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ABSTRACT

The open nature of the wireless communication medium makes it inherently

vulnerable to an active attack, wherein a malicious adversary (or jammer) transmits

into the medium to disrupt the operation of the legitimate users. Therefore, developing

techniques to manage the presence of a jammer and to characterize the effect of an

attacker on the fundamental limits of wireless communication networks is important.

This dissertation studies various Gaussian communication networks in the presence of

such an adversarial jammer.

First of all, a standard Gaussian channel is considered in the presence of a jammer,

known as a Gaussian arbitrarily-varying channel, but with list-decoding at the receiver.

The receiver decodes a list of messages, instead of only one message, with the goal of

the correct message being an element of the list. The capacity is characterized, and

it is shown that under some transmitter’s power constraints the adversary is able to

suspend the communication between the legitimate users and make the capacity zero.

Next, generalized packing lemmas are introduced for Gaussian adversarial channels

to achieve the capacity bounds for three Gaussian multi-user channels in the presence

of adversarial jammers. Inner and outer bounds on the capacity regions of Gaussian

multiple-access channels, Gaussian broadcast channels, and Gaussian interference

channels are derived in the presence of malicious jammers. For the Gaussian multiple-

access channels with jammer, the capacity bounds coincide. In this dissertation, the

adversaries can send any arbitrary signals to the channel while none of the transmitter

and the receiver knows the adversarial signals’ distribution.

Finally, the capacity of the standard point-to-point Gaussian fading channel in

the presence of one jammer is investigated under multiple scenarios of channel state

information availability, which is the knowledge of exact fading coefficients. The
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channel state information is always partially or fully known at the receiver to decode

the message while the transmitter or the adversary may or may not have access to

this information. Here, the adversary model is the same as the previous cases with no

knowledge about the user’s transmitted signal except possibly the knowledge of the

fading path.
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Chapter 1

INTRODUCTION

1.1 Motivation and Overview

As wireless communications play an important role in upcoming technologies, the

need for reliable and fast communications becomes more and more vital. Generally, in

the near future, equipped machines with robust wireless communication technologies

will control our cities and societies in a vast scale. There are many important

applications using 5G cellular network technology such as self-driving cars, industry

automation, mission critical applications, and smart cities that need invulnerable and

robust data transfer in addition to fast communication. More network applications such

as distributed machine learning also require high speed and reliable communications

to reduce their intensive computations during the learning and training processes.

However, the inherent feature of the wireless communication as an open environment

to any unwelcome attacker could jeopardize robustness, reliability, speed and privacy

of the communication network that may cause serious irreversible damages to the

aforementioned applications.

These uninvited attackers in a wireless network can be passive or active. A passive

attacker is an adversary who only listens and eavesdrops on the communications

between the legitimate users. Channels with an eavesdropper are usually known as

wiretap channels in which the main concern is providing privacy for the legitimate

users. On the other hand, an active attacker is an adversary who maliciously transmits

into the medium to disrupt the operation of the legitimate users or interrupt the
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ongoing communications between them, which seriously reduces reliability and speed

of the communication channel. These active adversaries or jammers may have access

to some information about the wireless network such as power constraints, channel

fading information, transmitted code, and transmitted signals perfectly or through

a noisy channel. Based on the jammers’ knowledge, they are assigned to different

categories.

We only provide four categories for jammers based on their knowledge about the

legitimate users’ transmitted code and the genuine transmitted signal. Omniscient

adversaries are active attackers who have access to the genuine transmitted signal

before selecting their own adversarial signal, so they benefit from this knowledge to

disrupt the communication. Causal adversaries are active attackers with knowledge

only of the past transmitted signal. Myopic adversaries refer to active attackers whose

knowledge about the transmitted signal is through a noisy memoryless channel, so they

have a noisy version of the genuine transmitter signal. Oblivious adversaries are those

active attackers who only know the legitimate users’ transmitted code but not the

exact value of the transmitted signal. The adversary model that we assume throughout

this dissertation is contained in the last category as oblivious active adversaries.

Finally, in order to benefit the upcoming technologies using fast and reliable

wireless communications, we need to develop techniques to manage and control the

presence of various active adversaries in the medium. Despite that, it is apparently

very important to first characterize the effect of a jammer on the fundamental limits

of wireless communication networks as a principal and prior task to achieve reliability,

speed and robustness. Indeed, one initially needs to know how much the theoretical

framework and boundaries allows them to construct and evolve new methods to

combat the adversarial jammers. The hope is that fundamental research in this field
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will become a paradigm for secure and private wireless communication networks.

One cannot solve all practical problems related to jammers in wireless networks at

once; therefore, this dissertation focuses on a few well-defined problems on which

we can make progress. In particular, we study the fundamental limits of Gaussian

communication networks as one of the common wireless networks in the presence of

intelligent active adversaries in this dissertation. The following sections introduce some

prior work in the literature along with our contribution in deriving the fundamental

limits of the intended Gaussian channels in the presence of oblivious jammers.

We investigate boundaries for the capacity region of five different Gaussian com-

munication channels in the presence of oblivious adversaries. In this regard, we

first consider a simple point-to-point standard Gaussian channel in the presence of a

jammer. This channel is also known as a Gaussian arbitrarily-varying channel (AVC).

Then, we introduce general adversarial packing lemmas in order to achieve the inner

bounds for the capacities in three scenarios. We use our proposed adversarial packing

lemmas to prove the capacity limits in Gaussian multi-user scenarios such as Gaussian

multiple access channels, Gaussian broadcast channels and Gaussian interference

channels all in the presence of jammers. Finally, we also explore the capacity of a

point-to-point Gaussian fading channel in the presence of a jammer. This channel

itself includes several cases based on the availability of channel fading information at

the adversary or transmitter by which the capacity may vary.
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1.2 Gaussian Arbitrarily-Varying Channels

1.2.1 Prior Work

An arbitrarily-varying channel (AVC) represents a memoryless channel including

unknown parameters that are changing arbitrarily from channel use to channel use.

Because these parameters (state) can change arbitrarily, we consider this to be a

model for an active adversarial jammer. This adversary sends its signal to restrain

the legitimate transmitter and receiver from maintaining reliable communication.

In wireless channels, these unpleasant adversaries can easily enter channels, so it is

of great importance to study the adversary’s effect on the channel capacity. The

capacity of the AVC depends on the coding method (such as randomized coding,

stochastic encoder or deterministic coding), the performance criterion (such as average

or maximum error probability) and the amount of adversary’s knowledge about the

transmitted signal (omniscient, myopic or oblivious adversary). Table 1 provides a

summary of various models for point-to-point channels in the presence of adversaries

appearing in the literature, including those considered in Chapter 2.

Blackwell et al. introduced AVC in Blackwell, Breiman, and Thomasian, (1960)

and under the average error probability criterion they found the capacity of the discrete

memoryless AVC to be given by a min-max expression over the mutual information of

input and output. They employed randomized coding that is, common randomness

between the encoder and the decoder and assumed the jammer to be oblivious that

is, the jammer does not have any information about the transmitted signal except

the code. In Stiglitz, (1966), it is shown that the min-max expression is equivalent

to the corresponding max-min one. Further, in Ahlswede and Wolfowitz, (1969), the
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authors examined that this capacity remains the same even for the maximum error

probability criterion, again provided access to common randomness. The case without

common randomness between the transmitter and the receiver is referred to as the

deterministic code setting. Ahlswede in a notable paper Ahlswede, (1978) characterized

the deterministic capacity of a discrete AVC under the average probability of error

through a dichotomy theorem. He proved that the capacity either corresponds to the

AVC randomized code capacity or else it equals zero but he did not state any necessary

or sufficient condition for which of the two cases prevails. Ericson, in Ericson, (1985),

found the necessary condition for the positive alternative by defining symmetrizability.

A symmetrizable AVC is an AVC in which the adversary can mimic the transmitted

signal in order to prevent the decoder from distinguishing between the true message

and an adversarial imitation. Thus, he showed that if the deterministic code capacity

of an AVC is positive then the channel should be nonsymmetrizable. Later, in Csiszár

and Narayan, (1988)(b), a sufficient condition was provided by Csiszár and Narayen

stating that if the AVC is nonsymmetrizable then the deterministic code capacity is

not zero. Therefore, considering both conditions, the deterministic code capacity of

an AVC is positive if and only if the channel is nonsymmetrizable.

The capacity of discrete AVC is investigated also under input and state (or

adversarial signal) constraints. Restricted by peak or average input and state cost

constraints, the random code capacity of discrete AVC is studied in Csiszár and

Narayan, (1988)(a) using the average probability of error as the performance criterion.

Furthermore, the second part of Csiszár and Narayan work in Csiszár and Narayan,

(1988)(b) focuses on the deterministic code capacity of AVC under input and state

constraints for the same performance criterion. They proved that in this case if the

capacity is positive then it is less than or equal to the corresponding random code
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capacity. In particular, with input and state constraints, the capacity can be positive

but strictly less than the random code capacity. Note that this does not occur without

cost constraints. Csiszár, in Csiszár, (1992), extended this result to general input and

output alphabets and state sets rather than only finite alphabets and state sets.

There is a wide variety of research on different versions of AVCs under various

adversaries model, including Sarwate, (2010); Dey et al., (2010), (2013). Sarwate, in

Sarwate, (2010), considered a myopic adversary in which there is a discrete memoryless

channel (DMC) between the legitimate user and the jammer and the jammer chooses

its signal based on this noisy version of the user’s codeword. He found the capacity

by minimizing over all DMCs that the jammer can applied by its worst strategies.

In Dey et al., (2010), single letter characterizations of capacity is obtained in the

presence of a delayed adversary which can observe the transmitted signal after a

delay. By assuming randomization at the encoder, the capacity is corresponding to

the randomized code capacity. B. K. Dey et. al., in Dey et al., (2013), obtained upper

bounds on the capacity of binary channel in the presence of a causal adversary for

both maximal and average error probabilities.

This dissertation focuses on the Gaussian AVC, wherein all alphabets are continuous

rather than discrete. Initially, Ahlswede, in Ahlswede, (1971), studied the capacity of

a Gaussian AVC in which the adversary chooses the noise variance rather than an

additive signal. Hughes and Narayan in Hughes and Narayan, (1987) determined the

randomized code capacity of Gaussian AVC under the peak power input and state

constraints. They further extended their result in Hughes and Narayan, (1988) for a

vector Gaussian AVC. The deterministic code capacity of the Gaussian AVC, for the

average probability of error, was found in Csiszár and Narayan, (1991). The authors

showed that if the adversary’s power is greater than the legitimate transmitter’s power,

6



then symmetrizability occurs causing the capacity to drop to zero. Note that for a

discrete AVC with no cost constraint non-symmetrizability makes the deterministic

capacity positive and equal to the randomized capacity Csiszár and Narayan, (1988)(b)

(Theorem 1). It is further proved in Csiszár and Narayan, (1988)(b) (Theorem 3) that

under input and state cost constraints, non-symmetrizability only results in positive

deterministic capacity but it is sometimes strictly less than the randomized capacity.

In the Gaussian case, even though there are input and state cost constraints, the

behavior is like that of a discrete AVC with no cost constraint, in that if the channel

is non-symmetrizable, then its deterministic capacity is positive and equal to the

randomized capacity Csiszár and Narayan, (1991).

For the first time, in Hughes, (1997), Hughes showed that using list-decoding, in

which the decoder can decode to a small (and bounded) list rather than a unique

message estimate, causes positive capacity for most symmetrizable discrete-memoryless

AVCs. Intuitively, list-decoding combats the symmetrizing attack by allowing the list

to contain the true message as well as the counterfeit(s) generated by the adversary;

thus, the receiver can successfully decode even if it cannot specify the correct message.

Furthermore, the authors in Sarwate and Gastpar, (2012) extended the list-decoding

result to the discrete-memoryless AVCs with state constraints. They determined upper

and lower bounds on the capacity by introducing two notions of symmetrizability for

this channel.

7



1.2.2 Contribution

In Chapter 2, we characterize the capacity of Gaussian AVC in Csiszár and

Narayan, (1991), using list-decoding for any list size and almost all power values of the

transmitter and adversary, a similar result to that of Hughes in Hughes, (1997) which

obtained the list capacity for the discrete-memoryless AVC, for which the capacity was

determined in Csiszár and Narayan, (1988)(b). We assume that the encoder may be

stochastic— that is, the encoder has access to private randomness—and a deterministic

list-decoder with constant list size L. Under the average probability of error criterion

and without common randomness, we obtain the capacity of Gaussian AVC with

list-decoding to be equal to the corresponding randomized code capacity if the list size

is greater than the power ratio of the jammer to the legitimate user; otherwise, the

capacity is zero. Generally, our problem is a generalized version of the multiple packing

of spherical caps problem in Blachman and Few, (1963) with Gaussian noise; although,

they assumed maximal probability of error as the performance criterion. Their upper

bound, which is only calculated for the noiseless case, depends on the list size L

even in the asymptotic case. However, we only have list size in our symmetrizability

conditions rather than the capacity itself.

In our converse proof (in Section 2.3), the adversary focuses on two possible

strategies, one of which is simply sending Gaussian noise which causes the channel

to act as a standard Gaussian channel with increased noise variance. The second

strategy for the adversary is to transmit the superposition of some random (counterfeit)

codewords, which is shown to be possible with positive probability if its power is large

enough. In our achievability proof (in Section 2.4), we employ Gaussian codewords

with a particular version of minimum distance list-decoding based on typicality. We
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extend the scheme of Csiszár and Narayan, (1991) to show that with high probability

a random Gaussian codebook has desirable properties to make the probability of

error zero. However, our achievability proof originates from the idea of Csiszár and

Narayan, (1988)(b) based on typical sets, rather than the geometric approach of

Csiszár and Narayan, (1991). This scheme allows us for simpler characterizations of

codebook constraints. It is worth mentioning that we prove the achievability for the

deterministic encoder since it suffices to achieve a rate even by a deterministic code,

that is any deterministic code is a realistic value of a stochastic code. Our converse

and achievability proof in Chapter 2 apply for any list size; our work Hosseinigoki and

Kosut, (2018) provided proof only for list size L = 2. We published our results for the

capacity of Gaussian AVC with list-decoding in 2018 IEEE International Symposium

on Information Theory (ISIT) as Hosseinigoki and Kosut, (2018) and in Entropy

Journal as Hosseinigoki and Kosut, (2019)(b).

1.3 Gaussian Arbitrarily-Varying Multiple-User Channels

1.3.1 Prior Work

Discrete AVCs are also studied in network settings throughout Jahn, (1981);

Gubner, (1990), (1992); Ahlswede and Cai, (1999); Hof and Bross, (2006); Winshtok

and Steinberg, (2006); Pereg and Steinberg, (2017), such as multiple-access and

broadcast channels. Jahn, (1981) is the first study to determine the capacity region of

arbitrarily-varying multiple-access channels (AVMACs) under the average probability

of error criterion. Later, Gubner in Gubner, (1990) derives the sufficient condition of

non-symmetrizablilty for the AVMAC to have non-empty deterministic-code capacity
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region, i.e. the two-user in AVMAC can have a reliable communication. He also

provides three various symmetrizability conditions to get the aforementioned results.

Two years later, in Gubner, (1992), he establishes the necessary and sufficient conditions

for the deterministic-code capacity region of the AVMAC to be non-empty under

a state constraint and average probability of error criterion. This capacity region

is further specified one more time in Ahlswede and Cai, (1999) to eliminate some

constraints on the former results by providing three non-symmetrizability conditions.

Moreover, a two-user discrete memoryless arbitrarily-varying broadcast channels

(AVBCs) is addressed in Jahn, (1981), and an inner bound on the random-code

capacity region is established. Jahn also prove that the deterministic-code capacity of

the AVBC is equal to the random-code capacity of the AVBC if the interior region of

the random-code capacity is not empty. However, he doe not specify when the random-

code capacity is positive. In Hof and Bross, (2006), by defining different symmetrizable

channels for two-user AVBC, a sufficient non-symmetrizable condition that makes the

random-code capacity positive is attained under state and input constraints, i.e. if

the AVBC is non-symmetrizable, then the random-code capacity is non-zero. Further,

the capacity region for memoryless arbitrarily-varying degraded broadcast channels

(AVDBCs) is derived in Winshtok and Steinberg, (2006) in which the transmitter

knows channel state information (CSI) non-causally, and the stronger receiver has full

access to the CSI. If the transmitter knows the channel state information causally, then

inner and outer bounds are characterized for the deterministic-code capacity region

and the random-code capacity region of AVDBCs in Pereg and Steinberg, (2017). The

authors also find the conditions that lead the inner and outer bounds to a closed form

capacity region formula.
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The capacity of AVMAC was also studied with list-decoding in Nitinawarat, (2013);

Boche and Schaefer, (2014). Sirin Nitinawarat in Nitinawarat, (2013) introduced

symmetrizability of an AVMAC and showed that the capacity region for deterministic

codes with fixed list-size is empty if the list size is less than the symmetrizability Ω.

He obtained that the capacity corresponds to the random code capacity if the list

size is greater than (1 + Ω)2. H. Boche and R.F. Schaefer in Boche and Schaefer,

(2014) obtained the list capacity region of AVMAC with conferencing encoders which

is proved for large list size to be equal to the common randomness assisted capacity

region. Moreover, in Schaefer and Boche, (2014), the authors found the deterministic

code and random code capacity regions of AVBCs with receiver side information. By

defining a concept of symmetrizability for the channel, they characterized deterministic

list codes capacity region as either identical to the random code capacity region or

empty. Note that these literatures study the discrete versions of AVC while in this

dissertation our results are provided for Gaussian versions of AVC. Also, we consider

list-decoding only for Gaussian AVC, but not for the network setting of AVC.

Considering the Gaussian networks without any adversary, the exact capacity

regions of the Gaussian multiple-access channel (GMAC) and the Gaussian broadcast

channel (GBC) are completely characterized. The GMAC consists of two transmitters

and one receiver with additive Gaussian noise while the GBC includes one transmitter

and two receivers with additive Gaussian noise at each receiver. The inner bound and

the outer bound for these two channels are proved to be equal. The multiple-access

channel was first introduced in Shannon, (1961). Further, the authors in T. M. Cover,

(1975) and Wyner, (1974) characterize the capacity region of GMAC by showing

the achievability and converse proof. The capacity region can be achieved by either

simultaneous decoding or successive cancellation decoding with time sharing.
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On the other hand, Cover in T. Cover, (1972) introduces GBC for the first

time, and show the achievability proof for the capacity region of GBC. The main

techniques that are used in the achievability proof of GBC are superposition coding

and successive cancellation decoding. A converse proof for the capacity region is later

investigated in Bergmans, (1974). It is worth mentioning that the GMAC and GBC

has a duality in their structures and capacity regions formulations which is presented

in Jindal, Vishwanath, and Goldsmith, (2004). They also determine this duality for

fading GMAC and fading GBC under ergodic capacity. This result is based on the

equivalence of channel gains and the equivalence of noise power at all receivers of

dual channels. It is also proved in Gamal 1981 that the feedback can not increase the

capacity region of physically degraded GBC.

However, the Gaussian interference channel (GIC) (without a jammer) is one of the

fundamental problems in network information theory that the exact capacity region is

still unknown in general. In GIC, there are two transmitters and two receivers who are

interested in communicating with their corresponding transmitters, i.e. the is always

an interference signal in each receiver. However, the Han-Kobayashi inner bound Han

and Kobayashi, (1981) is optimal or near-optimal for many interference channels. The

proof of this inner bound involves rate splitting, wherein each transmitter sends a

common message, decoded by both receivers, as well as a private message, decoded

by only the intended receiver. The authors in Etkin, Tse, and Wang, (2008) showed

that for the GIC, the Han-Kobayashi comes within half a bit of the capacity region.

Furthermore, Annapureddy and Veeravalli, (2009) obtains an outer bound on the

capacity region of the GIC, and it is shown that for sufficiently weak interference

signals, treating interference as noise achieves the sum capacity. The deterministic

interference channel model is proposed by Bresler and Tse Bresler and Tse, (2008),
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and they show that the capacity of this channel is within a constant number of bits of

the corresponding GIC.

1.3.2 Contribution

Our contribution begins with Chapter 3 where we introduce four versions of

Gaussian AVC packing lemmas that are used to bound the error events in the

achievability proof of Gaussian multiple-access channels (GMAC) in the presence of

jammers, and to bound the error events in the proof of the inner bound of Gaussian

broadcast channels (GBC) and Gaussian interference channels (GIC) in the presence

of adversaries. The basic approach to these lemmas originates in Csiszár and Narayan,

(1988)(b), Lemma 3 and Csiszár and Narayan, (1991), Lemma 1, and the proof

is most similar to that of Csiszár and Narayan, (1988)(b), Lemma 3. The earlier

lemma showed that a single random codebook satisfies several desirable properties

with high probability. In multi-user cases, we need to show that multiple codebooks

simultaneously satisfy desirable properties; thus we need a slightly more general

approach.

Furthermore, we use Gaussian codewords instead of codewords uniformly dis-

tributed on the unit ball. The advantage of Gaussian codewords is that superposition

of codewords are themselves Gaussian, and we are dealing with the summation of more

than one codeword. Lemma 7 and 8 show that with high probability, two superposed

Gaussian codebooks yield small probability of error. While the result is stated for

two codebooks for simplicity, it applies for any number of codebooks. Note that

Lemma 8 requires Λ < 1; i.e. the jammer’s power must be less than the codeword

power, which is necessary to avoid symmetrization. However, in Lemma 7 we do not
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introduce any power constraint since it benefits from common randomness to prevent

symmetrization.

In both Csiszár and Narayan, (1988)(b) and Csiszár and Narayan, (1991), Csiszár

and Narayan utilized lemmas (Lemma 3 in Csiszár and Narayan, (1988)(b) and

Lemma 1 in Csiszár and Narayan, (1991)) which assert the existence of codebooks

with desirable properties in order to prove achievability results. However, they only

provided these lemmas for a single codebook, and for either discrete random vectors (in

Csiszár and Narayan, (1988)(b)) or codewords uniformly distributed on the unit ball

(in Csiszár and Narayan, (1991)). On the other hand, our proof requires a variation

on the Gaussian AVC packing lemma that handles decoding of multiple superposed

Gaussian codebooks. Our main technical tools for this goal are Lemmas 5, 6, 7, 8 and

9, proved in Sections 3.2, 3.3, 3.4, 3.5 and 3.6, respectively.

Chapter 4, 5 and 6 considers three Gaussian networks in the presence of adversarial

jammers in which there are more than two legitimate users (the legitimate transmitters

and receivers). We know these channels as Gaussian multiple-user channels. In order

to achieve the inner bounds for the capacity regions of the multiple-user channels, we

need the aforementioned adversarial packing lemmas that work for more than one

codebook, which we propose in Chapter 3. Note that in Chapters 4, 5 and 6, we have

some fixed gains for each path between each transmitter and each receiver, but these

gains are fixed and not changing in time, so we do not have fading in the channel

models.

In Chapters 4, we consider a Gaussian arbitrarily-varying multiple-access channels

(GAVMAC). This channel consists of a standard GMAC and an intelligent jammer

who sends its signal to the channel. We provide the exact capacity region of the

GAVMAC with input power constraints and state power constraints under the average
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probability of error criterion. Since here we have two transmitters in GAVMAC, and

the current literatures do not include a packing lemma for more than one codebook,

we benefit from our proposed adversarial packing lemmas (in Chapter 3) to prove

the achievability of the capacity region. Note that in this case, the outer bound and

the inner bounds coincide and we find a concrete form of the capacity region. The

achievability proof follows from simultaneous decoding technique and our proposed

adversarial packing lemmas in Chapter 3. The converse proof is a straightforward

proof following from the fact that the jammer can only send Gaussian noise if it does

not have enough power to symmetrize the channel that is jammer’s power is less than

each of the transmitter’s power; otherwise, the capacity is zero.

Further, in Chapters 5, we consider Gaussian Arbitrarily-varying broadcast chan-

nels (GAVBCs). This channel is equivalent to a standard two-user GBC in the presence

of two jammers, one at each receiver. We determine an inner and outer bounds for the

deterministic-code capacity region of GAVBC under the average probability error. It

is also assumed that the channel has input and state power constraints. Again, since

we have more than one receiver in the system model, we use our proposed adversarial

packing lemmas to achieve the inner bound. In this case our proposed inner and

outer bounds differs only in a power constraint between the transmitter and the

jammer signals’ power. In the inner bound proof, we utilize the superposition coding

and successive cancellation decoding along with our proposed adversarial packing

lemma. We show that the outer bound is zero if the jammers’ power are both less

than the corresponding transmitters’ power. Otherwise, the outer bound is equal to

the capacity of a standard two-user GBC with the noise variance that increases by the

power of each jammer at each receiver. Note that even though the duality of GMACs
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and GBCs is provided in Jindal, Vishwanath, and Goldsmith, (2004), we do not have

that sort of duality here in the arbitrarily-varying channels scenario.

In Chapter 6, we first provide a general model including an arbitrary number of

jammers for two-user Gaussian interference channels with jammers. We show that its

capacity region is equivalent to that of a simplified model in which the received jamming

signal at each decoder is independent. Then, existing outer and inner bounds for the

two-user Gaussian interference channel are generalized for this simplified jamming

model using our proposed adversarial packing lemmas. We show that for certain

problem parameters, precisely the same bounds hold, but with the noise variance

increased by the received power of the jammer at each receiver. Thus, the jammers

can do no better than to transmit Gaussian noise. For these problem parameters, this

allows us to recover the half-bit theorem. In weak and strong interference regime,

our inner bound coincides the corresponding Han-Kobayashi bound with increased

noise variance by the received power of the jammer, and even in strong interference

we achieve the exact capacity. Furthermore, we determine the symmetric degrees of

freedom where the signal-to-noise, interference-to-noise and jammer-to-noise ratios are

all tend to infinity. Moreover, we show that, if the jammer has greater received power

than the legitimate user, symmetrizability makes the capacity zero. The proof of the

outer bound is straightforward, while the inner bound generalizes the Han-Kobayashi

rate splitting scheme. As a novel aspect, the inner bound takes advantage of the

common message acting as common randomness for the private message; hence, the

jammer cannot symmetrize only the private codeword without being detected. This

complication requires an extra condition on the signal power, so that in general our

inner bound is not identical to the Han-Kobayashi bound. However, we further are

able to achieve the Han-Kobayashi bound if we apply Lemma 7.
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Our main contribution in Chapter 6 is to generalize existing inner and outer bounds

for the GIC in the presence of AVC-style jammers using our proposed adversarial

packing lemmas. We provide a generalized GIC model with G jammers (G ≥ 1), and

show that the capacity region is equivalent to the capacity region of GIC with only

two independent jammers. We show that the capacity region depends only on the

received power of the jamming signal, not on the number of jammers. Moreover, we

obtain the symmetric degrees of freedom (DoF) by taking the limit of the normalized

symmetric capacity as signal-to-noise, interference-to-noise and jammer-to-noise ratios

converge to infinity. This characterization generalized the so-called “W” DoF curve in

ElGamal and Kim, (2011), p. 153. We also recover the optimal sum-rate for the weak

interference regime, as well as the exact capacity region for the strong interference

regime. We show that our bounds are within a half-bit.

We show that the outer bound in Etkin, Tse, and Wang, (2008) holds with the

noise variance increased by the received power of the corresponding jammer at each

receiver. The proof, given in Section 6.3, follows by applying the outer bound in

Etkin, Tse, and Wang, (2008) with the jammers choosing to transmit Gaussian noise.

Moreover, we show that if the jammer’s received power at either receiver is larger

than that of the intended transmitter, AVC symmetrizability prevents this message

from being decoded, because the receiver cannot distinguish the legitimate codeword

from the jammer’s counterfeit; thus the capacity becomes zero.

We also provide a generalization of the Han-Kobayashi inner bound. For certain

problem parameters—for example, in the symmetric case when the jammer’s received

power is less than that of the interfering user—this inner bound is precisely the

Han-Kobayashi inner bound with the noise variance again increased by the received

power of the jammer. Thus, for these problem parameters we recover the half-bit
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theorem of Etkin, Tse, and Wang, (2008), and we can prove that it holds in general by

using Lemma 7. The proof of the inner bound, given in Section 6.4, is somewhat more

involved, as the receivers must decode correctly no matter what the jammer transmits.

One novel aspect of our inner bound proof is that we use the common message in the

rate-splitting scheme as common randomness for the private message. Thus, if the

jammer has more power than the private codeword but less than both together, it

cannot use symmetrization without being detected, and thus the receiver can decode.

The result of GAVIC capacity region is published in 2016 54th Annual Allerton

Conference on Communication, Control, and Computing (Allerton) as Hosseinigoki

and Kosut, (2016), and the complete version is also available on arXiv as Hosseinigoki

and Kosut, (2017).

1.4 Gaussian Arbitrarily-Varying Fading Channels

1.4.1 Prior Work

Wireless communications channels involve a large number of challenges, including

noise and fading. Moreover, as it is stated before, wireless channels allow for a

malicious intruder to disrupt the operation of the legitimate users. In Chapter 7, we

explore how these various effects interact with one another. We adopt a fast fading

model, wherein the channel gains form an i.i.d. sequence from a known distribution.

Goldsmith and Varaiya in Goldsmith and Varaiya, (1997) derived the capacity of

a single-user fading channel (with no adversary) with the fading gains available at the

decoder and possibly the encoder. They showed that if the channel gains are available

at only the decoder then the capacity is equal to the expected value of the capacity
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of a standard Gaussian channel with the received signal to noise ratio multiplied

by square of the channel gain. Moreover, if the channel gains are available at both

decoder and encoder, then the encoder can choose its signal power as a function of

the channel gains in order to maximize the capacity of the channel.

From the security point of view, the problem of slow fading channels, in which the

fading gains are constant for all time, is considered in Barros and Rodrigues, (2006)

in the presence of an eavesdropper who can only listen to the channel and does not

send a signal. The outage capacity is obtained while the channel state information

(CSI) is not known at the transmitter. Later in Wang, Yu, and Zhang, (2007), the

outage capacity is generalized to the case of multiple eavesdroppers. Moreover, the

authors in Li, Yates, and Trappe, (2010) explored the secrecy capacity for a Gaussian

channel as the main channel and fast Rayleigh fading channel as the eavesdropper

channel while the CSI are only known to the eavesdropper.

Note that in a standard AVC, there is not an eavesdropper or fading; instead,

there is only an active attacker who sends its signal to the channel. It is worth

mentioning that the “arbitrarily-varying” aspect of the AVC is the adversary’s signal,

not the channel gains, which we assume to be random from a known distribution.

This adversary only knows the code of the legitimate users, but there is not any way

for the jammer to access the user’s message.

1.4.2 Contribution

In Chapter 7, we consider a Gaussian AVC with fast fading on the main path; we

refer to this channel as the Gaussian arbitrarily-varying fading channel (GAVFC).

We characterize the capacity of the GAVFC under the average probability of error
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criterion. Similar to the Gaussian fading channel, we also assume that everyone knows

the fading gain distribution including the adversary, but they may or may not know

the realization of the gain sequence. Note that the “arbitrarily-varying” aspect of

the channel is the adversary’s signal, not the channel gains, which we assume to be

random from a known distribution. The receiver always needs the exact fading gains

to decode the message, while the adversary and the transmitter may or may not know

the exact values of fading gains. Therefore, we derive the capacity of the GAVFC for

four cases wherein the channel gains are available at the transmitter and/or adversary

as follows:

• Neither the transmitter nor the adversary knows the channel gains.

• Only the transmitter knows the channel gains.

• Only the adversary knows the channel gains.

• Both the transmitter and the adversary knows the channel gains.

If the jammer does not know the channel gains, we show that the capacity is equal

to the capacity of the corresponding fading channel with increased noise variance by

the power of the jammer. If the jammer knows the exact fading gains, then it can

choose its signal as a function of the gains, and under some power constraints it can

symmetrize the channel and make the capacity zero. Note that if the channel gains

are not available at the adversary, it does not have the required channel information

to symmetrize the channel. Moreover, all the results still hold if the adversary and the

encoder have the channel gains causally or non-causally, except one situation. If the

adversary knows the channel gains causally while the encoder knows them non-causally,

then the adversary cannot symmetrize the channel since the encoder possesses some

extra information that the adversary does not. These results are published in 2019
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53rd Annual Conference on Information Sciences and Systems (CISS) as Hosseinigoki

and Kosut, (2019)(a).

1.5 Organization

This dissertation is organized as follows.

Chapter 2: We first describe the standard Gaussian AVC model in Chapter 2,

and provide its capacity with list-decoding. We then present the converse and the

achievability proof.

Chapter 3: Next, we introduce four adversarial packing lemmas in Chapter 3 for

the multiple-user Gaussian AVCs. These Lemmas are used in the achievability proof

of Chapters 4, 5 and 6. We proceed to prove each of these adversarial packing lemmas

in Chapter 3.

Chapters 4 and 5: The system model of Gaussian arbitrarily-varying multiple-

access channels and Gaussian arbitrarily-varying broadcast channels are first intro-

duced in Chapters 4 and 5, respectively. Next, we go on to give the capacity regions

limits of these two channels in each corresponding chapter. We then continue to

provide the converse and the achievability proofs for the results in Chapter 4 and the

inner bound and the outer bound proofs in Chapter 5.

Chapter 6: We describe the problem and the system model for Gaussian

arbitrarily-varying interference channel in Chapter 6. Further, the main results

including the outer and the inner bounds for the capacity region are given by two

theorems. We also discuss implications of our bounds for different regimes, as well

as illustrate numerical results in the chapter. The proof for the outer bound and the

inner bounds are also provided.
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Chapter 7: Finally, we describe the GAVFC model and define its capacities under

different channel fading information in Chapter 7. We move on to state our main

theorem including the capacity of the GAVFC for five cases. Before giving the proof

of our main theorem, we need some auxiliary lemmas and tools. We also perform

some numerical simulations for different GAVFCs’ capacity region. We then show the

converse and the achievability proof for each of the main results. We finally provide a

brief proof for the auxiliary results.

1.6 Notation

Upper case letters denote random variables while lower case letters specify a

deterministic value or the realization of a random variable. Bold letters denotes

n-length vectors. We indicate Hadamard product (element-wise multiplication), inner

product and 2-norm by ◦, 〈·, ·〉 and ‖ · ‖, respectively. We use | · |+ and E[·] to denote

the positive-part function and the expectation, respectively. Also, for an integer N ,

notation [N ] represents the set {1, 2, 3, . . . , N}. Notation In and 1n stand for the

identity matrix of size n and a vector of size n with n ones elements, respectively.

However, notation 1(·) refers to the indicator function. For a vector v, we use

superscript vT to denote its transpose. Both log(·) and exp(·) functions has base

2, so we define the Gaussian channel capacity function C(x) = 1
2

log(1 + x), and

X ∼ N (µ, σ2) denotes Gaussian random variable X with mean µ and variance σ2.

We also have this definition ᾱ = 1− α.
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Chapter 2

GAUSSIAN ARBITRARILY-VARYING CHANNEL WITH LIST-DECODING

In this chapter, we determine the capacity of the Gaussian arbitrarily-varying

channel (Gaussian AVC) with a (possibly stochastic) encoder and a deterministic

list-decoder under the average probability of error criterion. We assume that both the

legitimate and the adversarial signals are restricted by their power constraints. We

also assume that there is no path between the adversary and the legitimate user but

the adversary knows the legitimate user’s code. We show that for any list size L, the

capacity is equivalent to the capacity of a point-to-point Gaussian channel with noise

variance increased by the adversary power, if the adversary has less power than L

times the transmitter power; otherwise, the capacity is zero. In the converse proof, we

show that if the adversary has enough power, then the decoder can be confounded by

the adversarial superposition of several codewords while satisfying its power constraint

with positive probability. The achievability proof benefits from a novel variant of the

Csiszár-Narayan method for the arbitrarily-varying channel.

2.1 Problem Statement

A Gaussian AVC is a modified standard point-to-point Gaussian channel in the

presence of an additive arbitrarily chosen adversary signal as it is shown in Figure 1.

Both transmitter and receiver do not know anything about the adversary signal and

the adversary do not have any information about the transmitted signal except the
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Figure 1: Gaussian Arbitrarily-Varying Channel

codebooks. The received signal is given by

Y = x + s + V (2.1)

where the n-length vector x is the legitimate transmitter’s signal, s represents the

independent adversary signal and noise V is a sequence of n-length i.i.d. zero mean

Gaussian random variables with variance σ2, independent of x and s.

We have the assumption of peak power constraints for the transmitter and adversary

signals respectively as ‖x‖2 ≤ nP and ‖s‖2 ≤ nΛ. In addition, the transmitter and

receiver are assumed to know the three parameters P , Λ and σ2.

An (n,N,Nr, L) stochastic list code for the Gaussian AVC is given by:

• Message setM = [N ] and encoder private randomness set K = [Nr],

• Stochastic encoding function x(M,K) :M×K → Rn,

• List decoding function φ(y) : Rn → DL = {L :L⊂ [N ], |L|≤L},

where the rate of the code is R = 1
n

log(N/L). The transmitter encodes the message

M and its private randomness K to x(M,K) where M and K are chosen uniformly

respectively from setsM and K. At the receiver, signalY is decoded by a deterministic

function φ to the set DL which is the set of all subsets of [N ] with cardinality at most

L. In other words, L is the size of the list decoder.
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First, define the probability of error e(s, i) for a specific message i ∈ [N ] in the

presence of a specific adversary signal s ∈ Rn as the probability that i /∈ φ(y).

Therefore, the average probability of error for s is given by

ē(s) =
1

N

N∑
i=1

e(s, i). (2.2)

Finally, the overall probability of error P (n)
e is obtained by maximizing over all possible

choices of jammers’ sequences s satisfying peak power constraint ‖s‖2 ≤ nΛ. Suppose

r is rate of private randomness. Given L and r, rate R is achievable if there exists

a sequence of
(
n, L2nR, 2nr, L

)
codes such that lim

n→∞
P

(n)
e = 0. The list-code capacity

C (L, r) is the supremum of all achievable rates given L and r.

2.2 Main Results

Theorem 1 The list-code capacity of Gaussian AVC is given by

C (L, r) =


C
(

P
Λ+σ2

)
, L > Λ

P

0, L < Λ
P
.

(2.3)

Note that the capacity for Λ = LP is unsolved.

Remark 1 Note that this result holds for all r, including r = 0 which corresponds

to a deterministic encoder. That is, the capacity does not depend on the amount of

private randomness.

Remark 2 The condition on the ratio Λ
P

determines whether it is possible for the

adversary to launch a symmetrizing attack, wherein it transmits a superposition of

codewords. Since each codeword has power P , the most codewords that the adversary

can superpose while obeying its power constraint of Λ is the bΛ
P
c. Thus, if the allowable
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list size is greater than Λ
P
, then even under this attack the decoder can output a list

made up of the true message and the superposed codewords selected by the adversary.

Of course, the decoder does not know which is which but it can still guarantee that the

true message is in the list. Thus, the worst the adversary can do is to act as an extra

additive Gaussian noise with variance Λ, so the capacity is equal to the capacity of a

standard Gaussian channel with increased noise variance as in C( P
Λ+σ2 ) . However,

if the allowable list size is less than Λ
P
, then there are too many possibilities for the

decoder to decode correctly, so the capacity is zero. Note that none of this depends on

the channel noise, so σ2 does not come into play in the condition on L.

Remark 3 For the achievability proof, we make no assumptions about what the

adversary does. However, for the converse proof, it is allowable to weaken the adversary

by making certain assumptions about its behavior, because doing so can only increase the

achievable rates. Since the converse is an upper bound on achievable rates, weakening

the adversary in this manner still yields a valid upper bound.

In our proofs in Sections 2.3 and 2.4, without loss of generality we restrict ourselves

to the transmitter’s power P = 1 which can be done by scaling the output signal.

2.3 Converse Proof

Without loss of generality, suppose P = 1. For the first case where Λ < L, we

assume that we have a code (n, L2nR, 2nr, L) with vanishing probability of error. Since

these codes must function for arbitrary jamming signals, we may derive an outer bound

by assuming the adversary transmits Gaussian noise with variance Λ−γ for any γ > 0

or 0 if Gaussian realization has power greater than Λ. By the law of large numbers,

with high probability the resulting channel is equivalent to a standard Gaussian
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channel with noise variance σ2 + Λ− γ. Thus, since γ can be chosen arbitrarily small,

from the capacity of a non-adversarial Gaussian channel,

C (L, r) ≤ C

(
1

σ2 + Λ

)
. (2.4)

Now, assume the symmetrizable case where Λ > L. In order to show C (L, r) = 0,

first consider a sequence of stochastic codebooks and probability of error P (n)
e . We

claim that if R > 0 and the jammer has the following strategy, then P (n)
e is bounded

away from zero for sufficiently large n: The jammer randomly and uniformly chooses

L messages M1, . . . ,ML from [L2nR] and also L private keys K1, . . . , KL from [2nr]

where Mi and Ki are independent. Note that the jammer knows the transmitted

codebook. The jammer then constructs

Z = x(M1, K1) + . . .+ x(ML, KL)− Lµ (2.5)

where µ ∈ Rn is a constant vector that we will choose later. The jammer transmits

S = Z if ‖Z‖2 ≤ nΛ or else transmits S = 0. In the former case, the received signal is

Y = x(M0, K0) + x(M1, K1) + . . .+ x(ML, KL)− Lµ + V (2.6)

= µ +
L∑
i=0

(x(Mi, Ki)− µ) + V (2.7)

where M0 is the true message. If M0,M1, . . . ,ML are all different and for all sets

D ⊂ {0, 1, . . . , L} with |D| = L,∥∥∥∥∥∑
i∈D

x(Mi, Ki)− Lµ
∥∥∥∥∥

2

≤ nΛ, (2.8)

then from the decoder’s perspective, any L of the L+ 1 messages might have been

forged by the adversary. Therefore, the list decoder with list size at most L has a

probability of error at least 1
L+1

; that is, the probability that the decoder chooses L
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from the L+ 1 messages that does not contain the true message M0. That is,

P (n)
e ≥ 1

L+ 1
P

∥∥∥∥∥∑
i∈D

x(Mi, Ki)− Lµ
∥∥∥∥∥

2

≤nΛ

for all D ⊂ {0, 1, . . . , L} with |D| = L, and M0,M1, . . . ,ML are distinct


(2.9)

≥ 1

L+ 1

P
∥∥∥∥∥∑

i∈D

Xi −Lµ
∥∥∥∥∥

2

≤ nΛ for all D ⊂ {0, 1, . . . , L} with |D| = L


−
(

1−L2nR − 1

L2nR
· L2nR − 2

L2nR
· · ·L2nR − L

L2nR

)
(2.10)

where Xi = x(Mi, Ki) and the second term in (2.10) shows the probability of mes-

sages M0, . . . ,ML not being distinct which tends to zero as n → ∞. Note that

X0,X1, . . . ,XL are independent and each distributed as a transmitted sequence from

the code. We proceed to show that there exists a choice of µ based only on the

codebook such that (2.10) is bounded away from zero for sufficiently large n if R > 0.

Let

α?=inf

{
α : lim inf

n→∞
max
µ∈Rn

P(‖X0 − µ‖2 ≤ nα) > 0

}
. (2.11)

Note that α? ≤ 1, since by the power constraint we always have P(‖X0‖2 ≤ n) = 1.

Fix any δ > 0 and let α = α? + δ/2. Let

γ = lim inf
n→∞

max
µ∈Rn

P(‖X0 − µ‖2 ≤ nα). (2.12)

Since α > α? we have γ > 0. Thus for n sufficiently large, there exists µ ∈ Rn

such that

P(‖X0 − µ‖2 ≤ nα) ≥ γ − δ. (2.13)
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This µ is the one to be used by the jammer in (2.5). Let Bn be the set of all x

that satisfy ‖x− µ‖2 ≤ nα. Note that P(X0 ∈ Bn) ≥ γ − δ.

Since α− δ < α?, by the definition of α?,

lim inf
n→∞

max
µ′∈R

P(‖X0 − µ′‖2 ≤ n(α− δ)) = 0. (2.14)

Specifically, there exists n sufficiently large so that for all µ′ ∈ Rn,

P(‖X0 − µ′‖2 ≤ n(α− δ)) ≤ δ. (2.15)

Fix any x1 ∈ Bn and consider those x ∈ Bn such that

〈x− µ,x1 − µ〉 > n
√
δα (2.16)

which implies∥∥∥µ +
√
δα−1(x1 − µ)− x

∥∥∥2

=‖x−µ‖2+δα−1‖x1−µ‖2−2
√
δα−1〈x−µ,x1−µ〉

(2.17)

< nα + nδ − n2δ (2.18)

= n(α− δ). (2.19)

Thus, we obtain the following by applying (2.15) with µ′ = µ+
√
δα−1(x1−µ) as

P(〈X0 − µ,X1 − µ〉 >n
√
δα,X0,X1 ∈ Bn)

≤ max
x1∈Bn

P(〈X0 − µ,x1 − µ〉 > n
√
δα, X0 ∈ Bn) (2.20)

≤ δ. (2.21)
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Moreover, if x1, . . . ,xL∈Bn satisfy 〈xi−µ,xj−µ〉≤n
√
δα for all i 6=j∈{1, . . . , L },

then

‖x1 + . . .+ xL − Lµ‖2 =
L−1∑
i=0

‖xi − µ‖2 + 2
L−2∑
i=0

L−1∑
j=i+1

〈xi − µ,xj − µ〉 (2.22)

≤ n
(
Lα + L(L− 1)

√
δα
)

(2.23)

≤ n
(
L+ Lδ + L(L− 1)

√
δα
)

(2.24)

< nΛ (2.25)

where (2.24) holds since α < α? + δ ≤ 1 + δ and (2.25) holds for sufficiently small δ

and by assumption Λ > L. Now we have

P

∥∥∥∥∥∑
i∈D

Xi −Lµ
∥∥∥∥∥

2

≤ nΛ for all distinct set D ⊂ {0, 1, . . . , L} with |D| = L


≥ P

(
〈Xi−µ,Xj−µ〉≤n

√
δα for all i, j∈{0, 1, . . . , L}, i 6=j,X0, . . . ,XL∈Bn

)
(2.26)

≥ P(X0 ∈ Bn)(L+1)−L(L+ 1)

2
P(〈X0 − µ,X1 − µ〉>n

√
δα,X0,X1 ∈ Bn) (2.27)

≥ (γ − δ)(L+1) − L(L+ 1)δ

2
(2.28)

where (2.26) follows from the analysis leading to (2.25), (2.27) follows from the union

bound and the fact that X0,X1, . . . ,XL are independent and (2.28) follows from

the lower bound on the probability of Bn and (2.21). For sufficiently small δ, (2.28)

is bounded away from zero, so by (2.10), P (n)
e is also bounded away from zero for

sufficiently large n if R > 0.
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2.4 Achievability Proof

Before proceeding to the proof, let define the typical set for Gaussian random

variables X1, . . . , Xk as:

T (n)
ε (X1, . . . , Xk)={

(x1, . . . ,xk) :E(XiXj)− ε≤
1

n
〈xi,xj〉≤E(XiXj) + ε for all i, j∈ [1 :k]

}
. (2.29)

Also, we use the following lemmas several times throughout the thesis, so we provide

them here. These lemmas can be easily generalized for Gaussian random variables

by following the corresponding lemmas in ElGamal and Kim, (2011) for discrete

memoryless random variables.

Lemma 2 (Conditional Typicality Lemma) : Let (X, Y ) ∼ f(x, y) be jointly

Gaussian random variables. Suppose that x ∈ T (n)
ε (X) and Y ∼ f(y|x) =∏n

i=1 fY |X(yi|xi). Then, for every ε > ε′,

lim
n→∞

P{(x,Y) ∈ T (n)
ε (X, Y )} = 1. (2.30)

Lemma 3 (Joint Typicality Lemma) : Let (X, Y, Z) ∼ f(x, y, z) be jointly

Gaussian random variables. If (x̃, ỹ) is a pair of arbitrary sequences and Z̃ ∼∏n
i=1 fZ|X(z̃i|x̃i) then there exists δ(ε) > 0 that tends to zero as ε→ 0 such that

P{(x̃, ỹ, Z̃)∈T (n)
ε (X, Y, Z)} ≤ exp(−n(I(Y ;Z|X)−δ(ε))). (2.31)

Now, without loss of generality, assume P = 1, r = 0 and

Λ < L, (2.32)

R < C

(
1

Λ + σ2

)
. (2.33)
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Note that assuming r = 0 makes the code deterministic. Thus, it suffices to achieve

the list-code capacity by a (n, L2nR, L) deterministic code construction as follows:

Codebook generation: Fix ε > ε′ > γ > 0. We generate L2nR i.i.d zero mean

Gaussian sequences X(m) with variance (1− γ) for each m ∈ [L2nR].

Encoding: The transmitter sends X = X(m) if its power is less than 1, otherwise

it sends zero.

Decoding: First, given y, for 1 ≤ ` ≤ L let set S` be the set of `-tuple messages

(m1, . . . ,m`) that (x(m1), . . . ,x(m`),y) ∈ T (n)
ε (X1, . . . , X`, Y ) for any set of zero-

mean Gaussian variables (X1, . . . , X`, Y ) such that

Cov(X1, . . . , X`, Y ) =

 I` 1T`

1` A


(`+1)×(`+1)

(2.34)

and 1 ≤ A ≤ 1 + σ2 + Λ.

Now we define the decoding function as

φ(y) = arg min
L∈

⋃L
`=1 S`

∥∥∥∥∥y −∑
m∈L

x(m)

∥∥∥∥∥ . (2.35)

where we choose between multiple minimizing L arbitrarily.

Analysis of the probability of error: To prove that the constructed code is achievable

meaning that the probability of error tends to zero as n → ∞, we utilize several

lemmas including the following. We provide some necessary codebook properties that

hold with high probability in Lemma 4, the proof for which is in the Section 2.5.

Lemma 4 Let X(m) for m ∈ [N ], N = L2nR, be the Gaussian codebook described

above. With probability approaching 1 as n→∞, the codebook satisfies the following,

for any x, s where ‖s‖2 ≤ nΛ and any zero-mean jointly Gaussian random vector

(X,X1, . . . , X`, S) with positive definite covariance matrices with diagonals at most
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(1, 1, . . . , 1,Λ) for all 1 ≤ ` ≤ L:

1

N

∣∣∣∣∣∣∣∣
m : (x(m), s) /∈

⋃
(X,S) independent:
EX2=1,ES2≤Λ

T (n)
ε′ (X,S)


∣∣∣∣∣∣∣∣≤exp(−nδ(ε)), (2.36)

∣∣{m1 : (x,x(m1), s) ∈ T (n)
ε (X,X1, S)

}∣∣ ≤ exp
{
n
[
|R− I(X1;XS)|+ + δ(ε)

]}
,

(2.37)

1

N

∣∣{m : (x(m),x(m1), s)∈T (n)
ε (X,X1, S) for some m1 6=m

}∣∣ ≤2 exp{−nδ(ε)/2},

if I(X;X1S)≥|R−I(X1;S)|++δ(ε), (2.38)∣∣{(m1, . . . ,m`) : (x,x(m1), . . . ,x(m`), s) ∈ T (n)
ε (X,X1, . . . , X`, S)

}∣∣ ≤ exp
{
nδ(ε)

}
if R < min

k∈{1,...,`}
I(Xk;S), (2.39)

1

N

∣∣{m:(x(m),x(m1), . . . ,x(m`), s)∈T (n)
ε (X,X1, . . . , X`, S) for some m1, . . . ,m` 6=m

}∣∣
≤ exp{−nδ(ε)/2}, if I(X;X1 . . . X`S)≥δ(ε) and R< min

k∈{1,...,`}
I(Xk;S).

(2.40)

Assume that the legitimate user transmits message M . Then, the probability of

error is upper bounded by the sum of the following L error events probabilities:

P` =P

‖Y−x(m1)− . . .−x(m`)‖2≤ min
m̂1,...,m̂`:

(M,m̂1,...,m̂`)∈S`+1

‖Y−x(M)−x(m̂1)− . . .−x(m̂`)‖2

for some (m1, . . . ,m`) ∈ S`,mi 6= M for all i ∈ [`]

 for 1 ≤ ` < L,

(2.41)

PL =P {∃(m1, . . . ,mL) ∈ SL : m` 6= M, for all ` ∈ [L]} . (2.42)

By Lemma 4, we may assume we have a deterministic codebook that satisfies

(2.36)–(2.40). Consider any state sequence s. By (2.36), with high probability

35



(x(M), s) ∈ T (n)
ε′ (X,S) where (X,S) are independent and EX2 = 1,ES2 ≤ Λ (2.36).

Thus, by the conditional typicality lemma 2, for every ε > ε′ with high probability

(xi, s,V) ∈ T (n)
ε (X,S, V ) where (X,S, V ) are mutually independent and EV 2 = σ2.

We first bound probability event P` for 1 ≤ ` < L. Define the shorthand ~X` =

(XX1 . . . X`SV ). Let V` denote a finite set of Gaussian distributions of ~X` that

is ε-dense in the set of all Gaussian distributions of ~X` with variances at most

(1, 1, . . . , 1,Λ, σ2). Note that the cardinality of V` does not depend on n. We may

upper bound P` by ∑
~X`∈V`

1

N

N∑
m=1

e ~X`(m, s) (2.43)

where

e ~X`(m, s) = P
{

(x(m),x(m1), . . . ,x(m`), s,V) ∈ T (n)
ε ( ~X`),

‖x(m)+s+V−x(m1)− . . .−x(m`)‖2 ≤ min
m̂1,...,m̂`:

(m,m̂1,...,m̂`)∈S`+1

‖s+V−x(m̂1)− . . .−x(m̂`)‖2

for some (m1, . . . ,m`) ∈ S` and mi 6= m for all i ∈ [`]

}
. (2.44)

We will show that 1
N

∑N
m=1 e ~X`(m, s)→ 0 for all Gaussian vectors ~X` (whether or

not they are in V`). We may restrict ourselves to ~X` where

(X,S, V ) are mutually independent, (2.45)

EX2 = EX2
1 = . . . = EX2

` = 1, EV 2 = σ2, ES2 ≤ Λ (2.46)

(Xi, X + S + V −Xi) are independent for all i ∈ [`], (2.47)

E(X + S + V −Xi)
2 ≤ Λ + σ2 for all i ∈ [`], (2.48)

where (2.45) holds since the legitimate transmitter, the jammer and the noise are in-

dependently generated, (2.46) follows from the assumptions for ~X`, (2.47) corresponds

to EXi(Y −Xi) = 0 following from (2.34) and the assumption that (m1, . . . ,m`) ∈ S`
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and (2.48) is obtained by (2.34) as follows:

E(X + S + V −Xi)
2 = E(Y −Xi)

2 (2.49)

= EY 2 + EX2
i − 2EY Xi (2.50)

≤ 1 + σ2 + Λ + 1− 2 (2.51)

= Λ + σ2. (2.52)

Now, suppose

I(XV ;SX1 . . . X`) = 0. (2.53)

Then we would have EXXi = 0 for all i ∈ [`]. Thus, (X,X1, . . . , X`, S+V −X1−

. . .−X`) are mutually independent since

EX(S + V −X1 − . . .−X`) = EX(S + V ) = 0, (2.54)

and

EXi(S + V −X1 − . . .−X`) = EXi(Y −X −X1 − . . .−X`) (2.55)

= EXi(Y −Xi) (2.56)

= 0, for all i ∈ [`], (2.57)

where (2.54) follows from (2.45) and (2.56)–(2.57) follow from (2.34) and EXXi = 0.

Hence, if the message (m1, . . . ,m`) satisfies the conditions in the probability in (2.44),

then (m,m1, . . . ,m`) ∈ S`+1. This implies that (m̂1, . . . , m̂`) takes on the value

(m1, . . . ,m`) in the minimum, so ‖Y − x(m1)− . . .− x(m`)‖2 ≤ ‖Y − x(m1)− . . .−

x(m`)− x(M)‖2 and so we must have

E(X + S + V −X1 − . . .−X`)
2 ≤ E(S + V −X1 − . . .−X`)

2. (2.58)
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However, this contradicts the assumptions that X is independent from

S,X1, . . . , X`, V , since

E(X + S + V −X1 − . . . , X`)
2 = EX2 + E(S + V −X1 − . . . , X`)

2 (2.59)

= 1 + E(S + V −X1 − . . . , X`)
2. (2.60)

Therefore, the assumption in (2.53) is false and there exists η > 0 such that

η ≤ I(XV ;SX1 . . . X`) = I(XV ;X1 . . . X`|S). (2.61)

Now, consider the following two cases.

Case (a): R < min{I(X1;S), . . . , I(X`;S)}. By (2.40), we only need to consider

distributions where

I(X;X1 . . . X`S) < δ(ε). (2.62)

Then for any m, s

e ~X`(m, s) ≤
∑

m1,...,m`

P
{
(x(m),x(m1), . . . ,x(m`), s,V)∈T (n)

ε (X,X1, . . . , X`, S, V )
}

(2.63)

≤ exp {−n (I(V ;X1 . . . X`|XS)− δ(ε))} (2.64)

= exp{−n(I(XV ;X1 . . . X`|S)− I(X;X1 . . . X`|S)− δ(ε))} (2.65)

≤ exp{−n(η − 2δ(ε))}. (2.66)

where in (2.63) the sum is over all m1, . . . ,m` : (x(m),x(m1), . . . ,x(m`), s) ∈

T (n)
ε (X,X1, . . . , X`, S), in (2.64) we use (2.39), the joint typicality lemma 3 and

I(V ;XS) = 0 and (2.66) follows from (2.61) and (2.62). Thus, (2.66) tends to zero

exponentially fast for sufficiently small δ(ε).
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Case (b): R ≥ min{I(X1;S), . . . , I(X`;S)}. We may assume without loss of

generality that R ≥ I(X1;S). Now, we upper bound (2.44) by

e ~X`(m, s) ≤
∑

m̂:(x(m),x(m̂),s)∈T (n)
ε (X,X1,S)

P
{
(x(m),x(m̂), s,V)∈T (n)

ε (X,X1, S, V )
}
.

(2.67)

Note that by (2.38), we may narrow the distributions to those with

I(X;X1S) < R− I(X1;S) + δ(ε). (2.68)

Therefore,

e ~X`(m, s) ≤ exp
{
n
[
|R−I(X1;XS)|+− I(V ;X1|XS)+2δ(ε)

]
(2.69)

≤exp (n [R−I(X1;XS)−I(V ;X1|XS)+2δ(ε)]) (2.70)

=exp(n[R− I(X1;XSV ) + 2δ(ε)]) (2.71)

where (2.69) follows from (2.37) and the joint typicality lemma 3, (2.70) follows since

by R ≥ I(X1;S) and (2.68) we have

R > I(X;X1S) + I(X1;S)− δ(ε) (2.72)

= I(X;X1|S) + I(X1;S)− δ(ε) (2.73)

= I(X1;XS)− δ(ε). (2.74)

Let Z = X + S + V −X1. From (2.47)–(2.48), we get

I(X1;XSV ) ≥ I(X1;X1 + Z) (2.75)

= C

(
1

EZ2

)
(2.76)

≥ C

(
1

Λ + σ2

)
(2.77)
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Using this result in (2.71), we obtain

e ~X`(m, s) ≤ exp

{
n

[
R− C

(
1

Λ + σ2

)
+ 2δ(ε)

]}
(2.78)

meaning that e ~X`(m, s) is exponentially vanishing if δ(ε) is sufficiently small and the

rate condition in (2.33) holds.

Now, we consider error probability PL. Define ~XL = (XX1X2 . . . XLSV ). Let

VL denote a finite ε-dense subset of Gaussian vectors ~XL with variances at most

1, 1, 1, . . . , 1,Λ, σ2. Thus, PL can be upper bounded by

∑
~XL∈VL

1

N

N∑
m=1

e ~XL(m, s) (2.79)

where

e ~XL(m, s) = P
{

(x(m),x(m1), . . . ,x(mL), s,V)∈T (n)
ε ( ~XL),

for some (m1, . . . ,mL) ∈ SL and m` 6=m for all ` ∈ [L]
}
. (2.80)

Thus, we need to show that 1
N

∑N
m=1 e ~XL(m, s) vanishes as n→∞ for all Gaussian

vectors ~XL that satisfy (2.45)–(2.48) for all ` ∈ [L] and

EX2
L = 1, (X1, . . . , XL) are independent, (2.81)

where (2.81) follows from (2.34) in which Cov(XiXj) = 0 for all i 6= j ∈ [L].

Observe that if I(XV ;SX1 . . . XL) = 0, then we would have for all ` ∈ [L]

0 = EX`(X + S + V −X`) (2.82)

= EX`(S −X`) (2.83)

= EX`S − 1, (2.84)

where (2.84) follows from (2.34).
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Since EXiXj = 0 for all i, j ∈ [L] and i 6= j, the covariance matrix of

(S,X1, . . . , XL) is equal to ES2 1TL

1L IL

 (2.85)

which has the determinant of ES2 − L. This determinant should be positive since the

covariance matrix Cov(S,X1, . . . , XL) is positive definite. However, since ES2 ≤ Λ,

this assumption contradicts the assumption that Λ < L in (2.32). Thus, there exists

η > 0 such that

η ≤ I(XV ;SX1 . . . XL) = I(XV ;X1 . . . XL|S) (2.86)

where we have used the fact that I(XV ;S) = 0.

Now, we may consider two cases R < min{I(X1;S), . . . , I(XL;S)} and

R ≥ min{I(X1;S), . . . , I(XL;S)}. Therefore, using an identical argument as in

the cases (a) and (b) for P`, it follows that e ~XL is also exponentially vanishing.

2.5 Proof of Lemma 4

In order to prove (2.36), we use our proof in Hosseinigoki and Kosut, (2017) (Lemma

6) for one codebook. Moreover, to obtain (2.37)–(2.40), we apply the corresponding

proof of these four equations in Hughes, (1997) (Lemma 1) for Gaussian distributions.

Note that Hughes, (1997) focuses on discrete alphabets but the same proofs can be

extended to Gaussian distributions by quantization of the set of continuous random

variables in the following way.

Let Xi be Gaussian i.i.d. n-length random vector (codebook) independent from

each other with Var(X) = 1. Fix x ∈ T (n)
ε (X), s ∈ S n and a covariance matrix
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Cov(X,X1, . . . , X`, S) ∈ V(`+2)×(`+2) such that S n is a ν-dense subset of Rn for s

such that ||s||2 ≤ nΛ and V(`+2)×(`+2) is a ν-dense subset of R(`+2)×(`+2) for positive

definite covariance matrices with diagonals at most (1, 1, . . . , 1,Λ).

Using the similar proof in Hughes, (1997) (Lemma 1), we obtain for given x, s

and covariance matrix Cov(X,X1, . . . , X`, S) that the complement of each event in

(2.37)–(2.40) happens with decreasingly doubly exponential probability for sufficiently

large n meaning that

P
{∣∣{m1 : (x,x(m1), s) ∈ T (n)

ε (X,X1, S)
}∣∣ ≤ exp

{
n
[
|R− I(X1;XS)|+ + δ(ε)

]}}
< exp(− exp(nσ(ε))), (2.87)

P
{

1

N

∣∣{m : (x(m),x(m1), s)∈T (n)
ε (X,X1, S) for some m1 6=m

}∣∣ ≤2 exp{−nδ(ε)/2}
}

< exp[− exp(nσ(ε))], if I(X;X1S)≥|R−I(X1;S)|++δ(ε), (2.88)

P
{∣∣{(m1, . . . ,m`) : (x,x(m1), . . . ,x(m`), s)∈T (n)

ε (X,X1, . . . , X`, S)
}∣∣≤exp [nδ(ε)]

}
< exp(− exp(nσ(ε))) if R < min

k∈{1,...,`}
I(Xk;S), (2.89)

P

{
1

N

∣∣{m : (x(m),x(m1), . . . ,x(m`), s) ∈ T (n)
ε (X,X1, . . . , X`, S)

for some m1, . . . ,m` 6= m
}∣∣ ≤ exp{−nδ(ε)/2}

}
< exp(− exp(nσ(ε)))

if I(X;X1 . . . X`S)≥δ(ε) and R< min
k∈{1,...,`}

I(Xk;S). (2.90)

Then, in order to complete the proof, since for any fixed ν the cardinality of finite

set S n is only increasingly exponentially in n and the set V(`+2)×(`+2) is finite along

with the doubly decreasing exponential probabilities in (2.87)–(2.90), we derive that

with probability approaching to 1, all inequalities in (2.37)–(2.40) hold simultaneously

for sufficiently large n. Since these inequalities hold for every element in the finite

sets S n and V(`+2)×(`+2), then for any vector s,x and any given covariance matrix
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Cov(X,X1, . . . , X`, S) (with ‖x‖2 = n, ‖s‖2 ≤ nΛ) which is not in its corresponding

ν-dense subset, there exists a point in the corresponding ν-dense subset that is close

enough to it (in its ν distance neighborhood). Now, by using the continuity properties

of all sets, we may conclude that (2.37)–(2.40) hold also for any point which is not in

the ν-dense subset.
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Chapter 3

PACKING LEMMAS FOR GAUSSIAN ADVERSARIAL CHANNELS

In this chapter, we introduce four adversarial packing lemmas as Lemmas 5, 6,

7 and 8, and prove them in separate sections. We propose these lemmas to use

them to achieve the lower bounds for the capacity regions of Gaussian arbitrarily-

varying multiple-access channels, Gaussian arbitrarily-varying broadcast channels and

Gaussian arbitrarily-varying interference channels in Chapters 4, 5 and 6. We also

provide Lemma 9 and its proof in Sections 3.6 which is required in the proofs of

proposed adversarial packing lemmas. Note that Lemma 7 and 8 are introduced for

two codebooks while Lemma 5 and 6 focus on just one codebook. Moreover, Lemma 6

and 7 differ from Lemma 5 and 8 in those they take into account common randomness

between the encoder and the decoder for one codebook and two codebooks scenarios,

respectively. Lemma 6 and 7 are used to bound the error events with the common

message using as common randomness. The advantage of arbitrarily-varying channel

coding with common randomness is that it is not susceptible to symmetrization. Thus,

in Lemma 6 and 7 there is no requirement that Λ < 1.

3.1 Packing Lemmas

Lemmas 5, 6, 7 and 8 are proved in Sections 3.2, 3.3, 3.4, 3.5 respectively. Before

proceeding to the packing lemmas, we first define the following typical set for Gaussian
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random variables X1, . . . , Xk as:

T (n)
ε (X1, . . . , Xk) ={

(x1, . . . ,xk) : E(XiXj)− ε ≤
1

n
〈xi,xj〉 ≤ E(XiXj) + ε for all i, j ∈ [1 : k]

}
. (3.1)

Lemma 5 (One-Codebook Adversarial Packing Lemma) Fix σ2, Λ ≥ 0, N =

2nR. Let X, . . . ,XN ∈ Rn be independent zero mean Gaussian random vectors (code-

books) with variance matrices In. Let Λ, R satisfy

Λ < 1, (3.2)

R < C

(
1

Λ + σ2

)
, (3.3)

Let U be the set of pairs (x, z) ∈ T (n)
ε (X,Z) for some Gaussian pairs (X,Z) where

EX2 = 1, (X,Z) are independent. (3.4)

Define

p(x, . . . ,xN |w) =
1

N

N∑
i=1

P
{
∃j 6= i : ‖xi + w + V − xj‖2 ≤ ‖w + V‖2,

(xi,w + V) ∈ U , (xj,xi + w + V − xj) ∈ U
}

(3.5)

where V is Gaussian noise distributed as V ∼ N (0, σ2In). There exists ρ > 0 such

that

lim
n→∞

P

[
sup

w:||w||2≤nΛ

p(X, . . . ,XN |w) ≥ exp(−nρ)

]
= 0. (3.6)

Lemma 6 (One-Codebook Adversarial Packing Lemma with Common

Randomness) Fix σ2, Λ ≥ 0, N = 2nR and K ≥ n2. Let Xi(k) for i = 1, . . . , N ,

k = 1, . . . , K be independent zero mean Gaussian random vectors with covariance
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matrix In. Let R satisfy R < C(1/(Λ + σ2)). Define

p2 (x1(1), . . . ,x1(K),x2(1), . . . ,x2(K), . . . ,xN(1), . . . ,xN(K)|w) =

1

NK

N∑
i=1

K∑
k=1

P

{
∃j 6= i : ‖xi(k) + w + V − xj(k)‖2 ≤ ‖w + V‖2,

xi(k) ∈ T (n)
ε (X),xj(k) ∈ T (n)

ε (X)

}
(3.7)

where V is Gaussian noise distributed as V ∼ N (0, σ2In). There exists ρ > 0 such

that

lim
n→∞

P

[
sup

w:||w||2≤nΛ

p2(X1(1), . . . ,X1(K), . . . ,XN(1), . . . ,XN(K)|w) ≥ ρ

]
= 0. (3.8)

Lemma 7 (Two-Codebook Adversarial Packing Lemma with Common

Randomness) Fix θ ∈ [0, 1], σ2, Λ ≥ 0, N1 = 2nR1, N2 = 2nR2 and K ≥ n2.

Let X1(k), . . . ,XN1(k) ∈ Rn and Y1, . . . ,YN2 ∈ Rn for k = 1, . . . , K be independent

zero mean Gaussian random vectors (codebooks) with covariance matrices θ In and

θ̄ In, respectively. Let R1, R2 satisfy

R1 < C

(
θ

Λ + σ2

)
, (3.9)

R2 < C

(
θ̄

Λ + σ2

)
, (3.10)

R1 +R2 < C

(
1

Λ + σ2

)
. (3.11)

Let U be the set of triples (x,y, z) ∈ T (n)
ε (X, Y, Z) for some Gaussian triple (X, Y, Z)

where

EX2 = θ, EY 2 = θ̄, (X, Y, Z) are mutually independent. (3.12)
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Define

p1(x1(1), . . . ,x1(K),x2(1), . . . ,x2(K), . . . ,xN1(1), . . . ,xN1(K),y1, . . . ,yN2|w) =

1

N1N2K

N1∑
i1=1

N2∑
i2=1

K∑
k=1

P
{
∃j1 6= i1, j2 6= i2 :‖xi1(k)+yi2+w+V−xj1(k)−yj2‖2≤‖w+V‖2,

(xi1(k),yi2 ,w + V) ∈ U , (xj1(k),yj2 ,xi1(k) + yi2 + w + V − xj1(k)− yj2) ∈ U
}

(3.13)

where V is Gaussian noise distributed as V ∼ N (0, σ2In). There exists ρ > 0 such

that

lim
n→∞

P

[
sup

w:||w||2≤nΛ

p1 (X1(1), . . . ,X1(K), . . . ,XN1(1), . . . ,XN1(K),Y1, . . . ,YN2|w)

≥ exp(−nρ)

]
= 0. (3.14)

Lemma 8 (Two-Codebook Adversarial Packing Lemma) Fix θ ∈ [0, 1], σ2,

Λ ≥ 0, N1 = 2nR1 and N2 = 2nR2. Let X1, . . . ,XN1 ∈ Rn and Y1, . . . ,YN2 ∈ Rn be

independent zero mean Gaussian random vectors (codebooks) with covariance matrices

θ In and θ̄ In, respectively. Let Λ, R1, R2 satisfy

Λ < 1, (3.15)

R1 < C

(
θ

Λ + σ2

)
, (3.16)

R2 < C

(
θ̄

Λ + σ2

)
, (3.17)

R1 +R2 < C

(
1

Λ + σ2

)
. (3.18)

Let U be the set of triples (x,y, z) ∈ T (n)
ε (X, Y, Z) for some Gaussian triple (X, Y, Z)

where

EX2 = θ, EY 2 = θ̄, (X, Y, Z) are mutually independent. (3.19)
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Define

p1(x1, . . . ,xN1 ,y1, . . . ,yN2|w) =

1

N1N2

N1∑
i1=1

N2∑
i2=1

P
{
∃j1 6= i1, j2 6= i2 : ‖xi1 + yi2 + w + V − xj1 − yj2‖2 ≤ ‖w + V‖2,

(xi1 ,yi2 ,w + V) ∈ U , (xj1 ,yj2 ,xi1 + yi2 + w + V − xj1 − yj2) ∈ U
}

(3.20)

where V is Gaussian noise distributed as V ∼ N (0, σ2In). There exists ρ > 0 such

that

lim
n→∞

P

[
sup

w:||w||2≤nΛ

p1(X1, . . . ,XN1 ,Y1, . . . ,YN2 |w) ≥ exp(−nρ)

]
= 0. (3.21)

Since we are dealing with more than one Gaussian codeword in this thesis, we need

a new version of Csiszár and Narayan, (1988)(b), Lemma 3 and Csiszár and Narayan,

(1991), Lemma 1 not only for Gaussian vectors, but also for multiple codebooks to

prove the packing lemmas. It did not appear possible to use the properties derived

from these lemmas on each codebook individually; instead, we must prove a new

lemma establishing joint properties among more than one codebook. This new lemma,

Lemma 9, provides the main properties that the Gaussian codebooks need as part of

the proof of Lemma 8 by (3.27)-(3.29). The proof of Lemma 9 is provided in Section

3.6.

Lemma 9 Fix θ ∈ [0, 1], N1 = 2nR1 and N2 = 2nR2. Given any random variables

X, Y,W , define the quantity

JX;Y ;W (R1, R2) =

max
{

0, R1 − I(X;WY ), R2 − I(Y ;WX), R1 +R2 − I(XY ;W )− I(X;Y )
}
.

(3.22)
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Let Xi1 and Yi2 be Gaussian i.i.d. n-length random vectors (codebooks) independent

from each other with zero mean and Cov(Xi1) = θ In, Cov(Yi2) = θ̄ In where i1 ∈

{1, 2, . . . , N1} and i2 ∈ {1, 2, . . . , N2}. With probability approaching 1 as n→∞, they

satisfy the following, for any x,y,w where ‖w‖2 ≤ nΛ and any zero mean jointly

Gaussian random vector (X, Y,X ′, Y ′,W ) with positive definite covariance matrices

with diagonals at most (θ, θ̄, θ, θ̄,Λ). (3.82)

1

N1N2

∣∣∣∣∣∣∣∣
(i1, i2) : (xi1 ,yi2 ,w) /∈

⋃
(X,Y,W ) mutually independent:

EX2=θ,EY 2=θ̄,EW 2≤Λ

T (n)
ε (X, Y,W )


∣∣∣∣∣∣∣∣ ≤ exp(−nδ(ε)).

(3.23)

∣∣{j : (x,xj,w) ∈ T (n)
ε (X,X ′,W )

}∣∣ ≤ exp
{
n
[
|R− I(X ′;XW )|+ + δ(ε)

]}
(3.24)

1

N

∣∣{i : (xi,xj,w) ∈ T (n)
ε (X,X ′,W ) for some j 6= i

}∣∣
≤ exp{n(|R− I(X ′;W )|+ − I(X;X ′W ) + δ(ε))} (3.25)

1

N

∣∣{i : (xi,xj,w) ∈ T (n)
ε (X,X ′,W ) for some j 6= i

}∣∣ ≤ 2 exp(−nδ(ε)/2)

if |R− I(X ′;W )|+ ≤ I(X;X ′W )− 2δ(ε) (3.26)∣∣{(i1, i2) : (xi1 ,yi2 ,w)∈T (n)
ε (X ′, Y ′,W )

}∣∣≤exp
{
n
[
JX′;Y ′;W (R1, R2) + δ(ε)

]}
(3.27)∣∣{(i1, i2) : (x,y,xi1 ,yi2 ,w) ∈ T (n)

ε (X, Y,X ′, Y ′,W )
}∣∣

≤ exp
{
n
[
JX′;Y ′;XYW (R1, R2) + δ(ε)

]}
(3.28)

1

N1N2

∣∣{(i1, i2) : (xi1 ,yi2 ,xj1 ,yj2 ,w)∈T (n)
ε (X, Y,X ′, Y ′,W ) for some j1 6= i1, j2 6= i2

}∣∣
≤ 8 exp{−nδ(ε)/4} if JX′;Y ′;W (R1, R2) ≤ I(XY ;X ′Y ′W )− 2δ(ε). (3.29)
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3.2 Proof of Lemma 5

Since Lemma 5 is a special case of Lemma 8 for one codebook. Note that Csiszár

and Narayan, (1991) find the capacity of Gaussian AVC channels by other tools rather

than Lemma 5. We are the first one to introduce the adversarial packing lemma to

prove the Gaussian AVC and its network setting.

We apply the single-codebook results of Lemma 9 to assume the codebook satisfies

the single-codebook version of (3.23)–(3.29). To prove (3.6), first note that by the

single-codebook version of (3.23), with high probability (xi,w) ∈ T (n)
ε′ (X,W ) where

(X,W ) are independent, and

EX2 = 1, EW 2 ≤ Λ. (3.30)

Thus, by the conditional typicality lemma 2, for every ε > ε′ with high probability

(xi,w,V) ∈ T (n)
ε (X,W, V ) where (X,W, V ) are mutually independent, and EV 2 = σ2.

This implies that (xi,w + V) ∈ U , and also that

‖w + V‖2 ≤ n(Λ + σ2 + ε). (3.31)

We use shorthand ~X = (XX ′WV ). For i,w and any Gaussian distribution on ~X,

define

e ~X(i,w) = P
{

(xi,xj,w,V) ∈ T (n)
ε ( ~X) for some j 6= i

}
. (3.32)

We need to show that for some ρ > 0,

1

N

∑
i

e ~X(i,w) ≤ exp(−nρ) (3.33)
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for all ~X where

(X,W, V ) are mutually independent, (3.34)

EX2 = EX ′2 = 1, EV 2 = σ2 (3.35)

EW 2 ≤ Λ, E(X +W + V −X ′)2 ≤ Λ + σ2 (3.36)

(X ′, X +W + V −X ′) are independent. (3.37)

Observe that if I(XV ;WX ′) = 0, then we would have

Λ + σ2 ≥ E(X +W + V −X ′)2 (3.38)

= E(X + V )2 + E(W −X ′)2 (3.39)

≥ 1 + σ2. (3.40)

But this cannot happen since Λ < 1 by (3.2). Thus, there exists η > 0 where

I(XV ;WX ′) ≥ η. (3.41)

Recalling that I(XV ;W ) = 0, this implies

I(XV ;X ′|W ) ≥ η. (3.42)

Also, by (3.26), we may restrict ourselves to distributions where

R− I(X ′;W ) ≥ I(X;X ′W )− 2δ(ε). (3.43)

We may now write, for any i and any w

e ~X(i,w) ≤
∑

j:(xi,xj ,w)∈T (n)
ε

P
{

(xi,xj,w,V) ∈ T (n)
ε

}
(3.44)

≤ exp
{
n
[
|R− I(X ′;XW )|+ − I(V ;X ′|XW ) + δ(ε)

]}
, (3.45)
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where in (3.45) we have applied (3.24), the joint typicality lemma 3, and the fact that

I(V ;XW ) = 0.

We consider two cases.

Case (a): R− I(X ′;W ) ≤ 0. Note that R− I(X ′;XW ) ≤ R− I(X ′;W ) so in this

case we also have R − I(X ′;XW ) ≤ 0. By (3.43), I(X;X ′W ) ≤ 2δ(ε). Thus, from

(3.42)

η ≤ I(XV ;X ′|W ) (3.46)

= I(X;X ′|W ) + I(V ;X ′|XW ) (3.47)

≤ 2δ(ε) + I(V ;X ′|XW ). (3.48)

From (3.45), we have

e ~X(i,w) ≤ exp{n[−I(V ;X ′|XW ) + δ(ε)]} (3.49)

≤ exp{n[−η + 3δ(ε)]}. (3.50)

This vanishes exponentially fast if δ(ε) is sufficiently small.

Case (b): R− I(X ′;W ) > 0. By (3.43), we have

− 2δ(ε) ≤ R− I(X ′;W )− I(X;X ′W ). (3.51)

Note that

I(X ′;W ) + I(X;X ′W ) ≥ I(X ′;W ) + I(X;X ′|W ) (3.52)

= I(X ′;XW ). (3.53)

Thus

− 2δ(ε) ≤ R− I(X ′;W )− I(X;X ′W ) ≤ R− I(X ′;XW ). (3.54)
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By (3.45), we have

1

n
log e ~X(i,w) ≤ |R− I(X ′;XW )|+ − I(V ;X ′|XW ) + δ(ε) (3.55)

≤ R− I(X ′;XW )− I(V ;X ′|XW ) + 3δ(ε) (3.56)

≤ R− I(X ′;XWV ) + 3δ(ε). (3.57)

Let Z = X + W + V − X ′. Recalling that (X ′, Z) are mutually independent and

EZ2 ≤ Λ + σ2, we have

I(X ′;XWV ) ≥ I(X ′;X +W + V ) (3.58)

= I(X ′;X ′ + Z) (3.59)

= h(X ′ + Z)− h(X ′ + Z|X ′) (3.60)

=
1

2
log 2πe(1 + EZ2)− h(Z|X ′) (3.61)

=
1

2
log 2πe(1 + EZ2)− 1

2
log 2πeEZ2 (3.62)

= C

(
1

EZ2

)
(3.63)

≥ C

(
1

Λ + σ2

)
. (3.64)

Thus

e ~X(i,w) ≤ exp

{
n

[
R− C

(
1

Λ + σ2

)
+ 3δ(ε)

]}
. (3.65)

Therefore, e ~X(i,w) is exponentially vanishing if δ(ε) is sufficiently small and (3.3)

holds.

3.3 Proof of Lemma 6

We prove this lemma using a random code reduction, as in Csiszár and Körner,

(2011), Lemma 12.8. We first show that a Gaussian codebook independent of the
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jammer’s signal achieves small probability of error, and then we show that a finite

number of deterministic codebooks achieve essentially the same probability.

Let X1, . . . ,XN be Gaussian random vectors with zero mean and covariance In.

We will prove that, for any i ∈ [N ] and any w such that ‖w‖2 ≤ nΛ

P
{
∃j 6= i : ‖Xi + w + V −Xj‖2 ≤ ‖w + V‖2

}
→ 0 (3.66)

as n → ∞, where V ∼ N (0, σ2In). To prove this, we adopt the basic approach of

Lapidoth, (1996). In particular, let Z = w + V, and let U be a unitary matrix that

maps Z to (‖Z‖, 0, . . . , 0). Then we may write

P
{
∃j 6= i : ‖Xi + Z−Xj‖2 ≤ ‖Z‖2

}
= P

{
∃j 6= i : ‖UXi + UZ− UXj‖2 ≤ ‖UZ‖2

}
(3.67)

= P
{
∃j 6= i : ‖Xi + UZ−Xj‖2 ≤ ‖UZ‖2

}
(3.68)

where (3.68) follows from the spherical symmetry of the codebook distribution. Now

if we define, for any Σ > 0,

e(Σ) = P{∃j 6= i : ‖Xi + (
√
nΣ, 0, . . . , 0)−Xj‖2 ≤ nΣ} (3.69)

then the probability in (3.68) may be written as Ee(‖Z‖2). Note that for any δ,

lim
n→∞

P
{∣∣‖Z‖2 − n(σ2 + Λ)

∣∣ > nδ} → 0. (3.70)

Moreover, e(Σ) is non-decreasing in Σ. Thus, for any δ > 0, if we let Ṽ ∼ N (0, σ2 +

Λ+δ), for sufficiently large n we have Ee(‖Z‖2) ≤ Ee(‖Ṽ‖2). Now, Ee(‖Ṽ‖2) is simply

the probability of error for a Gaussian channel with noise variance σ2 + Λ + δ. Since

Gaussian codebooks achieve capacity for Gaussian channels with minimum distance

decoding, this quantity vanishes with n as long as

R < C

(
1

σ2 + Λ + δ

)
(3.71)
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which holds for small enough δ by the assumption that R < C( 1
σ2+Λ

). This proves

(3.66).

Now let Xi(k) for i = 1, . . . , N and k = 1, . . . , K be independent Gaussian vectors

with zero mean and covariance In. For any i ∈ [N ], k ∈ [K], and w such that

‖w‖2 ≤ nΛ, let

E(k, i,w) = P
{
∃j 6= i : ‖Xi(k) + w + V −Xj(k)‖2 ≤ ‖w + V‖2,

Xi(k) ∈ T (n)
ε′ ,Xj(k) ∈ T (n)

ε′

∣∣∣X1(k), . . . ,XN(k)
}
. (3.72)

To prove the lemma, we need to show that, for any ε > 0

lim
n→∞

P

 ⋃
w:‖w‖2≤nΛ

{
1

NK

N∑
i=1

K∑
k=1

E(k, i,w) > ε

}→ 0. (3.73)

From (3.66), we know that for any δ > 0 and sufficiently large n for any k, i,w, we

have EE(k, i,w) ≤ δ (The conditions on Xi and Xj only decrease the probability.)

Thus, for fixed i and w we have

P

{
1

K

K∑
k=1

E(k, i,w)>ε/2

}
=P

{
2
∑K
k=1 E(k,i,w) > 2Kε/2

}
(3.74)

≤ 2−Kε/2
K∏
k=1

E2E(k,i,w) (3.75)

≤ 2−Kε/2(1 + EE(1, i,w))K (3.76)

= 2−K(ε/2−log(1+δ)) (3.77)

where (3.75) holds by Markov’s inequality, and (3.76) holds since 2t ≤ 1 + t if t ∈ [0, 1].

Thus, if we let w1, . . . ,wL be any finite set of vectors with norm at most
√
nΛ, we

may apply the union bound to find

P


⋃
l∈[L]
i∈[N ]

{
1

K

K∑
k=1

E(k, i,wl) >
ε

2

} ≤ LN2−K( ε
2
−log(1+δ)). (3.78)
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In particular, let w1, . . . ,wL be a ν-dense subset of points in the sphere of radius
√
nΛ. There exists such a set with L = 2nρ for some ρ. Since E(k, i,w) is continuous

in w, for sufficiently small ν, if the probability of error for all wl is at most ε/2, then

the probability of error for all w is at most ε. Thus we may bound the probability in

(3.73) by

2nρ2nR2−K(ε/2−log(1+δ)).

As long as δ is small enough so that ε/2 − log(1 + δ) > 0 and K/n → ∞, this

probability vanishes in n.

3.4 Proof of Lemma 7

We prove this lemma using a random code reduction, as in Csiszár and Körner,

(2011), Lemma 12.8. We first show that a Gaussian codebook independent of the

jammer’s signal achieves small probability of error, and then we show that a finite

number of deterministic codebooks achieve essentially the same probability.

Let X1, . . . ,XN1 be Gaussian random vectors with zero mean and covariance θIn

for all yi2 with ‖yi2‖2 = θ̄. We will prove that, for any i1 ∈ [N1] and any w such that

‖w‖2 ≤ nΛ

1

N2

N2∑
i2=1

PXV
{
∃j1 6= i1, j2 6= i2 :‖Xi1 + yi2 + w + V −Xj1 − yj2‖2 ≤ ‖w + V‖2

}
→0

(3.79)

as n→∞, where V ∼ N (0, σ2In).

To prove this, we apply Lemma 9 to assume the two codebooks satisfy (3.23)–

(3.29). To prove (3.21), first note that by (3.23), with high probability (xi1 ,yi2 ,w) ∈

T (n)
ε′ (X, Y,W ) where (X, Y,W ) are mutually independent, and

EX2 = θ, EY 2 = θ̄, EW 2 ≤ Λ. (3.80)
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Thus, by the conditional typicality lemma 2, for every ε > ε′ with high probability

(xi1 ,yi2 ,w,V) ∈ T (n)
ε (X, Y,W, V ) where (X, Y,W, V ) are mutually independent, and

EV 2 = σ2. This implies that (xi1 ,yi2 ,w + V) ∈ U , and also that

‖w + V‖2 ≤ n(Λ + σ2 + ε). (3.81)

We use shorthand ~X = (XYX ′Y ′WV ). For i1, i2,w and any Gaussian distribution

on ~X, define

e ~X(i1, i2,w)

=
1

N2

N2∑
i2=1

PXV
{
∃j1 6= i1, j2 6= i2 : ‖Xi1 + yi2 + w + V −Xj1 + yj2‖2 ≤ ‖w + V‖2,

(Xi1 ,yi2 ,w + V) ∈ U , (Xj1 ,yj2 ,Xi1 + yi2 + w + V −Xj1 − yj2) ∈ U
}

(3.82)

≤ 1

N2

N2∑
i2=1

PXV
{
∃j1 6= i1, j2 6= i2 : (Xi1 ,yi2 ,Xj1 ,yj2 ,w,V)∈T (n)

ε (X, Y,X ′, Y ′,W, V )
}

(3.83)

=
1

N2

N2∑
i2=1

∑
j1 6=i1

PXV
{
∃j2 6= i2 : (Xi1 ,yi2 ,Xj1 ,yj2 ,w,V) ∈ T (n)

ε (X, Y,X ′, Y ′,W, V )
}

(3.84)

=
∑
j1 6=i1

1

N2

∑
i2: ∃j2 6=i2

(yi2 ,yj2 ,w)T (n)
ε

PXV
{

(Xi1 ,yi2 ,Xj1 ,yj2 ,w,V) ∈ T (n)
ε (X, Y,X ′, Y ′,W, V )

}

(3.85)

≤
∑
j1 6=i1

exp{n(|R2 − I(Y ′;W )|+ − I(Y ;Y ′W ) + 2δ(ε)− I(XX ′V ;Y Y ′W ))} (3.86)

≤ exp{n(R1 + |R2 − I(Y ′;W )|+ − I(Y ;Y ′W )− I(XX ′V ;Y Y ′W ) + 2δ(ε))} (3.87)

By Lemma (9) and its proof in (3.194).

We need to show that for some ρ > 0,

e ~X(i1, i2,w) ≤ exp(−nρ) (3.88)
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for all ~X where

(X,X ′, Y,W, V ) are mutually independent, (3.89)

EX2 = EX ′2 = θ, EY 2 = EY ′2 = θ̄, EV 2 = σ2 (3.90)

EW 2 ≤ Λ, E(X + Y +W + V −X ′ − Y ′)2 ≤ Λ + σ2 (3.91)

(X ′, Y ′, X + Y +W + V −X ′ − Y ′) are mutually independent. (3.92)

Case(a): If R2 ≤ I(Y ′;W ) meaning that |R2 − I(Y ′;W )|+ = 0 then by assuming

I(X ′;XV ) = 0 we have

e ~X(i1, i2,w)

≤ exp{n(R1 − I(Y ;Y ′W )− I(XX ′V ;Y Y ′W ) + 2δ(ε))} (3.93)

= exp{n(R1 − I(Y ;Y ′W )− I(XV ;Y Y ′W )− I(X ′;Y Y ′W |XV ) + 2δ(ε))} (3.94)

= exp{n(R1−I(Y ;Y ′W )−I(XV ;Y Y ′W )−I(X ′;Y Y ′W |XV )−I(X ′;XV )+2δ(ε))}

(3.95)

= exp{n(R1 − I(Y ;Y ′W )− I(XV ;Y Y ′W )− I(X ′;Y Y ′WXV ) + 2δ(ε))} (3.96)

≤ exp{n(R1 − I(X ′;Y Y ′WXV ) + 2δ(ε))} (3.97)
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Let Z = X+Y +W+V −X ′−Y ′. Recalling that (X ′, Y ′, Z) are mutually independent

and EZ2 ≤ Λ + σ2, we have

I(X ′;XYWY ′V ) ≥ I(X ′;X + Y +W + V − Y ′) (3.98)

= I(X ′;X ′ + Z) (3.99)

= h(X ′ + Z)− h(X ′ + Z|X ′) (3.100)

=
1

2
log 2πe(θ + EZ2)− h(Z|X ′) (3.101)

=
1

2
log 2πe(θ + EZ2)− 1

2
log 2πeEZ2 (3.102)

= C

(
θ

EZ2

)
(3.103)

≥ C

(
θ

Λ + σ2

)
. (3.104)

Therefore,

e ~X(i1, i2,w) ≤ exp

{
n

(
R1 − C

(
θ

Λ + σ2

)
+ 2δ(ε)

)}
, (3.105)

and e ~X(i1, i2,w) is exponentially vanishing if δ(ε) is sufficiently small and R1 <

C
(

θ
Λ+σ2

)
.
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Case(b): If R2 > I(Y ′;W ) meaning that |R2 − I(Y ′;W )|+ = R2 − I(Y ′;W ) then

by assuming I(X ′;XV ) = 0 we have

e ~X(i1, i2,w)

≤ exp{n(R1 +R2 − I(Y ′;W )− I(Y ;Y ′W )− I(XX ′V ;Y Y ′W ) + 2δ(ε))} (3.106)

= exp{n(R1+R2−I(Y ′;W )−I(Y ;Y ′|W )−I(Y ;W )− I(XX ′V ;Y Y ′W ) + 2δ(ε))}

(3.107)

= exp{n(R1 +R2 − I(Y ′;YW )− I(XX ′V ;Y Y ′W ) + 2δ(ε))} (3.108)

= exp{n(R1 +R2 − I(Y ′;YW )− I(X ′;Y Y ′W )− I(XV ;Y Y ′W |X ′) + 2δ(ε))}

(3.109)

= exp{n(R1 +R2 − I(Y ′;YW )− I(X ′;Y ′)− I(X ′;YW |Y ′)− I(XV ;Y Y ′WX ′)

+ I(XV ;X ′) + 2δ(ε))} (3.110)

= exp{n(R1 +R2 − I(Y ′X ′;YW )− I(XV ;YW )− I(XV ;X ′Y ′|YW ) + 2δ(ε))}

(3.111)

= exp{n(R1 +R2 − I(Y ′X ′;YW )− I(X ′Y ′;XV YW ) + I(X ′Y ′;YW ) + 2δ(ε))}

(3.112)

= exp{n(R1 +R2 − I(X ′Y ′;XV YW ) + 2δ(ε))} (3.113)

Moreover,

I(X ′Y ′;XYWV ) ≥ I(X ′Y ′;Z +X ′ + Y ′) (3.114)

= h(Z +X ′ + Y ′)− h(Z) (3.115)

= C

(
1

EZ2

)
(3.116)

≥ C

(
1

Λ + σ2

)
. (3.117)
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Thus,

e ~X(i1, i2,w) ≤ exp

{
n

(
R1 +R2 − C

(
1

Λ + σ2

))
+ 2δ(ε)

}
. (3.118)

Therefore, e ~X(i1, i2,w) is exponentially vanishing if δ(ε) is sufficiently small and

(3.16)–(3.18) hold.

Note that in the following if I(X ′;XYWV ) = 0 then I(Y ′;X ′XY VW ) =

I(X ′Y ′;XY VW ).

I(Y ′;X ′XY VW ) = I(Y ′;X ′) + I(Y ′;XY VW |X ′) (3.119)

= I(X ′Y ′;XY VW )− I(X ′;XY VW ). (3.120)

This proves (3.79).

Now, let Xi1(k) for i1 = 1, . . . , N1 and k = 1, . . . , K be independent Gaussian

vectors with zero mean and covariance θIn. For any i1 ∈ [N1], k ∈ [K], and w such

that ‖w‖2 ≤ nΛ, let

E(k, i1, i2,w) =
1

N2

N2∑
i2=1

PV
{
∃j1 6= i1, j2 6= i2 :

‖Xi1(k) + yi2 + w + V −Xj1(k) + yj2‖2 ≤ ‖w + V‖2, (Xi1(k),yi2 ,w + V) ∈ U ,

(Xj1(k),yj2 ,Xi1(k) + yi2 + w + V −Xj1(k)− yj2) ∈ U
∣∣∣X1(k), . . . ,XN1(k)

}
.

(3.121)

To prove the lemma, we need to show that, for any ε > 0

lim
n→∞

P

 ⋃
w:‖w‖2≤nΛ

{
1

N1K

N1∑
i1=1

K∑
k=1

E(k, i1, i2,w) > ε

}→ 0. (3.122)

From (3.66), we know that for any δ > 0 and sufficiently large n for any k, i1, i2,w,

we have EXE(k, i1, i2,w) ≤ δ (The conditions on Xi1 and Xj1 only decrease the
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probability.) Thus, for fixed i1 and w we have

P

{
1

K

K∑
k=1

E(k, i1, i2,w)>ε/2

}
=P

{
2
∑K
k=1 E(k,i1,i2,w) > 2Kε/2

}
(3.123)

≤ 2−Kε/2
K∏
k=1

E2E(k,i1,i2,w) (3.124)

≤ 2−Kε/2(1 + EE(1, i1, i2,w))K (3.125)

= 2−K(ε/2−log(1+δ)) (3.126)

where (3.124) holds by Markov’s inequality, and (3.125) holds since 2t ≤ 1 + t if

t ∈ [0, 1]. Thus, if we let w1, . . . ,wL be any finite set of vectors with norm at most
√
nΛ, we may apply the union bound to find

P


⋃
l∈[L]
i1∈[N1]

{
1

K

K∑
k=1

E(k, i1, i2,wl) >
ε

2

} ≤ LN12−K( ε
2
−log(1+δ)). (3.127)

In particular, let w1, . . . ,wL be a ν-dense subset of points in the sphere of radius
√
nΛ.

There exists such a set with L = 2nρ for some ρ. Since E(k, i1, i2,w) is continuous in

w, for sufficiently small ν, if the probability of error for all wl is at most ε/2, then

the probability of error for all w is at most ε. Thus we may bound the probability in

(3.122) by

2nρ2nR12−K(ε/2−log(1+δ)).

As long as δ is small enough so that ε/2 − log(1 + δ) > 0 and K/n → ∞, this

probability vanishes in n.

3.5 Proof of Lemma 8

We apply Lemma 9 to assume the two codebooks satisfy (3.23)–(3.29). To prove

(3.21), first note that by (3.23), with high probability (xi1 ,yi2 ,w) ∈ T (n)
ε′ (X, Y,W )
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where (X, Y,W ) are mutually independent, and

EX2 = θ, EY 2 = θ̄, EW 2 ≤ Λ. (3.128)

Thus, by the conditional typicality lemma 2, for every ε > ε′ with high probability

(xi1 ,yi2 ,w,V) ∈ T (n)
ε (X, Y,W, V ) where (X, Y,W, V ) are mutually independent, and

EV 2 = σ2. This implies that (xi1 ,yi2 ,w + V) ∈ U , and also that

‖w + V‖2 ≤ n(Λ + σ2 + ε). (3.129)

We use shorthand ~X = (XYX ′Y ′WV ). For i1, i2,w and any Gaussian distribution

on ~X, define

e ~X(i1, i2,w)=P
{

(xi1 ,yi2 ,xj1 ,yj2 ,w,V)∈T (n)
ε ( ~X) for some j1 6= i1, j2 6= i2

}
. (3.130)

We need to show that for some δ > 0,

1

N1N2

∑
i1,i2

e ~X(i1, i2,w) ≤ exp(−nρ) (3.131)

for all ~X where

(X, Y,W, V ) are mutually independent, (3.132)

EX2 = EX ′2 = θ, EY 2 = EY ′2 = θ̄, EV 2 = σ2 (3.133)

EW 2 ≤ Λ, E(X + Y +W + V −X ′ − Y ′)2 ≤ Λ + σ2 (3.134)

(X ′, Y ′, X + Y +W + V −X ′ − Y ′) are mutually independent. (3.135)

Observe that if I(XY V ;WX ′Y ′) = 0, then we would have

Λ + σ2 ≥ E(X + Y +W + V −X ′ − Y ′)2 (3.136)

= E(X + Y + V )2 + E(W −X ′ − Y ′)2 (3.137)

≥ 1 + σ2. (3.138)
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But this cannot happen since Λ < 1 by (3.15). Thus, there exists η > 0 where

I(XY V ;WX ′Y ′) ≥ η. (3.139)

Recalling that I(XY V ;W ) = 0, this implies

I(XY V ;X ′Y ′|W ) ≥ η. (3.140)

Also, by (3.29), we may restrict ourselves to distributions where

JX′;Y ′;W (R1, R2) ≥ I(XY ;X ′Y ′W )− 2δ(ε). (3.141)

We may now write, for any (i1, i2) and any w

e ~X(i1, i2,w) ≤
∑

(j1,j2):(xi1 ,yi2 ,xj1 ,yj2 ,w)∈T (n)
ε

P
{

(xi1 ,yi2 ,xj1 ,yj2 ,w,V) ∈ T (n)
ε

}
(3.142)

≤ exp
{
n
[
JX′;Y ′;XYW (R1, R2)− I(V ;X ′Y ′|XYW ) + δ(ε)

]}
, (3.143)

where in (3.143) we have applied (3.28), the joint typicality lemma 3, and the fact

that I(V ;XYW ) = 0.

We consider two cases.

Case (a): JX′;Y ′;W (R1, R2) = 0. Note that JX′;Y ′;XYW (R1, R2) ≤ JX′;Y ′;W (R1, R2)

so in this case we also have JX′;Y ′;XYW (R1, R2) = 0. By (3.141), I(XY ;X ′Y ′W ) ≤

2δ(ε). Thus, from (3.140)

η ≤ I(XY V ;X ′Y ′|W ) (3.144)

= I(XY ;X ′Y ′|W ) + I(V ;X ′Y ′|XYW ) (3.145)

≤ 2δ(ε) + I(V ;X ′Y ′|XYW ). (3.146)

From (3.143), we have

e ~X(i1, i2,w) ≤ exp{n[−I(V ;X ′Y ′|XYW ) + δ(ε)]} (3.147)

≤ exp{n[−η + 3δ(ε)]}. (3.148)
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This vanishes exponentially fast if δ(ε) is sufficiently small.

Case (b): JX′;Y ′;W (R1, R2) > 0. This implies that (recalling that I(X ′;Y ′) = 0)

JX′;Y ′;W (R1, R2) = max{R1− I(X ′;WY ′), R2− I(Y ′;WX ′), R1 +R2− I(X ′Y ′;W )}.

(3.149)

By (3.141), we have

− 2δ(ε) ≤

max{R1− I(X ′;WY ′), R2− I(Y ′;WX ′), R1 +R2− I(X ′Y ′;W )}− I(XY ;X ′Y ′W ).

(3.150)

Note that

I(X ′;WY ′) + I(XY ;X ′Y ′W ) ≥ I(X ′;WY ′) + I(XY ;X ′|WY ′) (3.151)

= I(X ′;XYWY ′). (3.152)

Similarly

I(Y ′;WX ′) + I(XY ;X ′Y ′W ) ≥ I(Y ′;XYWX ′), (3.153)

I(X ′Y ′;W ) + I(XY ;X ′Y ′W ) ≥ I(X ′Y ′;XYW ). (3.154)

Thus

−2δ(ε) ≤ max{R1−I(X ′;XYWY ′), R2−I(Y ′;XYWX ′), R1+R2−I(X ′Y ′;XYW )}.

(3.155)

Hence

JX′;Y ′;XYW (R1, R2)

≤ max{R1−I(X ′;XYWY ′), R2−I(Y ′;XYWX ′), R1+R2−I(X ′Y ′;XYW )}+2δ(ε).

(3.156)
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By (3.143), we have

1

n
log e ~X(i1, i2,w)

≤ JX′;Y ′;XYW (R1, R2)− I(V ;X ′Y ′|XYW ) + δ(ε) (3.157)

≤ max{R1 − I(X ′;XYWY ′), R2 − I(Y ′;XYWX ′), R1 +R2 − I(X ′Y ′;XYW )}

− I(V ;X ′Y ′|XYW ) + 3δ(ε) (3.158)

≤ max{R1−I(X ′;XYWY ′V ), R2−I(Y ′;XYWX ′V ), R1+R2−I(X ′Y ′;XYWV )}

+ 3δ(ε). (3.159)

Let Z = X+Y +W+V −X ′−Y ′. Recalling that (X ′, Y ′, Z) are mutually independent

and EZ2 ≤ Λ + σ2, we have

I(X ′;XYWY ′V ) ≥ I(X ′;X + Y +W + V − Y ′) (3.160)

= I(X ′;X ′ + Z) (3.161)

= h(X ′ + Z)− h(X ′ + Z|X ′) (3.162)

=
1

2
log 2πe(θ + EZ2)− h(Z|X ′) (3.163)

=
1

2
log 2πe(θ + EZ2)− 1

2
log 2πeEZ2 (3.164)

= C

(
θ

EZ2

)
(3.165)

≥ C

(
θ

Λ + σ2

)
. (3.166)

Similarly

I(Y ′;XYWX ′V ) ≥ C

(
θ̄

Λ + σ2

)
. (3.167)
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Moreover,

I(X ′Y ′;XYWV ) ≥ I(X ′Y ′;Z +X ′ + Y ′) (3.168)

= h(Z +X ′ + Y ′)− h(Z) (3.169)

= C

(
1

EZ2

)
(3.170)

≥ C

(
1

Λ + σ2

)
. (3.171)

Thus

e ~X(i1, i2,w) ≤

exp
{
n
[
max

{
R1 − C

(
θ

Λ+σ2

)
, R2 − C

(
θ̄

Λ+σ2

)
, R1 +R2 − C

(
1

Λ+σ2

)}
+ 3δ(ε)

]}
.

(3.172)

Therefore, e ~X(i1, i2,w) is exponentially vanishing if δ(ε) is sufficiently small and

(3.16)–(3.18) hold.

3.6 Proof of Lemma 9

In this section, we provide the proofs for (3.23)–(3.29). Since (3.24) is a special

case of (3.28) for single codebook, and (3.25)–(3.26) are special cases of (3.29) for

single codebook, we refer the proofs for single codebook to the proofs with two

codebooks. Moreover, since we frequently use Csiszár and Narayan, (1988)(b), Lemma

A1 throughout this section, we provide the statement of this lemma here as Lemma 10.

Lemma 10 Let Z1, . . . ,ZN be arbitrary random variables, and let fi(Z1, . . . ,Zi) be

arbitrary with 0 ≤ fi ≤ 1, i = 1, . . . , N . Then the condition

E [fi(Z1, . . . ,Zi)|Z1, . . . ,Zi−1] ≤ a a.s., i = 1, . . . , N, (3.173)
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implies that

P

{
1

N

N∑
i=1

fi(Z1, . . . ,Zi) > t

}
≤ exp{−N(t− a log e)}. (3.174)

Let Xi1 and Yi2 be Gaussian i.i.d. n-length random vectors (codebooks) inde-

pendent from each other with Var(X) = θ and Var(Y ) = θ̄. Fix x ∈ T (n)
ε (X),y ∈

T (n)
ε (Y ),w ∈ S n and a covariance matrix Cov(X, Y,X ′, Y ′,W ) ∈ V5×5 such that S n

is a ν-dense subset of Rn for w such that ||w||2 ≤ nΛ, and V5×5 is a ν-dense subset

of R5x5 for positive definite covariance matrices with diagonals at most (θ, θ̄, θ, θ̄,Λ).

Let

Anε (X,W ) =
⋃

X,W independent
EX2=θ,EW 2≤Λ

T (n)
ε (X,W ) (3.175)

and

Anε (X, Y,W ) =
⋃

(X,Y,W ) mutually independent
EX2=θ,EY 2=θ̄,EW 2≤Λ

T (n)
ε (X, Y,W ). (3.176)

To prove (3.23), first define hi1 as a function of X1, . . . ,Xi1 as follows:

hi1(X1, . . . ,Xi1) =


1, if (Xi1 ,w) /∈ Anε (X,W )

0, otherwise .
(3.177)

Then the expected value of hi1 is given as

E[hi1(X1, . . . ,Xi1)|X1, . . . ,Xi1−1] = E [1 ((Xi1 ,w) /∈ Anε (X,W ))] (3.178)

= P {(Xi1 ,w) /∈ Anε (X,W )} (3.179)

≤ P
{

1

n
‖w‖2 ≥ Λ + ε

}
+ P

{
1

n
|〈Xi1 ,w〉| ≥ ε

}
+ P

{
| 1
n
‖Xi1‖2 − θ| ≥ ε

}
(3.180)

≤ exp(−nr1(ε)) (3.181)
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where (3.180) follows since the union in Anε (X,W ) is over independent X,W such that

EX2 = θ,EW 2 ≤ Λ, and directly from the definition of typical set in (3.1) we obtain

that it only suffices to find the probability of those (Xi1 ,w) that simultaneously do

not satisfy the conditions of the union and the typical set definition’s inequalities.

The upper bound in (3.181) follows since the first term in (3.180) is equal to zero

(assumption ‖w‖2 ≤ nΛ), and the other terms are exponentially vanishing by using

the large deviation theory for Gaussian distributions X with positive function r1(ε).

Now, using Lemma 10, we have

P
{

1

N1

|{i1 : (Xi1 ,w) /∈Anε (X,W )}| > exp(−nδ1(ε))

}
≤ exp{−N1[exp(−nδ1(ε))− exp(−nr1(ε)) log e]} (3.182)

≤ exp(− exp(nρ1(ε))). (3.183)

where the last inequality follows as long as δ1(ε) < r1(ε) for some ρ1(ε) > 0. Thus,

the probability vanishes doubly exponentially as n→∞, and with high probability

we have

1

N1

|{i1 : (xi1 ,w) /∈ Anε (X,W )}| ≤ exp(−nδ1(ε)). (3.184)

Fix xi1 , and for any i2 define h̃i2 as

h̃i2(Y1, . . . ,Yi2) =
1

N1

∑
i1:(xi1 ,w)∈Anε (X,W )

1 ((xi1 ,Yi2 ,w) /∈ Anε (X, Y,W )) . (3.185)

The expected value of h̃i2 can be written as

E
[
h̃i2(Y1, . . . ,Yi2)|Y1, . . . ,Yi2−1

]
=

1

N1

∑
i1:(xi1 ,w)∈Anε (X,W )

P {(xi1 ,Yi2 ,w) /∈ Anε (X, Y,W )}

≤ P
{

1

n
‖w‖2 ≥ Λ + ε

}
+ P

{
1

n
|〈xi1 ,w〉| ≥ ε

}
+ P

{∣∣∣∣ 1n‖xi1‖2 − θ
∣∣∣∣ ≥ ε

}
+ P

{
1

n
|〈Yi2 ,w〉|≥ε

}
+P

{
1

n
|〈Yi2 ,xi1〉|≥ε

}
+P

{∣∣∣∣ 1n‖Yi2‖2 − θ̄
∣∣∣∣≥ε} (3.186)

≤ exp(−nr2(ε)) (3.187)
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where (3.186) follows directly from the definition of typical set and the union’s

conditions, and (3.187) follows since the first three terms in (3.186) are equal to 0 due

to the assumptions and the other terms in (3.186) vanish exponentially by the large

deviation theory for Gaussian distributions Y with positive function r2(ε)

Using Lemma 10, we have

P

 1

N1N2

∑
i1:(xi1 ,w)∈Anε (X,W )

|{i2 : (xi1 ,Yi2 ,w) /∈ Anε (X, Y,W )}| > exp(−nδ2(ε))


≤ exp{−N2(exp(−nδ2(ε)− exp(−nr2(ε)) log e))} (3.188)

≤ exp(− exp(nρ2(ε))) (3.189)

where (3.189) follows if δ2(ε) < r2(ε) for some ρ2(ε) > 0. Therefore, with probability

approaching 1, as n→∞ we have

1

N1N2

∑
i1:(xi1 ,w)∈Anε (X,W )

|{i2 : (xi1 ,yi2 ,w) /∈ Anε (X, Y,W )}| ≤ exp(−nδ2(ε)).

(3.190)

Eventually, we easily use (3.184) and (3.190) to bound the fraction in (3.23) as

follows:

1

N1N2

|{(i1, i2) :(xi1 ,yi2 ,w) /∈ Anε (X, Y,W )}|

≤ 1

N1N2

∑
i1:(xi1 ,w)/∈Anε (X,W )

|{i2 : (xi1 ,yi2 ,w) /∈ Anε (X, Y,W )}|

+
1

N1N2

∑
i1:(xi1 ,w)∈Anε (X,W )

|{i2 : (xi1 ,yi2 ,w) /∈ Anε (X, Y,W )}|

(3.191)

≤ exp(−nδ1(ε)) + exp(−nδ2(ε)) (3.192)

≤ exp(−nδ(ε)). (3.193)
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This proves (3.23).

Now, in order to prove (3.26) in Lemma (9), first let

Ai =
{
j : j < i, (xj, s) ∈ T (n)

ε (X ′, S)
}
, (3.194)

Ãi =


Ai, if |Ai| ≤ exp {n (|R− I(X ′;S)|+ + δ(ε))}

∅, otherwise.
(3.195)

Define

gi(x1, . . . ,xi) =


1, if (xi,xj, s)∈T (n)

ε (X,X ′, S) for some j∈ Ãi

∅, otherwise.
(3.196)

It is notable that since by (3.24)

P
{∣∣{j : (xj, s) ∈ T (n)

ε (X ′, S)
}∣∣ > exp{n(|R− I(X ′;S)|+ + δ(ε))}

}
(3.197)

tends to zero as n grows, the probability that Ãi 6= Ai for some i vanishes as n→∞.

Finding the expected values of gi, we have

E[gi(X1, . . . ,Xi)|X1 = x1, . . . ,Xi−1 = xi−1]

= P
{

(Xi,xj, s) ∈ T (n)
ε (X,X ′, S) for some j ∈ Ãi

}
(3.198)

≤
∑
j∈Ãi

P
{

(Xi,xj, s) ∈ T (n)
ε (X,X ′, S)

}
(3.199)

≤ exp(n(|R− I(X ′;S)|+ + δ(ε))) max
x̂

P
{

(Xi, x̂, s) ∈ T (n)
ε (X,X ′, S)

}
(3.200)

≤ exp{−n(−|R− I(X ′;S)|+ + I(X;X ′S)− δ(ε)/2)} (3.201)

where (3.200) follows since by (3.195) the size of Ãi is almost surely less than exp(n(|R−

I(X ′;S)|+ + δ(ε))), (3.201) follows by joint typicality lemma 3, and (3.241) follows by

the condition in (3.29).
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Therefore, using Lemma 10, we have

P

{
1

N

N∑
i=1

gi(x1, . . . ,xi) > exp{−n(−|R− I(X ′;S)|+ + I(X;X ′S)− δ(ε))})
}

= P
{

1

N

∣∣∣{i : (xi,xj, s)∈T (n)
ε (X,X ′, S) for some j∈ Ãi

}∣∣∣
> exp{−n(−|R− I(X ′;S)|+ + I(X;X ′S)− δ(ε)/2)}

}
(3.202)

≤ exp[− exp(nR)(exp{−n(−|R− I(X ′;S)|+ + I(X;X ′S)− δ(ε))}

− exp{−n(−|R− I(X ′;S)|+ + I(X;X ′S)− δ(ε)/2)} log e)] (3.203)

≤ exp(− exp(nσ(ε))) (3.204)

for σ(ε) > 0 i.e. with high probability

1

N

N∑
i=1

gi(x1, . . . ,xi)=
1

N
|{i : (xi,xj, s)∈T (n)

ε (X,X ′, S) for some j∈ Ãi}| (3.205)

≤ exp{−n(−|R− I(X ′;S)|+ + I(X;X ′S)− δ(ε))}. (3.206)

We may use this argument as we used here for the case j > i by only reversing the

order of the codewords for the same Ai. Finally, by the same decreasing exponential

function for each case, we obtain (3.26) as

1

N

∣∣{i : (xi,xj, s)∈T (n)
ε (X,X ′, S) for some j 6= i

}∣∣ ≤ 2 exp{−nδ(ε)/2} (3.207)

if we have |R− I(X ′;S)|+ ≤ I(X;X ′S)− 2δ(ε).

Next, define function fi1 as follows:

fi1(X1, . . . ,Xi1) =


1, if (Xi1 ,w) ∈ T (n)

ε (X ′,W )

0, otherwise .
(3.208)
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Then, by joint typicality lemma 3 we get

E[fi1(X1, . . . ,Xi1)|X1, . . . ,Xi1−1] = E
[
1
(
(Xi1 ,w) ∈ T (n)

ε (X ′,W )
)]

(3.209)

= P
(
(Xi1 ,w) ∈ T (n)

ε (X ′,W )
)

(3.210)

≤ exp(−nI(X ′,W ) + nδ(ε)). (3.211)

Thus, using Lemma 10, we have

P
{∣∣{i1 : (Xi1 ,w) ∈ T (n)

ε (X ′,W )
}∣∣ > exp

(
n|R1 − I(X ′,W )|++ n2δ(ε)

)}
≤ exp

{
− exp

(
n|R1 − I(X ′,W )|++ n2δ(ε)

)
+exp(−nI(X ′,W ) + nδ(ε) + nR1) log e

}
.

(3.212)

If R1 > I(X ′,W ), (3.212) becomes less than doubly exponentially function

exp(− exp(nσ(ε))) where σ(ε) > 0 since for large enough n we obtain exp(nδ(ε)) >

log e. Now, if R1 ≤ I(X ′,W ) then (3.212) is less than

exp{− exp(n2δ(ε)) + exp(nR1 + nδ(ε)− nI(X ′,W )) log e} ≤ exp(− exp(nσ(ε)))

where σ(ε) > 0. In both cases, this doubly decreasing exponential function vanishes

as n→∞. Hence, with high probability, we have∣∣{i1 : (xi1 ,w) ∈ T (n)
ε (X ′,W )

}∣∣ ≤ exp
{
n
[
|R1 − I(X ′;W )|+ + δ(ε)

]}
. (3.213)

For any i2,

P
{

(xi1 ,Yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W ) for some i1

}
≤

∑
i1:(xi1 ,w)∈T (n)

ε (X′,W )

P
{

(xi1 ,Yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}
(3.214)

≤
∣∣{i1 : (xi1 ,w) ∈ T (n)

ε (X ′,W )
}∣∣max

x̂
P
{

(x̂,Yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}
(3.215)

≤ exp
{
n
(
|R1 − I(X ′;W )|+ − I(Y ′;X ′W ) + δ(ε)

)}
, (3.216)
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where (3.214) follows since if (xi1 ,Yi2 ,w) is typical then (xi1 ,w) is always typical

and (3.216) follows from (3.213) and joint typicality lemma 3. Thus, applying Lemma

10 in the same way that we used it to get (3.213), with high probability we attain

∣∣{i2 : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W ) for some i1

}∣∣
≤ exp

{
n
[∣∣R2 + |R1 − I(X ′;W )|+ − I(Y ′;X ′W )

∣∣+ + δ(ε)
]}
. (3.217)

Since (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W ) implies (yi2 ,w) ∈ T (n)

ε (Y ′,W ), we have the

simpler bound

∣∣{i2 : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W ) for some i1

}∣∣ ≤ ∣∣{i2 : (yi2 ,w) ∈ T (n)
ε (Y ′,W )

}∣∣
(3.218)

≤ exp
{
n
[
|R2 − I(Y ′;W )|+ + δ(ε)

]}
, (3.219)

where (3.219) is similar to (3.213). Moreover, if we replace vector w by (yi2 ,w) in

(3.213), then for any i2 we get

∣∣{i1 : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}∣∣ ≤ exp
{
n
[
|R1 − I(X ′;Y ′W )|+ + δ(ε)

]}
.

(3.220)

Therefore,

∣∣{(i1, i2) : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}∣∣
≤

∑
i2:(xi1 ,yi2 ,w)∈T (n)

ε (X′,Y ′,W ) for some i1

∣∣{i1 : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}∣∣ (3.221)

≤ exp
{
n
[∣∣R2 + |R1 − I(X ′;W )|+ − I(Y ′;X ′W )

∣∣+ + |R1 − I(X ′;Y ′W )|+ + δ(ε)
]}

(3.222)
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where (3.222) follows from (3.217) and (3.220). If R1 ≤ I(X ′;Y ′W ), then we have

∣∣{(i1, i2) : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}∣∣
≤ exp

{
n
[∣∣R2 + |R1 − I(X ′;W )|+ − I(Y ′;X ′W )

∣∣+ + δ(ε)
]}

(3.223)

= exp
{
n
[

max
{

0, R2 − I(Y ′;X ′W ), R1 +R2 − I(X ′Y ′;W )− I(X ′;Y ′)
}

+ δ(ε)
]}

(3.224)

= exp
{
n
[
JX′;Y ′;W (R1, R2) + δ(ε)

]}
. (3.225)

Using (3.219) and (3.220), we alternatively bound

∣∣{(i1, i2) : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}∣∣
≤ exp

{
n
[
|R2 − I(Y ′;W )|+ + |R1 − I(X ′;Y ′W )|+ + δ(ε)

]}
. (3.226)

In particular, if R1 > I(X ′;Y ′W ) then we have

∣∣{(i1, i2) : (xi1 ,yi2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}∣∣
≤ exp

{
n
[
|R2 − I(Y ′;W )|+ +R1 − I(X ′;W |Y ′) + δ(ε)

]}
(3.227)

= exp
{
n
[

max
{
R1 − I(X ′;W |Y ′), R1 +R2 − I(X ′Y ′;W )

}
+ δ(ε)

]}
(3.228)

= exp
{
n
[
JX′;Y ′;W (R1, R2) + δ(ε)

]}
. (3.229)

This proves (3.27). An identical calculation with (X, Y,W ) in place of W gives (3.28).

We indeed use Lemma 10 to prove that the complement of two events (3.27) and

(3.28) happen with decreasingly doubly exponential probability for sufficiently large n

as follows:

P
{∣∣{(i1, i2) : (xi1 ,yi2 ,w) ∈ T (n)

ε (X ′, Y ′,W )
}∣∣ > exp

{
n
[
JX′;Y ′;W (R1, R2) + δ(ε)

]}}
< exp(− exp(nσ(ε))), (3.230)
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P
{∣∣{(i1, i2) : (x,y,xi1 ,yi2 ,w) ∈ T (n)

ε (X, Y,X ′, Y ′,W )
}∣∣

> exp
{
n
[
JX′;Y ′;XYW (R1, R2) + δ(ε)

]}}
< exp(− exp(nσ(ε))). (3.231)

Now, in order to prove (3.29), first let

A(i1,i2) =
{

(j1, j2) : j1 < i1, j2 6= i2, (xj1 ,Yj2 ,w) ∈ T (n)
ε (X ′, Y ′,W )

}
, (3.232)

Ã(i1,i2) =


A(i1,i2), if |A(i1,i2)| ≤ exp {n (JX′;Y ′;W (R1, R2) + δ(ε))}

∅, otherwise,
(3.233)

where Ã(i1,i2) is defined for fixed value of x1, . . . ,xi1−1 and random Y1, . . . ,Yj2 , i.e.

Ã(i1,i2) is a random set. Define

gi1(x1, . . . ,xi1) =

P
{

(xi1 ,Yi2 ,xj1 ,Yj2 ,w)∈T (n)
ε (X, Y,X ′, Y ′,W ) for some (j1, j2)∈ Ã(i1,i2)

}
(3.234)

and

g̃i1(x1, . . . ,xi1) =


1, if gi1(x1, . . . ,xi1) > exp(−nδ(ε)/2)

∅, otherwise.
(3.235)

It is notable that since by (3.27)

P
{∣∣{(j1, j2) : (xj1 ,yj2 ,w) ∈ T (n)

ε (X ′, Y ′,W )
}∣∣ > exp{n(JX′;Y ′;W (R1, R2) + δ(ε))}

}
(3.236)

tends to zero as n grows, the probability that Ã(i1,i2) 6= A(i1,i2) for some i1, i2 vanishes

as n→∞.
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Finding the expected values of gi1 and g̃i1 , we have

E[gi1(X1, . . . ,Xi1)|X1 = x1, . . . ,Xi1−1 = xi1−1]

= P
{

(Xi1 ,Yi2 ,xj1 ,Yj2 ,w) ∈ T (n)
ε (X, Y,X ′, Y ′,W ) for some (j1, j2) ∈ Ã(i1,i2)

}
(3.237)

≤
∑

(j1,j2)∈Ã(i1,i2)

P
{

(Xi1 ,Yi2 ,xj1 ,Yj2 ,w) ∈ T (n)
ε (X, Y,X ′, Y ′,W )

}
(3.238)

≤ exp(nJX′;Y ′;W (R1, R2) + δ(ε)) max
x̂,ŷ

P
{

(Xi1 ,Yi2 , x̂, ŷ,w) ∈ T (n)
ε (X, Y,X ′, Y ′,W )

}
(3.239)

≤ exp{−n(−JX′;Y ′;W (R1, R2) + I(XY ;X ′Y ′W )− δ(ε))} (3.240)

≤ exp(−nδ(ε)) (3.241)

where (3.239) follows since by (3.233) the size of Ã(i1,i2) is almost surely less than

exp(nJX′;Y ′;W (R1, R2) + δ(ε)), (3.240) follows by joint typicality lemma 3, and (3.241)

follows by the condition in (3.29). Moreover, by Markov’s inequality we have

E[g̃i1(X1, . . . ,Xi1)|X1, . . . ,Xi1−1]=P{gi1(X1, . . . ,Xi1)>exp(−nδ/2)|X1, . . . ,Xi1−1}

(3.242)

≤ E[gi1(X1, . . . ,Xi1)|X1, . . . ,Xi1−1]

exp(−nδ(ε)/2)
(3.243)

≤ exp(−nδ(ε) + nδ(ε)/2) (3.244)

= exp(−nδ(ε)/2). (3.245)
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Therefore, using Lemma 10, we have

P

{
1

N1

N1∑
i1=1

g̃i1(x1, . . . ,xi1) > exp(−nδ(ε)/4)

}

= P
{

1

N1

|{i1 : gi1(x1, . . . ,xi1) > exp(−nδ(ε)/2)}| > exp(−nδ(ε)/4)

}
(3.246)

≤ exp{− exp(nR1)(exp(−nδ(ε)/4)− exp(−nδ(ε)/2) log e)} (3.247)

≤ exp(− exp(nσ(ε))). (3.248)

for σ(ε) > 0 i.e. with high probability

1

N1

∑
i1

g̃i1(x1, . . . ,xi1) =
1

N1

|{i1 : gi1(x1, . . . ,xi1) > exp(−nδ(ε)/2)}| (3.249)

≤ exp(−nδ(ε)/4). (3.250)

Let

f(i1,i2)(y1, . . . ,yi2) =


1, if (xi1 ,yi2 ,xj1 ,yj2 ,w) ∈ T (n)

ε (X, Y,X ′, Y ′,W ),

for some (j1, j2) ∈ Ã(i1,i2) and j2 < i2

0, otherwise.

(3.251)

Now, fix an i1 such that gi1(x1, . . . ,xi1) ≤ exp(−nδ(ε)/2). Therefore, we have

E
[
f(i1,i2)(Y1, . . . ,Yi2)|Y1, . . . ,Yi2−1

]
= P

{
(xi1 ,Yi2 ,xj1 ,Yj2 ,w) ∈ T (n)

ε (X, Y,X ′, Y ′,W )

for some (j1, j2) ∈ Ã(i1,i2) and j2 < i2

∣∣∣Y1, . . . ,Yi2−1

}
(3.252)

≤ gi1(x1, . . . ,xi1) (3.253)

≤ exp(−nδ(ε)/2) (3.254)
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where (3.253) and (3.254) follow directly from gi1 definition and our assumption for

the gi1 . Thus, using Lemma 10 we get

P

(
1

N2

N2∑
i2=1

f(i1,i2)(Y1, . . . ,Yi2) > exp(−nδ(ε)/4)

)
≤ exp(− exp(nσ(ε))) (3.255)

where σ(ε) > 0. If we sum over all i1’s, we obtain

N1∑
i1=1

P

(
1

N2

N2∑
i2=1

f(i1,i2)(Y1, . . . ,Yi2) > exp(−nδ(ε)/4)

)
≤ exp(nR1 − exp(nσ(ε))),

(3.256)

that is this doubly exponential function still tends to zero as n→∞. Therefore, with

probability approaching 1, for every i1 that gi1(x1, . . . ,xi1) ≤ exp(−nδ(ε)/2) we have

1

N2

∣∣∣{i2 : (xi1 ,yi2 ,xj1 ,yj2 ,w)∈T (n)
ε (X, Y,X ′, Y ′,W )

for some (j1, j2)∈ Ã(i1,i2) and j2<i2

}∣∣∣ ≤ exp(−nδ(ε)/4). (3.257)
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In general, for all i1 we have

1

N1N2

∣∣∣{(i1, i2) : (xi1 ,yi2 ,xj1 ,yj2 ,w) ∈ T (n)
ε (X, Y,X ′, Y ′,W )

for some (j1, j2) ∈ Ã(i1,i2) and j2 < i2

}∣∣∣
(3.258)

≤ 1

N1

N1∑
i1=1

1

N2

∣∣∣{i2 : (xi1 ,yi2 ,xj1 ,yj2 ,w) ∈ T (n)
ε (X, Y,X ′, Y ′,W )

for some (j1, j2) ∈ Ã(i1,i2) and j2 < i2

}∣∣∣
(3.259)

≤ exp(−nδ(ε)/4)+
1

N1

∑
i1:gi1≤exp(−nδ(ε)/2)

1

N2

∣∣∣{i2 :

(xi1 ,yi2 ,xj1 ,yj2 ,w)∈T (n)
ε (X, Y,X ′, Y ′,W ) for some (j1, j2) ∈ Ã(i1,i2) and j2 < i2

}∣∣∣
(3.260)

≤ 2 exp(−nδ(ε)/4) (3.261)

where (3.260) and (3.261) follow from (3.250) and (3.257), respectively.

We may use this argument to upper bound the probability in (3.258) for the

remain three cases (j1 < i1, j2 > i2), (j1 > i1, j2 < i2) and (j1 > i1, j2 > i2) by defining

different A(i1,i2)’s, and conclude the same decreasing exponential function. Finally, we

obtain

1

N1N2

∣∣{(i1, i2) : (xi1 ,yi2 ,xj1 ,yj2 ,w)∈T (n)
ε (X, Y,X ′, Y ′,W )

for some j1 6= i1, j2 6= i2
}∣∣ ≤ 8 exp{−nδ(ε)/4} (3.262)

if we have JX′;Y ′;W (R1, R2) ≤ I(XY ;X ′Y ′W )− 2δ(ε).

In order to complete the proof, since for any fixed ν the cardinality of finite set

S n is only increasingly exponentially in n, and the set V5×5 is finite along with the
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doubly decreasing exponential probabilities in (3.230) and (3.231), we derive that with

probability approaching to 1, all inequalities in (3.23), (3.27), (3.28) and (3.29) hold

simultaneously for sufficiently large n. Since these inequalities hold for every element

in the finite sets S n and V5×5, then for any vector w,x,y and any given covariance

matrix Cov(X, Y,X ′, Y ′,W ) (with ‖x‖2 = nθ, ‖y‖2 = nθ̄, ‖w‖2 ≤ nΛ) which is not in

its corresponding ν-dense subset, there exists a point in the corresponding ν-dense

subset that is close enough to it (in its ν distance neighborhood). Now, by using the

continuity properties of all sets, we may conclude that (3.23), (3.27), (3.28) and (3.29)

hold also for any point which is not in the ν-dense subset.
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Chapter 4

GAUSSIAN ARBITRARILY-VARYING MULTIPLE ACCESS CHANNEL

4.1 Problem Statement

The Gaussian multiple access channel with a jammer is shown in Fig. 2, in

which two users send their messages to one receiver in the presence of one jammer.

This channel is also known as Gaussian arbitrarily-varying multiple-access channel

(Gaussian AVMAC). The jammer is assumed not to have any information about the

user’s signals (but know the code). In particular, the received signal is given by

Y = g1X1 + g2X2 + S + V (4.1)

where X1 and X2 are n-length vectors representing the user’s signals, S is the adver-

sarial jammer signal, g1 and g2 are the channel gains, and V is the n-length noise

vector distributed as a sequence of i.i.d. zero mean Gaussian random variables with

variance σ2 which is independent of X1, X2, S.

The transmitters and jammer signals are constrained to satisfy power constraints

‖Xi‖2 ≤ nPi, for i = 1, 2 and ‖S‖2 ≤ nΛ. We define the received signal-to-noise

ratios as S1 = g2
1P1/σ

2, S2 = g2
2P2/σ

2. We also denote the jammer-to-noise ratio

as J = Λ/σ2. Note that the vector S refers to the jammer signal while the scaler

values S1 and S2 denotes the received signal-to-noise ratios. We assume that the

transmitters and receiver know the signal-to-noise ratios, but they need not know the

jammer-to-noise ratio. However, we require small probability of error only when the
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S

YX1

V ∼ N (0, σ2)

X2

g1

g2

Figure 2: Two-user Gaussian Multiple Access Channel with a Jammer.

jammer-to-noise ratio does not exceed J ; thus the code is independent of the jammer’s

power up to a point, and beyond that it may fail to decode correctly.

A
(
2nR1 , 2nR2 , n

)
deterministic code is given by:

• Message setsM1 = [2nR1 ] andM2 = [2nR2 ],

• Encoding functions xi :Mi → Rn for i = 1, 2, and

• Decoding function φ : Rn → (M1,M2).

For i = 1, 2, the message Mi is chosen uniformly from the set Mi, and each

transmitter encodes its own message to Xi. At the receiver, the received signal Y is

decoded by function φ to (M̂1, M̂2)=φ(Y). The average probability of error P (n)
e is

now given by the probability that (M̂1, M̂2) 6=(M1,M2), maximized over all possible

choices of jammer’s sequence S. A rate pair (R1, R2) is achievable if there exists a

sequence of
(
2nR1 , 2nR2 , n

)
codes where lim

n→∞
P

(n)
e = 0. The capacity region C is the

closure of the set of all achievable rate pairs (R1, R2).
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4.2 Main Results

The following theorem provides the capacity region of two-user Gaussian MAC

with a jammer.

Theorem 11 Assume S1 > J and S2 > J . The capacity region of Gaussian multiple

access channel is the set of rate pairs (R1, R2) such that

R1 < C

(
S1

J + 1

)
= C

(
g2

1P1

Λ + σ2

)
R2 < C

(
S2

J + 1

)
= C

(
g2

2P2

Λ + σ2

)
R1 +R2 < C

(
S1 + S2

J + 1

)
= C

(
g2

1P1 + g2
2P2

Λ + σ2

) (4.2)

4.3 Converse Proof

Consider a sequence of (2nR1 , 2nR2 , n) codes with vanishing probability of error.

Since these codes must function for arbitrary jamming signals, we may assume that

the jammer transmits Gaussian noise with variance Λ. Thus, we follow the capacity

for the Gaussian MAC with no jammer ElGamal and Kim, (2011), Chapter 4.6.1, p.

94 and the noise power σ2 + Λ.

Moreover, if J ≥ S1, based on the assumption that the jammer knows the code,

the jammer can choose an arbitrary message m̃1 and transmit a scaled form of the

corresponding codeword s = x1(m̃1)g1. Given Y = g1x1(m1) + g2x2(m2) + g1x1(m̃1) +

V, the decoder cannot decode the message of transmitter 1 since it does not know

whether the true message is m1 or m̃1. The same scenario can happen if J ≥ S2. This

attack constitutes AVC symmetrization.
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4.4 Achievability Proof

Our achievability proof is a generalization of the achievability proof in Chapter

4.5.1, p. 87 of ElGamal and Kim, (2011). Before proceeding to the proof, we first

define the following typical set for Gaussian random variables X1, . . . , Xk as:

T (n)
ε (X1, . . . , Xk)

=

{
(x1, . . . ,xk) : E(XiXj)− ε ≤

1

n
〈xi,xj〉 ≤ E(XiXj) + ε for all i, j ∈ [k]

}
. (4.3)

Codebook generation: Fix γ > 0. For i = 1, 2, we generate 2nRi i.i.d zero mean

Gaussian sequences Xi(mi) with variance (1− γ)Pi for each mi ∈ [2nRi ].

Encoding: For i = 1, 2, transmitter i sends Xi = Xi(mi) if its power is less than

Pi, otherwise it sends zero.

Decoding: First, let

S =
{

(m1,m2) : (x1(m1),x2(m2),y) ∈
⋃
T (n)
ε (X1, X2, Y )

}
(4.4)

where the union is over all joint Gaussian distributionsX1, X2, Y such that (X1, X2, Y−

g1X1 − g2X2) are mutually independent.

Given y, the decoder finds

(m̂1, m̂2) = arg min
(m1,m2)∈S

‖y − g1x1(m1)− g2x2(m2)‖ . (4.5)

If there is more than one minimum, choose between them arbitrarily. The decoder

then outputs the message estimate (m̂1, m̂2).

Analysis of the probability of error: Assume the two users send messages (M1,

M2). Define the error event

E0 = {(M1,M2) /∈ S } . (4.6)
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To consider error events in which a false message set appears correct, we define the set

T =
{

(m1,m2) ∈ S :

‖Y − g1x1(m1)− g2x2(m2)‖2 ≤ ‖Y − g1x1(M1)− g2x2(M2)‖2
}
. (4.7)

An error can only occur if there exists some (m1,m2) ∈ T where (m1,m2) 6=

(M1c,M1p). We divide this event into the following three error events:

E1 = {(m̃1,M2) ∈ T for some m̃1 6= M1} (4.8)

E2 = {(M1, m̃2) ∈ T for some m̃2 6= M2} (4.9)

E3 = {(m̃1, m̃2) ∈ T for some m̃1 6= M1, m̃2 6= M2} . (4.10)

We will prove that the probability of each one of the error events converges to zero as

long as the conditions in (4.2) are satisfied.

We now consider each of the four error events, beginning with E0. By the law of

large numbers, P(E0) tends to zero as n→∞.

To bound the probability of event E1, we apply Lemma 5 with the following:

• i = M1, j = m̃1,

• xi = g1x1(M1),

• xj = g1x1(m̃1).

Note that event E1 occurs if

‖g1X1(M1) + s + V − g1X1(m̃1)‖2 ≤ ‖s + V‖2. (4.11)

Thus, by Lemma 5, if R1 < C
(

(1−γ)S1

J+1

)
and S1 > J then with high probability the

codebook X1 will be such that P(E1)→ 0 as n→∞. Error event E2 can be bounded

by the same argument but for xi = g2x2(M2) and xj = g2x2(m̃2) if R2 < C
(

(1−γ)S2

J+1

)
and S2 > J .

We now bound event E3 by applying Lemma 8 with the following particularizations:
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• i1 = M1, i2 = M2, j1 = m̃1, j2 = (m̃2),

• xi1 = g1x1(M1), yi2 = g2x2(M2),

• xj1 = g1x1(m̃1), yj2 = g2x2(m̃2).

Note that event E3 occurs if

‖g1X1(M1) + g2X2(M2) + s + V − g1X1(m̃1)− g2X2(m̃2)‖2 ≤ ‖s+V‖2. (4.12)

Therefore, we can conclude by Lemma 8 that with high probability as n → ∞,

P(E3)→ 0 if J < S1 + S2,

R1 +R2 < C

(
(1− γ)(S1 + S2)

J + 1

)
. (4.13)

We finally get all the equations in (4.2) as γ → 0.
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Chapter 5

GAUSSIAN ARBITRARILY-VARYING BROADCAST CHANNEL

5.1 Problem Statement

The Gaussian broadcast channel with two jammers is shown in Fig. 3, in which

one transmitter sends its messages to two receivers in the presence of two independent

jammers. This channel is also known as Gaussian arbitrarily-varying broadcast channel

(Gaussian AVBC). The jammers are assumed not to have any information about the

user’s signal (but know the code). In particular, the received signals are given by

Y1 = g1X + S1 + V1

Y2 = g2X + S2 + V2

(5.1)

where X is an n-length vector representing the user’s signal, S1 and S2 are the

adversarial jammers’ signals, g1 and g2 are the channel gains, and V1 and V2 are two

independent n-length noise vectors distributed as two sequences of i.i.d. zero mean

Gaussian random variables with variances σ2
1 and σ2

2 respectively. These two noise are

assumed to be independent of X, S1 and S2.

The transmitter and jammers signals are constrained to satisfy power constraints

‖X‖2 ≤ nP and ‖Si‖2≤nΛ, for i=1, 2. Without loss of generality, we assume g21
σ2
1
>

g22
σ2
2
,

i.e. receiver 1 is the stronger receiver from the signal-to-noise ratio perspective. Note

that the vectors S1 and S2 refer to the jammers signals while the scaler values S1 and

S2 denotes the signal-to-noise ratios. We assume that the transmitter and receivers

know the signal-to-noise ratios, but they need not know the jammer-to-noise ratio.

However, we require small probability of error only when the jammer-to-noise ratios
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Figure 3: Two-user Gaussian Broadcast Channel with Two Jammers.

do not exceed J1 and J2; thus the code is independent of the jammer’s power up to a

point, and beyond that it may fail to decode correctly.

A
(
2nR1 , 2nR2 , n

)
deterministic code is given by:

• Message setsM1 = [2nR1 ] andM2 = [2nR2 ],

• Encoding function x : (M1,M2)→ Rn, and

• Decoding functions φ1 : Rn →M1 and φ2 : Rn →M2.

For i = 1, 2, the message Mi is chosen uniformly from the set Mi, and the

transmitter encodes two messages to X. At the receiver, the received signal Yi is

decoded by function φi to M̂i=φi(Yi) for i = 1, 2. The average probability of error

P
(n)
e is now given by the probability that (M̂1, M̂2) 6= (M1,M2), maximized over all

possible choices of jammer’s sequence S. A rate pair (R1, R2) is achievable if there

exists a sequence of
(
2nR1 , 2nR2 , n

)
codes where lim

n→∞
P

(n)
e =0. The capacity region C

is the closure of the set of all achievable rate pairs (R1, R2).
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5.2 Main Results

The following theorems provides the inner and outer bounds for the capacity region

of two-user Gaussian broadcast channel with two independent jammer.

Theorem 12 (outer bound) Assume g2
1P > Λ and g2

2P > Λ. If the rate pair

(R1, R2) is achievable then

R1 < C

(
αg2

1P

Λ + σ2
1

)
R2 < C

(
ᾱg2

2P

αg2
2P + Λ + σ2

2

) (5.2)

for some α ∈ [0, 1].

Theorem 13 (inner bound) Assume g2
1P > Λ and g2

2P > Λ. The rate pair

(R1, R2) is achievable if

R1 < C

(
αg2

1P

Λ + σ2
1

)
R2 < C

(
ᾱg2

2P

αg2
2P + Λ + σ2

2

) (5.3)

for some α ∈ [0, 1] where ᾱg2
2P > Λ.

5.3 Proof of Outer Bound

Consider a sequence of (2nR1 , 2nR2 , n) codes with vanishing probability of error.

Since these codes must function for arbitrary jamming signals, we may assume that

the jammer transmits Gaussian noise with variance Λ. Thus, we follow the capacity for

the Gaussian broadcast channel with no jammer ElGamal and Kim, (2011), Chapter

5.5.1, p. 118 and the noise power σ2
1 + Λ and σ2

2 + Λ at the receiver 1 and receiver 2,

respectively.
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Moreover, if Λ ≥ g2
1P , based on the assumption that the jammer knows the code,

the jammer can choose two arbitrary messages m̃1 and m̃2 and transmit a scaled

form of the corresponding codeword s = g1x(m̃1, m̃2). Given Y1 = g1x1(m1,m2) +

g1x1(m̃1, m̃2) + V1, the decoder cannot decode any message since it does not know

whether the true message is m1 or m̃1 and the same for m2 or m̃2. The same scenario

can happen if Λ ≥ g2
2P at receiver 2 for a given Y2. This attack constitutes AVC

symmetrization.

5.4 Proof of Inner Bound

Before proceeding to the proof, we first define the following typical set for Gaussian

random variables X1, . . . , Xk as:

T (n)
ε (X1, . . . , Xk)

=

{
(x1, . . . ,xk) : E(XiXj)− ε ≤

1

n
〈xi,xj〉 ≤ E(XiXj) + ε for all i, j ∈ [k]

}
. (5.4)

Codebook generation: Fix α ∈ [0, 1] and γ > 0. We generate 2nR2 i.i.d zero mean

Gaussian sequences X2(m2) with variance (1−γ)ᾱP for eachm2 ∈ [2nR2 ]. We generate

2nR1 i.i.d. zero mean Gaussian sequences X1(m1,m2) with variance (1 − γ)αP for

each m1 ∈ [2nR1 ] and m2 ∈ [2nR2 ].

Encoding: The transmitter sends X = X1(m1,m2) + X2(m2) if its power is less

than P , otherwise it sends zero.

Decoding: We first describe the decoding procedure for receiver 2. First, let

S =
{
m2 : (x2(m2),y2) ∈

⋃
T (n)
ε (X2, Y2)

}
(5.5)
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where the union is over all joint Gaussian distributions X2, Y2 such that (X2, Y2−g2X2)

are mutually independent. Given y2, decoder 2 finds

m̂2 = arg min
m2∈S

‖y2 − g2x2(m2)‖ (5.6)

If there is more than one minimum, choose between them arbitrarily.

Now, decoder 1’s structure to find message m̂1 is as follows. Let

S1 =
{

(m1,m2) : (x1(m1,m2),x2(m2),y1) ∈
⋃
T (n)
ε (X1, X2, Y1),

}
(5.7)

where the union is over all joint Gaussian distributions X1, X2, Y1 such that

(X1, X2, Y1 − g1X1 − g2X2) are mutually independent. Also, let

S2 =
{
m2 : (x2(m2),y1) ∈

⋃
T (n)
ε (X2, Y1),

}
(5.8)

where the union is over all joint Gaussian distributions X2, Y1 such that (X2, Y1−g2X2)

are mutually independent. Given y1, decoder 1 first finds m̂2 if it is a unique message

such that

m̂2 = arg min
m2∈S2

‖y1 − g2x2(m2)‖ (5.9)

Then, if such an m̂2 exists, then the decoder 1 declares the unique m̂1 such that

m̂1 = arg min
(m1,m̂2)∈S1

‖y1 − g1x1(m1, m̂2)− g2x2(m̂2)‖ . (5.10)

If there is more than one minimum, choose between them arbitrarily.

Analysis of the probability of error: Assume the user sends messages (M1,M2).

We first analyze the average probability of error for decoder 2, and then for decoder 1.

For decoder 2, define the following error event

E20 = {M2 /∈ S } . (5.11)
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Moreover, to consider error event in which a false message set appears correct, we

define the set

T =
{
m2 ∈ S : ‖Y2 − g2x2(m2)‖2 ≤ ‖Y2 − g2x2(M2)‖2

}
. (5.12)

An error can only occur if there exists some m2 ∈ T where m2 6= M2. We only have

then one event of

E21 = {∃ m̃2 6= M2 : m̃2 ∈ T } . (5.13)

The decoder 1 makes error if at least one of the following events E10, E11 and E12

happens.

E10 = {(M1,M2) /∈ S1} . (5.14)

Moreover, to consider error events in which a false message appears correct, we define

the following sets

T1 =
{

(m1,m2) ∈ S1 : ‖Y1 − g1x1(m1,m2)− g2x2(m2)‖2 ≤ ‖s1 + V1‖2
}

(5.15)

T2 =
{
m2 ∈ S2 : ‖Y1 − g2x2(m2)‖2 ≤ ‖Y1 − g2x2(M2)‖2

}
. (5.16)

An error can occur if we have one of the following:

E11 = {∃ m̃2 6= M2 : m̃2 ∈ T2} (5.17)

E12 = {∃ m̃1 6= M1 : (m̃1,M2) ∈ T1} . (5.18)

We now consider each of the five error events, beginning with E20 and E10. Using

the law of large numbers, we conclude that with high probability both E10 and E20

tend to zero as n→∞.

To bound the probability of event E21, we apply Lemma 5 with the following:

• i = M2, j = m̃2,
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• xi = g2x2(M2),

• xj = g2x2(m̃2).

Note that event E21 occurs if

‖g1X1(M1,M2)+g2X2(M2)+s2 +V2−g2X2(m̃2)‖2 ≤ ‖s2 +V2 +g1X1(M1,M2)‖2.

(5.19)

Thus, by Lemma 5, if R2 < C
(

(1−γ)ᾱg22P

σ2
2+Λ+(1−γ)αg21P

)
and Λ < ᾱg2

2P then with high

probability P(E21)→ 0 as n→∞.

To bound the probability of event E11, we apply Lemma 5 with the following:

• i = M2, j = m̃2,

• xi = g2x2(M2),

• xj = g2x2(m̃2)

Note that event E11 occurs if

‖g1X1(M1,M2)+g2X2(M2) + s1+V1−g2X2(m̃2)‖2 ≤ ‖g1X1(M1,M2) + s1 + V1‖2.

(5.20)

Thus, by Lemma 5, if R2 < C
(

(1−γ)ᾱg22P

σ2
1+Λ+(1−γ)αg21P

)
and Λ < ᾱg2

2P , then with high

probability P(E11)→ 0 as n→∞.

To bound the probability of event E12, we apply Lemma 6 with the following:

• i = M1, j = m̃1, k = M2,

• xi(k) = g1x1(M1,M2) + g2x(M2),

• xj(k) = g1x1(m̃1,M2) + g2x(M2)

In this case, K = 2nR2 ≥ n2 for sufficiently large n as long as R2 > 0. Note that event

E12 occurs if

‖g1X1(M1,M2) + s1 + V1 − g1X1(m̃1,M2)‖2 ≤ ‖s1 + V1‖2. (5.21)
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Thus, by Lemma 6, if R1 < C
(

(1−γ)αg21P

σ2
1+Λ

)
, then with high probability P(E12)→ 0 as

n→∞. Thus, we get all equations in (5.3) as γ → 0.

95



Chapter 6

GAUSSIAN ARBITRARILY-VARYING INTERFERENCE CHANNEL

6.1 Problem Statement

The Gaussian interference channel with two independent jammers is shown in

Fig. 4, in which two users send their messages to their own receivers in the presence

of one or two jammers. The jammers are assumed not to have any information about

the user’s signals (but know the code). This channel is also known as Gaussian

arbitrarily-varying interference channel (Gaussian AVIC). In particular, the received

signals are given by

Y1 = h11X1 + h12X2 + g1W1 + V1

Y2 = h21X1 + h22X2 + g2W2 + V2

(6.1)

where X1 and X2 are n-length vectors representing the user’s signals, W1 and W2

are the independent adversarial jammer signals, hij and gi for i, j ∈ {1, 2} are the

channel gains, and Vi is the n-length noise vector distributed as a sequence of i.i.d.

zero mean Gaussian random variables with variance σ2 which is independent of X1,

X2, W1 and W2.

The transmitter and jammer signals are constrained to satisfy power constraints

‖Xi‖2 ≤ nPi and ‖Wi‖2 ≤ nΛ, for i = 1, 2, respectively. We define the received

signal-to-noise and interference-to-noise ratios as S1 = h2
11P1/σ

2, S2 = h2
22P2/σ

2,

I1 = h2
12P2/σ

2 and I2 = h2
21P1/σ

2. We also denote the jammer-to-noise ratios as

J1 = g2
1Λ/σ2 and J2 = g2

2Λ/σ2. We assume that the transmitters and receivers

know the signal-to-noise and interference-to-noise ratios, but they need not know the
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Figure 4: Two-user Gaussian Interference Channel with Two Independent Jammers.

jammer-to-noise ratios. However, we require small probability of error only when

the jammer-to-noise ratios do not exceed J1,J2; thus the code is independent of the

jammer’s power up to a point, and beyond that it may fail to decode correctly.

A
(
2nR1 , 2nR2 , n

)
deterministic code is given by:

• Message setsM1 = [2nR1 ] andM2 = [2nR2 ],

• Encoding functions xi :Mi → Rn for i = 1, 2, and

• Decoding functions φi : Rn →Mi for i = 1, 2.

For i = 1, 2, the message Mi is chosen uniformly from the set Mi, and each

transmitter encodes its own message to Xi. At each receiver, the received signal Yi

is decoded by function φi to M̂i = φi(Yi). The average probability of error P (n)
e is

now given by the probability that (M̂1, M̂2) 6=(M1,M2), maximized over all possible

choices of jammers’ sequences W1 and W2. A rate pair (R1, R2) is achievable if there

exists a sequence of
(
2nR1 , 2nR2 , n

)
codes where lim

n→∞
P

(n)
e =0. The capacity region C

is the closure of the set of all achievable rate pairs (R1, R2).
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Figure 5: Two-user Gaussian Interference Channel with G Independent Jammers.

6.1.1 Generalized Jamming Model

Generally speaking, if there are G jammers (G ≥ 1) with the cross matrix G

G =

g11 g12 g13 . . . g1G

g21 g22 g23 . . . g2G

 (6.2)

as shown in Fig. 5, then the received signals at each decoder are given by

Y1 = h11X1 + h12X2 + g11W1 + g12W2 + . . .+ g1GWG + V1

Y2 = h21X1 + h22X2 + g21W1 + g22W2 + . . .+ g2GWG + V2

(6.3)

where ‖Wi‖2 ≤ nΛ for i = 1, 2, . . . , G. This includes the case where there is only one

jammer (G = 1). We refer the capacity region of this channel as CG, and state the

following proposition for the relation between CG and C . Indeed, the capacity region

depends only on the received signal at each decoder and not the number of jammers.

Proposition 14 We have CG = C as long as

|g11|+ |g12|+ . . .+ |g1G| = |g1|

|g21|+ |g22|+ . . .+ |g2G| = |g2|
(6.4)
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where the jammer-to-noise ratios are then given by J1 = (g11 + g12 + . . .+ g1G)2 Λ/σ2

and J2 = (g21 + g22 + . . .+ g2G)2 Λ/σ2.

The proof is provided in Appendix 6.6.

6.2 Main Results

In this section, we present inner and outer bounds on the capacity region C (two-

user Gaussian interference channel with two independent jammers). Before stating the

main results, we define regions Ro(S1, S2, I1, I2) and Ri(S1, S2, I1, I2) as the previously-

derived outer and inner bounds respectively for the Gaussian interference channel

with no jammer; namely Ro is the outer bound of Etkin, Tse, and Wang, (2008),

and Ri is the Han-Kobayashi inner bound Han and Kobayashi, (1981). When we

write an expression with i and j, we mean for it to hold for both (i, j) = (1, 2) and

(i, j) = (2, 1).

Define Ro(S1, S2, I1, I2) as the set of rate pairs (R1, R2) such that

Ri ≤ C (Si)

Ri +Rj ≤ C
(

Si
1+Ij

)
+ C (Ij + Sj)

R1 +R2 ≤ C
(
S1+I1+I1I2

1+I2

)
+ C

(
S2+I2+I1I2

1+I1

)
2Ri +Rj ≤ C

(
Si

1+Ij

)
+ C (Si + Ii)+ C

(
Sj+Ij+IiIj

1+Ii

)
.

99



Define Ri(S1, S2, I1, I2) as the set of rate pairs (R1, R2) such that

Ri < C
(

Si
1+αjIi

)
Ri +Rj < C

(
Si+ᾱjIi
1+αjIi

)
+ C

(
αjSj

1+αiIj

)
R1 +R2 < C

(
α1S1+ᾱ2I1

1+α2I1

)
+ C

(
α2S2+ᾱ1I2

1+α1I2

)
2Ri +Rj < C

(
Si+ᾱjIi
1+αjIi

)
+C

(
αiSi

1+αjIi

)
+C

(
αjSj+ᾱiIj

1+αiIj

)
for some αi in [0, 1] where αi implies the portion of the private message power in the

Han-Kobayashi inner bound proof at user i. Note that in the Han-Kobayashi inner

bound proof encoder i divides the message mi into private message mip and common

message mic with power αiPi and ᾱiPi respectively.

Define S ′i = Si
1+Ji

and I ′i = Ii
1+Ji

. We now state our main outer and inner bounds.

Theorem 15 (Outer Bound) C⊆Ro(S
′
1, S

′
2, I
′
1, I
′
2). Moreover, if S1≤J1 or S2≤J2,

then C = ∅.

Theorem 16 (Inner Bound) Assume Si > Ji for i = 1, 2. Let R̃i(S
′
1, S

′
2, I
′
1, I
′
2) be

the subset of rate pairs in Ri(S
′
1, S

′
2, I
′
1, I
′
2) achieved by αi ∈ [0, 1] satisfying

αiSi + ᾱjIi > Ji for (i, j) = (1, 2), (2, 1). (6.5)

Then R̃i(S
′
1, S

′
2, I
′
1, I
′
2) ⊆ C .

Note that we are also able to remove power constraint 6.5 in the inner bound by

using Lemma 7 in the proof.
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Figure 6: Bounds on the symmetric capacity Csym(S, I, J) for S = 4, I = 3, and J
between 0 and 5.

Note: Bounds on the symmetric capacity Csym(S, I, J) for S1 = S2 = S = 4,
I1 = I2 = I = 3, and J1 = J2 = J between 0 and 5. In addition to our
inner R̃i(S

′, S ′, I ′, I ′) and outer bounds Ro(S
′, S ′, I ′, I ′), also shown the bound

Ri(S
′, S ′, I ′, I ′) and shown Ri(S

′, S ′, I ′, I ′) with sub-optimal α = 1
1+I′

. For these
parameters, the bound Ri(S

′, S ′, I ′, I ′) is identical to our inner bound if the jammer-
to-noise ratio is less than 3.2.

6.3 Discussion and Numerical Results

Note that the inner bound differs from Ri(S
′
1, S

′
2, I
′
1, I
′
2) only when the optimal αi

parameters do not satisfy (6.5). However, in several regimes of interest, this constraint
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(a) S = 4, J = 3.5, and I between 0 and 10. For these
parameters, the bound Ri(S

′, S′, I ′, I ′) is identical to our
inner bound for weak and strong interference.

 

(b) S = 10, J = 3.5, and I between 0 and 40. For these
parameters, the bound Ri(S

′, S′, I ′, I ′) is identical to our
inner bound for high signal-to-noise ratio S = 10.

Figure 7: Bounds on the symmetric capacity Csym(S, I, J) for fixed S1 = S2 = S,
J1 = J2 = J , and an interval I1 = I2 = I

Note: In addition to our inner R̃i(S
′, S ′, I ′, I ′) and outer bounds Ro(S

′, S ′, I ′, I ′),
also shown the bound Ri(S

′, S ′, I ′, I ′) and shown Ri(S
′, S ′, I ′, I ′) with sub-optimal

α = 1
1+I′

.
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is not active. For example, if the channel has weak interference, in the sense of

ElGamal and Kim, (2011), eq (6.8)
√

I′j
S′
i
(1 + I ′i) ≤ ρi(1− ρj) for some ρ1, ρ2 ∈ [0, 1]

and (i, j) = (1, 2), (2, 1) then treating interference as noise is optimal for the sum-rate

Theorem 6.3 of ElGamal and Kim, (2011). Treating interference as noise corresponds

to α1 = α2 = 1, under which (6.5) holds. Therefore, in the weak interference regime,

our inner bound matches Ri(S
′
1, S

′
2, I
′
1, I
′
2), and it also achieves the exact sum-rate

capacity. On the other hand, when the channel has strong interference in both users

I ′2 ≥ S ′1 and I ′1 ≥ S ′2, by choosing α1 = α2 = 0 each transmitter only sends its own

common message, and both messages can be decoded at each receiver. Therefore,

(6.5) holds if we have I1 > J1 and I2 > J2. Thus, we obtain the exact capacity region

for the strong interference regime Theorem 6.2 of ElGamal and Kim, (2011).

In the Theorem 6.6 of ElGamal and Kim, (2011), it is shown that using Han-

Kobayashi inner bound with sub-optimal choices α1 = 1
1+I′2

and α2 = 1
1+I′1

yields an

inner bound that is always within half a bit of the outer bound. Therefore, if α1 = 1
1+I′2

and α2 = 1
1+I′1

satisfy our conditions in (6.5) then our inner bound is guaranteed to be

within half a bit of our outer bound; that is, if J1 <
S1

1+I′2
+

I21
1+I′1

and J2 <
S2

1+I′1
+

I22
1+I′2

,

our inner and outer bounds are within half a bit. However, we are now able to prove

that our inner and outer bounds are always within half a bit by using Lemma 7 in

the proof of the inner bound.

Now, consider the symmetric case; i.e. S1 = S2 = S, I1 = I2 = I, J1 = J2 = J , and

R1 = R2 = R. Clearly in this case it is optimal to choose α1 = α2 = α for inner bound.

Define the symmetric capacity of the channel as Csym(S, I, J) = max{R : (R,R) ∈ C }.

We illustrate the bounds for Csym(S, I, J) in Fig. 6 and Fig. 7 including our outer

bound Ro(S
′, S ′, I ′, I ′), our inner bound R̃i(S

′, S ′, I ′, I ′) with optimal α, the Han-

Kobayashi inner bound with the noise variance increased by the received power of the

103



jammer Ri(S
′, S ′, I ′, I ′) and the latter with sub-optimal α = 1

1+I′
. Note that we are

in the strong interference regime only if I ′ ≥ S ′.

Define the normalized symmetric capacity as dsym = Csym(S,I,J)

C(S)
. Then the symmetric

degrees of freedom (DoF) d∗sym is given by

d∗sym(β, δ) = lim
S→∞

Csym(S, Sβ, Sδ)

C(S)
. (6.6)

By substituting I = Sβ and J = Sδ in our outer and inner bounds Ro(S
′, S ′, I ′, I ′)

and R̃i(S
′, S ′, I ′, I ′), we find the upper bound for Csym(S, Sβ, Sδ) given by

Csym(S, Sβ, Sδ) ≤ max{R : (R,R) ∈ Ro(S
′, S ′, I ′, I ′)} =

min

{
C
(

S
1+Sδ

)
,
1

2
C
(

S
1+Sδ+Sβ

)
+

1

2
C
(
S+Sβ

1+Sδ

)
, C

(
S+Sβ+ S2β

1+Sδ

1+Sδ+Sβ

)
,

1

3
C
(

S
1+Sδ+Sβ

)
+

1

3
C
(
S+Sβ

1+Sδ

)
+

1

3
C

(
S+Sβ+ S2β

1+Sδ

1+Sδ+Sβ

)}
, (6.7)

and the lower bound for Csym(S, Sβ, Sδ) given by

Csym(S, Sβ, Sδ) ≥ max{R : (R,R) ∈ R̃i(S
′, S ′, I ′, I ′)} =

max
α:αS+ᾱSβ>Sδ

{
min

{
C
(

S
1+Sδ+αSβ

)
,
1

2
C
(

S+ᾱSβ

1+Sδ+αSβ

)
+

1

2
C
(

αS
1+Sδ+αSβ

)
,

C
(

αS+ᾱSβ

1+Sδ+αSβ

)
,
1

3
C
(

S+ᾱSβ

1+Sδ+αSβ

)
+

1

3
C
(

αS
1+Sδ+αSβ

)
+

1

3
C
(

αS+ᾱSβ

1+Sδ+αSβ

)}}
. (6.8)

We may further lower bound the symmetric capacity by choosing α = 1
1+I′

= 1+Sδ

1+Sδ+Sβ

as long as this choice satisfies (6.5). In particular, we claim that this value of α always

satisfies (6.5) for sufficiently large S. We show this by substituting this value of α to

find

αS + ᾱSβ =
1 + Sδ

1 + Sδ + Sβ
S +

Sβ

1 + Sδ + Sβ
Sβ (6.9)

=
S + S1+δ + S2β

1 + Sδ + Sβ
. (6.10)
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(a) DoF for δ = 1
4 and β between 0, 2.

 

(b) DoF for β = 0.7 and δ between 0, 2.

Figure 8: Symmetric degrees of freedom for the GIC.

105



Since the capacity region is empty when S ≤ J = Sδ, it suffices to consider (6.10)

only for δ < 1. The dominant power of S in (6.10) is given by

max{1 + δ, 2β} −max{δ, β} > max{2δ, 2β} −max{δ, β} = max{δ, β} ≥ δ. (6.11)

Therefore, (6.10) is larger than J = Sδ for sufficiently large S, thus α = 1
1+I′

satisfies

(6.5). Now, we may substitute this choice of α into (6.8), and take the limits of (6.8)

and (6.7) as S →∞. Therefore, we find that the symmetric DoF is given by

d∗sym(β, δ) =

min

{
max{0, 1− δ},max {0, 1− β, β − δ} ,max

{
0, 1− β

2
− δ

2
,
β

2
− δ

2

}}
(6.12)

which is illustrated for fixed δ = 1/4 in Fig. 8a and fixed β = 0.7 in Fig. 8b. Note

that for the interference channel with no jammer ElGamal and Kim, (2011), p. 153,

the DoF exhibits a “W” shape for a fixed δ = log J
logS

.

6.4 Proof of Outer Bound

Consider a sequence of (2nR1 , 2nR2 , n) codes with vanishing probability of error.

Since these codes must function for arbitrary jamming signals, we may derive an outer

bound by assuming the jammers transmit Gaussian noise with variance Λ. Thus,

we follow the outer bound for the Gaussian interference channel with no jammer

Chapter 6.7.2, p. 151 and the noise power σ2 + g2
i Λ. This yields the outer bound

Ro(S
′
1, S

′
2, I
′
1, I
′
2).

Moreover, if J1 ≥ S1, based on the assumption that the jammer knows the code,

the jammer can choose an arbitrary message m̃1 and transmit a scaled form of the

corresponding codeword w1 = x1(m̃1)h11/g1. Given Y1 = h11x1(m1) + h12x2(m2) +

h11x1(m̃1) +V1, decoder 1 cannot decode the message since it does not know whether
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the true message is m1 or m̃1. The same scenario can happen for decoder 2 if J2 ≥ S2.

This attack constitutes AVC symmetrization.

6.5 Proof of Inner Bound

Our inner bound proof is a generalization of the Han-Kobayashi bound Chapter

6.5.1, p. 144 inElGamal and Kim, (2011). Using rate splitting, we represent message

mi from user i for i = 1, 2, by independent common messagemic at rate Ric and private

message mip at rate Rip such that Ri = Ric +Rip. Thus, each receiver will decode its

own common and private messages and the common message of the interfering user.

Assuming Si > Ji for i = 1, 2, we show that (R1c, R1p, R2c, R2p) is achievable if

Rip < C
(

αiSi
1+Ji+αjIi

)
Rip +Ric < C

(
Si

1+Ji+αjIi

)
Rip +Rjc < C

(
αiSi+ᾱjIi
1+Ji+αjIi

)
Rip +Ric +Rjc < C

(
Si+ᾱjIi

1+Ji+αjIi

)
(6.13)

for some αi ∈ [0, 1] satisfying αiSi + ᾱjIi > Ji, and again the above holds for (i, j) =

(1, 2) and (i, j) = (2, 1). This achieves the region R̃i by substituting R1 = R1c +R1p

and R2 = R2c + R2p, and applying the Fourier-Motzkin procedure to eliminate Ric

and Rip.

Before proceeding to the proof, we first define the following typical set for Gaussian

random variables X1, . . . , Xk as:

T (n)
ε (X1, . . . , Xk)

=

{
(x1, . . . ,xk) : E(XiXj)− ε ≤

1

n
〈xi,xj〉 ≤ E(XiXj) + ε for all i, j ∈ [k]

}
.

(6.14)

107



Codebook generation: Fix α1, α2 ∈ [0, 1] and γ > 0. For i = 1, 2, we generate

2nRic i.i.d zero mean Gaussian sequences Xic(mic) with variance (1− γ)ᾱiPi for each

mic ∈ [2nRic ]. Also, for each mic ∈ [2nRic ], generate 2nRip i.i.d. zero mean Gaussian

sequences Xip(mic,mip) with variance (1− γ)αiPi for each mip ∈ [2nRip ] for i = 1, 2.

Encoding: For i = 1, 2, write message mi as (mic,mip) where mic ∈ [2nRic ] and

mip ∈ [2nRip ]. Transmitter i sends Xi = Xic(mic) + Xip(mic,mip) if its power is less

than Pi, otherwise it sends zero.

Decoding: We describe the decoding procedure for receiver 1; that of receiver 2 is

similar. First, let

S ={
(m1c,m1p,m2c):(x1c(m1c),x1p(m1c,m1p),x2c(m2c),y1)∈

⋃
T (n)
ε (X1c, X1p, X2c, Y1)

}
(6.15)

where the union is over all joint Gaussian distributions X1c, X1p, X2c, Y1 such that

(X1c, X1p, X2c, Y1 − h11X1c − h11X1p − h12X2c) are mutually independent.

Given y1, decoder 1 finds

(m̂1c, m̂1p, m̂2c) = arg min
(m1c,m1p,m2c)∈S

‖y1 − h11x1c(m1c)− h11x1p(m1c,m1p)− h12x2c(m2c)‖ .

(6.16)

If there is more than one minimum, choose between them arbitrarily. The decoder

then outputs the message estimate m̂1 = (m̂1c, m̂1p).

Analysis of the probability of error: Assume the two users send messages
(
(M1c,

M1p), (M2c,M2p)
)
. We will obtain the average probability of error for decoder 1 and

similarly generalize the results for decoder 2. Define the error event

E0 = {(M1c,M1p,M2c) /∈ S } . (6.17)

108



To consider error events in which a false message set appears correct, we define the set

T =
{

(m1c,m1p,m2c) ∈ S : ‖Y1−h11x1c(m1c)−h11x1p(m1c,m1p)−h12x2c(m2c)‖2

≤ ‖Y1 − h11x1c(M1c)− h11x1p(M1c,M1p)− h12x2c(M2c)‖2
}
. (6.18)

An error can only occur if there exists some (m1c,m1p,m2c) ∈ T where (m1c,m1p) 6=

(M1c,M1p). We divide this event into the following 4 error events:

E1 = {∃ m̃1p 6= M1p : (M1c, m̃1p,M2c) ∈ T } (6.19)

E2 = {∃ m̃1c 6= M1c, m̃1p : (m̃1c, m̃1p,M2c) ∈ T } (6.20)

E3 = {∃ m̃1p 6= M1p, m̃2c 6= M2c : (M1c, m̃1p, m̃2c) ∈ T } (6.21)

E4 = {∃ m̃1c 6= M1c, m̃1p, m̃2c 6= M2c : (m̃1c, m̃1p, m̃2c) ∈ T } . (6.22)

We will prove that the probability of each one of the error events converges to zero as

long as the conditions in (6.13) are satisfied.

We now consider each of the five error events, beginning with E0. Define set

T (n,k)
ε as

⋃ T (n)
ε (X1, . . . , Xk) over all joint Gaussian distributions X1, . . . , Xk such

that (X1, . . . , Xk) are mutually independent. For every ε > ε′, we have

P(E0) = P{(M1c,M1p,M2c) /∈ S } (6.23)

= P
{

(x1c(M1c),x1p(M1c,M1p),x2c(M2c),Y1) /∈
⋃
T (n)
ε (X1c, X1p, X2c, Y1)

}
(6.24)

= P
{

(x1c,x1p,x2c, h12x2p + g1w1 + V1) /∈ T (n,4)
ε

}
(6.25)

≤ P
{

(x1c,x1p,x2c,x2p,w1,V1) /∈ T (n,6)
ε

}
(6.26)

≤ P
{

(x1c,x1p,x2c,x2p,w1) /∈ T (n,5)
ε′

}
+ P

{
(x1c,x1p,x2c,x2p,w1,V1) /∈ T (n,6)

ε

∣∣∣ (x1c,x1p,x2c,x2p,w1) ∈ T (n,5)
ε′

}
(6.27)
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where the union in (6.24) is exactly the one in set S definition (6.15). (6.26) follows

because if (x1c,x1p,x2c,x2p,w1,V1) is typical for independent distributions then

(x1c,x1p,x2c, h12x2p + g1w1 +V1) would be typical. The probabilities in (6.27) follows

from the fact that if (x1c,x1p,x2c,x2p,w1) /∈ T (n,5)
ε′ then (x1c,x1p,x2c,x2p,w1,V1) /∈

T (n,6)
ε . Finally, as n→∞ the first term in (6.27) vanishes exponentially by using the

general version of Lemma 9-(3.23), and the second term in (6.27) tends to zero by

using conditional typicality lemma (see (2) in Section 2.4). Then, P(E0) tends to zero

as n→∞.

To bound the probability of event E1, we apply Lemma 6 with the following:

• i = m1p, j = m̃1p, k = m1c,

• xi(k) = h11x1p(m1c,m1p)√
(1−γ)α1σ2S1

,

• xj(k) = h11x1p(m1c,m̃1p)√
(1−γ)α1σ2S1

,

• V = h12x2p(M2c,M2p)+V1√
(1−γ)α1σ2S1

,

• w = g1w1√
(1−γ)α1σ2S1

.

In this case, K = 2nR1c ≥ n2 for sufficiently large n as long as R1c > 0. Note that

event E1 occurs if

‖h11X1p(m1c,m1p) + g1w1 + h12X2p(M2c,M2p) + V1 − h11X1p(m1c, m̃1p)‖2

≤ ‖g1w1 + h12X2p(M2c,M2p) + V1‖2. (6.28)

Thus, by Lemma 6, if R1p < C
(

(1−γ)α1S1

1+J1+(1−γ)α2I1

)
= C

(
(1−γ)α1S′

1

1+(1−γ)α2I′1

)
, then with high

probability the codebook X1p will be such that P(E1)→ 0 as n→∞.

We now bound event E2 by applying Lemma 8 with the following particularizations:

• i1 =m1c, i2 =(m1c,m1p), j1 =m̃1c, j2 = (m̃1c, m̃1p),

• xi1 = h11x1c(m1c)√
(1−γ)σ2S1

, yi2 = h11x1p(m1c,m1p)√
(1−γ)σ2S1

,
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• xj1 = h11x1c(m̃1c)√
(1−γ)σ2S1

, yj2 = h11x1p(m̃1c,m̃1p)√
(1−γ)σ2S1

,

• V = h12x2p(M2c,M2p)+V1√
(1−γ)σ2S1

,

• w = g1w1√
(1−γ)σ2S1

.

Note that event E2 occurs if

‖h11X1c(m1c) + h11X1p(m1c,m1p) + w + V − h11X1c(m̃1c)−h11X1p(m̃1c, m̃1p)‖2

≤ ‖w+V‖2.

Therefore, we can conclude by Lemma 8 that with high probability as n → ∞,

P(E2)→ 0 if J1
S1
< 1,

R1c < C
(

(1−γ)ᾱ1S1

1+J1+(1−γ)α2I1

)
(6.29)

R1p < C
(

(1−γ)α1S1

1+J1+(1−γ)α2I1

)
(6.30)

R1c +R1p < C
(

(1−γ)S1

1+J1+(1−γ)α2I1

)
. (6.31)

Similarly, the probability of event E3 can be bounded using Lemma 8 as long as we

have α1S1 + ᾱ2I1 > J1, (6.30),

R2c < C
(

(1−γ)ᾱ2I1
1+J1+(1−γ)α2I1

)
(6.32)

R1p +R2c < C
(

(1−γ)(α1S1+ᾱ2I1)
1+J1+(1−γ)α2I1

)
. (6.33)

Note that if we apply Lemma 7, which benefits from the common randomness M1c

between the encoder and the decoder, instead of Lemma 8, we can delete the

power constraint α1S1 + ᾱ2I1 > J1. Finally, the probability of event E4 may be

bounded using Lemma 7 and Lemma 8 under the conditions S1 + ᾱ2I1 > J1, (6.29),

(6.30), (6.31), (6.32), (6.33), R1c +R2c < C
(

(1−γ)(ᾱ1S1+ᾱ2I1)
1+J1+(1−γ)α2I1

)
and R1c +R1p +R2c <

C
(

(1−γ)(S1+ᾱ2I1)
1+J1+(1−γ)α2I1

)
. Note that in this case we use a version of Lemma 7 and Lemma 8

for three independent codebooks rather than two. We finally get all equations in

(6.13) as γ → 0.
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6.6 Proof of Proposition 14

First, we prove that C ⊆ CG. Consider rate pair (R′1, R
′
2) ∈ C meaning that there

exists a
(
2nR

′
1 , 2nR

′
2 , n
)
code that yields an arbitrary small probability of error for any

possible adversary action of two independent jammers. Now, we must show that this

same code will also work for G jammers. In the G jammer model, let w1, . . . ,wG be

any jamming signals. We may define equivalent jamming signals for the model with

two independent jammers as

w′1 =
g11w1 + g12w2 + . . .+ g1GwG

g1

and

w′2 =
g21w1 + g22w2 + . . .+ g2GwG

g2

.

Note that the received signal in the G jammer model is identical to that in the 2

jammer model with jamming signals w′1,w′2. Moreover, in order to show that w′1 and

w′2 satisfy power constraints, we have

‖w′i‖2 =
‖gi1w1 + gi2w2 + . . .+ giGwG‖2

|gi|2
(6.34)

≤ (|gi1|‖w1‖+ |gi2|‖w2‖+ . . .+ |giG|‖wG‖)2

|gi|2
(6.35)

≤

(
|gi1|
√
nΛ + |gi2|

√
nΛ + . . .+ |giG|

√
nΛ
)2

|gi|2
(6.36)

≤ nΛ
(|gi1|+ |gi2|+ . . .+ |giG|)2

|gi|2
(6.37)

= nΛ (6.38)

where i = 1, 2, and 6.38 follows from the assumption in the proposition. Therefore,

the probability of error under the G jammer model is at most that of the 2 jammer

model.
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Now, we prove CG ⊆ C . Let rate (R1, R2) ∈ CG. Therefore, there exists a sequence

of
(
2nR1 , 2nR2 , n

)
code that has arbitrary small probability of error PG

e for any possible

adversary actions with G jammers. Now, if we use this code for two-jammer scenario

Fig. 4, the probability of error at decoder i = 1, 2 is given as

Pei = max
w′
i

P(M̂i 6= Mi) (6.39)

= max
w1,w2,...,wG

P(M̂i 6= Mi) (6.40)

where the last equality follows because of the same power constraints ‖wj‖2 ≤ nΛ

and ‖w′i‖2 ≤ nΛ (6.38) for j = 1, 2, . . . , G and i = 1, 2 in both models meaning that

the set of received jammer signals gi1w1 + gi2w2 + . . .+ giGwG or giw′i are identical

at each decoder. Note that we have the assumption |gi1|+ |gi2|+ . . .+ |giG| = |gi| for

i = 1, 2. By the equivalent expression for Pei in (6.40), the probability of error in the

G jammer model can be lower bounded by

PG
e ≥ max{Pe1, Pe2}. (6.41)

In addition, the overall probability of error is upper bounded by

P (n)
e ≤ Pe1 + Pe2. (6.42)

Since PG
e → 0, from (6.41) both Pe1 and Pe2 must tend to zero, too. Therefore, the

sum in (6.42) also tends to zero, so the overall probability of error with two jammers

P
(n)
e vanishes as n→∞.
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Chapter 7

GAUSSIAN ARBITRARILY-VARYING FADING CHANNELS

In this chapter, we consider an arbitrarily-varying fading channel consisting of one

transmitter, one receiver and an arbitrarily varying adversary. The channel is assumed

to have additive Gaussian noise and fast fading of the gain from the legitimate user

to the receiver. We study four variants of the problem depending on whether the

transmitter and/or adversary have access to the fading gains; we assume the receiver

always knows the fading gains. In two variants the adversary does not have access to

the gains, so the capacity corresponds to the capacity of a standard point-to-point

fading channel with increased noise variance. The capacity of the other two cases,

in which the adversary has knowledge of the channel gains, are determined by the

worst-case noise variance as a function of the channel gain subject to the jammer’s

power constraint; if the jammer has enough power, then it can imitate the legitimate

user’s channel, causing the capacity to drop to zero. We also show that having the

channel gains causally or non-causally at the encoder and/or the adversary does not

change the capacity, except for the case where all parties know the channel gains. In

this case, if the transmitter knows the gains non-causally, while the adversary knows

the gains causally, then it is possible for the legitimate users to keep a secret from the

adversary. We show that in this case the capacity is always positive
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S

YX

V ∼ N (0, σ2)

G

Figure 9: Gaussian Arbitrarily-Varying Fading Channel.

7.1 Problem Statement

The Gaussian arbitrarily-varying fading channel (GAVFC) in Fig. 9 is a point-to-

point fading channel with additive Gaussian noise and an intelligent adversary who

does not have any information about the transmitted signal except the code. The

received signal is given by

Y = G ◦ x + s + V (7.1)

where G is a random sequence of identical and independently distributed (i.i.d.)

fast fading channel gains from the legitimate transmitter to the receiver drawn from

continuous distribution fG(g) assumed to have positive and finite variance, x is the

n-length deterministic vector representing the user’s signal, s is the adversary signal

chosen arbitrarily, and V is a random n-length noise vector distributed as a sequence

of i.i.d. zero mean Gaussian random variables with variance σ2, independent of x,

G and s. Note that the receiver always knows the exact fading coefficients g while

the transmitter and the adversary either not know the gains, know them causally, or

know them non-causally.

Define an (N, n) code for the GAVFC by a message set, an encoding function and

a decoding function as follows:
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• Message setM = [N ],

• Encoding function (one of the following)

No knowledge x(m) :M→ Rn where x = (x1, . . . , xn)

Causal xi(m,gi) : M× Ri → R where gi = (g1, . . . , gi) and x = (x1, . . . , xn) for

i ∈ [n]

Non-Causal xi(m,g) :M× Rn → R, where g = (g1, . . . , gn) and x = (x1, . . . , xn) for

i ∈ [n]

• Decoding function Θ(y,g) : Rn × Rn →M,

where the rate of the code is R = 1
n

log(N). The message m is drawn uniformly from

the set M. If the encoder does not know the channel gains, it maps the message

to x(m) ∈ Rn. If the encoder knows the channel gains causally, then it maps the

message to xi(m,gi) ∈ R, and if the encoder knows the channel gains non-causally,

then it maps the message to xi(m,g) ∈ R where x = (x1, . . . , xn). Given channel

gains g at the receiver, the signal y is decoded by function Θ(y,g) to the message m̂.

Moreover, we assume that if the channel gains are available at the transmitter then the

transmitter’s signal satisfies the expected power constraints E [‖X(m,G)‖2] ≤ nP for

any message m ∈M. Otherwise, the power constraint is ‖x(m)‖2 ≤ nP . The same

definition applies to the adversary’s signal power constraint, i.e. if the adversary knows

the channel gains, the constraint is E [‖S(G)‖2] ≤ nΛ; otherwise, it is ‖s‖2 ≤ nΛ.

The three parameters P , Λ, and σ2 as well as the distribution of fading gains fG(g)

are known to all parties.

The probability of error e(s,m) for the message m ∈ M in the presence of

adversary signal s ∈ Rn is now given by the probability that m̂ 6= m. Thus, the
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average probability of error for a specific s ∈ Rn is

ē(s) =
1

N

N∑
m=1

e(s,m). (7.2)

If the adversary knows the channel gains non-causally then his signal is denoted by

si(g) for i ∈ [n]. Alternatively, if the adversary knows the gains causally, then the

adversary’s action is given by functions si(gi) for i ∈ [n] where s = (s1, · · · , sn) and

gi = (g1, · · · , gi). Finally, the overall probability of error P (n)
e is maximized over

all possible choices of jammers’ sequences s which satisfy either E [‖S‖2] ≤ nΛ or

‖s‖2 ≤ nΛ. Rate R is achievable if there exists a sequence of
(
2nR, n

)
codes where

lim
n→∞

P
(n)
e = 0. The capacity is the supremum of all achievable rates. We denote the

capacity of the GAVFC as Cα,β where α denotes the transmitter’s knowledge, and β

denotes the adversary’s knowledge; α and β can be U, C, or N depending on whether

the transmitter or adversary does not know the gains (U = unknown), knows the gains

causally (C), or knows the gains non-causally (N). For example CU,N is the capacity

where the transmitter does not know the gains and the adversary knows the gains

non-causally.

7.2 Main Results

We present our results for the capacity of GAVFC whether the fading channel

gains G are available causally or non-causally at the encoder and/or the adversary

(the decoder always knows the gains) in the following theorems.
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Theorem 17 The capacities of the GAVFC are given by

CU,U = EG
[
C

(
G2P

Λ + σ2

)]
, (7.3)

CN,U = CC,U = max
ϕ(g):Eϕ(G)≤P

EG
[
C

(
G2ϕ(G)

Λ + σ2

)]
, (7.4)

CU,N = CU,C =


min

ψ(g):Eψ(G)≤Λ
EG
[
C
(

G2P
ψ(G)+σ2

)]
, EG2P >Λ

0, EG2P ≤Λ

(7.5)

CN,N =CC,C =CC,N =
max

ϕ(g):Eϕ(G)≤P,
EG2ϕ(G)≥Λ

min
ψ(g):Eψ(G)≤Λ

EG
[
C
(
G2ϕ(G)
ψ(G)+σ2

)]
if max
ϕ(g):Eϕ(G)≤P

EG2ϕ(G) > Λ

0, if max
ϕ(g):Eϕ(G)≤P

EG2ϕ(G) ≤ Λ.

(7.6)

CN,C = max
ϕ(g):Eϕ(G)≤P

min
ψ(g):Eψ(G)≤Λ

EG
[
C

(
G2ϕ(G)

ψ(G) + σ2

)]
(7.7)

Note that when the encoder knows the gains in (7.4), (7.6) and (7.7), the capacity

expression includes a maximization of the input power as a function ϕ(·) of the

gain, similar to the result in Goldsmith and Varaiya, (1997). Similarly, when the

jammer knows the gains in (7.5), (7.6) and (7.7), the capacity expression includes a

minimization that represents the jammer’s choice of noise power as a function ψ(·)

of the gain. Moreover, when the jammer knows the gains, with enough power it

can symmetrize the channel by mimicking the legitimate signal, thus reducing the

capacity to zero. However, in (7.7) we have assumed that the adversary knows the

gains causally and the encoder and the decoder know the gains non-causally. Thus,

the encoder and decoder effectively share a secret (the channel gains at the end of the

block) unknown to the adversary, so the adversary cannot symmetrize the channel.

It is also worth mentioning that for the other cases (except (7.7)) our proof works

exactly the same whether the transmitter and/or the adversary know the gain sequence
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causally, non-causally, or even memorylessly (i.e., at time i, you only know the gain

value at time i).

In the Fig. 10, the capacity of GAVFC with Rayleigh fading is shown for P =

1, σ2 = 0.25, 0 < Λ < 10 whether the channel gains are available at the encoder and/or

adversary. However, C is the capacity of standard Gaussian arbitrary-varying channel

without any fading. It is notable that if the encoder knows the channel gains, then it

can choose its signal as a function of gains to increase the capacity of the channel.

On the other hand, the knowledge of adversary about the channel gains may decrease

the capacity, and in this case if the adversary’s power exceeds 2, the capacity will be

zero by the symmetrizability.

It is worth mentioning that all of the achievability proofs follow a very similar

structure, and the main differences origin from the knowledge of the adversary about

the channel gains. Codebook generation, encoding, decoding and the error events

are mostly the same. However, each proof changes in the way that we analyze

the probability of error and show that it vanishes subject to some rate and power

constraints. We provide the achievability proof for the three cases of CN,U, CN,N and

CN,C in which the encoder knows the channel gains, but the adversary knowledge

about the channel gains changes from unknown, non-causally known and causally

known. Since the proof does not change too much whether the encoder knows the

channel gains or not, the achievability proof for CU,U and CU,N become special cases

of CN,U and CN,N, respectively. Note that the achievability proves for the other cases

as CC,U, CU,C, CC,C and CC,N are equal to one of those proves that we have already

covered.
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U,U

N,U

U,N

Figure 10: Gaussian arbitrarily-varying fading channel capacities for P = 1, σ2 =
0.25, 0 < Λ < 10 with Rayleigh fading.

Note: C is the capacity of the standard Gaussian channel without fading.

7.3 Auxiliary Results and Tools

Before proceeding to the proofs, we first define the typical set for continuous

random variables X1, . . . , Xk with probability density function fX1,...,Xk(x1, . . . , xk) as

follows:

T (n)
ε (X1, . . . , Xk) =

{
(x1, . . . , xk) :

∣∣∣∣− 1

n
log fXA(xA)− h(XA)

∣∣∣∣ ≤ ε for all A⊂ [k]

}
(7.8)
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where h(XA) is the differential entropy of (Xi : i ∈ A). Next, we define the typical

set for continuous random variables X1, . . . , Xk with probability density function

fX1,...,Xk(x1, . . . , xk) and a discrete random variable G̃ with probability mass function

PG̃(g̃) as follows:

T (n)
ε (X1, . . . , Xk, G̃) =

{
(x1, . . . , xk, ĝ) :

∣∣∣∣− 1

n
logPG̃(g̃)−H(G̃)

∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log fXA(xA)−h(XA)

∣∣∣∣≤ε, ∣∣∣∣− 1

n
log fXA|G̃(xA|g̃)−h(XA|G̃)

∣∣∣∣≤ε, for all A⊂ [k]

}
.

(7.9)

where H(G̃) and h(XA|G̃) denote the entropy of G and the conditional differential

entropy of XA given G̃.

Throughout the achievability proofs, we will utilize several lemmas including the

joint typicality lemma as Lemma 3 and conditional typicality lemma as Lemma 2

for Gaussian random variables. The main two lemmas in this proof are described

as follows and they show that with high probability a Gaussian codebook satisfies

several desirable properties. The proofs are given in Section 7.8.

Lemma 18 Fix ε′ > 0. There exists γ > 0 such that the following holds. Let X(m)

for m ∈ [N ], N = 2nR be a zero mean Gaussian codebook with variance 1−γ. Consider

a random variable G drawn from probability density function fG(g). With probability

approaching 1 as n → ∞, for any s,g where ‖s‖2 ≤ nΛ, there exists a function

δ(ε′) > 0 such that

1

N

∣∣∣∣∣∣∣∣
m : (x(m), s,g) /∈

⋃
X independent of (S,G):

EX2=1,ES2≤Λ

T (n)
ε′ (X,S,G)


∣∣∣∣∣∣∣∣ ≤ exp(−nδ(ε′)), (7.10)

where the union is over zero mean conditionally Gaussian random vectors (X,S) given

G.
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Lemma 19 Fix ε > 0. There exists γ > 0 such that the following holds. Let X(m)

for m ∈ [N ], N = 2nR be a zero mean Gaussian codebook with variance 1− γ. Let G

be drawn from probability density function fG(g). With probability approaching 1 as

n→∞, for any

• zero-mean conditionally Gaussian random vector (X,X ′, S) given G where

EX2 = EX ′2 = 1 and ES2 ≤ Λ,

• x, s,g where ‖s‖2 ≤ nΛ,

there exists a function δ(ε) > 0 such that

P
{∣∣{(x(m′), s,G)∈T (n)

ε (X ′, S,G) for some m′
}∣∣} ≤ 2 exp{−nδ(ε)/2},

if I(G;X ′S)≥|R−I(X ′;S)|++δ(ε),

(7.11)∣∣{m′ : (x(m′), s) ∈ T (n)
ε (X ′, S)

}∣∣ ≤ exp
{
n
[
|R− I(X ′;S)|+ + δ(ε)

]}
, (7.12)∣∣{m′ : (x,x(m′), s,g) ∈ T (n)

ε (X,X ′, S,G)
}∣∣ ≤ exp

{
n
[
|R− I(X ′;XSG)|+ + δ(ε)

]}
,

(7.13)

1

N

∣∣{m : (x(m),x(m′), s,g)∈T (n)
ε for some m′ 6=m

}∣∣ ≤2 exp{−nδ(ε)/2},

if I(X;X ′SG)≥|R−I(X ′;SG)|++δ(ε).

(7.14)

7.4 Capacity Proof with Gains Available at Decoder

7.4.1 Converse Proof

We initially assume that for any arbitrary adversary strategy there is a sequence

of (2nR, n) codes with vanishing probability of error. The adversary can generate a
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Gaussian sequence with variance Λ− γ for any γ > 0; if this sequence has power less

than Λ, it is transmitted, otherwise, the adversary sends the all-zero sequence. Note

that the power of this Gaussian sequence exceeds Λ only with small probability by

the law of large numbers. With this choice of adversary, the channel corresponds to a

standard Gaussian fading channel with the noise variance Λ+σ2−γ where the channel

gains are available only at the decoder. Therefore, using capacity of a non-adversarial

Gaussian fading channel ElGamal and Kim, (2011) for arbitrarily small γ, we may

upper bound the capacity by

C ≤ EG
[
C

(
G2P

Λ + σ2

)]
. (7.15)

7.4.2 Achievability Proof

The achievability proof of this case can be counted as a special case of CN,U in Sec.

7.5.2 where both encoder and decoder know the channel gains. However, in this case

since the encoder does not know the channel gains, we do not have any ϕ(g) function

at the encoder. In other words, the achievability proof for this case is identical to that

in Sec. 7.5.2 with ϕ(g) = P .

7.5 Capacity Proof with Gains Available at Encoder and Decoder

7.5.1 Converse Proof

As in the previous case, the adversary can simply send Gaussian noise with variance

Λ− γ. By the law of large numbers, the resulting channel is equivalent to a standard

Gaussian fading channel with the knowledge of gains at both encoder and decoder and
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noise variance Λ+σ2−γ with high probability. Thus, since γ can be chosen arbitrarily

small, from the capacity of a non-adversarial Gaussian fading channel Goldsmith and

Varaiya, (1997), we have

C ≤ max
ϕ(g):Eϕ(G)≤P

EG
[
C

(
G2ϕ(G)

Λ + σ2

)]
. (7.16)

The optimum value of ϕ∗(g) =
∣∣∣λ− Λ+σ2

g2

∣∣∣+ where λ is obtained by E[ϕ∗(G)] = P .

7.5.2 Achievability Proof

For simplicity we assume P = 1. Suppose any arbitrary function ϕ(G) that satisfies

Eϕ(G) ≤ 1 and Var(G
√
ϕ(G)) > 0. We further assume that G2ϕ(G) has a positive

variance. Note that this is only a concern if the optimum ϕ∗(G) = c
G2 ; in this case,

we can instead take ϕ(G) = c
(G−d)2

where c, d are two positive constants and d can be

chosen arbitrarily small. Let

R < EG
[
C

(
G2ϕ(G)

Λ + σ2

)]
. (7.17)

We now propose a (2nR, n) code sequence, and prove that using this code the probability

of error tends to zero as n→∞.

Codebook generation: Fix ε > ε′ > γ > 0. We generate 2nR i.i.d zero mean

Gaussian sequences X(m) with variance (1− γ) for each m ∈ [2nR]. By Lemma 18

and Lemma 19, we assume that the deterministic codebook satisfies (7.10)–(7.14).

Encoding: Since the transmitter knows the channel gains, it sends
√
ϕ(g) ◦ x(m)

(at time i signal
√
ϕ(gi)xi(m) is sent) if its power is less than 1, otherwise it sends

zero.
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Decoding: Given y, let S be the set of messages m̂ such that (x(m̂),g,y) ∈

T (n)
ε (X ′, G, Y ) for some random variables X ′ ∼ N (0, 1), G ∼ fG(g) and zero mean

Gaussian Y −G
√
ϕ(G)X ′ where (X ′, G, Y −G

√
ϕ(G)X ′) are mutually independent.

Now, we define the decoding function as

Θ(y,g) = arg min
m̂∈S

∥∥∥y − g ◦
√
ϕ(g) ◦ x(m̂)

∥∥∥2

. (7.18)

Analysis of the probability of error: Suppose the true message sent by the legitimate

user is message M with the power constraint ‖x(M)‖2 ≤ n(1− γ). Then, the overall

probability of error is upper bounded by P (n)
e ≤ P0 + P1 where

P0 = P {M /∈ S } , (7.19)

P1 =P
{∥∥∥Y−G ◦√ϕ(G) ◦ x(m̂)

∥∥∥2

≤‖s+V‖2 for some m̂∈S \{M}
}
. (7.20)

Consider any state sequence s. By (7.10), with high probability (x(M), s,G) ∈

T (n)
ε′ (X,S,G) where (X,S,G) are independent, and EX2 = 1,ES2 ≤ Λ. By the

conditional typicality lemma 2, for every ε > ε′ with high probability (x(M), s,G,V) ∈

T (n)
ε (X,S,G, V ) where (X,S,G, V ) are mutually independent, and EV 2 = σ2. Thus,

according to the definition of S , with high probability M ∈ S and P0 tends to zero

as n→∞.

Define the shorthand ~X = (XX ′SGV ). Let V be a finite ε-dense subset in the

set of all distributions of random vectors ~X that are determined by fG(g) and jointly

zero mean Gaussian vector (XX ′SV ) independent of G with bounded covariances

at most (1, 1,Λ, σ2). Note that because the distribution of fG(g) is fixed, the overall

distribution of ~X can be determined by the covariance matrix of (XX ′SV ), so V only

needs to cover a compact set. Now, we may upper bound P1 by

∑
~X∈V

1

N

N∑
m=1

EG[e ~X(m, s,G)] (7.21)
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where

e ~X(m, s,g) = P
{

(x(m),x(m̂), s,g,V) ∈ T (n)
ε ( ~X),

‖g◦
√
ϕ(g)◦x(m)+s+V−g◦

√
ϕ(g)◦x(m̂)‖2 ≤ ‖s+V‖2 for some m̂ ∈ S \{m}

}
.

(7.22)

We will show that 1
N

∑N
m=1 e ~X(m, s,g)→ 0 for all vectors g and all vectors (XX ′SV )

which are Gaussian given G (whether or not they are in V). Let Z = G
√
ϕ(G)X +

S + V −G
√
ϕ(G)X ′. We may restrict ourselves to ~X where

(X,S,G, V ) are mutually independent, (7.23)

(X,X ′, S, V ) are zero mean Gaussian (7.24)

EX2 = EX ′2 = 1, EV 2 = σ2, ES2 ≤ Λ (7.25)

(X ′, G, Z) are independent, (7.26)

E
[
Z2
]
≤ Λ + σ2. (7.27)

where (7.23) holds since the input X, adversary S, fading gains G and noise V are

all generated independently, (7.24)–(7.25) follows from m, m̂ ∈ S , and ~X ∈ V , (7.26)

holds since we have (X ′, G, Y −GX ′) are mutually independent using x(m̂) ∈ S , and

(7.27) corresponds to E
[(
Y −G

√
ϕ(G)X ′

)2
]
which is less than Λ + σ2 from (7.22).

Observe that if I(X, V,G;X ′, S) = 0, then we would have

0 = E[X ′Z] (7.28)

= E[X ′(G
√
ϕ(G)X + S + V −G

√
ϕ(G)X ′)] (7.29)

= E[X ′(S −G
√
ϕ(G)X ′)] (7.30)

= E[X ′S]− EG
√
ϕ(G). (7.31)
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where (7.28) follows from (7.26), (7.30) holds because (X ′, G,X, V ) are all mutually

independent by the assumption I(X, V,G;X ′, S) = 0 and (7.23), and the last equality

holds since X ′ is independent of G and because E[X ′2] = 1. Therefore, E[X ′S] =

EG
√
ϕ(G).

Moreover, from (7.22) we have

E(S + V )2 ≥ E(G
√
ϕ(G)X+S+V −G

√
ϕ(G)X ′)2 (7.32)

= EG2ϕ(G)(X −X ′)2 + 2EG
√
ϕ(G)(X −X ′)(S + V ) + E(S + V )2

(7.33)

= EG2ϕ(G)EX2 + EG2ϕ(G)EX ′2 − 2EG
√
ϕ(G)X ′S + E(S + V )2

(7.34)

= 2EG2ϕ(G)− 2EG
√
ϕ(G)EX ′S + E(S + V )2 (7.35)

where (7.34) holds because EX = EX ′ = EV = 0, (X,X ′, G) are mutually indepen-

dent, (X,S, V ) are mutually independent, and (X ′, V ) are independent by (7.23),

(7.24) and the assumption I(X, V,G;X ′, S) = 0. Canceling E(S+V )2 from both sides

of (7.35) gives us

EG2ϕ(G)− EG
√
ϕ(G)EX ′S ≤ 0. (7.36)

Now, if we apply the result from (7.31) to (7.36), we get

EG2ϕ(G)− EG
√
ϕ(G)EX ′S = EG2ϕ(G)− EG

√
ϕ(G)EG

√
ϕ(G) (7.37)

= EG2ϕ(G)− E2G
√
ϕ(G) (7.38)

= VarG
√
ϕ(G) (7.39)

≤ 0. (7.40)
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which is a contradiction since we assume Var (G
√
ϕ(G)) is always positive. Thus,

there exists an η > 0 such that

η ≤ I(XVG;X ′S). (7.41)

Also, by (7.14), we may restrict ourselves to distributions where

I(X;X ′SG) < |R− I(X ′;SG)|+ + δ(ε) (7.42)

and

I(G;X ′S) < |R− I(X ′;S)|+ + δ(ε). (7.43)

Note that I(X;X ′SG) = I(X;X ′|SG). We also have the upper bound

e ~X(m, s,g) ≤
∑

m̂:(x(m),x(m̂),s,g)∈T (n)
ε (X,X′,S,G)

P
{
(x(m),x(m̂), s,g,V)∈T (n)

ε (X,X ′, S,G, V )
}

(7.44)

≤ exp
{
n
[
|R−I(X ′;XSG)|+− I(V ;X ′|XSG) + δ(ε)

]
(7.45)

where (7.45) follows from I(V ;XSG) = 0, (7.13) and the joint typicality lemma 3.

Now, let us consider three cases as follows:

Case (a): R < I(X ′;S) that implies R < I(X ′;XSG). From (7.45), for any m, s,g

e ~X(m, s,g) ≤ exp {−n (I(V ;X ′|XSG)− δ(ε))} (7.46)

= exp{−n(I(XV ;X ′|SG)− I(X;X ′|SG)− I(XV ;S|G)− δ(ε))}

(7.47)

= exp{−n(I(XV ;X ′S|G)−I(X;X ′|SG)− δ(ε))} (7.48)

= exp{−n(I(XVG;X ′S)− I(G;X ′S)− I(X;X ′|SG)− δ(ε))} (7.49)

≤ exp{−n(η − δ(ε)− δ′(ε))} (7.50)
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where (7.50) follows from (7.41), (7.42) and (7.43). Therefore, e ~X(m, s,g) vanishes

exponentially fast if δ(ε) is sufficiently small.

Case (b): I(X ′;S) ≤ R. Since R ≥ I(X ′;S) and I(G;S) = 0, from (7.43) we have

R > I(G;X ′S) + I(X ′;S)− δ(ε) (7.51)

= I(G;S) + I(G;X ′|S) + I(X ′;S)− δ(ε) (7.52)

= I(X ′;SG)− δ(ε). (7.53)

Using this result in (7.42), we have

I(X;X ′SG) < R− I(X ′;SG) + δ(ε) + δ(ε). (7.54)

Therefore,

R > I(X;X ′SG) + I(X ′;SG)− 2δ(ε) (7.55)

≥ I(X ′;XSG)− 2δ(ε). (7.56)

Now, from (7.45), we have for any m, s,g

e ~X(m, s,g) ≤ exp
{
n
[
|R−I(X ′;XSG)|+− I(V ;X ′|XSG) + δ(ε)

]
(7.57)

≤ exp
{
n
[
R− I(X ′;XSG) + 2δ(ε)−I(V ;X ′|XSG)+δ(ε)

]
(7.58)

=exp(n[R− I(X ′;XSGV ) + 3δ(ε)]) (7.59)
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where (7.58) follows from (7.56). We now lower bound I(X ′;XSV G) as follows:

I(X ′;XSV G) = I(X ′;XSV |G) + I(X ′;G) (7.60)

≥ I(X ′;G
√
ϕ(G)X+S+V |G) (7.61)

= I(X ′;Z +G
√
ϕ(G)X ′|G) (7.62)

= h(Z +G
√
ϕ(G)X ′|G)− h(Z +G

√
ϕ(G)X ′|G,X ′) (7.63)

= E
[

1

2
log 2πe

(
G2ϕ(G) + E[Z2|G]

)
− 1

2
log 2πeE[Z2|G]

]
(7.64)

= E
[
C

(
G2ϕ(G)

E[Z2|G]

)]
(7.65)

≥ E
[
C

(
G2ϕ(G)

Λ + σ2

)]
(7.66)

where (7.66) follows from (7.26) and (7.27). Replacing this result in (7.59), we obtain

e ~X(m, s,g) ≤ exp

{
n

[
R− E

[
C

(
G2ϕ(G)

Λ + σ2

)]
+ 3δ(ε)

]}
(7.67)

meaning that e ~X(m, s,g) is exponentially vanishing if δ(ε) is sufficiently small, and

(7.17) holds.

7.6 Capacity Proof with Gains Available at Decoder and Jammer

7.6.1 Converse Proof

Consider a sequence of (2nR, n) codes with vanishing probability of error that must

function for arbitrary jamming signals. Because we are proving the converse, we may

assume the best case scenario from the legitimate user’s perspective; in particular,

that the adversary only knows the channel gains causally.

We begin with the case that Λ ≤ EG2P . Given any function ψ(g) satisfying

Eψ(G) ≤ Λ, we may obtain an upper bound by assuming that the jammer transmits a
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random sequence S = (S1, · · · , Sn) where Si is Gaussian with mean zero and variance

ψ(Gi) for i = 1, · · · , n. Note that

E[‖S‖2] = E
n∑
i=1

S2
i (7.68)

=
n∑
i=1

ES2
i (7.69)

=
n∑
i=1

ψ(Gi) (7.70)

≤ nΛ. (7.71)

The resulting channel is equivalent to a standard Gaussian fading channel with the

knowledge of gains only at the decoder and noise variance ψ(g)+σ2. From the capacity

of a non-adversarial Gaussian fading channel

C ≤ EG
[
C

(
G2P

ψ(G) + σ2

)]
. (7.72)

Therefore, the capacity is also less than the minimum over all ψ(G) that satisfies

Eψ(G) ≤ Λ.

C ≤ min
ψ(G):Eψ(G)≤Λ

EG
[
C

(
G2P

ψ(G) + σ2

)]
. (7.73)

For the case Λ > EG2P , we first show that the adversary has enough power to

choose a codeword and send it to the channel. Let M̃ be a uniformly chosen message

by the adversary and M be the true message send by the legitimate transmitter.

Suppose the adversary chooses S = G ◦ x(M̃) then the adversary power constraint is
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satisfied as follows:

E
[
‖S‖2

]
= E

[
‖G ◦ x(M̃)‖2

]
(7.74)

= E

[
n∑
i=1

G2
ix

2
i (M̃)

]
(7.75)

<
n∑
i=1

x2
i (M̃)

Λ

P
(7.76)

≤ nΛ (7.77)

where (7.76) follows from the assumption Λ > EG2P , and (7.77) follows from the

codebook power constraint ‖x2‖ ≤ nP . Given this choice of S, Y = G ◦ x(M) + G ◦

x(M̃) + V. Thus, with high probability the decoder cannot decode the message since

it does not know whether the true message is M or M̃ . In other words, the adversary

symmetrizes the channel and makes the capacity zero if Λ > EG2P .

7.6.2 Achievability Proof

The achievability proof of this case is very similar to the achievability proof of

Sec. 7.7.2 where the encoder, the decoder and the adversary all know the channel

gains. Here, the transmitter does not know the channel gain so it cannot leverage

this knowledge to choose its transmit power. However, the achievability proof for this

case is identical to that in Sec. 7.7.2 except that the transmitter’s power function is

constant; i.e., ϕ(g) = 1.
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7.7 Capacity Proof with Gains Available at Encoder, Decoder, and Jammer

In this section, we first provide the converse proof for the case that the channel

gains are available at the encoder, the decoder and the adversary in Sec. 7.7.1. The

converse proof includes all the four cases in which each of the adversary and the

encoder knows the fading gains causally or non-causally. In Sec. 7.7.2, we show the

achievability proof of the case that the channel gains are available non-causally at

the adversary and causally at the encoder. This proof also works for the two cases

of channel gains being available causally at both the adversary and the encoder or

non-causally at both ends. Finally, we provide the achievability proof for the last

case when the channel gains are causally available at the adversary and non-causally

available at the encoder in Sec. 7.7.3.

7.7.1 Converse Proof

Consider a sequence of (2nR, n) code with vanishing probability of error. Since in

this case both the encoder and the adversary know the channel gains, we consider

four cases to prove the converse whether each of them knows the fading gains causally

or non-causally.

First assume that both the encoder and adversary know the exact channel gains

causally. Let ϕi(g) = 1
N

∑N
m=1 E[X2

i (m,Gi)|Gi = g] and ϕ(g) = 1
n

∑n
i=1 ϕi(g) where
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Gi = (G1, ...Gi), for i ∈ [n]. Thus, ϕ(g) satisfies Eϕ(G) ≤ P as follows:

Eϕ(G) = E

[
1

n

n∑
i=1

ϕi(G)

]
(7.78)

=
1

N

N∑
m=1

1

n
E

[
n∑
i=1

X2
i (m,Gi)

]
(7.79)

≤ P (7.80)

where (7.80) follows by the power constraint for the input signal.

Now, similar to the previous case, where the adversary and decoder know the

channel gains, we also have symmetrizability and non-symmetrizability cases, but with

different conditions. We first show the symmetrizability case, that is if Λ ≥ EG2ϕ(G),

then the jammer can symmetrize the channel. Suppose the adversary chooses a message

M̃ uniformly at random and sends Si = GiXi(M̃,Gi) where Gi = (G1, · · · , Gi) for

i ∈ [n]. Note that this selection of jamming signal is a causal function of the channel

gains. Then we have

E
[
‖S‖2

]
= E

[
n∑
i=1

S2
i

]
(7.81)

=
1

N

N∑
m̃=1

E

[
n∑
i=1

G2
iX

2
i (m̃,Gi)

]
(7.82)

=
n∑
i=1

EG

[
G2 1

N

N∑
m̃=1

E
[
X2
i (m̃,Gi)|Gi = G

]]
(7.83)

=
n∑
i=1

EG
[
G2ϕi(G)

]
(7.84)

= EG

[
G2

n∑
i=1

ϕi(G)

]
(7.85)

= nEG
[
G2ϕ(G)

]
(7.86)

≤ nΛ (7.87)
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Therefore, this choice of jammer satisfies the adversary power constraint. Given

Y = g ◦x(M,g) +g ◦x(M̃,g) +V, the decoder cannot determine the correct message

between true message M or the adversary message M̃ with high probability. Thus,

the probability of error is bounded away from zero. By the above argument, if

EG2ϕ(G) ≤ Λ for all ϕ(g) where Eϕ(G) ≤ P , then the capacity cannot be positive;

the adversary can always symmetrize the channel, so the capacity is 0.

On the other hand, consider the case where there exists some function ϕ(g) where

EG2ϕ(G) > Λ and Eϕ(G) ≤ P . Let ψi(g) be given by

ψi(g) = arg min
ψ(g):Eψ(G)≤Λ

E
[
C

(
G2ϕi(G)

σ2 + ψ(G)

)]
. (7.88)

Since the transmitted codes should work for arbitrary jamming signals, an outer

bound may be obtained by assuming the adversary sends Si ∼ N (0, ψi(G)). By the

assumption that Eψi(G) ≤ Λ, the jammer’s expected power constraint is satisfied.

Therefore, the rate is upper bounded by

nR ≤
n∑
i=1

I(Xi;Yi|Gi) (7.89)

=
n∑
i=1

I(Xi;GiXi + Si + Vi|Gi) (7.90)

≤
n∑
i=1

EGi
[
C

(
G2
iϕi(Gi)

ψi(Gi) + σ2

)]
(7.91)

=
n∑
i=1

min
ψ(g):Eψ(g)≤Λ

EG
[
C

(
G2ϕi(G)

ψ(G) + σ2

)]
(7.92)

≤ n min
ψ(g):Eψ(g)≤Λ

EG
[
C

(
G2 1

n

∑n
i=1 ϕi(G)

ψ(G) + σ2

)]
(7.93)

≤ n max
ϕ(g):Eϕ(G)≤P
EG2ϕ(G)≥Λ

min
ψ(g):Eψ(g)≤Λ

EG
[
C

(
G2ϕ(G)

ψ(G) + σ2

)]
(7.94)

where (7.91) follows since the mutual information is less than the capacity of equivalent

standard fading channel with noise variance ψi(gi) + σ2, and the gains being available
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at both encoder and decoder, (7.92) follows by the definition of ψi(g), (7.93) follows

by the concavity of C(·) with respect to ϕi(g) and Jensen’s inequality, and (7.94)

follows since we have established that ϕ(g) = 1
n

∑n
i=1 ϕi(g) satisfies Eϕ(G) ≤ P and

EG2ϕ(G) ≥ Λ.

Moreover, if the encoder knows the channel gains causally, and the adversary

knows them non-causally, then the adversary is stronger than in the previous case, so

exactly the same bound holds. If both encoder and adversary know the channel gains

non-causally, then we instead assume

ϕi(g) =
1

N

N∑
m=1

E[X2
i (m,G)|Gi = g] (7.95)

where G = (G1, . . . , Gn) and Si = GiXi(m̃,G), so we get the same upper bound.

However, the challenging case happens if the encoder knows the channel gains

non-causally, and the adversary knows them causally. In this case, the encoder may

send X2
i (m,G) while the adversary does not have any access to (Gi+1, . . . , Gn) to

construct Si = GiXi(m̃,G). Thus, it cannot do better than sending Gaussian noise.

In this case, the jammer can not use its knowledge of channel gains, and it can

not symmetrize the channel. In fact, the Gaussian noise bound works essentially

the same, even though the symmetrizability bound does not, and we do not have

symmetrizability case for this scenario. Hence, we obtain the following bound for this

case:

R ≤ max
ϕ(g):Eϕ(G)≤P

min
ψ(g):Eψ(g)≤Λ

EG
[
C

(
G2ϕ(G)

ψ(G) + σ2

)]
(7.96)

Note that here we do not have the constraint EG2ϕ(G) ≥ Λ on the adversary signal

since we do not have the symmetrizability case.
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7.7.2 Achievability Proof (Gains Available Non-causally at Adversary and Causally

at Encoder)

We first quantize G in the following way. Fix ν > 0. Given the assumption that G

has finite variance, there exists a real-valued random variable G̃ with a finite support

such that G̃ is a deterministic function of G and E[(G− G̃)2] ≤ ν. We further assume

that G̃ is the expected value of G within each quantization set; that is, E[G|G̃] = G̃.

Without loss of generality, assume P = 1. Let ϕ(g̃) be any concave function

satisfying

Eϕ(G̃) ≤ 1 (7.97)

Λ < EG̃2ϕ(G̃) (7.98)

R < min
ψ(g̃):Eψ(G̃)≤Λ

EG̃

[
C

(
G̃2ϕ(G̃)

ψ(G̃) + σ2

)]
. (7.99)

We construct a (2nR, n) code as follows:

Codebook generation: Fix ε > ε′′ > ε′ > λ > 0. Generate 2nR i.i.d. zero mean

Gaussian sequences X(m) with variance (1− γ) for each m ∈ [2nR]. By Lemmas 19

and Lemma 18, we may assume that the deterministic codebook satisfies (7.10)–(7.14).

Encoding: Given message m and gain sequence g, the transmitter computes g̃ from

the quantization function, and then sends
√
ϕ(g̃)◦x(m) (at time i signal

√
ϕ(g̃i)xi(m)

is sent) if ‖x(m)‖2 ≤ n; otherwise, it sends zero. Note that here we assume that the

encoder knows the channel gains causally.

Decoding: Given y and g, let ν < ε and S be the set of messages m̂ such that

(x(m̂), g̃,y) ∈ T (n)
ε (X ′, G̃, Y ) where G̃ is the quantized random variable from G and

some random variables (X ′, Y ) that are conditionally Gaussian given G̃ = g̃ with zero
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mean and covariance

Cov
(
X ′, Y

∣∣∣G̃ = g̃
)

=

 1 g̃
√
ϕ(g̃)

g̃
√
ϕ(g̃) ag̃

 (7.100)

where ag̃ ≥ g̃2ϕ(g̃) + σ2. Note that the following can be shown from (7.100).

X ′ is independent of G̃ (7.101)

EX ′2 = 1 (7.102)

Y − G̃
√
ϕ(G̃)X ′ is independent of X ′ given G̃ (7.103)

Var

(
Y − G̃

√
ϕ(G̃)X ′

∣∣∣∣G̃) ≥ σ2 (7.104)

Now, we define the decoding function as

Θ(y, g̃) = arg min
m̂∈S

∥∥∥y − g̃ ◦
√
ϕ(g̃) ◦ x(m̂)

∥∥∥2

(7.105)

Analysis of the probability of error: Assume the legitimate transmitter sends

message M . Then, we can upper bound the probability of error by the summation of

the following error probabilities:

P0 = P {M /∈ S } , (7.106)

P1 = P
{∥∥∥∥Y − G̃ ◦

√
ϕ(G̃) ◦ x(m̂)

∥∥∥∥2

≤ ‖s + V‖2 for some m̂ ∈ S \ {M}
}
.

(7.107)

We can prove with high probability

1

n

∥∥∥x ◦ (G− G̃
)∥∥∥2

=
1

n

n∑
i=1

(
xi

(
Gi − G̃i

))2

(7.108)

≤ 1

n

n∑
i=1

x2
iE
(
Gi − G̃i

)2

+ ν (7.109)

≤ 2ν (7.110)
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where (7.109) follows from the law of large numbers for non-identical independent ran-

dom variables x2
i

(
Gi − G̃i

)2

and (7.110) follows from the facts that E
[(
G− G̃

)2
]
≤

ν, 1
n

∑n
i=1 x

2
i ≤ 1 and ν is sufficiently smaller than ε.

Consider any jammer sequence s. We may assume sequence G is typical since it

is drawn i.i.d. from the distribution fG(g). Similarly, G̃ is also typical because it is

from the corresponding discrete distribution PG̃(g̃). Thus, (s, G̃) is also typical with

respect to some distribution PG̃(g̃)fS|G̃(s|g̃) where fS|G̃(s|g̃) is conditionally Gaussian.

Note that we can make no assumptions about the conditional variances defining

fS|G̃, because the adversary is assumed to know G in its choice of s. By (7.10),

with high probability (x(M), s, G̃) ∈ T (n)
ε′ (X,S, G̃) where X is independent of (S, G̃),

and EX2 = 1,ES2 ≤ Λ. Thus, by the conditional typicality lemma 2, with high

probability (x, s, G̃,V) ∈ T (n)
ε′′ (X,S, G̃, V ) where X,S, G̃ are independent of V , and

EV 2 = σ2. Hence, using 7.110, we have
(
x, s, G̃,V + x ◦

√
ϕ(G̃) ◦

(
G− G̃

))
∈

T (n)
ε (X,S, G̃, V ). Note that Y−x◦G̃◦

√
ϕ(G̃)−s = V+x◦

√
ϕ(G̃)◦

(
G− G̃

)
and ν

is sufficiently small compared to ε. In order to show that with high probabilityM ∈ S ,

we need to compute the covariance matrix of (X, Y ), where Y = G
√
φ(G̃)X + S + V ,

and show that it is in the form of (7.100). First, E
(
X2|G̃ = g̃

)
= EX2 = 1 since X
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is independent of G̃,

E
(
X

(
G

√
ϕ(G̃)X + S + V

) ∣∣∣G̃ = g̃

)
=

E
(
X

(
G̃

√
ϕ(G̃)X + S + V +X

√
ϕ(G̃)

(
G− G̃

)) ∣∣∣∣G̃ = g̃

)
(7.111)

= E
(
X

(
G̃

√
ϕ(G̃)X + S + V

) ∣∣∣∣G̃ = g̃

)
+ E

(
X2

√
ϕ(G̃)

(
G− G̃

) ∣∣∣∣G̃ = g̃

)
(7.112)

= g̃
√
ϕ(g̃)EX2+E

(
XS|G̃= g̃

)
+E

(
XV |G̃= g̃

)
+
√
ϕ(g̃)EX2E

(
G−G̃

∣∣∣G̃= g̃
)

(7.113)

= g̃
√
ϕ(g̃) +

√
ϕ(g̃)EX2

(
E
(
G
∣∣∣G̃= g̃

)
− g̃
)

(7.114)

= g̃
√
ϕ(g̃), (7.115)
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where E
(
XS
∣∣∣G̃ = g̃

)
= 0 follows from the weak union rule since X is independent of

(S,G), and E
(
G− G̃

∣∣∣G̃ = g̃
)

= 0 follows from the the definition of G̃.

E

((
G

√
ϕ(G̃)X + S + V

)2 ∣∣∣∣G̃ = g̃

)
=

E

((
G̃

√
ϕ(G̃)X + S + V +X

√
ϕ(G̃)

(
G− G̃

))2 ∣∣∣∣G̃ = g̃

)
(7.116)

= E

((
G̃

√
ϕ(G̃)X + S + V

)2 ∣∣∣∣G̃ = g̃

)
+ E

(
X2ϕ(G̃)

(
G− G̃

)2
∣∣∣∣G̃ = g̃

)
+ 2E

((
G̃

√
ϕ(G̃)X + S + V

)
X

√
ϕ(G̃)

(
G− G̃

) ∣∣∣∣G̃ = g̃

)
(7.117)

= E

((
G̃

√
ϕ(G̃)X + S + V

)2 ∣∣∣∣G̃ = g̃

)
+ ϕ(g̃)EX2E

((
G− G̃

)2
∣∣∣∣G̃ = g̃

)
+ 2g̃ϕ(g̃)E

(
X2
(
G− G̃

) ∣∣∣∣G̃ = g̃

)
+ 2
√
ϕ(g̃)E

(
XS

(
G− G̃

) ∣∣∣G̃ = g̃
)

+ 2
√
ϕ(g̃)E

(
XV

(
G− G̃

) ∣∣∣G̃ = g̃
)

(7.118)

≥ E

((
G̃

√
ϕ(G̃)X + S + V

)2 ∣∣∣∣G̃ = g̃

)
+ 2g̃ϕ(g)EX2E

(
G− G̃

∣∣∣G̃ = g̃
)

+ 2
√
ϕ(g̃)EXE

(
S
(
G− G̃

) ∣∣∣G̃ = g̃
)

+ 2
√
ϕ(g̃)EXEV E

(
G− G̃

∣∣∣G̃ = g̃
)

(7.119)

= E

((
G̃

√
ϕ(G̃)X + S + V

)2 ∣∣∣∣G̃ = g̃

)
(7.120)

where (7.119) holds because ϕ(g̃)EX2E
((

G− G̃
)2 ∣∣∣G̃ = g̃

)
> 0 and (7.120) follows

from the fact that (G̃, G) are independent of (X, V ), EV = EX = 0 and the definition
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g̃ = E(G|G̃ = g̃).

E

((
G̃

√
ϕ(G̃)X + S + V

)2 ∣∣∣∣G̃ = g̃

)
= E

(
G̃2ϕ(G̃)X2

∣∣∣∣G̃ = g̃

)
+ E

(
S2
∣∣∣G̃ = g̃

)
+ E

(
V 2
∣∣∣G̃ = g̃

)
+ 2E

(
G̃

√
ϕ(G̃)XS

∣∣∣∣G̃ = g̃

)
+ 2E

(
G̃X

√
ϕ(G̃)V

∣∣∣∣G̃ = g̃

)
+ 2E

(
SV
∣∣∣G̃ = g̃

)
(7.121)

= g̃2ϕ(g̃)+E
(
S2
∣∣∣G̃= g̃

)
+σ2+2g̃

√
ϕ(g̃)E

(
XS
∣∣∣G̃= g̃

)
+2g̃

√
ϕ(g̃)E

(
XV

∣∣∣G̃= g̃
)

+2E
(
SV
∣∣∣G̃= g̃

)
(7.122)

= g̃2ϕ(g̃) + E
(
S2
∣∣∣G̃ = g̃

)
+ σ2 (7.123)

≥ g̃2ϕ(g̃) + σ2 (7.124)

where (7.123) follows from the weak union rule for X independent of (S, G̃) and V

independent of (S, G̃). Therefore, the conditional covariance matrix of (X, Y ) can be

obtain from EX2 = 1, (7.115) and (7.124), and is the same as (7.100). Now, since

(x(M̂), g̃,y) ∈ T (n)
ε (X, G̃, Y ) and the conditional covariance matrix of (X(M), Y )

satisfies (7.100), with high probability M ∈ S , and P0 vanishes as n→∞.

Using (7.110) and triangle inequality, we may upper bound P1 by the following:

P1 ≤ P


∥∥∥∥x(m) ◦ G̃

√
ϕ(G̃) + s + V − x(m̂) ◦ G̃

√
ϕ(G̃)

∥∥∥∥2

≤ ‖s + V‖2 + 2nν

for some m̂ ∈ S \ {m}

 (7.125)

Define the shorthand ~X = (XX ′SG̃V ). Let V denote a finite ε-dense subset in

the set of all distributions of random vectors ~X that are determined by PG̃(g̃) and

a random vector (XX ′SV ) distributed conditionally zero mean Gaussian given G̃

with bounded covariances at most (1, 1,Λ, σ2). Note that because the distribution of

PG̃(g̃) is completely known, the overall distribution of ~X can be determined by the
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conditional covariance matrix of (XX ′SV ) given G̃ = g̃ for each of the finitely many

g̃ realizations, so V only needs to cover a compact set. Now, we may upper bound P1

by ∑
~X∈V

1

N

N∑
m=1

EG̃
[
e ~X(m, s, G̃)

]
(7.126)

where

e ~X (m, s, g̃) = P
{

(x(m),x(m̂), s, g̃,V) ∈ T (n)
ε

(
~X
)
,∥∥∥g̃ ◦√ϕ(g̃) ◦ x(m) + s + V − g̃ ◦

√
ϕ(g̃) ◦ x(m̂)

∥∥∥2

≤ ‖s + V‖2 + 2nν

for some m̂ ∈ S \ {m}
}
. (7.127)

We will show that 1
N

∑N
m=1 e ~X(m, s, g̃) → 0 for all vectors g̃ and all vectors

(XX ′SV ) which are Gaussian given G̃ (whether or not they are in V). Let Z =

G̃
√
ϕ(G̃)X + S + V − G̃

√
ϕ(G̃)X ′. We may restrict ourselves to ~X where

G̃ ∼ PG̃(g̃) (7.128)

(X,X ′, S, V ) are zero mean Gaussian given G̃ (7.129)

X, (S, G̃), V are mutually independent, (7.130)

(X ′, G̃) are independent, (7.131)

EX2 = EX ′2 = 1,ES2 ≤ Λ,EV 2 = σ2 (7.132)

(X ′, Z) are independent given G̃, (7.133)

E
[
Z2
∣∣∣G̃] ≥ σ2 (7.134)

Var(Z) ≤ σ2 + Λ + 2ν (7.135)

I(X;X ′SG̃) < |R− I(X ′;SG̃)|+ + δ(ε) (7.136)

where (7.128)–(7.129) are obtained by the definition of S , (7.130) holds since the

codebook X, Gaussian noise V and fading gains G̃ are generated independently, and
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the adversary signal S may depend on G̃ but not the others, (7.131) follows from

(7.101), (7.132) follows from the power constraints of the codebook, the adversary

and the distribution of noise, (7.133)-(7.134) follows from (7.103)-(7.104), and (7.135)

follows from (7.127). Let ψ(g̃) = E
[
Z2
∣∣∣G̃ = g̃

]
− σ2. Therefore, using (7.134) we

have ψ(g̃) ≥ 0, and by (7.135) we get Eψ(G̃) = Var(Z) − σ2 ≤ Λ + 2ν. Note that

using (7.14), we only need to consider the distributions that satisfies (7.136).

Observe that if I(XV ;X ′S|G̃) = 0, then we would have

0 = E
[
X ′Z|G̃

]
(7.137)

= E
[
X ′
(
G̃

√
ϕ(G̃)X + S + V − G̃

√
ϕ(G̃)X ′

) ∣∣∣∣G̃] (7.138)

= E
[
X ′S

∣∣∣G̃]− E
[
G̃

√
ϕ(G̃)X ′2

∣∣∣∣G̃] (7.139)

= E
[
X ′S

∣∣∣G̃]− G̃√ϕ(G̃) (7.140)

where (7.138) follows from (7.133), (7.139) follows from the assumption

I(XV ;X ′S|G̃) = 0 in which X ′ is independent of (X, V ), and (7.140) holds

since X ′ is independent of G̃. Therefore, E
[
X ′S

∣∣∣G̃] = G̃
√
ϕ(G̃) and the covariance

matrix of S,X ′ given G̃ is equal to

Cov
(
S,X ′

∣∣∣G̃) =

E
[
S2
∣∣∣G̃] G̃

√
ϕ(G̃)

G̃
√
ϕ(G̃) 1

 . (7.141)

The determinant of Cov
(
S,X ′

∣∣∣G̃) is E
[
S2
∣∣∣G̃]− G̃2ϕ(G̃) that should be non-negative

since the covariance matrix must be positive semi-definite. Thus, its expectation is

also non-negative:

0 ≤ ES2 − EG̃2ϕ(G̃). (7.142)
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However, since ES2 ≤ Λ, (7.142) contradicts the initial assumption on ϕ in (7.98).

Thus, there exists η > 0 such that

η ≤ I(XV ;X ′S|G̃) = I(XV ;X ′|SG̃) (7.143)

where we have used the fact that I(XV ;S) = 0.

Probability e ~X may be upper bounded by

e ~X(m, s, g̃) ≤
∑

m̂:(x(m),x(m̂),s,g̃)∈T (n)
ε (X,X′,S,G̃)

P
{
(x(m),x(m̂), s, g̃,V)∈T (n)

ε (X,X ′, S, G̃, V )
}

(7.144)

≤ exp
{
n
[
|R−I(X ′;XSG̃)|+− I(V ;X ′|XSG̃)+δ(ε)

]
(7.145)

where (7.145) follows from (7.13) and the joint typicality lemma 3.

We consider the following two cases.

Case (a): R < I(X ′;SG̃). Applying this condition to (7.136), we get

δ(ε) > I(X;X ′SG̃) (7.146)

= I(X;X ′|SG̃). (7.147)

Since I(X ′;SG̃) ≤ I(X ′;XSG̃) then R − I(X ′;XSG̃) < 0. Considering (7.145), for

any m, s, g̃ we have

e ~X(m, s, g̃) ≤ exp
{
−n
(
I(V ;X ′|XSG̃)− δ(ε)

)}
(7.148)

= exp{−n(I(XV ;X ′|SG̃)− I(X;X ′|SG̃)− δ(ε))} (7.149)

≤ exp{−n(η − 2δ(ε))} (7.150)

where (7.150) follows from (7.143) and (7.147). Therefore, e ~X(m, s, g̃) vanishes expo-

nentially fast if δ(ε) is sufficiently small.
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Case (b): R ≥ I(X ′;SG̃). Then we may apply this condition to (7.136) as

R > I(X;X ′SG̃) + I(X ′;SG̃)− δ(ε) (7.151)

≥ I(X;X ′|SG̃) + I(X ′;SG̃)− δ(ε) (7.152)

= I(X ′;XSG̃)− δ(ε). (7.153)

Since R− I(X ′;XSG̃) + δ(ε) > 0, we may upper bound (7.145) by

e ~X(m, s, g̃) ≤ exp
(
n
[
R−I(X ′;XSG̃)−I(V ;X ′|XSG̃)+2δ(ε)

])
(7.154)

=exp(n[R− I(X ′;XSG̃V ) + 2δ(ε)]) (7.155)

≤exp(n[R− I(X ′;XSV |G̃) + 2δ(ε)]) (7.156)

From (7.133)–(7.134), we obtain

I
(
X ′;XSV

∣∣∣G̃) ≥ I

(
X ′; G̃

√
ϕ(G̃)X+S+V

∣∣∣G̃) (7.157)

= I

(
X ′;Z + G̃

√
ϕ(G̃)X ′

∣∣∣G̃) (7.158)

= h

(
Z + G̃

√
ϕ(G̃)X ′

∣∣∣G̃)− h(Z + G̃

√
ϕ(G̃)X ′

∣∣∣G̃,X ′) (7.159)

= EG̃

[
1

2
log 2πe

(
G̃2ϕ(G̃) + E

[
Z2
∣∣∣G̃])− 1

2
log 2πeE

[
Z2
∣∣∣G̃]]
(7.160)

= EG̃

C
 G̃2ϕ(G̃)

E
[
Z2|G̃

]
 (7.161)

= EG̃

[
C

(
G̃2ϕ(G̃)

ψ(G̃) + σ2 + 2ν

)]
(7.162)

where (7.157) follows from data processing inequality, (7.161) follows from standard ar-

gument for the capacity of Gaussian channel, and (7.162) follows from the definition of

ψ. Therefore, by the assumptions about R and Λ in (7.98)–(7.99), R < I(X ′;XSV |G̃),

so by (7.156) e ~X(m, s, g̃) is exponentially vanishing if δ(ε) and ν are sufficiently small.

146



It is worth mentioning that this achievability proof also works for the case where

both the adversary and encoder know the channel gains causally, or both know the

gains non-causally. Since in all three cases the knowledge of the encoder is not more

than the knowledge of the adversary, the jammer is able to impersonate the legitimate

transmitter, and thereby symmetrize the channel, depending on the power allocation.

7.7.3 Achievability Proof (Gains Available Causally at Adversary and Non-causally

at Encoder)

In this case, both the encoder and the decoder know the channel gains non-causally

meaning that they know the whole g string including (g1, g2, · · · , gn). However, the

adversary only knows the gains causally, so at time i it only has access to (g1, g2, · · · , gi).

Therefore, both the encoder and the decoder have some extra common information

(gi+1, gi+2, · · · , gn) that the adversary does not know. In particular, the encoder and

the decoder have always gn which the adversary never knows except at time n. Hence,

we can leverage this common knowledge between the encoder and the decoder as

common randomness that is unknown to the jammer. Moreover, by the assumption

that G is a continuous random variable with positive variance, in fact just Gn has

infinite entropy, and thus can be considered a source of an infinite number of bits

of common randomness. Therefore, we proceed to provide an achievability proof

where the encoder and decoder are assumed to share an infinite source of common

randomness. However, note that implementing this approach would require measuring

Gn to an arbitrarily level of precision, which is not practical. Even so, the random code

reduction technique of, for example, Csiszár and Körner, (2011), Lemma 12.8, can
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be used to show that only O(log n) bits of common randomness need to be extracted

from Gn (or perhaps Gn−k, . . . , Gn for some k) in order to achieve the same rate.

We first quantize G similar to the previous quantization in the achievability proof

in Sec. 7.7.2. For a fix ν > 0, G̃ is a deterministic function of G and E[(G− G̃)2] ≤ ν.

We also define G̃ as the expected value of G within each quantization set; that is,

E[G|G̃] = G̃.

Assume we have infinite amount of common randomness between the encoder and

the decoder. Without loss of generality, assume P = 1. Let ϕ(g̃) be any function

satisfying

Eϕ(G̃) ≤ 1 (7.163)

R < min
ψ(g̃):Eψ(G̃)≤Λ

EG̃

[
C

(
G̃2ϕ(G̃)

ψ(G̃) + σ2

)]
. (7.164)

We construct a (2nR, n) code as follows:

Codebook generation: Let X(m) be a Gaussian codebook with variance 1−γ

satisfying (7.10). This random codebook is generated from the infinite source of

common randomness, so it is unknown to the adversary.

Encoding: Given message m and gain sequence g, the transmitter first computes

g̃ from the quantization function, and then sends
√
ϕ(g̃) ◦X(m) (at time i signal√

ϕ(g̃i)Xi(m) is sent) if EX2 ≤ 1; otherwise, it sends zero. Note that here we assume

that the encoder knows the channel gains non-causally.

Decoding: Given y and g, let ν < ε and let S be the set of messages m̂ such that

(X(m̂), g̃,y) ∈ T (n)
ε (X ′, G̃, Y ) where G̃ is the quantized random variable from G and

(X ′, Y ) are conditionally Gaussian given G̃ = g̃ with zero mean and covariance matrix
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Σg̃ as follows:

Σg̃ = Cov
(
X ′, Y

∣∣∣G̃ = g̃
)

=

 1 g̃
√
ϕ(g̃)

g̃
√
ϕ(g̃) ag̃

 (7.165)

where ag̃ ≥ g̃2ϕ(g̃) + σ2. Note that the following can be shown from (7.165):

X ′ is independent of G̃ (7.166)

EX ′2 = 1 (7.167)

Y − G̃
√
ϕ(G̃)X ′ is independent of X ′ given G̃ (7.168)

Var

(
Y − G̃

√
ϕ(G̃)X ′

∣∣∣∣G̃) ≥ σ2 (7.169)

Now, we define the decoding function as

Θ(y, g̃) = arg min
m̂∈S

∥∥∥y − g̃ ◦
√
ϕ(g̃) ◦X(m̂)

∥∥∥2

(7.170)

Analysis of the probability of error: Assume the legitimate transmitter sends

message M . Then, we can upper bound the probability of error by the summation of

the following error probabilities:

P0 = P {M /∈ S } , (7.171)

P1 = P
{∥∥∥∥Y − G̃ ◦

√
ϕ(G̃) ◦X(m̂)

∥∥∥∥2

≤ ‖s + V‖2 for some m̂ ∈ S \ {M}
}
(7.172)

We can prove with high probability

1

n

∥∥∥X ◦ (G− G̃
)∥∥∥2

=
1

n

n∑
i=1

(
Xi

(
Gi − G̃i

))2

(7.173)

≤ 1

n

n∑
i=1

EX2
i E
(
Gi − G̃i

)2

+ ν (7.174)

≤ 2ν (7.175)
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where (7.174) follows from the law of large numbers for non-identical indepen-

dent random variables X2
i

(
Gi − G̃i

)2

and (7.175) follows from the facts that

E
[(
G− G̃

)2
]
≤ ν, EX2

i ≤ 1 and ν is sufficiently smaller than ε.

Consider any jammer sequence s. We may assume sequence G is typical since it is

drawn i.i.d. from the distribution fG(g). The quantized version G̃ is also typical since

it is a discrete function of G with distribution PG̃(g̃). Thus, (s, G̃) is also typical with

respect to some distribution PG̃(g̃)fS|G̃(s|g̃) where fS|G̃(s|g̃) is conditionally Gaussian.

Note that we can make no assumptions about the conditional variances defining

fS|G̃, because the adversary is assumed to know G̃ in its choice of s. By (7.10),

with high probability (X(M), s, G̃) ∈ T (n)
ε′ (X,S, G̃) where X is independent of (S, G̃),

and EX2 = 1,ES2 ≤ Λ. Thus, by the conditional typicality lemma 2, with high

probability (X, s, G̃,V) ∈ T (n)
ε (X,S, G̃, V ) where X,S, G̃ are independent of V , and

EV 2 = σ2. Hence, using 7.175, we have
(
X, s, G̃,V + X ◦

√
ϕ(G̃) ◦

(
G− G̃

))
∈

T (n)
ε (X,S, G̃, V ). Note that Y −X ◦ G̃ ◦

√
ϕ(G̃)− s = V + X ◦

√
ϕ(G̃) ◦

(
G− G̃

)
and ν is sufficiently small compared to ε. Referring to the previous achievability proof

in Sec. 7.7.2, the conditional covariance matrix of (X, Y ) can be similarly obtained

from EX2 = 1, (7.115) and (7.124), so the conditional covariance matrix is the same

as the one in (7.165). Now, since (X(M̂), g̃,y) ∈ T (n)
ε (X, G̃, Y ) and the conditional

covariance matrix of (X(M), Y ) satisfies (7.165), with high probability M ∈ S , so

P0 vanishes as n→∞.

Using (7.175) and triangle inequality, we may upper bound P1 by the following:

P1 ≤ P

{∥∥∥∥X(m) ◦ G̃
√
ϕ(G̃) + s + V −X(m̂) ◦ G̃

√
ϕ(G̃)

∥∥∥∥2

≤ ‖s + V‖2 + 2nν

for some m̂ ∈ S \ {m}
}

(7.176)

150



Define the shorthand ~X = (XX ′SG̃V ). Let V denote a finite ε-dense subset in

the set of all distributions of random vectors ~X that are determined by PG̃(g̃) and

a random vector (XX ′SV ) distributed conditionally zero mean Gaussian given G̃

with bounded covariances at most (1, 1,Λ, σ2). Note that because the distribution of

PG̃(g̃) is completely known, the overall distribution of ~X can be determined by the

conditional covariance matrix of (XX ′SV ) given G̃ = g̃ for each of the finitely many g̃

realizations, so V only needs to cover a compact set. We may now upper bound P1 by

∑
~X∈V

1

N

N∑
m=1

EG̃
[
e ~X(m, s, G̃)

]
(7.177)

where

e ~X(m, s, g̃) =

{
(X(m),X(m̂), s, g̃,V) ∈ T (n)

ε ( ~X),∥∥∥g̃ ◦√ϕ(g̃) ◦X(m) + s + V − g̃ ◦
√
ϕ(g̃) ◦X(m̂)

∥∥∥2

≤ ‖s + V‖2 + 2nν

for some m̂ ∈ S \ {M}
}

(7.178)

Now, it suffices to show that 1
N

∑N
m=1 e ~X(m, s, g̃) vanishes for all typical vectors g

and all vectors (XX ′SV ) which are Gaussian given G̃ (whether or not they are in V).

Let Z = G̃
√
ϕ(G̃)X + S + V − G̃

√
ϕ(G̃)X ′. We have established that ~X satisfies the
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following:

G̃ ∼ fG(g̃) (7.179)

(X,X ′, S, V ) are zero mean Gaussian given G̃ (7.180)

X, (S, G̃), V are mutually independent, (7.181)

X ′ is independent of (G̃, S), (7.182)

EX2 = EX ′2 = 1,ES2 ≤ Λ,EV 2 = σ2 (7.183)

(X ′, Z) are independent given G̃, (7.184)

E
[
Z2
∣∣∣G̃] ≥ σ2 (7.185)

Var(Z) ≤ σ2 + Λ. (7.186)

where (7.179)–(7.180) are obtained by the definition of S , (7.181) follows since the

codebook X, Gaussian noise V , fading gains G̃ are generated independently while

G̃ may depend on S but not the others, (7.182) follows from (7.166), (7.183) follows

from the power constraints for the codebook, the adversary and the Gaussian noise,

(7.184)-(7.185) follows by (7.168)-(7.169), and (7.186) follows by (7.178). Let ψ(g̃) =

E[Z2|G̃ = g̃]−σ2. By (7.185) ψ(g̃) ≥ 0, and by (7.186) Eψ(G̃) = Var(Z)−σ2 ≤ Λ+2ν.

Now, using jointly typicality lemma in ElGamal and Kim, (2011), Remark 2.2 we

may upper bound e ~X as follows:

e ~X(m, s, g̃) ≤
∑

m̂∈S \{m}

P
{
(X(m),X(m̂), s, g̃,V)∈T (n)

ε (X,X ′, S, G̃, V )
}

(7.187)

≤exp{n(R− I(X ′;X,S, V, G̃) + ε)} (7.188)
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where X(m̂) is independent of (X(m), s, g̃,V). From (7.184)–(7.185), we obtain

I(X ′;XSG̃V ) = I(X ′;XSV |G̃) + I(X ′; G̃) (7.189)

≥ I(X ′; G̃

√
ϕ(G̃)X+S+V |G̃) (7.190)

= I(X ′;Z + G̃

√
ϕ(G̃)X ′|G̃) (7.191)

= h(Z + G̃

√
ϕ(G̃)X ′|G̃)

− h(Z + G̃

√
ϕ(G̃)X ′|G̃,X ′) (7.192)

= EG̃

[
1

2
log 2πe(G̃2ϕ(G̃)E[X ′2|G̃] + E[Z2|G̃])

− 1

2
log 2πeE[Z2|G̃]

]
(7.193)

= EG̃

[
C

(
G̃2ϕ(G̃)

E[Z2|G̃]

)]
(7.194)

= EG̃

[
C

(
G̃2ϕ(G̃)

ψ(G̃) + σ2 + 2ν

)]
(7.195)

where (7.190) follows from data processing inequality, (7.194) follows from stan-

dard argument for the capacity of Gaussian channel, and (7.195) follows from the

definition of ψ. Therefore, by the assumptions about R and Λ in (7.163)–(7.164),

R < I(X ′;XSV |G̃), so by (7.188) e ~X(m, s, g̃) is exponentially vanishing if δ(ε) and ν

are sufficiently small.

Therefore, if we have infinite amount of common randomness between the encoder

and the decoder which the adversary does not know it but knows the distribution of X,

then the adversary can choose its signal as a function of both the channel gains and a

random codeword. Note that the adversary knows the codebook but not the common

randomness since it contains infinite amount of numbers. However, since it does not

know the common randomness, with high probability (as we have proven above) it can

not symmetrize the channel any more. Thus, according to the random code reduction

in Csiszár and Körner, (2011), Lemma 12.8 we only faced with a standard fading
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channel without any adversary with the channel gains available at the encoder and

the decoder with the increased noise variance by the power of the adversary as in

ψ(G) + σ2, and the rate should be less than min
ψ(g):Eψ(G)≤Λ

EG
[
C
(
G2ϕ(G)
ψ(G)+σ2

)]
.

7.8 Proof of Lemmas 18 and 19

In order to prove (7.10), we use our proof in Hosseinigoki and Kosut, (2017), Lemma

6 for one codebook. Moreover, to obtain (7.13)–(7.14), we apply the corresponding

proof of the equations in Hughes, (1997), Lemma 1 for Gaussian distributions. Note

that Hughes, (1997) focuses on discrete alphabets, but the same proofs can be extended

to Gaussian distributions by quantization of the set of continuous random variables in

the following way.

Let Xi be Gaussian i.i.d. n-length random vectors (codebook) independent from

each other with Var(X) = 1. First let g ∈ Rn be a typical realization of n i.i.d.

continuous random variable G with probability density function fG(g). Next, we

quantize the set of all g ∈ Rn, into a ν-dense subset Gn. For a fixed g ∈ Gn, fix

x ∈ T (n)
ε (X), s ∈ U n and a covariance matrix Cov(X,X ′, S|G = g) ∈ V3×3 such that

U n is a ν-dense subset of Rn for s such that ||s||2 ≤ nΛ, and V3×3 is a ν-dense subset

of R3×3 for positive definite covariance matrices with diagonals at most (1, 1,Λ).

Using the similar proof Lemma 1 inHughes, (1997), we obtain for given (x, s,g)

and covariance matrix Cov(X,X ′, S|G = g) that the complement of each event in

(7.13)–(7.14) happens with decreasingly doubly exponential probability for sufficiently
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large n meaning that

P
{∣∣{m′ : (x,x(m′), s,g)∈T (n)

ε (X,X ′, S,G)
}∣∣≤exp

{
n
[
|R− I(X ′;XSG)|+ + δ(ε)

]}}
< exp(− exp(nσ(ε))),

(7.196)

P
{

1

N

∣∣{m : (x(m),x(m′), s,g)∈T (n)
ε (X,X ′, S,G) for some m′ 6=m

}∣∣≤2 exp{−nδ(ε)/2}
}

< exp(− exp(nσ(ε))), if I(X;X ′SG)≥|R−I(X ′;SG)|++δ(ε), (7.197)

Then, in order to complete the proof, since for any fixed ν the cardinality of finite

set U n is only increasingly exponentially in n, and the set V3×3 is finite along with the

doubly decreasing exponential probabilities in (7.196)–(7.197), we derive that with

probability approaching to 1, all inequalities in (7.13)–(7.14) hold simultaneously for

sufficiently large n. Since these inequalities hold for every element in the finite sets U n

and V3×3, then for any vector s,x and any given covariance matrix Cov(X,X ′, S|G = g)

(with ‖x‖2 = n, ‖s‖2 ≤ nΛ) which is not in its corresponding ν-dense subset, there

exists a point in the corresponding ν-dense subset that is close enough to it (in its ν

distance neighborhood). Now, by using the continuity properties of all sets, we may

conclude that (7.13)–(7.14) hold also for any point which is not in the ν-dense subset.
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