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ABSTRACT

In order for a robot to solve complex tasks in real world, it needs to compute dis-

crete, high-level strategies that can be translated into continuous movement trajecto-

ries. These problems become increasingly difficult with increasing numbers of objects

and domain constraints, as well as with the increasing degrees of freedom of robotic

manipulator arms.

The first part of this thesis develops and investigates new methods for address-

ing these problems through hierarchical task and motion planning for manipulation

with a focus on autonomous construction of free-standing structures using precision-

cut planks. These planks can be arranged in various orientations to design complex

structures; reliably and autonomously building such structures from scratch is com-

putationally intractable due to the long planning horizon and the infinite branching

factor of possible grasps and placements that the robot could make.

An abstract representation is developed for this class of problems and show how

pose generators can be used to autonomously compute feasible robot motion plans for

constructing a given structure. The approach was evaluated through simulation and

on a real ABB YuMi robot. Results show that hierarchical algorithms for planning

can effectively overcome the computational barriers to solving such problems.

The second part of this thesis proposes a deep learning based algorithm to identify

critical regions for motion planning. Further investigation is done whether these

learned critical regions can be translated to learn high-level landmark actions for

automated planning.
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Chapter 1

INTRODUCTION

The new wave of Artificial Intelligence(AI) will enable robots to perform day-to-day

tasks allowing humans to focus on more productive tasks. In order to perform these

tasks, robots needs to manipulate objects in the real world. Combined task and

motion planning allows us to do so by finding sequence of actions (high level actions)

and their corresponding motion plans in order to complete a given task or reach a goal

state. Automated planning finds these sequence of high level actions and guarantees

complete solution i.e. the planners return a solution if there exists one. Though

automated planning looks lucrative, it still needs a designer to design the domain or

the rules of the universe as well a problem file written corresponding to the domain

for each task. Though a manipulation task can have simple actions as Pick and Place,

building structures using planks adds extra complexity for the task. This is due to

multiple ways of stacking a plank and regions on the plank where another plank

can be placed. As a result of this, the planning time increases exponentially with

increase in number of planks in the structure. This is mitigated through abstracting

regions of the planks and exploiting its symmetry. Moreover, these abstractions

requires refined translation into motion plans or control sequence for controlling a

robot in the real world. This thesis is targeted towards abstraction of these knowledge

representation and generating low level sequence of control autonomously. We show

that this abstract representation is independent of the robot and refinement of these

plans are executable in simulation as well as on real robot by building generalised

structures using Keva planks.
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1.1 Keva Planks

Keva Planks are laser cut wooden planks used as a learning puzzle for kids. These

planks holds symmetry and each of the planks are of same precise measurements

which makes these planks easy to be stacked on top of each other to make plethora of

3D structures. Moreover, this allows us to model these planks easily in the simulation

with precise geometry.

1.2 Task Planning

Task planning is an active area of research in the field of Artificial Intelligence

which deals with finding sequence of actions to achieve a goal from a given start

state. STRIPS (Fikes and Nilsson (1971)) and Planning Domain Definition Lan-

guage(PDDL) (Ghallab et al. (1998)) are commonly used to define domains and

problems. A planning problem defined as a tuple of set of finite states S, an initial

state s0 ∈ S, finite set of actions A, set of goal states S∗ ⊆ S, action cost:A → R+
0

and a transition relation T ⊆ S × A× S.

In this thesis we will focus on Classical Planning to find a plan to solve a given set

of tasks. Moreover PDDL is used to define the world models for classical planning. A

planning problem comprises of a domain file which describes the rules of the universe

and a problem file which comprises of the objects in the universe as well as the

initial state and goal state of the problem. For use with FF-Planner (Hoffmann and

Nebel (2001)) we define the initial state as conjunction of literals. This assumes that

grounded predicates not present in the initial state are negative literals. A domain

file consists of specification of predicates whose conjunction is used to define a state,

and action schemas of the set of actions applicable in the universe. An Action Schema

comprises of parameters of the action, precondition for the action to be applied and
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the effects that these action causes. These Actions provides change in fluents which

changes the state. Every action has some precondition that are required to be met by

the state for that action to be applied on that state. Applying an action on the state

changes some of the fluents and leads to a new state. these are called effects. These

sequence of actions taken from the initial state to reach a goal state is called a plan.

1.3 Motion Planning

Motion planning deals with low level of control of a robotic system which allows

it to move along its degree of freedom. This can be considered as motion of a robotic

system in continuous space of 2-dimension or 3-dimension avoiding obstacles in the

environment. These motion planning algorithms generates trajectories consisting

of waypoints in configuration space which is used to move a robot from an initial

configuration to a goal configuration. A motion planning problem can be defined as a

tuple < CS, f, sI , sG > where CS is the configuration space of the robot within which

it can move, f is a boolean function which returns whether the robot is in collision

with itself or any other object in the environment, sI and sG are the start and goal

configuration of the robot.

Since these motion planning algorithms has to deal with a vast continuous space,

even a simple algorithm is NP-hard (Reif (1979)). Sampling based motion planners

helps us maintain a probabilistic completeness of the algorithm where it guarantees

to return a solution if there exists one as number of samples approaches infinity.

Rapidly-exploring Random Trees (RRTs)(LaValle (1998)) and Probabilistic Roadmap

(PRM) (Kavraki et al. (1994)) are general single query and muli-query motion planner

correspondingly which are used to solve this challenging motion planning problems.

The motion planning problems becomes difficult to solve and takes a considerable

amount of time with increasing degree of freedoms and obstacles in the environment.
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Increasing degree of freedom requires more sampling permutations in order to solve

a task. Increase in number of objects in the environment requires constant collision

checking and higher number of waypoints to be generated.

1.4 Combined Task and Motion Planning

Combining these task and motion plans has always remain a challenging area

of research in Artificial Intelligence. The task plans generated need to be translated

into motion plans for complete solution of the task. Moreover, the task planners work

independent of motion planners and are unaware of the geometry of the environment.

A combined task and motion planning system targets at solving these translation and

incorporating point of failure in the task planning problem to re-plan accordingly.

Srivastava et al. (2014b) approaches this problem by introducing an interface layer

to map high level actions to corresponding motion plans and translating point of

failure into symbolic representations for the task planner. Shah and Srivastava (2019)

extends this to stochastic environments and provides a framework for combined task

and motion planning. We use this framework for our problem and extend the support

of this framework to different robots, IK solvers and common bug fixing.

1.5 Manipulator Robots

Advancement in the field of robotics has produced a wide variety of robotic systems

from a Roomba cleaning robot to self driving cars. These robotic system are either

built for navigating in the environment or manipulating objects with an arm. Some

robotic system are capable of navigating a space as well as manipulating objects in the

environment. These types or robots are called mobile manipulators. We show that

our system is independent of type of robot that can be used. We show construction

of a various free standing structure on a single arm 7DOF mobile manipulator robot,
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Figure 1.1: Fetch Robot

Fetch and a dual arm 14DOF manipulator robot ABB YuMi. Figure 1.1 shows Fetch

robot and Figure 1.2 shows the ABB YuMi robot.

Fetch is a robot system build for traversing in a room and manipulating objects

around it. Though this robot provides excellent freedom in navigation and manipula-

tion, it is not built to handle small objects with precise accuracy. Thus for real world

experiments, we use ABB YuMi to perform precise pick ups and placement. Since

building these structures doesn’t require navigation challenges, ABB YuMi proves to

be an excellent choice in doing so. Our experiments in simulation are performed both

on Fetch and YuMi and all the experiments on the real robot is performed on ABB

YuMi.

1.6 Related Work

Blocks World has always reserved a special place in planning domains for task

planning. Gupta and Nau (1992) has shown that optimal solution for blocks world and
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Figure 1.2: ABB YuMi Robot

related variants is NP-hard. Though this time complexities arises due to deadlocks.

Fahlman (1974) presented an approach to solve the blocks word problem with complex

structure. This work was dedicated towards build a system called BUILD which

modelled the pyhsics, contacts and geometry of the problem. Moreover the author

presented an approach to assemble blocks and wedges in desired configuration through

sub-assembly of structure. Though this work presented a good approach to solve the

blocks world problem in real life, it only focused towards generating high level plans

to assemble these structures. Under-lying motion planning was considered to be out

of scope for the paper. Our work not only provides high level plans but also the

under-lying motion plans enabling a robot to perform the complete task. But our

method doesn’t include stability property while planning for the tasks.

Wismer et al. (2012) shows how a robot can build a structure based on a given

plan. However, the high level plans for these constructions are pre-defined and lacks

demonstration of variety of structures. Our method instead gives a complete solution

6



and is capable of building variety of structures. Similarly Suárez-Ruiz et al. (2018)

presented a method to assemble IKEA chairs. Though this method provides good

contact rich manipulation methods and collaborative planning for two arms in action,

they lack in generating high level task plans. Instead, they use pre-defined task plans

from the instruction manuals. Our method focuses on using combined task and

motion planning for building structures with Keva planks.
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Chapter 2

METHODOLOGY

This section of the thesis discusses the factored abstract representation of the domain

for building Keva structures as well as discuses the methodology for autonomously

generating target poses and motion planning for low level planning and control. We

aim at building structures using combined task and motion planning framework de-

veloped at Autonomous Agents and Intelligent Robots (AAIR) lab at Arizona State

University which involves my contribution in developing, testing and adding support

for ABB YuMi robot, IK solvers and motion planners. More details on the framework,

related paper and videos can be found at https://aair-lab.github.io/atam full.html.

2.1 Abstract Representation

The Planning Domain Definition Language made it possible to hold the Interna-

tional Planning Competition (IPC) in 1998. This was aimed at creating a standard-

ized planning language for creating new planners as well as defining problems and

domains in this language. IPC introduced a variety of tasks for competing planners

needed to solve a given set of tasks. Introduced in the 3rd IPC, Blocks world became

one of the important domains in automated planning. Blocks world introduces a plan-

ning problem which requires to place finite set of wooden blocks of various colors or

sizes to be placed in a desired configuration. These blocks can be moved one at a time

and can be placed either atop table or on top of another block. Elementary Blocks

World (EBW) is relaxed while variants introduces set of constraints in placement of

the blocks. Gupta and Nau (1992) shows that these problems are NP-hard for finding

optimal plans. IPC domain for blocks world is defined in the Figure 2.1. This shows
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(define (domain BLOCKS)

(: requirements :strips :typing)

(: types block)

(: predicates (on ?x - block ?y - block)

(ontable ?x - block)

(clear ?x - block)

(handempty)

(holding ?x - block))

(: action pick -up

:parameters (?x - block)

:precondition (and (clear ?x) (ontable ?x) (

handempty))

:effect(and (not (ontable ?x))

(not (clear ?x))

(not (handempty))

(holding ?x)))

(: action put -down

:parameters (?x - block)

:precondition (holding ?x)

:effect(and (not (holding ?x))

(clear ?x)

(handempty)

(ontable ?x)))

(: action stack

:parameters (?x - block ?y - block)

:precondition (and (holding ?x) (clear ?y))

:effect(and (not (holding ?x))

(not (clear ?y))

(clear ?x)

(handempty)

(on ?x ?y)))

(: action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (

handempty))

:effect

(and (holding ?x)

(clear ?y)

(not (clear ?x))

(not (handempty))

(not (on ?x ?y)))))

Figure 2.1: Blocks World Domain
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the predicates and action schema of the blocks world domain. Five predicates are

defined to express a given state of the world as well as preconditions and effects for a

given action. In the given blocks world domain, there are four actions: 1 for picking

block from table, 1 for placing block on table, 1 for picking block from top of a block

and 1 for placing a block atop another block. Since only one block can be placed on

top of another and the orientation of the blocks is of no importance, these domains

are relatively easier to solve. Moreover, blocks world has its limitation because of its

simplicity, where it can’t be used in any real life problems With increase in number

of ways for a block that can be placed on the table and on top of a block including

number of blocks and orientation, the problem becomes difficult to solve due to the

involved constraints.

Our approach tries to mitigate some of these problems by abstracting the states

allowing the geometric planning to refine the abstractions when required. Since a

Keva plank can be placed in a infinite number of orientation or continuous value of

roll, pitch and yaw from −π to π, we abstract the orientation of a Keva plank with

symbolic representation where a predicate orientation(p,o) defines the orientation

of plank p. The predicate takes plank p ∈ P where P is a finite set of planks, and

o where o ∈ {horizontal, vertical, sideways} as inputs to return True or False. This

abstraction discretizes the orientation of a plank into three possible configuration.

During refinement, the low level pose generators refers the orientation of the plank

from reference structure which encapsulates the geometric constraint of the target

structure to generate continuous orientation value for the placement of the plank.

Keva planks are designed to such measurements which allows 13 planks with

thinnest side to be placed along the length of the plank, 5 planks along the medium

thickness side to be placed along the length of the plank and 3 planks with thinnest

side to be placed along the the medium thick side of the plank. This allows us to
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divide the sides of the plank in multiple regions where a plank can be placed. Symbolic

representation of such location will result in 58 such regions on the plank. With an

increase in number of planks required for a structure, the number of regions will

increase with an order of O(n). This will lead to an increased number of propositions

in the state representation and an exponential increase in the search space. These

regions are abstracted and planks are allowed to placed on a number of planks through

number of actions involving different number of planks in the action parameter. Due

to robotic gripper width and its limitation while placing a plank, only three planks can

be placed on top of a plank or on the table next to each other. Thus, the proposition

region is removed from the domain and an abstracted representation of the state is

used to relax the model.

2.2 Pose Generators

An object is localised in the 3D world by representing the pose of the object as a 7

dimensional vector where 3 dimensions are used for translation of the object in x,y,z

co-ordinate and 4 are used for quaternion representation. For working with OpenRave

simulator, the poses of an object are expressed in the form of a 4× 4 transformation

matrix. The 3× 3 matrix is the rotation matrix while 3× 1 matrix is the translation

matrix. The rest is used for padding.

We calculate the pose for the end effector based on the pose of the target object

it is trying to manipulate. This is achieved through chain matrix multiplication. Let

OOR be the pose of the object with respect to origin and ROR be the pose of the robot

base with respect to origin. Then pose of the robot’s gripper with respect robot base

GR is given by

GR = R−1
OR ×OOR (2.1)

Here OOR, ROR and GR are matrices of size 4× 4.
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The calculated target pose of the end effector are susceptible to collision with

obstacles. In order to mitigate backtracking in the combined task and motion plan-

ning, multiple target poses are calculated based on rotation around the plank. These

poses are achieved by matrix multiplication of rotation matrix with the put down

pose. Moreover, in error free mode, the inverse kinematic (IK) solutions to set the

joint values of the manipulator arm are ran through a collision checker checking for

self-collision and collision with the environment. Only IK solutions with no collision

are generated to avoid re-planning or backtracking.
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Chapter 3

IDENTIFYING CRITICAL REGIONS FOR MOTION PLANNING

This part of the thesis investigates whether methods of deep learning can be used

to accelerate sampling-based motion planning. These motion planning problems are

considered to be NP-Hard (Reif (1979)). Sampling-based motion planning has gained

attention in planning community and till date most commonly used motion planners

like RRT-Connect (Kuffner and LaValle (2000)) uses sampling to find solutions to

a motion planning problem. These sampling based motion planners samples points

in the configuration space of the robot and proves to be probabilistically complete.

Though sampling-based motion planners shows potential in solving motion planning

problems, they are generally time intensive and performs poorly in environments

with tight spaces. These tight spaces have low probability of getting sampled under

uniform sampling and samples around these regions are prone to rejection by collision

checker. Though these regions have low probabilities of getting sampled, they still

are critical to solutions for motion planning problems as most of the solution passes

through these regions. We developed a deep learning based method to identify these

critical regions and leverage them to find motion plans using Learn-and-Link (Molina

et al. (2019)) suite of planners.

Given a robot R, an environment E, and a class of MP problems M, we define the

measure of criticality of a region r, µ(r), as the ratio f(r)
v(r)

, where f(r) is the fraction

of observed MPs solving tasks from M that pass through r, and v(r) is the measure

of r under a reference (usually uniform) probability density. Intuitively, regions with

high criticality measures are those that are vital for solutions to problems in M, but

have a low probability of exploration under a uniform density.
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To learn critical regions, we construct a set Dtrain of Ntrain MP problem instances

{Π1, ...,ΠNtrain
} and a corresponding set of solution trajectories {τ1, ..., τNtrain

} to

construct the images, and a set Dtest of Ntest MP problem instances to evaluate the

learned model.

3.1 Data Generation

For each Πi ∈ Dtrain, we use OMPL’s RRT-Connect to generate a corresponding

motion plan τi consisting of 50 MP problems from M.

We generate training images for each Πi ∈ Dtrain and use saliency model to

generate corresponding labels. We describe the process for an SE(2) robot (see Figure

3.1), though it can be extended to mobile manipulators, such as the Barrett arm on a

mobile base. We begin by creating a pixel-sized obstacle, based on the dimensions of

the desired image and the bounds of a given environment, and scanning it across the

environment. For the input images, if a collision is detected with an environment’s

obstacles, we select a black pixel, otherwise a white pixel is selected. For the motion

trace images used by the saliency model, we assign a pixel value based on the µ-

criticality of the region the pixel encompasses. We then use Itti’s saliency model

to extract relevant salient information and smooth out the salient areas from the

motion trace images. The saliency maps are binned into two categories, high saliency

(denoted by white pixels) and low saliency (denoted by black pixels), and are used

as the labels.

3.2 Network Architecture

We propose a general structure for a convolutional encoder-decoder neural network

which learns to detect critical regions.
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Figure 3.1: (a) Example Environment Overlain with Motion Traces. (b) Model Input

Obtained Post Raster Scan. (c) Saliency Model Input Based on µ-criticality of Each

Pixel. (d) Saliency Map Obtained from c. (e) Input Label Obtained After Binning

the Saliency Map Based on Pixel Intensity.

Our network, depicted in Figure 3.2, has 14 convolutional layers. 7 layers in the

encoder network and 7 layers in the decoder network form the encoder-decoder archi-

tecture for pixel-wise classification. A pooling layer with stride 2 is introduced after

each group of same number of filters to encode the learned representation. Similarly,

an upsampling layer is added before each deconvolutional layer group of same num-

ber of filters. We draw inspiration from Badrinarayanan et al. (2015) for a learnable

upsampling layer in the decoder network.

Figure 3.2: Network Architecture
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The first two convolutional layers have 64 filters with a 3×3 kernel. Motivated by

recent promising results by Simonyan and Zisserman (2014), we stack 3 layers with

3 × 3 kernel size to obtain a similar receptive field as a 7 × 7 kernel, with 81% less

parameters, and more effective training owing to the added non-linearity after every

layer. For the initial layer group of filter size 64 and 128, we stack only two layers

of kernel size 3 × 3. Though the receptive field is smaller than a 7 × 7 kernel, we

still stack only 2 layers as our problem statement doesn’t require learning complex

geometric features. The next 2 layers are of 128 filters with a 3× 3 kernel. We add 3

layers of 256 filters each, with a 3× 3 kernel, for a larger receptive field since deeper

layers learn invariant complex features (Zeiler and Fergus (2014)).

In the decoder network, corresponding deconvolutional layers to the encoder net-

work are used. The upsampled output is used for pixel-wise classification using a

softmax cross entropy loss function. Each layer in the network is activated using

ReLu non-linearity.

3.3 Training

The network was trained on a single Nvidia GTX 1080Ti using a mini-batch size

of 16 and a data set of 10,024 images. Following Ioffe and Szegedy (2015), we did not

train the network with dropout (Srivastava et al. (2014a)) since the output of every

layer is batch-normalised, which also acts as a regularizer. We use Adam Optimizer

(Kingma and Ba (2014)) with a 0.1 learning rate to train the network. The network

was trained for 50,000 epochs since the loss converges at this point. The training

images are shuffled before each epoch and trained with mini-batch to ensure that

every input to the network is different from the previous. This assists the optimizer

to exit local minima. We used a Github implementation of SegNet (Badrinarayanan
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et al. (2015)) by https://github.com/andreaazzini for its data pipelines since they

provide a fast and efficient input pipeline which reduces training time.

On average training for the full dataset using mini-batch takes approximately 3

hours. Single GPU training and shorter training time gives the advantage of using

our method for fast motion planning.
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Chapter 4

EXPERIMENTS

4.1 Keva Planks

Experiments for constructing free standing structure was performed in both sim-

ulation and on real robot. The task for the agent was to build a given structure

provided as Collada model (3D model) of the target structure without human inter-

vention. The robotic manipulator picks and places a plank at a time to build the

structure. These structures were initially built using Fetch Robot in simulation. But

due to thick gripper size and positional imperfection while handling small objects, we

moved our experiments setting to a new manipulator robot, ABB YuMi. ABB YuMi’s

high precision controls helps us to build structure considering the low level environ-

ment as deterministic ones. This section is divided into two sub-sections explaining

experimental setup in simulation and on real robot.

4.1.1 Simulation

The simulation environment is designed to match the real world environment. The

task space around the robot is only modelled which only includes regions where the

arms can reach. The environment contains 2 table, one of the table houses the robot

while the other one is the playground for the robot where it builds the structures.

In order to build complex structures, a large number of planks are required. The

task space in front of the robot doesn’t provide enough space to create a plank bank

which robot uses to pick up new planks from. This problem disallows us to build

structures involving large number of planks. To address this problem we introduce a
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plank station where planks can be kept one at a time. Moreover we add an action

human_place_plank in the planning domain which allows a user to place a plank at

the plank station and task planner to plan accordingly. This eradicates the problem

of plank storage as well as makes it easier to write the initial state of the universe for

task planner.

We build a number of structures in the simulation to show the generalizability

of the method to build different types of structures. Figure 4.1 shows the target

structures which was required to be built. A high level problem file is written which

expresses the goal configuration as the placement of planks on top of each other

or table. Also, a collada file of the target structure is specified which encodes the

relative poses of the plank to each other in a 3D model. This allows the system to

respect the geometric constraints of the structure. Various off the self libraries are

used to generate and refine the plans. FF planner is used for finding plans to build

the structure. Underlying geometric environment uses OMPL’s RRT-Connect and

BIT* (Gammell et al. (2015)) for motion planning, Prximity Query Package (PQP)

(Larsen et al. (1999)) and Flexible Collision Library (FCL) (Pan et al. (2012)) for

collsion checking, OpenRave (Diankov and Kuffner (2008)) for simulation and Trac-IK

(Beeson and Ames (2015)) for inverse kinematics (IK) solutions.

4.1.2 Real Robot

The simulation produces motion planning trajectories which can be executed in

simulation as well as on real robot. These generated trajectories are timed joint

state and velocity which can be used with position controllers as well as velocity

controllers. We use Yumipy, an open source control interface for ABB YuMi robot, to

control the movement of arms in real time on the robot. The yumipy implementation

can be found at https://github.com/BerkeleyAutomation/yumipy. Though yumipy
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Figure 4.1: Target Keva Structures(Sim)

provides easy interface with the robot, it only supports position control as of last

update. We use waypoints in the generated motion plan trajectories and throw away

the velocity, time and acceleration information to just execute position control as

these waypoints are the joint states. The interpolation between joint states happens

inside the ABB YuMi controller. This shows flexibility of the framework to work

with different motion planners. Figure 4.2 shows the target structures which was

built using the real robot.

The execution on real robot is one of the most challenging task in robotics. These

are prone to error in state estimation, collisions due to interpolation between the

waypoints. Moreover precise placement requires precise movement of the arms while
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Figure 4.2: Target Keva Structures(Real)

picking and placing a plank. To mitigate this issue, pre and post grasp/putdown

conditions are added which moves the arm few centimeters away from the actual

pose and then move slowly to perform grasp or putdown. This reduces the collision

between gripper and planks before and after picking and placing a plank. These

trajectories from moving to a pre grasp to grasp requires the end-effector to move in

a straight line. When these trajectories are computed in the simulation, it doesn’t

guarantee a linear path as the planning is done in the joint space and not in Cartesian

space. Cartesian space planning together with velocity control allows the end effector

to move in a straight line. The yumipy library only supports position control and

not velocity control for the arm, though it supports moving the arm linearly for small

change in translation using YuMi’s inbuilt planner. Thus we use YuMi’s inbuit planner

to compute these linear trajectories as the Task and Motion Planning framework is

planner agnostic and allows us to use hybrid-planning system.

The simulation matches the setting of real world environment which includes YuMi

sitting atop a table and a table in front of the robot used as the task space.

21



Chapter 5

RESULTS

5.1 Keva Planks

The experiments were performed for 20 different runs for Tower, Pi and Spiral

Tower structure. The experiments for the Bridge structure was performed for 10

runs. Table 5.1 shows the number of tasks completed for a given structure. These

tasks were given a maximum time limit of 3000 seconds for planning and refinement.

Figure 5.1 shows the construction steps for a pi structure.

Tasks Tower Pi Spiral Tower Bridge

Tasks Completed 19/20 20/20 20/20 10/10

Table 5.1: Task Completion Rate

Figure 5.2 shows the distribution of time taken for planning and refinement of each

structure. The corresponding time logs for the experiments as shown in Table 5.1

includes total time taken to plan, refine those plans and generate motion trajectories.

Figure 5.1: Construction Steps of a Pi Structure
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Figure 5.2: Planning and Refinement Time Distribution for Different Structures

Execution Run 1 2 3 4 5

Task Completion 0 0 0 1 0

Failure Unreachable Unreachable Unreachable - Obstacle

Mode Pose Pose Pose Collision

Table 5.2: Task Execution on Real YuMI

Table 5.2 shows execution success/failure(0/1) on real robot for Tower structure.

For this experiment, 5 different runs of Tower structure were executed in simulation,

each of these runs generating motion plans. These plans were further executed on the

real robot. As discussed in Section 4.1.2, the motion plans for moving from post-grasp

to pre-put down and post-put down to pre-grasp were computed using OpenRave

motion planner whereas the motion plans for generating linear trajectories from pre-

23



grasp to grasp, grasp to post-grasp, pre-put down to put down, and put down to

post-put down were computed using the YuMi’s inbuilt motion planner. Three of

these refined plans failed during execution on the real robot while computing the

linear trajectories using YuMi’s motion planner. These linear trajectory computations

failed due to unreachable target pose of the end-effector for the linear movement.

Furthermore, one plan led to collision of the gripper with the plank that was already

placed. Only one out of 5 refined plan was successfully executed using the hybrid

motion planning system. The plan leading to the successful execution on the robot

was repeated 5 times. These repeated runs used the same refined plan which was

computed in the simulation but computed the motion plans during execution. Table

5.3 shows the success rate of 5 runs for the repeated execution of plan which led to

the successful execution in Table 5.2.

Tower Structure

Tasks Completed 5/5

Table 5.3: Task Completion for Repeated Run of Successfully Executed Plan
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5.2 Evaluating Identified Critical Regions

We evaluate the critical regions identified by our models using the ground truth

motion trace image for an environment. We first cluster the model-identified critical

regions using k -Nearest Neighbors (Altman (1992)). Then we evaluate each critical

region cluster using the µ-criticality of the cluster, where we estimate v(r) as the area

of the pixels in the cluster. The metric values for each cluster are then summed to

obtain an evaluation of the environment as a whole. The higher the value, the better

the critical regions.

We use this metric instead of comparing pixel accuracy with the ground truth label

since the motion trace image is embedded with much more information regarding the

quality of the critical regions than solely being able to locate them.

Figure 5.3 shows a comparison of the critical regions identified by VGGNet, Seg-

Net, and our parsimonious network using this metric.

Figure 5.3: (a) Critical Regions Identified Using VGGNet. From Left to Right, µ-

criticality is 0, 0, 0. (b) Critical Regions Identified Using SegNet. From Left to Right,

µ-criticality is 0, 0.141, and 0.260. (c) Critical Regions Identified Using our Network.

From Left to Right, µ-criticality is 0.604, 0.371, and 0.702.
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Chapter 6

CONCLUSION

In this thesis we present a hierarchical approach in manipulation to overcome the

intractability of these class of problems. Results shows how these algorithms are

complete and able to cope up with the infinite branching in grasp and put down

placements. The algorithms allows a robot to manipulate wooden planks to arrange

in order which meets the goal state. The high level task planner generates sequence of

actions i.e. the order in which these planks should be placed. The abstraction in the

state representation allows to relax the problem and deal with increased number of

literals in the state space. This accelerates the planning and are finds a solution in re-

alizable time. The low level pose generators autonomously generates poses for a given

action to manipulate the planks. The hierarchical approach here allows to generate

solutions overcoming the infinite possible continuous values for these solutions.

The second part of this thesis aims at bridging the gap between planning and

learning and tries to get best of the both worlds. An attempt was made in learning

the critical region for motion planning which are regions having low probability of

getting sampled under uniform sampling but most of the solutions pass through them.

Results show hoe these learned regions accelerate motion planning and beats any state

of the art motion planning algorithms in time required to solve a given problem. The

results gives us good insights on how this can be used to learn landmark actions for

task planning.
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Chapter 7

FUTURE WORK

The framework for combined task and motion planning requires domain knowledge

and user input in the form of pose generators. This work can be extended to reduce

human interventions as much as possible to give complete autonomy. A pose generator

can be learned for a class of problems which automatically generated poses for different

actions based on the current and future actions. Moreover as investigated in Section

2.4.4, this work can be used to learn the landmarks actions for task planning to reduce

the planning time.

The motion planning for a manipulator arm exhausts most of the available time for

the whole planning problem. These motion planning algorithms contributes most to

slow down the refinements. Learn and Link can thus be extended to high dimensional

robots to accelerate the motion planning.

The methods discussed in this thesis is a step towards solving real world appli-

cation of hierarchical manipulation. IKEA chair assembly is often considered as the

moon landing for robotic automation. This thesis inches closer to have a complete

autonomous agent which can generate plans to assemble IKEA chairs without human

intervention.
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APPENDIX A

NOTES ON CHAPTER 3

30



Please note that the chapter 3 of this document contains parts taken from the
paper Molina et al. (2019) which was uploaded on arxiv and presented at ICAPS
Workshop on Planning and Robotics 2019. This paper was co-authored with Daniel
Molina and Siddharth Srivastava and co-authors approves of the inclusion of the
above-stated work in this thesis.
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