. In this paper, our proposed models can achieve better performances
than state-of-the-art existing models on the Ethereum Blockchain [I3] network.

2 Architectural Details

!

Fig. 1. Architecture to create new services

In search of new services such as global payment solution, we created an
architecture that makes possible to quickly innovate and create new services. In
order to achieve this at web scale, we attempt to employ the Event Sourcing [7]
pattern, an approach to handle large operations on data driven by a series of

Parsec: A State Channel for the Internet of Value 3

events, in which each event is recorded in an append-only datastore. In this kind
of architecture, instead of having a centralized state for all the applications in a
centralized database or a set of disconnected state holding databases, we rely on
a centralized log of state changes, which allows to create new applications very
quickly because it is only necessary to replay the log of changes in order to build
new services with new states that will be consistent with the state being held
by other services in the same company.

FEvent Sourcing is very powerful but has a coupling problem. In big organi-
zations a central team needs to own the event log. Usually, many different teams

Premiums

Risk Claims
= =

Fig. 2. Architecture based on Event Sourcing Pattern

Balances Solvency
3 2
Stale W

want to access the log and they all need to agree on the technology and permis-
sions to write and read from it. Also teams reading or writing intensively from
or to the central infrastructure risk causes performance problem to the whole.
Also, this kind of architecture is not suitable for collaborating among different
organizations or group of companies. For that reason, an architecture where each

4 Jaiswal

business unit or application would hold a copy of the parts the log relevant to
it would be better. If the stream of data is composed of different topics (for
example, premium payments or claims), then each business unit would be able to
hold a copy of the topics relevant to it. The above architecture would be feasible
in a trusted environment but in a collaborative environment, all transactions
would have to be signed by the different parties and the order of the transactions
should be guaranteed.

We can achieve that in a manner similar to blockchain by means of a linked
stream of events using hash pointers to the previous events and by embedding
signatures of both sides of a transaction in the message itself. This would im-

Claims Claims adjustrment
service

State

[ITTIITITITTITI]]

LITTTITTITITTI L]]

Fig. 3. Sub-model based on Linked stream of events

ply that some business units would have to act as signing authorities to their
counter-parties in external organizations. By acting like that we would achieve
the benefits of a distributed ledger but without being able to transfer assets.

Asserting that assets cant be transferred with only a distributed ledger can
be contentious. Indeed if both parties have proof that the transaction has been
agreed.

However, even in this case where the transaction implied a transfer of assets,
for example, in the case where the transaction implied a transfer of assets, for
example, in the case of signing an insurance policy, this would not imply that any
of the parties would pay the stipulated amounts. We would have no guarantee
that policy takers would pay the claims. For that purpose we would need to
resort to a third party escrow or even better to a Smart Contract running in
a blockchain with distributed consensus. It is arguable whether this blockchain
would have to be public or if a permissioned distributed ledger would be able to
achieve this purpose.

Parsec: A State Channel for the Internet of Value 5

Sales Delegated Authority
(Distributor)

< p

[St;e 1 [Slge]

\\State (Z‘.hanryX

| Smart Contract

{ Funds (C sels
contract - s\f\jfm = :

Palicies { ﬁ /.%

)
Public blockchain

AERRRRRRRRNINY

Fig. 4. Model for State Channel and Smart Contract operation on Public Blockchain

Here we assume it as a public blockchain capable of running Smart Contracts.
In fact the structure we described here is following an existing approach, so called
a State Channel [I] and it allows untrusted parties to exchange transactions
with the possibility to resort to an independent escrow held in a Smart Contract
operating on a public blockchain in case that one of the parties does not fulfill
its commitment.

Finally get the big picture on how a state of the art architecture for a financial
system should look like. It would have to: (1) Be based on transaction logs, (2)
It would have to include a replication mechanism of such logs between business
units, (3) Logs would have to be enhanced to become shared ledgers when dealing
with external untrusted parties, and (4) State channel support would have to be
added for asset transfer.

3 Implementation

We implemented a infrastructure layer named ParsecEl using Apache Kafka, a
distributed data system that can be used as an event sourcing unified log tool. It
can be seen both as a queue or as a data store. We intend to implement only the
very minimum additions to the already existing functionality based on [4J5]6] so
that it can work as a State Channel. For that purpose a fundamental tool of the

! Code Available at: https://github.com/quanonblocks/Parsec

6 Jaiswal

| Smart Contract
- o0 Funds {Cryplo assets)

F\xlms(
b
Organisation 1 ﬁefwsnm

- S\am
State
Sales Delegated

Authority
(Distributor)

Balances i Organisation 3

Organisation 2
sk Claims Claims

w w <::> I -

Fig. 5. Architecture of Parsec Infrastructure Layer

Apache Kafka [3] ecosystem will be Kafka Streams [§] as it already offers many
of the functionalities we need to implement.

We integrated few major functions on top of state channel to work which
are (1) Scalability and replicability is provided by Apache Kafka and Kafka
mirror maker, (2) Ability to maintain state at scale and interaction with Smart
Contract or chaincode [I4] is extended by Parsec on top of Kafka Streams, and
(3) Guarantees an exact sequence of hash pointers and transaction verification
with its cryptographic signatures is developed in Parsec.

For above given functionality, we intend to provide a library running on
top of Kafka Streams under fast data solution system Landoop. Streams that
guarantees the last three points.

3.1 Parsec Nodes

Parsec nodes are the job instances of the Parsec Library implementing the Parsec
Software Development Kit (SDK). The Parsec library is developed on top of the
Kafka streams library with the several addition of functionality such as support
for a catalogue of various kinds of transactions and to keep an update state for
all unique Ids of the transaction topic (kafka topic). Also, we have integrated
the Hashed Timelock [9] to interact with Ethereum smart contracts [10] for the
kafka topic partitions under the nodes’ supervision for scheduled settlements or
the request of control topic.

All functionality for each Parsec job relates only to the partitions under its
control.

Parsec: A State Channel for the Internet of Value 7

3.2 Parsec Transactions

A basic catalogue of predefined transactions is implemented which can be used
to add additional custom transactions.
Micropayment transaction [II] performs the following actions:

— Keep a sliding array of the latest n number of transactions in order to recon-
struct the exact order of the transactions from the transaction hash pointers.
This is performed in order to cope with our order of messages or repeated
messages.

— Calculate the balance after each transaction.

— Commit the balance to the Smart Contract in the Ethereum network at
predefined intervals. Intervals are defined by the modulo m of the incremental
transaction sequence number.

— Commit the balance to the smart contract in the Ethereum network at
predefined timeouts. The timeout duration can be specified by the check-
point_timeout parameter.

— Under the request of the control topic, perform an unscheduled settlement
request to the smart contract.

— Under the request of the control topic, perform a disputed settlement request
to the smart contract by means of transferring the signed transactions since
the last settlement.

4 Conclusion & Future Works

This paper attempts to address the challenge in scaling, fast transaction process-
ing, verification process issues simplifies with our proposed model contains Parsec
Simulator which generates a special protocol messages under Kafka cluster with
fully functional API support for existing cryptocurrencies like Bitcoin [15] and
Ethereum [2] accessible via Avro User Interfacﬂ We also have supports to check
Schema’s [12] and protocol messages with Coyote test suiteﬂ For future work,
we are looking forward to provide additional ways to support State Management
functionality.

ACKNOWLEDGMENT

This work is supported by Quanonblocks LLP.

References

1. Dziembowski, S., Faust, S., & Hostakova, K. (2018). Foundations of state channel
networks. IACR Cryptology ePrint Archive, 2018: 320.

2 Avro UL https://github.com/kaaproject /avro-ui
3 Coyote Tester: https://github.com/Landoop/coyote

9.

Jaiswal

. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151, 1-32.
Kreps, J., Narkhede, N.; & Rao, J. (2011, June). Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB (pp. 1-7).

. DECK.GL: Large-scale WebGL-powered Data Visualization,

http://uber.github.io/deck.gl.

Sumbaly, R., Kreps, J., & Shah, S. (2013, June). The big data ecosystem at linkedin.
In Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data (pp. 1125-1134). ACM.

Raiko, T., Ilin, A., & Karhunen, J. (2007, September). Principal component analysis
for large scale problems with lots of missing values. In European Conference on
Machine Learning (pp. 691-698). Springer, Berlin, Heidelberg.

Martin Kleppmann. Stream processing. https://www.confluent.io/blog/making-
sense-of-stream-processing/.

Michael G. Noll. Introducing Kafka Streams, the new stream pro-
cessing engine of Apache Kafka. Berlin Buzzwords, June 2016.
https://berlinbuzzwords.de/16 /session/introducing-kafka-streams-new-stream-
processing-library-apache-kafka.

Rusty Russel. Hashed Timelock Contracts (HTLCs).
https://rusty.ozlabs.org/?p=462.

10. Grishchenko, I., Maffei, M., & Schneidewind, C. (2018, April). A Semantic Frame-

work for the Security Analysis of Ethereum smart contracts. In International Con-
ference on Principles of Security and Trust (pp. 243-269). Springer, Cham.

11. Bitcoinj. Working with micropayment channels.

https://bitcoinj.github.io/working-with-micropayments.

12. Schema registry UL https://github.com/Landoop/schema-registry-ui.
13. Vitalik Buterin. 2014. A next-generation smart contract and decentralized appli-

cation platform. https://github.com/ethereum/wiki/wiki/White-Paper.

14. Manevich, Y., Barger, A., & Tock, Y. (2018). Service Discovery for Hyperledger

Fabric. arXiv preprint arXiv:1805.02105.

15. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.

Appendix

Parsec Protocol

The Parsec protocol introduces a layer for cryptocurrency transactions to take
place, without necessarily being registered into the global blockchain.

Parsec Protocol

package org.parsec.protocol

val customerPaymentJourney = .stripMargin
val DEFAULT_CHANNEL = "default"
val ALLOWED_CURRENCIES = Set("ETH", "BTC")

/%%
* The seller needs to produce an INVOICE (through Parsec channel)

http://uber.github.io/deck.gl
http://arxiv.org/abs/1805.02105

Parsec: A State Channel for the Internet of Value 9

Seller Buyer
1- Send payment transaction signed by seller
——

>

el

k-]

o)

c

R=J

w
-3 o %
o> g°
&3 z e
4- Confirm 3- Share 23
payment transaction % £
to seller's with the seller's e
client trusted node =2

Parsec 1 Parsec 2
5- Settle 5- Settle
eventually eventually
Hashed
Time

Lock

Ethereum

Fig. 6. Customer Journey via Parsec Protocol

*
* Qparam invoiceAddress the sellect address for the currency to be transferred to
* Qparam price the amount of currency to exchange
* Q@param currency ETH or BTC supported
* @param invoiceType (optional) use to pass-in other metadata about the invoice
*/

case class Invoice(invoiceAddress: String, price: Double,

currency: String, invoiceType: String = "") {

assert (ALLOWED_CURRENCIES.contains(currency), s"ParsecProtocol: Currency
$currency is not an allowed currency. Use: " + ALLOWED_CURRENCIES.mkString(" or "))

def producelnvoiceHash = "######-####-HHHH#"
}

* Here the Parsec Protocol lies here!

* We need to ensure that the order of Signed Invoices is guaranteed
* No cluster of distributed systems can guarantee that
(due to varying network latencies etc.)
*
*/
case class HashPointer(transactionID: String,
// i.e. invoiceID

10 Jaiswal
transactionHash: String)

case class SignedInvoice(invoiceID: String = "auto-generate-random-UUID+channel",
// import java.util.UUID
invoiceSignature: String,
supplierAddress: String, // no need to know Private Key
buyerPublicKey: String,
buyerAddress: String,
currency: String,
price: Double,
channel: String = DEFAULT_CHANNEL,
hashPointerToPrevious: HashPointer) {
assert (ALLOWED_CURRENCIES. contains (currency), s"ParsecProtocol:
Currency $currency is not an allowed currency. Use: " +
ALLOWED_CURRENCIES.mkString(" or "))
assert(isValidBuyerAddress)

def isValidBuyerAddress: Boolean = {
if (currency == "ETH")
return buyerAddress equals ethereumAddressFromPublicKey(buyerPublicKey)

else
return buyerAddress equals bitcoinAddressFromPublicKey(buyerPublicKey)

	Parsec: A State Channel for the Internet of Value

