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ABSTRACT  

There are many inconsistencies in the literature regarding how to estimate the 

Lyapunov Exponent (LyE) for gait. In the last decade, many papers have been published 

using Lyapunov Exponents to determine differences between young healthy and elderly 

adults and healthy and frail older adults. However, the differences in methodologies of data 

collection, input parameters, and algorithms used for the LyE calculation has led to 

conflicting numerical values for the literature to build upon. Without a unified 

methodology for calculating the LyE, researchers can only look at the trends found in 

studies. For instance, LyE is generally lower for young adults compared to elderly adults, 

but these values cannot be correlated across studies to create a classifier for individuals that 

are healthy or at-risk of falling. These issues could potentially be solved by standardizing 

the process of computing the LyE.  

This dissertation examined several hurdles that must be overcome to create a 

standardized method of calculating the LyE for gait data when collected with an 

accelerometer. In each of the following investigations, both the Rosenstein et al. and Wolf 

et al. algorithms as well as three normalization methods were applied in order to understand 

the extent at which these factors affect the LyE. First, the a priori parameters of time delay 

and embedding dimension which are required for phase space reconstruction were 

investigated. This study found that the time delay can be standardized to a value of 10 and 

that an embedding dimension of 5 or 7 should be used for the Rosenstein and Wolf 

algorithm respectively. Next, the effect of data length on the LyE was examined using 30 

to 1300 strides of gait data. This analysis found that comparisons across papers are only 

possible when similar amounts of data are used but comparing across normalization 
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methods is not recommended. And finally, the reliability and minimum required number 

of strides for each of the 6 algorithm-normalization method combinations in both young 

healthy and elderly adults was evaluated. This research found that the Rosenstein algorithm 

was more reliable and required fewer strides for the calculation of the LyE for an 

accelerometer. 
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CHAPTER 1: INTRODUCTION 

MOTIVATION 

Falls are a well-recognized risk factor for unintentional injuries among older adults, 

accounting for a large proportion of fractures, emergency department visits, and urgent 

hospitalizations. (Tinetti, 2003) According to the Centers for Disease Control and 

Prevention’s web-based injury statistics query and reporting (WISQARS, 2010a, 2010b): 

in 2010, 3.7 million people over the age of 50 reported non-fatal fall-related injuries, and 

24,000 people in this age bracket died from falling or from the resulting injuries. That year, 

non-fatal falling injuries resulted in 2.8 million emergency room visits costing $7.9 billion 

dollars across the country.  

Every year, almost a third of people over the age of 65 fall at least once and 10-

15% of those falls cause serious injuries or result in death. (Milat et al., 2011) Many of 

these falls could be prevented by screening people in this age group for fall risk and 

identifying “at-risk” fallers. Generally, a person’s level of fall risk is determined by their 

musculoskeletal (e.g. the fitness of their lower limb muscles) and sensory (e.g. quality of 

their vision and proprioception) functions. (Pfortmueller et al., 2014) As we age, both 

systems naturally start to deteriorate over time. There are ways to limit this deterioration, 

such as exercise regimens (Freiberger et al., 2013; Gillespie et al., 2012; Sherrington et al., 

2011), so individuals identified as “at-risk” fallers could begin to take more personal 

precautions or join an exercise program to reduce their fall risk. 

Even though fall intervention programs have shown great success in reducing falls, 

enrolling and retaining people in these community-run programs has proven to be a 

challenge. (Day et al., 2002) One way to improve enrollment is to have general physicians 
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screen their elderly patients for fall risk and suggest or prescribe exercise and fall risk 

prevention programs. It has been shown that the elderly visit their general physicians on a 

regular basis and view them as an important source of health-related information. In 

addition to this, elderly patients value their physicians’ opinions and will thus be more 

likely to follow their recommendations. (Gardner et al., 2002) So, having a simple tool for 

physicians to utilize in their normal visits to assess changes in the severity of fall risk would 

be advantageous. Currently, clinical fall risk assessments are based on questionnaires and 

non-instrumented functional tests. Even though functional tests are more objective and 

quantitative than questionnaires about fall history, they lack the ability to discriminate 

between healthy and at-risk populations that need intervention programs. (Hamacher et al., 

2011) Some of the most promising predictors of fall risk have sprouted from analyzing gait 

and postural stability with nonlinear dynamical tools such as Lyapunov Exponents 

(Dingwell and Cusumano, 2000; Lockhart and Liu, 2008), and various entropy measures 

(Borg and Laxåback, 2010; Busa and van Emmerik, 2016; Fino et al., 2015). 

In biomechanics, the most commonly used nonlinear dynamical techniques are the 

Lyapunov exponent (LyE) and entropy measures which are used to quantify stability and 

complexity, respectively. For instance, in walking, we take very similar steps from right to 

left in terms of step size, walking velocity, etc. but these similar steps are not identical. 

These small changes are due to slightly different initial conditions before we take each step. 

LyE evaluates these changes (divergences) between initial conditions and is used to 

measure the stability of gait as a dynamical system. Quantitatively identifying people who 

have poor gait stability should help categorize individuals as healthy or at-risk.  
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Inertial measurement units (IMUs) have become widely used in assessing gait and 

other daily living activities as an alternative to traditional motion capture systems. They 

have also been used to calculate different parameters, include the LyE, as biomarkers for 

various ailments, e.g. patients with dementia (IJmker and Lamoth, 2012), multiple sclerosis 

(Huisinga et al., 2013), Parkinson's disease, (Fino et al., 2018) and concussions (Fino, 

2016). Accelerometers are flexible, mobile, inexpensive, and have the advantage of 

recording gait in various environments with ease. (Tao et al., 2012) Thus, as IMUs become 

the prominent method of collecting gait data, it is important to standardize and tailor the 

protocol for calculating the LyE using this particular signal. 

There are many inconsistencies and incongruities in the literature regarding how to 

estimate the Lyapunov exponent for gait. In the last decade, many papers have been 

published using Lyapunov Exponents to determine differences between young healthy and 

elderly adults and healthy and frail older adults. (Mehdizadeh, 2018) However, the 

differences in methodologies of data collection, input parameters, and algorithms used for 

the LyE calculation has led to conflicting numerical values for the literature to build upon. 

Without a unified methodology for calculating the LyE, researchers can only look at the 

trends found in studies. For instance, LyE is lower for young adults compared to elderly 

adults. (Granata and Lockhart, 2008a; Dennis Hamacher et al., 2015; Terrier and Reynard, 

2015) But the values cannot be correlated across studies to create a classifier for individuals 

that are healthy or at-risk of falling. These issues could potentially be solved by 

standardizing the process of computing the LyE. There are several hurdles that must be 

overcome to create a standardized method. This includes but is not limited to the choice of 

algorithm, normalization of collected data, parameterization used in phase space 
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reconstruction, and amount of data required. It is possible and likely that all of these factors 

must be tuned to how data is collected, i.e. motion capture data use of position, velocity, 

or joint angles or inertial measurement units (IMUs) use of linear and angular acceleration. 

Research has touched on different combinations of this problem. For example, using a 

group mean embedding dimension and time delay for the reconstruction of the phase space 

was found to improve reliability of the LyE when using IMUs (van Schooten et al., 2013) 

and motion capture data (Raffalt et al., 2018a). Other studies have looked at the effect of 

data length in both data collection methods using the Rosenstein et al algorithm and the 

Wolf et al. algorithm with various methods of data normalization. And one recent study 

(Raffalt et al., 2019) investigated how different normalization methods are more beneficial 

for specific algorithms when using motion capture data. It is impossible for a single paper 

to investigate the myriad of factors and implications of each one. Therefore, this 

dissertation investigates each of these hurdles in order to help create a standardized method 

of calculating the LyE for gait data when collected with an IMU (accelerometer).  

 

SPECIFIC AIMS 

The objective of this research was to develop a standardized methodology for 

calculating the LyE for human gait when using accelerometers. This will allow for 

biomechanical researchers to utilize LyE while understanding the implications of choosing 

various input variables associated with its calculation. We will analyze how a phase space 

is reconstructed and determine the minimum data needed to accurately calculate the LyE.  
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Aim 1:  Develop guidelines for phase space reconstruction for gait data by investigating 

how data length and preprocessing methods affect the methods used to determine these 

parameters and investigate if and/or how these parameters effect the value of the 

Lyapunov Exponent. 

Hypothesis 1a: Determining time delay and embedding dimension will not be 

affected by the amount of gait data provided to their calculation methods 

Hypothesis 1b: Different combinations of time delay and embedding dimension 

will cause significant differences in the calculated LyE within a single subject and 

within a group of subjects.      

Aim 2: Evaluate the effect of data length on the estimation of the LyE for accelerometer 

data when different preprocessing methods and algorithms are utilized 

Hypothesis 2a: Larger data sets (greater than 150 strides) are not directly 

comparable to smaller data sets (50 strides or less), regardless of algorithm used 

to estimate the Lyapunov exponent 

Hypothesis 2b: The required minimum number of strides, needed for precise and 

reliable estimation of the Lyapunov exponent, will be dependent on the algorithm 

and normalization method used.  

Hypothesis 2c: The Rosenstein et al. algorithm will have better precision and 

reliability for calculating the Lyapunov exponent for accelerometer data  
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The culmination of these aims will create a standardized methodology for 

calculating LyE which will allow for the comparison of data and conclusions across all 

studies that employ their use. This, in turn, will hopefully, allow for better meta-analyses 

identifying the best measures for creating a precise and sensitive fall risk assessment tool. 

 

 

ORGANIZATION 

 This dissertation has 6 chapters. Chapter 2 reviews the principles of nonlinear 

dynamics with respect to Lyapunov Exponents as well as how LyE have been used in 

clinical and community efforts and what standardization in the methodology has been 

researched. Chapter 3 investigates how data processing and amount of data affects the 

calculation of the time delay and embedding dimension. Chapter 4 indepthly investigates 

the effect of time delay and embedding dimension choices when different preprocessing 

or normalization methods are utilized for calculating the LyE. Chapter 5 studies the effect 

of data length on the LyE when using both the Rosenstein et al and Wolf et al algorithms. 

And finally, in Chapter 6, we investigate if elderly walking data can be processed using 

the same methods as young healthy adults without changing the reliability of the LyE. 
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CHAPTER 2: BACKGROUND 

NONLINEAR DYNAMICS 

Dynamical systems are defined as the deterministic mathematical equations that 

describe the evolving state of the system through time (Abarbanel, 1996; Hirsch, 1984; Ott, 

2002). More simply, they are systems that change over time. Such a system will eventually 

(after some transient period) settle into either a periodic motion (i.e. a limit cycle) or into 

a steady state (i.e. a situation in which the motion has ceased). Common examples of such 

systems include pendula, chemical reactions, thermodynamics, astrological systems, and 

physiology.  

Within dynamical systems, there is a class of systems that have nonlinear 

characteristics, in which a small subset of nonlinear systems is chaotic. Unlike regular 

dynamical systems, chaotic motions are neither periodic nor do they reach a steady state, 

rather, they are a state in between. They are complex signals that are often described as 

wild or random in nature. Classic examples of chaotic behavior include the double-well 

potential forced oscillator (Moon and Li, 1985) and a double pendulum (Richter and 

Scholz, 1984). Chaos is a dynamical system that exhibits aperiodic long-term behavior that 

depends sensitively on the initial conditions of that system. In particular, “aperiodic long-

term behavior” delineates trajectories which do not settle down to fixed points, periodic 

orbits, or quasiperiodic orbits as time goes to infinity. The sensitive dependence on initial 

conditions describes the phenomenon of nearby trajectories separating exponentially fast, 

i.e. the system has a positive Lyapunov exponent (Nayfeh and Balachandran, 2004; 

Strogatz, 1994). In simplest terms, chaos is irregular in time, but has structure in the phase 
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space (Abarbanel, 1996). To understand the underlying properties of a system, it is critical 

to understand the space it occupies.  

 

Phase Space 

A phase space is a finite-dimensional vector space ℝ 𝑚 that contains all the possible 

states of a system. Each possible state corresponds to one unique point in the phase space 

and is used to identify the attractors in the system. An attractor draws (repels) nearby 

trajectories toward (away from) itself. Therefore, a set of initial conditions may be attracted 

to some subset of the phase space as time goes to infinity. There are three main types of 

attractors: point, limit cycle, and chaotic. A point attractor attracts nearby trajectories to a 

single point, while limit cycles attract periodic adjacent motions; refer to Figure 2-1. A 

chaotic attractor is defined by how trajectories diverge in time. If we take two points on 

the attractor that are only separated by a small distance at 𝑡 = 0, then as 𝑡 increases these 

points will move apart from one another exponentially fast. Therefore, a small uncertainty 

Figure 2-1: Examples of attractors. Fig. 1a is an example of a point attractor, pulling the trajectories 

around itself to a single point. Fig 1b shows an attracting limit cycle in the phase space. All of the 

trajectories within and outside the limit cycle are approaching the limit cycle. Figure was taken 

from (Grebogi et al., 1987) 
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in the initial conditions of the system will rapidly impede the ability of forecasting the 

system’s future. Additionally, multiple attractors can combine these properties, repelling 

in one direction and attracting in another (Baker et al., 1996; Grebogi et al., 1987, 1983; 

Thompson and Stewart, 1986). This creates a unique pattern in the phase space. In classic 

examples of chaos theory, the phase space is usually a plot of position and momentum as 

a function of time. However, a phase space can also be reconstructed from a single 

continuously recorded variable, given that the sampling frequency and number of cycles 

of the system is sufficient. Nonlinear dynamics and chaos theory attempt to describe and 

extract features of these systems to understand their behavior and sensitivity to initial 

conditions (Baker et al., 1996). 

Nonlinear Dynamical Analyses 

The intrinsic dynamics of linear systems are governed by small causes that lead to 

small effects, whereas in a nonlinear system, a small cause can lead to disproportionate 

effects. Nonlinear dynamical analyses are a set of tools used when traditional linear 

methods fail to accurately represent and interpret data. The reconstruction of the phase 

space is the critical first step in determining the different features of dynamical systems, 

such as dimension of attractors, the maximum Lyapunov exponent, and entropy (Kantz and 

Schreiber, 2004). The phase space is reconstructed using the method of delays (Broomhead 

and King, 1986; Takens, 1981). For an 𝑁-point time series 𝑥(𝑛), the phase space can be 

reconstructed using the following equation:  

 𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛 + 𝜏), . . . , 𝑥(𝑛 + (𝑑𝐸 − 1)𝜏)] (2.1) 
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where 𝜏 is the time delay and 𝑑𝐸 is the embedding dimension. Thus, creating the 𝑑𝐸-

dimensional phase space as an 𝑀 × 𝑑𝐸 matrix where 

 𝑀 = 𝑁 − (𝑑𝐸 − 1)𝜏 (2.2) 

Time delay (𝜏) is most commonly determined using the first minimum of the 

average mutual information (AMI) function. The AMI takes nonlinear correlations into 

account unlike the autocorrelation function. AMI evaluates the amount of information that 

is shared between data sets over a range of time delays (Fraser and Swinney, 1986). The 

first minimum of AMI marks the 𝜏 where the time shift, 𝑠(𝑡 + 𝜏), adds maximal 

information to the knowledge we have from the original data set, 𝑠(𝑡) (Kantz and 

Schreiber, 2004). More simply the redundancy between the original signal and the time 

shifted signal is the smallest at that given 𝜏. Embeddings with the same 𝑑𝐸 but with 

different 𝜏 are equivalent mathematically when you have a noise free system. But in reality, 

a good choice in 𝜏 facilitates future analysis of the reconstructed phase space. If 𝜏 is too 

small, successive delay vectors are strongly correlated and all vectors, 𝑦(𝑛), will be 

clustered around the diagonal in the phase space. Alternatively, if 𝜏 is too large, 

neighboring elements will be independent, creating a large cloud of points in the phase 

space which cover the desired deterministic structures that are now confined to small scales 

(Kantz and Schreiber, 2004). 

With time delay established, the embedding dimension is determined using global 

false nearest neighbors (FNN). FNN compares the distances between neighboring 

trajectories at increasing dimensions. False neighbors occur when trajectories overlap in a 

lower dimension but do not overlap in a larger dimension (Kennel et al., 1992). The total 

percentage of false neighbors decreases as embedding dimension increases, until the proper 
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embedding dimension is reached. This is determined by the false nearest neighbor 

percentage as it approaches zero or reaches a plateau.  An embedding dimension that isn’t 

too small and not too large is ideal. If 𝑑𝐸 is too small, trajectories will inevitably overlap 

in space. Likewise, a larger than necessary 𝑑𝐸 is also avoided because the computational 

cost increases exponentially as 𝑑𝐸 increases. And more importantly when noisy signals are 

used, these extra dimensions are not filled by the system dynamics but with noise 

(Abarbanel et al., 1993). Therefore, it is prudent to find a sufficient dimension that is not 

too small nor too large.  

 

LYAPUNOV EXPONENTS 

After the phase space has been reconstructed there are numerous analyses that can 

be performed to quantify stability, complexity, and amount of chaos. Here, we will focus 

on a measure of stability called the Lyapunov exponent (LyE). The LyE, or the largest LyE, 

quantifies the sensitivity of a dynamical system to initial conditions. Consider two 

trajectories with nearby initial conditions in the phase space of a dynamical system. If the 

attractor of this system is chaotic, then the trajectories will diverge at an exponential rate. 

This rate of divergence is the LyE. A positive LyE is sufficient for determining the presence 

of dynamical chaos and indicates local instability in a particular direction. (Bryant et al., 

1990) There are several methods for calculating the LyE. (Rosenstein et al., 1993; Sato et 

al., 1987; Wolf et al., 1985) However, we will focus on the Wolf et al. (1985) and 

Rosenstein et al. (1993) algorithms, as they are the primary methodologies used in gait 

studies. In the following sections, we will detail each of these methods.  
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Figure 2-2: Flowchart for calculating the Lyapunov exponent summarizing both the Wolf 

et al. and Rosenstein et al. algorithms. 

 

Wolf Algorithm 

The first LyE algorithm for time series analysis was suggested by Wolf (1985) et al. 

This method tracks the average divergence of nearby trajectories in the phase space from 

a single reference trajectory (i.e. the original time series) to estimate the LyE. A simplified 

flowchart of this process is shown in Figure 2-2 for reference, while a detailed explanation 

will be in text. As in all methods for calculating the LyE, the first step is to reconstruct the 

phase space after selecting the appropriate embedding dimension (𝑑𝐸) and time lag (𝜏). 

The first point of the time series is then chosen as the reference trajectory. Next, the nearest 

neighboring point on a different trajectory is determined by calculating the Euclidean 

distance between the reference point and all other points in the attractor. This initial 

distance between the two points is 𝐿(𝑡0) and then after a time evolution of 𝑡1 the distance 
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becomes 𝐿′(𝑡1). The exponential growth in the separation between these trajectories is 

calculated using Eq. (2.2) 

 𝑍1 =
1

𝑑𝑡∗𝑛
log2 (

𝐿′(𝑡1)

𝐿(𝑡0)
)   (2.3) 

where 𝑑𝑡 is the inverse of the sampling frequency, 𝑛 is the number of time points that the 

reference trajectory and the neighboring point are allowed to move through their respective 

trajectories together before this calculation occurs, and 𝑡1 is equal to 𝑑𝑡 ∗ 𝑛.  The time 

evolution, 𝑡1, is set a priori. Now a new neighboring vector must be chosen because if time 

evolution is too large then the distance between the two trajectories may shrink or rapidly 

expand if they go through a folding region of the attractor. This will lead to either an over 

or underestimation of the LyE.  Let 𝐿(𝑡1) be the distance between the evolved point on the 

reference trajectory (𝑡1) and a new vector. The new vector must satisfy two criteria to be 

chosen: the distance from the reference trajectory must be small and the angular separation 

between the reference trajectory and the replacement also needs to be small. This is 

depicted in Figure 2-3.   

 

Figure 2-3: Schematic representing the evolution and replacement procedure used in the 

Wolf algorithm for estimating the LyE. When a new point is being chosen, the replacement 

length (𝐿) and the orientation angle (𝜃) are being minimized.  
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In practice, the new point must be less than the distance SCALMX but still greater 

than the allowable minimum distance SCALMN between points. Additionally, the angular 

separation 𝜃 between the new point and the evolved point must be small. All of these 

variables are set a priori, SCALMN is usually set to 0.001 while 𝜃 is either 0.3 or 0.2 

radians. SCALMX and 𝜃 are dynamic variables that will change throughout this process in 

case there is no nearest neighbor at these initial conditions (Wurdeman, 2016). If these 

conditions are not met by a new vector, the distance limit (SCALMX) is increased stepwise 

to the upper limit of five times the original limit. And if necessary, the direction limit is 

then repeatedly doubled to maximally 𝜋 radians. This procedure is repeated until the 

reference trajectory has gone through all of the data samples. Then LyE is calculated from 

the average of the expansion and contraction rates (𝑍𝑀) from all time evolutions.  

 𝜆1 =
1

𝑀
∑ 𝑍𝑘

𝑀
𝑘=1  (2.4) 

where M is the total number of replacements (Wolf et al., 1985). 

Rosenstein Algorithm 

Rosenstein et al. (1993) created a new algorithm for computing the largest LyE. This 

method was introduced to improve the existing methods that suffered from at least one of 

the following setbacks: 1) reliability for small data sets; 2) computationally expensive; and 

3) relatively difficult implementation. In the Rosenstein et al. algorithm, the LyE is 

calculated as the slope of the mean divergence curve which represents the temporal change 

of the average natural log-distance between two neighboring points on the attractor. Just as 

with the Wolf et al. algorithm, the phase space is first reconstructed and then the nearest 

neighbor (𝑋𝑗) of every point on the reference trajectory (𝑋𝑖) is found. Nearest neighbors 



  15 

are located by using the Euclidean norm (denoted below as ‖   ‖), with the additional 

constraint that each point must be on a separate trajectory.  

 𝑑𝑗(0) = min
𝑋𝑗

‖𝑋𝑗 − 𝑋𝑖‖  (2.5) 

In order to ensure that each nearest neighbor lie on different trajectories, the neighbors 

must be separated in time by greater than the mean period of the time series.   

 |𝑖 − 𝑗| > 𝑚𝑒𝑎𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 (2.6) 

The mean period of the time series is usually calculated as the inverse of the mean power 

frequency. This constraint allows for each pair of neighbors to be nearby initial conditions 

for separate trajectories. The average divergence distance of all possible nearest neighbor 

pairs is tracked through time creating a mean divergence curve (Figure 2-4). The LyE is 

then estimated using a least-squares fit to the linear slope of the divergence curve. 

 𝑦(𝑖) =
1

∆𝑡
⟨ln 𝑑𝑗(𝑖)⟩ (2.7) 

where ⟨   ⟩ denotes the average over all pairs of 𝑗 (nearest neighbor pairs, 𝑗 = 1,2, … , 𝑀).  

 
Figure 2-4: Example mean divergence curve of the Lorenz attractor. The slope of the initial 

linear portion of this graph (between 0.5 – 3s) is used in the Rosenstein algorithm to 

calculate the LyE. 
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APPLICATION OF LYAPUNOV EXPONENTS TO GAIT 

In gait studies, the LyE is a direct measure of instability. Assessing the dynamic 

stability has become a prominent approach in human gait and posture research for 

understanding motor control (Ihlen et al., 2017; Terrier and Dériaz, 2011), as well as a 

biomarker for different pathologies (Chini et al., 2017; Dingwell et al., 2001; Fino et al., 

2018) and adaptations in aging (Granata and Lockhart, 2008a; IJmker and Lamoth, 2012; 

Kang and Dingwell, 2009), particularly when it comes to fall risk.  

 The study of fall risk with nonlinear dynamical measures has been a driving force 

in the application of LyE in gait studies. The LyE, or local dynamic stability, was found to 

be significantly different between individuals who had fallen one or more times (fallers) 

and those that have never fallen (non-fallers). These differences extend to gait in different 

environmental contexts, including treadmill walking (Liu et al., 2012; Lockhart and Liu, 

2008; Toebes et al., 2012) and over ground walking (Howcroft et al., 2018, 2016; Reynard 

et al., 2014; Rispens et al., 2015; Van Schooten et al., 2015). Furthermore, the LyE has 

been linked to fear of falling (Toebes et al., 2015) – a known risk factor for falls among 

older adults – and in assessing the effectiveness of various rehabilitation and exercise 

paradigms to reduce fall risks in this population. For example, Punt et al. (2015) utilized 

LyE to report improvements in gait stability by implementing excessive arm swings. 

Similarly, Hamacher et al. (2016a) assessed the combined cognitive and motor effects 

attributed to dance programs, and their positive influence on gait stability. Gait stability is 

measured by LyE and combined with other common fall risk tests (qualitative or 

quantitative) have shown to improve fall risk identification models (Rispens et al., 2015; 

Van Schooten et al., 2015). However, not all fall risk studies have reported significant 
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differences between these two populations. And there are conflicting reports on which 

signal direction – vertical (VT), anteroposterior (AP), or mediolateral (ML) characterizes 

the largest difference in gait stability. Some researchers reported differences in all 

directions (Van Schooten et al., 2015), while others found differences only in the VT 

(Lockhart and Liu, 2008), AP (Howcroft et al., 2016), and ML (Bizovska et al., 2018a; 

Huijben et al., 2018) directions.. 

Accordingly, gait stability has proven useful in the early identification and 

prediction of neurological conditions, such as multiple sclerosis and Parkinson’s disease. 

LyE have been used to identify fall risk patients within these cohorts (Fino et al., 2018; 

Huisinga et al., 2013; Tajali et al., 2019). Generally, fallers with these conditions have 

greater instability, and therefore, larger LyE compared to their non-faller counterparts. The 

application of LyE has also grown to identifying different pathologies within the general 

population. Patients with various gait disorders (e.g. stroke, multiple sclerosis, cerebral 

palsy, and traumatic brain injury) were shown to have greater instability. Additionally, 

people who have been diagnosed with dementia (IJmker and Lamoth, 2012), unilateral 

vestibular hypofunction (Liu et al., 2017), developmental coordination disorder 

(Speedtsberg et al., 2018), and degenerative cerebellar ataxia (Chini et al., 2017) have 

significantly different stability compared to healthy aged-match controls.  

The application of LyE in gait has grown beyond just identifying fall risk 

individuals. The LyE is used to study how different environmental and physical conditions 

affect an individuals’ ability to walk. Kibushi and colleagues studied how muscle synergies 

and coordination during gait respond to changes in gait speed (Kibushi et al., 2018). They 

determined that different muscle synergies have different LyE which might depend on the 
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required motor output of specific subtasks within a gait cycle. And in a follow up study, 

they found that larger LyE correlated with fast walking speeds and very short stride lengths. 

Thus indicating that these conditions have more instability than walking at a slower pace 

and using smaller stride lengths (Kibushi et al., 2019). This could explain why as people 

age, they naturally adapt a slower pace and take smaller steps. Other outside influencers of 

gait such as types of flooring (Chang et al., 2010; Kim et al., 2018), walking while listening 

to music or television (Sejdić et al., 2013), and even walking while texting (Hamacher et 

al., 2016b) have found that LyE can be used to find differences in walking conditions. 

Physical exertion has also become an area of interest but has found conflicting results when 

using LyE. Hamacher et al. (2018) and Kao et al. (2018) did not find that exhaustion 

effected LyE during normal walking unlike previous literature that reported both an 

increase (Hamacher et al., 2016c) and a decrease (Vieira et al., 2016) in LyE after a 

fatiguing protocol. It is important to note that some studies used treadmills while one did 

not, and all studies used signals from different locations as well as various types of signals 

(velocity, acceleration, etc.).  

Outside of intrinsic gait differences due to various patient populations and aging, 

LyEs are now being used to assess the recovery from various injuries and surgeries. 

Concussions affect 1.6 - 2.8 million people in the United States every year (Langlois et al., 

2006). Concussed athletes had greater dual task costs when assessed using LyE than 

healthy athletes (Fino, 2016; Fino et al., 2016). This reflects as a reduced response by the 

neuromuscular control system to local perturbations. Additionally, this deficit persisted 

longer than the standard 1-2-week symptom directed return-to-play progression; raising 

the concern about the athlete’s well-being and risk of injury after players have returned to 
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competition. Other injuries, such as anterior cruciate ligament (ACL) deficiency or ACL 

repairs have found LyE is useful for assessing various therapy and rehabilitation programs. 

Nazary-Moghadam et al. (2019) found that as gait speed increased in healthy subject the 

LyE showed no changes, but significantly decreased for subjects with ACL deficiency. 

This suggested that during rehabilitation, cognitive load task and high-speed walking 

should be used to challenge the knee. The LyE has also been used to assess the recovery 

of patients after ACL reconstruction surgery. One study found that six months of 

physiotherapy was effective in improving knee stability, but was not sufficient for a 

complete recovery (de Oliveira et al., 2019). And another, found that even after two years, 

knee stability was still reduced in surgical patients, regardless of graft type used in the 

surgery, compared to healthy controls (Moraiti et al., 2010). They postulated that the ACL 

reconstruction led to an altered gait variability instead of restoring it to its previous optimal 

variability and stability. Thus, the LyE as a measure of gait stability can be used to evaluate 

injury recoveries and the effectiveness of rehabilitation therapies.  

The breadth of application of the stability of gait using LyE to the study of gait, 

falls, and rehabilitation cements its importance in the literature. Although LyE has been 

used for studying gait instability across multiple populations and in many different 

paradigms, there is a common theme that not all of these studies are comparable. Some 

studies use different data collection equipment, algorithms, and/or normalization methods. 

And even when publications research similar paradigms, some studies find significant 

differences while others do not. This could be due to sample and effect size within 

particular studies, but the inconsistency across publications could also be due to the lack 

of a universal methodology for calculating the LyE during gait. These variations in 
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calculations also hinder comparisons across publications and populations, as well as, 

prevent meta-analyses.  

VARIATIONS IN THE CALCULATION OF THE LYAPUNOV EXPONENT FOR 

GAIT DATA 

To date, there has been several pivotal publications about the issues in calculating 

the LyE when using gait data from issues with how to reconstruct the phase space, which 

normalization methods to use, choice of algorithm, and amount of data length. Each of 

these factors can affect the final value of the LyE. However, these studies have not all been 

done using a single data collection method but under multiple, e.g. motion capture using 

position, velocity, or joint angles or accelerometers. Each of these issues will be discussed 

in detail in the following sections.  

Data Collection Equipment 

The effect of gait speed has been extensively studied but has conflicting 

conclusions based on different factors, e.g. data collection method, algorithm, and 

preprocessing methods used. This illustrates the importance of standardization when 

calculating the LyE when studying gait. A linear relationship between decreased instability 

(lower LyE) and lower gait speeds were found using the Rosenstein algorithm with trunk 

(Bruijn et al., 2010; Dingwell and Marin, 2006; Kang and Dingwell, 2008) and joint 

velocities (England and Granata, 2007) when recorded using motion capture systems. 

However, Bruijn et al. (2009a) only found this linear relationship in the AP direction, while 

the VT and ML directions had a quadratic (inverted U-shaped) effect as walking speed 

increased. When accelerometers are used, regardless of algorithm choice, the LyE 

decreased as gait speed increased (Bruijn et al., 2010; Huijben et al., 2018; Punt et al., 
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2015; Raffalt et al., 2017; Stenum et al., 2014).  Raffalt et al. (2017) examined the effect 

of gait speed on the lumbar acceleration using the W-algorithm and found that the LyE was 

larger at gait speeds slower than the subjects’ preferred walking pace in all directions. 

Stenum et al. (2014) found that the relationship between gait speed and the LyE when using 

the R-algorithm was dependent on if the original time-series was time-normalized or not 

and if the divergence curve was rescaled to time in seconds or left in units of stride-time. 

The study found that if gait data was not time-normalized and the divergence curve was 

rescaled based on the average stride duration, gait speed would have no effect on the LyE 

in the VT or ML direction.  

It is important to note that the difference in relationships between the LyE and gait 

speed due to motion capture and accelerometer data found in both young healthy subjects 

(used in most studies) and healthy elderly adults (Huijben et al., 2018; Kang and Dingwell, 

2008). But not all populations share this relationship as demonstrated by Craig et al. (2019) 

with patients diagnosed with multiple sclerosis. In this dissertation, we will be 

concentrating on the standardization of inertial measurement units (IMUs) because they 

have become widely used in assessing and monitoring gait and other daily living activities 

as an alternative to traditional motion capture systems. Even though modern motion capture 

laboratories collect precise data during walking and postural stability tasks they are 

prohibitively expensive, immobile, and require well trained technicians to collect and 

process experimental results. IMUs on the other hand are more flexible, mobile, and 

inexpensive. They also have the advantage of unlimited measurement volume and the 

opportunity of recording gait in various environments – e.g. clinical offices, community 

centers, or outdoor tracks – with ease. (Tao et al., 2012) The validation of gait assessments 
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when using IMUs (Bruijn et al., 2010; Mundt et al., 2019) have made it possible to record 

average daily life activities for several days and up to a week at a time in large-scale studies.  

(Punt et al., 2016; Van Ancum et al., 2019) This has helped further establish the 

relationships between dynamic stability and fall prone individuals. (Bizovska et al., 2018a; 

Van Schooten et al., 2015) IMUs have also been used to calculate the LyE as a biomarker 

for various ailments, e.g. patients with dementia (IJmker and Lamoth, 2012), multiple 

sclerosis (Huisinga et al., 2013), Parkinson's disease, (Fino et al., 2018) and concussions 

(Fino, 2016). Thus, as IMUs become the more prominent method of collecting gait data, it 

is important to standardize the protocol for calculating the LyE using this signal. 

Phase Space Reconstruction 

When calculating the LyE, regardless of algorithm choice, the first step is to recreate 

the phase space. Phase space reconstruction requires a priori inputs of time delay (𝜏) and 

embedding dimension (𝑑𝐸). In the literature, a range of time delays from 6 to 30 and 

embedding dimensions of 5 to 7 or more have been used. (Dennis Hamacher et al., 2015; 

Mehdizadeh, 2018) The first study to test if reconstruction had an impact on the LyE was 

van Schooten et al. (2013).  They explored the intra- and inter-day reliability of four 

different reconstruction methods. They found that using the median 𝜏 and 𝑑𝐸 calculated 

from average mutual information and global false nearest neighbors, respectively, for all 

subjects improved the within and between-session reliability of the LyE over 

individualized values. This relationship has been found for accelerometer and motion 

capture data, irrespective of algorithm choice. (Raffalt et al., 2017, 2018a; van Schooten et 

al., 2013) Since group median and/or mean values have shown to have better reliability, 

can an arbitrary (yet sufficient) 𝜏 or 𝑑𝐸 be used as the standardized value for these 
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parameters? To the author’s knowledge, no study has investigated this or has systematically 

examined if time delay and embedding dimension affect the value of the LyE itself.  

Algorithm Choice  

One of the most prominent methodological divides in estimating the LyE in gait 

data is the algorithm that is used for its computation. As previously mention, the Wolf et 

al. (W-algorithm) and Rosenstein et al. (R-algorithm) algorithms are the two main 

algorithms used in the literature. The R-algorithm was utilized in 79% of publications, 

while the W-algorithm is only used in 15% (Mehdizadeh, 2018). There have only been a 

handful of studies that have used both algorithms. When comparing these algorithms again 

known nonlinear systems (i.e. Lorenz and Rossler systems), the R-algorithm had equal to 

or greater precision than the W-algorithm (Cignetti et al., 2012a; Rispens et al., 2014a), 

regardless of signal length. In gait studies, it has been found that the different algorithms 

perform better with specific normalization methods (Raffalt et al., 2019) and when 

different signal types (Raffalt et al., 2018a) (linear or angular displacement) are being 

investigated. When looking at studies that used IMUs in particular, the difference between 

algorithms were secondary comparisons. One study evaluated the effect of sensor 

placement and found that the LyE was robust against sensor misplacement or replacement 

when it was placed along the mid to lower back, regardless of which algorithm was used 

to calculate it (Rispens et al., 2014b). This study reported that the W-algorithm had better 

correlations between locations, but the R-algorithm had smaller standard deviations. In a 

separate study, the difference between laboratory-based gait assessments on a treadmill 

were compared to recording daily life activities over the course of a week. Significant 

differences were found between these gait assessments for both algorithms, but on the W-
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algorithm found correlations between these tests (Rispens et al., 2016). The correlation was 

interpreted as having more common information between the laboratory and daily life gait. 

But ultimately this study endorsed neither algorithm. In both of these IMU studies, the 

standard deviations of the R-algorithm were smaller (0.05-0.1) compared to the W-

algorithm (0.14-0.32). This indicates that the R-algorithm still has greater precision, but 

more research is needed to evaluate which algorithm performs better when accelerometers 

are utilized.  

Data Length 

The first extensive look that the effect of measurement length on the precision and 

sensitivity was performed by (Bruijn et al., 2009b). They collected 20 minutes of gait data 

using a motion capture system and analyzed the velocity of the upper trunk. While varying 

the number of included strides from 30 to 300 strides, they found that the LyE increased as 

data length increased. They also found that the standard deviation of the LyE decreased at 

longer data lengths, implying better precision with longer data sets but the gain in precision 

is limited after 150 gait cycles are used. They concluded that a fixed number of strides 

should be used when comparing between subjects and across groups or treatment level 

because of the large effect of data length on the LyE. The increase in the LyE as data length 

increases has been confirmed by other studies (Cignetti et al., 2012b; Kang and Dingwell, 

2006; Raffalt et al., 2018b; Reynard and Terrier, 2014).  However, significant differences 

were not always found between the smaller data lengths studied (Kang and Dingwell, 2006; 

Raffalt et al., 2018b; Reynard and Terrier, 2014). Collecting large data sets of gait can be 

a challenge when the age, fitness, and health of different populations can limit an 

individuals’ ability to walk for longer periods of time. Therefore, other data length research 
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has focused on finding the minimum number of required strides (F. Riva et al., 2014) while 

still maintaining measurement reliability, as well as investigating if shorter but multiple 

trials of gait can be utilized instead of a single long continuous walk (Van Schooten et al., 

2014). 

However, there are still holes in literature with respect to the effect of data length 

when using IMUs for both the R- and W-algorithms. As the use of the Wolf algorithm with 

IMUs is increasing, it is prudent to determine the limits of its use with respect to data length 

and under different normalization methods. Different normalization methods have been 

used in each of the studies mentioned above; some have used a pure number of data points 

(Cignetti et al., 2012b; Kang and Dingwell, 2006) while others have time normalized their 

data to approximately 100 samples per stride (Bruijn et al., 2009b; Reynard and Terrier, 

2014). It is currently unknown if preprocessing methods affect the relationship between the 

LyE and data length, as it has with gait speed (Stenum et al., 2014).  
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CHAPTER 3: EFFECT OF DATA LENGTH ON TIME DELAY AND EMBEDDING 

DIMENSION FOR CALCULATING THE LYAPUNOV EXPONENT IN 

WALKING 

 

ABSTRACT 

The Lyapunov Exponent (LyE) is a trending measure for characterizing gait stability. 

Previous studies have shown that data length has an effect on the resultant LyE but the 

origin of why it changes is unknown. This study investigates if data length affects the 

choice of time delay and embedding dimension when reconstructing the phase space, which 

is a requirement for calculating the LyE. The effect of three different preprocessing 

methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer 

data were collected from ten healthy subjects walking on a treadmill at their preferred 

walking speed for 30 minutes. Our results show that time delay was not sensitive to the 

amount of data used during calculation. However, embedding dimension had minimum 

data requirements to determine the steady state value of the embedding dimension. This 

study also found that preprocessing the data using a fixed number of strides or a fixed 

number of data points had significantly different values for time delay compared to a time 

series that used a fixed number of normalized gait cycles, which have a fixed number of 

data points per stride.  
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INTRODUCTION 

The Lyapunov exponent (LyE) is a nonlinear dynamical calculation that quantifies 

the rate of divergence or convergence of trajectories in an n-dimensional phase space. The 

phase space shows all of the possible trajectories for a dynamical system and is used to 

identify all of the possible attractors of the system. An attractor draws (repels) nearby 

trajectories toward (away) from itself, where multiple attractors can combine these 

properties, repelling in one direction and attracting in another (Baker et al., 1996; Grebogi 

et al., 1987, 1983). LyE, or local dynamic stability, is a popular approach to assess and 

enumerate an individual’s ability to withstand small perturbations during gait.  This 

nonlinear measure has been used to differentiate between healthy and fall prone elderly 

(Lockhart and Liu, 2008; Toebes et al., 2012), as well as, used to identify differences 

between healthy controls and patients with Parkinson’s disease (Fino et al., 2018), and 

developmental disorders (Speedtsberg et al., 2018). 

Multiple studies have found that the amount of gait data used when calculating the 

LyE affects the final outcome (Bruijn et al., 2009a; England and Granata, 2007; van 

Schooten et al., 2013). Previous studies on reliability of LyE have found different data 

minimum requirements; some required 54 and 150 strides [11,12] while others state a time 

duration minimum of 2-3 minutes of walking data (Cignetti et al., 2012c; Kang and 

Dingwell, 2009) is sufficient. However, no studies have investigated if data length plays a 

role in selecting the reconstruction parameters required for calculating LyE.  

The first step in calculating the LyE is reconstructing the collected time series into 

the phase space so the gait attractor can be analyzed. The phase space is reconstructed using 

the method of delays (Broomhead and King, 1986) : 
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 𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛 + 𝜏), . . . , 𝑥(𝑛 + (𝑑𝐸 − 1)𝜏)]  (1) 

 which requires a time delay, 𝜏, and an embedding dimension, 𝑑𝐸. The time delay is most 

commonly (Fraser and Swinney, 1986) determined using the first minimum of average 

mutual information (AMI) function, which evaluates the amount of information that is 

shared between data sets over a range of time delays. With time delay established, the 

embedding dimension is then determined using global false nearest neighbors (FNN). FNN 

compares the distances between neighboring trajectories at increasing dimensions. False 

neighbors occur when trajectories overlap in a lower dimension but do not overlap in a 

larger dimension (Kennel et al., 1992). The total percentage of false neighbors declines as 

embedding dimensions increase until the proper embedding dimension is reached. This is 

usually determined by the false nearest neighbor percentage as it either approaches zero or 

plateaus out.  

In addition to the varying data lengths being utilized, previous studies have also applied 

different preprocessing methods for gait time series normalization. This has also been 

found to have an effect on the calculation of LyE (Stenum et al., 2014). We have identified 

three major methods in the gait literature: 

1) Fixed number of strides with variable number of total data points (Myers et al., 2011) 

–  The time series will start and end on a heel contact, but each stride will contain a 

variable number of data points. This method maintains the distance between points on 

the attractor.  

2) Fixed number of strides and data points per stride (Bruijn et al., 2009a; England and 

Granata, 2007; Van Schooten et al., 2014) – The time series is time-normalized to 100 

samples per stride. This method alters the distance between data points within the phase 
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space but the number of points in each stride cycle is constant across subjects 

irrespective of gait speed.  

3) Fixed number of data points, with a variable number of strides (Dingwell and Marin, 

2006; Raffalt et al., 2019) – The time series starts at the same as methods 1 and 2 at a 

heel contact however, the end point is a fixed number of points regardless of the number 

of gait cycles it contains. This method also maintains the distance between points on 

the attractor but does not guarantee ending on a full cycle. 

The aim of this study was to determine the effect of data length on the 

reconstruction parameters of the LyE, specifically the 𝜏 and 𝑑𝐸 determined by AMI and 

FNN, respectively. We hypothesize that 𝜏 and 𝑑𝐸 will not change with respect to data 

length given sufficient data is provided. Additionally, we investigated the effects of three 

data preprocessing methods on determining time delay and embedding dimension.  

MATERIALS AND METHODS 

Participants 

Ten young health subjects (5 males and 5 females) with a mean ± standard 

deviation age of 24.5 ± 4.1 years, body height of 1.67 ± 0.10 meters, and body mass of 

69.4 ± 11.6 kg were included in this study. All subjects were physically active and familiar 

with walking on a treadmill. Subjects reported no cardiovascular issues, neurological 

diseases, nor lower extremity surgeries in the last 3 months. Subjects provided written 

informed consent before participating in this study. This study was approved by the 

Institutional Review Board of Arizona State University. 

Experimental Procedure 
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After subjects became familiar with the treadmill, each subject’s preferred walking 

speed (PWS) was determined using a standardized protocol (Dingwell and Marin, 2006). 

The mean and standard deviation of PWS was 1.13 ± 0.1 m/s.  After a short rest period, 

each subject walked on the treadmill for 30 minutes at their PWS. Participants wore three 

tri-axial acceleration sensors sampling at 128 Hz (APDM, Mobility Lab, APDM, Inc., 

Portland, OR) fitted with elastic bands and Velcro straps and were placed at each ankle and 

the lower lumbar around vertebrae L4 and L5. For this study, the ankle sensors were used 

to define heel contacts for truncating the gait data as necessary. A custom algorithm based 

on previously published algorithms (Norris et al., 2016; Pan and Tompkins, 1985) were 

used to define heel contacts. The lumbar sensor was used for reconstructing the phase space 

and calculating the LyE. The treadmill used in this experiment is a split-belt treadmill and 

is a part of the GRAIL system (Motekforce Link, Amsterdam, The Netherlands). 

Measurements were started after the treadmill and the subject were at a constant speed. 

 Three-dimensional acceleration data of the lumbar sensor were used for all of the 

calculations in this paper. The heel contacts for each step were determined and indexed and 

the time series was truncated to start and end on a heel contact (Dingwell et al., 2001; 

England and Granata, 2007). To investigate how different methods of preprocessing affect 

the calculation of time delay and embedding dimension, three different methods that are 

used in nonlinear dynamical calculations for gait were implemented:  

1. Fixed number of strides with a variable number of points per stride 

2. Fixed number of strides with 100 data points per stride 

3. Fixed number of data points 
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These methods were applied to the vertical (VT), anterior posterior (AP), and mediolateral 

(ML) acceleration time-series and no other filtering/normalization methods were used. 

After the data was preprocessed, different sample lengths ranging from 30 to 500 strides 

were extracted from the same first heel contact of the time series. This was repeated for 

each acceleration direction. The data lengths selected for method 3 were based on 15, 30, 

and 60 seconds and 2, 3, 5 and 10 minutes of gait data. This range includes smaller and 

larger data collection times as well as very common data collection times of one to three 

minutes of data. All calculations were done using custom made MATLAB (version 2018b, 

Mathworks Inc., Natwick) programs. 

Simulated Data 

We simulated the Lorenz and Rössler attractors because they are well known 

dynamical systems and they are similar to human posture and gait data, respectively. The 

Lorenz system has a pronounce non-periodic behavior which may be considered 

representative for postural sway, while the Rössler system has a periodic behavior which 

is more comparable to gait. (Rispens et al., 2014) The systems, based on the differential 

equations and initial conditions outlined in Table 3-1, were simulated using MATLAB. 

Each nonlinear attractor was generated with 1 × 106 samples, where the first 8000 samples 

were discarded to avoid transient confounders with each time series. Each time series was 

then segmented into non-overlapping windows that each contained 5 × 104 samples. Ten 

of these windows were used in the subsequent analyses for both the Lorenz and Rössler 

attractors.  To investigate the effect of data length, various data lengths was extracted from 

each window ranging from 2 × 103 to 7.7 × 104 samples. This range was used to mimic 
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the data lengths extracted from the gait data using method 3 (data truncated based on a 

specific number of samples).  

Table 3-1: Reference table for known chaotic dynamical systems. Values from (Rosenstein 

et al., 1993) 

System Equations Parameters ∆𝒕 Expected 

𝝀𝟏 

Lorenza 𝑥̇ = 𝜎(𝑦 − 𝑥) 

𝑦̇ = 𝑥(𝑅 − 𝑧) − 𝑦 

𝑧̇ = 𝑥𝑦 − 𝑏𝑧 

𝜎 = 16.0 

𝑅 = 45.92 

𝑏 = 4.0 

0.01 1.50 

Rösslerb  𝑥̇ = −𝑦 − 𝑧 

𝑦̇ = 𝑥 + 𝑎𝑦 

𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐) 

𝑎 = 0.15 

𝑏 = 0.20 

𝑐 = 10.0 

0.10 0.090 

a Wolf et al., 1985  bRossler, 1976 

 

Data Analysis  

Time delay, 𝜏, was determined as the first local minimum of the AMI function.(Fraser and 

Swinney, 1986) A time delay was determined for each directional acceleration as data 

length was varied for the simulated and collected data. The 𝜏 determined from AMI at 

1 × 104 samples for known systems and 300 gait cycles or 1.5 × 104 data points for gait 

data. FNN(Abarbanel and Kennel, 1993; Kennel et al., 1992) was then used to determine 

the appropriate embedding dimension, 𝑑𝐸, using values of 𝑅𝑡𝑜𝑙 = 15 and 𝐴𝑡𝑜𝑙 = 4. These 

threshold values for within the FNN algorithm are within the suggested ranges set by 

Kennel et al.(Kennel et al., 1992)  The final selection of the 𝑑𝐸  is generally up to the 

discretion of the researcher where the FNN starts plateauing out. Therefore, to objectively 

select the 𝑑𝐸 we added the following criteria: 1) the difference between subsequent 

dimensions must be less than 0.05; and 2) the actual percentage of FNN at that dimension 

must also be less than 10%. This method is depicted in Figure 3-1. These decision criteria 

were used for both the Lorenz system and all gait data collected. However, the second 
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criterion had to be increased to 0.20 for the Rössler system because some subjects, at 

certain time epochs, never dropped below a 10% false nearest neighbors’ rate.  

 

 
Figure 3-1: Methodology used to objectively select the embedding dimension. Top is the 

output of FNN. The Bottom figure was created by finding the difference between 

neighboring dimensions, each named for the transition they represent. The first criterion is 

found when the difference between dimensions is less than 0.05, displayed as the dash-dot 

line in the Bottom figure. For example, this point would be the 5-6 dimension transition. 

The second criterion then checks that dimension 5 has less than 10% FNN rate.  
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Statistical Analysis 

To explore the effect of within-subject data length effects on 𝜏 and 𝑑𝐸, a one-way 

repeated measures ANOVA was done separately for all three gait methods and each 

simulated nonlinear system. A Wilcoxon Signed Rank test was used to determine the 

differences between preprocessing methods. For all statistical tests a 𝑝-value < 0.05 was 

considered significant. All statistical analysis was performed in JMP Pro (Version 14, SAS, 

Cary, NC). 

 

RESULTS 

Simulated Systems 

There was no statistical effect of data length on 𝜏 for the Lorenz attractor in any 

direction. The Rössler attractor had significant differences only in the 𝑦-direction (F = 

6.2509, 𝑝 < 0.0001). However, a post-hoc Tukey test revealed no significant differences 

between any specific time epochs.  

In the Lorenz (F = 29.22, 𝑝 < 0.0001; F = 81.00, 𝑝 < 0.0001; F = 21.00, 𝑝 < 0.0001 

for 𝑥, 𝑦, and 𝑧, respectively) and Rössler attractor (F = 39.86, 𝑝 < 0.0001; F = 81.00, 𝑝 < 

0.0001; F = 2.81, 𝑝 = 0.0130 for 𝑥, 𝑦, and 𝑧, respectively) data length did have an effect on 

the 𝑑𝐸. A post-hoc Tukey test was used to determine the minimum number of data points 

necessary to determine a consistent 𝑑𝐸 for each directional vector in each known system.  

Gait 

When looking at the collected gait data, data length did not have an effect on 𝜏 in 

any direction, regardless of preprocessing methods. Just like with the known systems, data 

length did have an effect on the  𝑑𝐸. We found significant differences between 𝑑𝐸 at 
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different data lengths when using preprocessing method 1 (repeated measures ANOVA, F 

= 3.60, 𝑝 = 0.0039; F = 16.12, 𝑝 < 0.0001; F = 19.59, 𝑝 < 0.0001 for VT, AP, and ML, 

respectively), method 2 (repeated measures ANOVA, F = 8.02, 𝑝 < 0.0001; F = 10.84, 𝑝 < 

0.0001; F = 15.44, 𝑝 < 0.0001 for VT, AP, and ML, respectively), and method 3 (repeated 

measures ANOVA, F = 7.01, 𝑝 < 0.0001; F = 32.31, 𝑝 < 0.0001; F = 17.55, 𝑝 < 0.0001 for 

VT, AP, and ML, respectively).  

Post hoc testing using a Tukey test revealed significant differences between the 

shorter and longer data set sizes. This was used to determine data minimums for selecting 

the steady state 𝑑𝐸.  

 

Table 3-2: Statistical differences, p-values, in time delay values between different 

preprocessing at each comparable time epoch in gait cycles (GC) and number of data points 

(DP). The average number of data points in for each given number of gait cycles before 

processing was used to match the GC to its nearest DP length pair.  

    VT AP ML 

Method 1 vs Method 2    

 30 GC 0.18 0.004 0.03 

 50 GC 0.06 0.02 0.22 

 100 GC 0.05 0.002 0.15 

 150 GC 0.05 0.006 0.23 

 200 GC 0.05 0.02 0.29 

 300 GC 0.06 0.002 0.06 

 500 GC 0.05 0.008 0.19 

Method 2 vs Method 3    

 30 GC vs 5 x 103 DP 0.32 0.004 0.03 

 50 GC vs 7.5 x 103 DP 0.05 0.02 0.25 

 100 GC vs 15 x 103 DP 0.05 0.002 0.18 

 200 GC vs 23 x 103 DP 0.05 0.04 0.30 

 300 GC vs 38 x 103 DP 0.06 0.002 0.06 

  500 GC vs 77 x 103 DP 0.002 0.01 0.19 

p < 0.05 is significant 
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Preprocessing Methods 

We found significant differences (𝑝 < 0.001) between the values of 𝜏 derived from 

preprocessing method 1 (fixed number of strides) and method 2 (fixed number of strides 

with 100 pts/stride). Significant differences were also found between preprocessing 

method 2 and method 3 (fixed number of data points). These differences were further 

broken down by data length and significant differences at each time epoch are shown in 

Table 3-2. Method 1 and 3 found similar 𝜏 values for each time epoch with no statistical 

differences between these methods.  

There were significant differences comparing 𝑑𝐸 values between preprocessing 

method 1 and 2 (Wilcoxon ranked: 𝑝 = 0.02 and 𝑝 = 0.002, for AP and ML directions, 

respectively) and methods 2 and 3 (Wilcoxon ranked: 𝑝 = 0.003; 𝑝 = 0.01 for AP and ML 

directions, respectively). However, the differences between these methods were at the 

group level only. No significant differences were found when time epochs were compared 

independently for both of the above comparisons between methods 1 – 2 and methods 2 – 

3. This can be explained by the distribution of smaller time epochs having smaller 𝑑𝐸 

compared to larger time epochs in each preprocessing method. Therefore, we do not believe 

that preprocessing method has an effect on the embedding dimension itself. 
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DISCUSSION 

The time delay and embedding dimension are critical inputs for reconstructing the 

phase space (Kantz and Schreiber, 2004) which is the first step in calculating the LyE. A 

previous study (Bruijn et al., 2009b) found that LyE increases as data length increases. The 

specific aspect of the LyE calculation that is sensitive to data length is still unknown. 

Therefore, this paper investigated the role of data length in the calculation of 𝜏 and 𝑑𝐸. 

Time delay and embedding dimension were calculated using AMI and FNN, respectively. 

We found that 𝜏 is not affected by data length, while 𝑑𝐸 is underestimated without 

sufficient data for its calculation. Additionally, this paper found that stride normalization 

(method 2) has statistically different 𝜏 values compared to gait data that has not been 

normalized (method 1 & 3). Method 2 generally had smaller 𝜏 values in VT and ML 

directions but had larger values in the AP direction.  

As hypothesized, the 𝜏 from the Lorenz and walking data does not change as data 

length increases, regardless of the directional vector. The Rössler system, however, was 

affected, but only in the 𝑦-directional time series. Of the simulated systems used in this 

study, the Lorenz attractor had an average coefficient of variation (CV) of 1.55%  between 

simulated subjects across all directions and  converged on a time delay of 11 points– the 

optimal value within a one-point range, as reported previously (Rosenstein et al., 1993). 

The Rössler attractor was highly variable subject to subject with average CV of 4.2%, 

3.6%, and 9.63% in the 𝑥, 𝑦, and 𝑧 direction, respectively. But once a data length of 7.5 

× 103 points or greater was used, a 𝜏 of 15, 16, and 11 with a similar range, shown in 

Figure 3-2, was established in the 𝑥, 𝑦, and 𝑧 direction. 
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Figure 3-2: Mean (SD) of calculated time delay in known dynamical systems as data length 

is increased. 

Accelerometer gait data maintains this small variance in 𝜏 as data length increases 

in the VT and ML directions, with median CV of 0% using method 1 and method 3 while 

a larger variance of 8.8% and 9.5% occurs in method 2 (fixed number of strides with 100 

points per stride). The AP acceleration in method 1 (fixed number of strides) and method 

3 (fixed number of points) had a 10.5% and 9.2% median CV as data length was 

changed, seen in  

. Method 2 greatly reduced the median CV to 0% in the AP direction. It is possible 

the amount of variation in the AP direction may be an artifact of walking on a treadmill 

itself. This is because having a consistent time delay across data length is largely subject-

dependent; 7 subjects revealed a consistent time delay, while 3 subjects didn’t. This could 

be due to an individual subject’s difficulty with finding a consistent pace on the treadmill; 

e.g., their strides change between different time epochs. Alternatively it may result from 
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position changes, i.e., from the center to the top of the treadmill or vice versa. This 

irregularity in AP time delays is mitigated when preprocessing method 2 is applied, 

because every stride is normalized to 100 points per stride. Stride time normalization alters 

the time and distance relationships within the phase space. It is important to note that this 

preprocessing method does have significant effect on the value of 𝜏. There is a 37%, 63%, 

and 31% difference between the median time delay values found between method 1 and 

method 2 for each direction respectively. 



 
 4

0
 

   
 

Figure 3-3: Mean (SD) of time delay when calculated with different data lengths and preprocessing methods for every 

signal direction: vertical (VT), mediolateral (ML), and anteroposterior (AP). 
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Time delay in gait is not as uniform as in the known dynamical systems. The known 

systems had a single point range about the mean 𝜏, once a sufficient amount of data was 

used. In gait the 𝜏 ranged from 4 to 16 across all subjects while the Lorenz and Rössler 

simulated subjects’ time delay ranged from 10 to 12 and 11 to 16, respectively. This larger 

range is expected due to the individual gait differences. However, this does beg the 

question, can the same time delay be used for every subject as well as for each acceleration 

direction? The majority of publications that calculate the LyE for gait use a single time 

delay for every subject (Mehdizadeh, 2018). Although one paper has looked at some of the 

differences between individualized and a pre-selected fixed time delay, the researchers 

were specifically investigating the intra patient reliability of LyE (van Schooten et al., 

2013) and only in the ML direction. A more in-depth study into how underestimating or 

overestimating the 𝜏 in the LyE calculation is needed to understand its importance and 

contribution to the reliability of the LyE for gait.  
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Figure 3-4: Mean (SD) of calculated embedding dimension in known dynamical systems 

as data length is increased. 

We discovered that the calculated 𝑑𝐸  varies with respect to data length. However, 

a steady state 𝑑𝐸 can be reached as long as the minimum data requirement is met for the 

dynamical system. If we look at the simulated systems, shown in Figure 3-4, the calculated 

Lorenz quickly reaches a consistent 𝑑𝐸 after 2 × 103 points. The Rössler system required 

5 × 103 points to reach a steady state 𝑑𝐸 in the 𝑥 and 𝑦 time series. The 𝑧 time series did 

not always converge on to the same 𝑑𝐸 as the other time series. This could be a sign that 

the 𝑧 time series has insufficient information in its signal to be used for phase space 

reconstruction.   
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Figure 3-5: Mean (SD) of embedding dimension when calculated with different data lengths and preprocessing 

methods for every signal direction: vertical (VT), mediolateral (ML), and anteroposterior (AP). 
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The gait data performed similarly to the known systems, regardless of the 

preprocessing method used (Figure 3-5). Statistical differences were found between shorter 

and longer data lengths, but once a sufficient amount of data was used in the calculation, 

the 𝑑𝐸 remained constant with increasing data length.  Preprocessing method 1 allowed for 

the least amount of data (by strides and time) to be used with 100 gait cycles in the VT 

direction and 150 gait cycles for the AP and ML direction. Method 2 needed at least 150 

normalized gait cycles and method 3 needed at least 2 minutes of walking data. Therefore, 

preprocessing method 1 is more advantageous for smaller gait datasets. It is important to 

note that all preprocessing methods, in every acceleration direction, did converge onto an 

𝑑𝐸 of 5 after 300 gait cycles. Therefore, we find that an embedding dimension of 5 is 

sufficient for processing young healthy adult gait data for LyE. Future research should look 

at how much 𝑑𝐸 affects the final outcome of LyE using either algorithm for calculating 

local dynamic stability. 

 This study had some limitations with using only young healthy adults. We cannot 

assume that data length will have similar effects on 𝜏 and 𝑑𝐸 when looking at different 

population groups, e.g., healthy or frail elderly. Although a treadmill was used for this 

experiment, this should not have an impact on the reconstruction of the phase space itself. 

The calculated LyE is believed to be different from treadmill and overground walking due 

to slightly different gait dynamics used to adapt to each situation (Dingwell et al., 2001; 

Terrier and Dériaz, 2011). However, this terrain difference has no influence on the method 

of phase space reconstruction.  
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CONCLUSION 

The current study provided novel information by systematically investigating the 

effect of data length on time delay and embedding dimension in gait data. Data length does 

not play a large role in the calculation of 𝜏 using AMI, while a minimum data requirement 

must be first met when calculating the 𝑑𝐸 using FNN. Therefore, the differences in the LyE 

at various data lengths is not due to the reconstruction of the gait attractor, but more likely 

due to the increasing signal to noise ratio as the data length increases. Additionally, we 

investigated the effect of three methods of gait data preprocessing. We found method 

choice significantly impacts the value of the 𝜏 but not the 𝑑𝐸 when sufficient data is 

provided. Going forward it is clear that young healthy gait data can be processed using an 

𝑑𝐸 of 5 for any acceleration data regardless of how the data is preprocessed.  
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CHAPTER 4: CHOICE OF TIME DELAY AND EMBEDDING DIMENSION 

IMPACT THE LYAPUNOV EXPONENT OF GAIT 

ABSTRACT 

There is no universally accepted approach for calculating the Lyapunov Exponent (LyE) 

as a measure of gait. There is an imperative need to standardize this methodology in order 

for better comparisons across publications and populations. This study systematically 

investigated the effect of time delay, embedding dimension, and three pre-processing 

methods on the LyE using both the Rosenstein et al. (R) and Wolf et al. (W) algorithms. 

Three-dimensional acceleration of the lumbar was recorded from 17 healthy young adults 

during a thirty-minute walk. Time delay and embedding dimension had significant (p < 

0.005) effects on the LyE regardless of direction, algorithm, and pre-processing method. 

The R-algorithm was robust against varying embedding dimensions for all preprocessing 

methods, while the Wolf algorithm was more robust against varying time delays. Neither 

the R- nor the W-algorithm outperformed the other. However in future studies, time delay 

should be standardized to 10 (in data points and percent gait cycle) and an embedding 

dimension of 5 and 7 should be used for the R and W- algorithms, respectively.  We also 

found that comparing time delays within specific value ranges across publications can be 

done without statistical differences in the value of the LyE when comparing similar 

populations.  
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INTRODUCTION 

The Lyapunov Exponent (LyE) is a popular approach to quantify gait stability. The LyE 

(also known as local dynamic stability and the maximum or largest Lyapunov exponent) 

describes the long-term behavior of a dynamical system. It quantifies the rate of divergence 

or convergence of trajectories in an n-dimensional phase space. The phase space of a 

system is a set of vectors that describes every point in time uniquely. In the study of gait, 

the LyE quantifies an individual’s ability to withstand small perturbations while walking. 

An inability to properly react to such perturbations results in a larger divergence of the 

trajectories in the phase space, and thus it will result in a greater LyE. Therefore, a large 

LyE value is indicative of greater gait instability. This nonlinear measures has been 

successfully used to determine differences in gait in the aging process (Terrier and 

Reynard, 2015), as well as between healthy controls and patients with Parkinson’s disease 

(Fino et al., 2018), multiple sclerosis (Craig et al., 2019; Huisinga et al., 2013), 

developmental disorders (Speedtsberg et al., 2018), and the fall prone elderly (Lockhart 

and Liu, 2008; Toebes et al., 2012). 

However, the literature is far from consistent with regards to how we calculate the 

LyE. This makes it difficult to compare results across publications and populations. 

Standardization of this measure is challenging because there are many factors involved at 

multiple levels of designing an experiment and during the execution of data analysis. The 

first decision begins with the type of instrumentation that is used to record gait, with 51% 

of published papers using motion capture systems and 38% using accelerometers or inertial 

measurement units (IMUs).(Mehdizadeh, 2018) There has been an increase in the 

utilization of IMUs for the assessment of clinical populations due to their portability and 



  48 

ease of use in comparison to the standard laboratory motion capture set up. In this paper, 

we will be focusing on the standardization of the LyE calculation in accelerometers because 

of the immediate translation of laboratory research into clinical protocols and applications. 

The next set of experimental decisions focus on how the phase space is reconstructed for 

the calculation of the LyE.   

One of the most critical steps in estimating the LyE is the reconstruction of the phase 

space. Using the method of delays (Broomhead and King, 1986; Takens, 1981), the phase 

space can be reconstructed as follows:  

 𝑦(𝑛) = [𝑥(𝑛), 𝑥(𝑛 + 𝜏), . . . , 𝑥(𝑛 + (𝑑𝐸 − 1)𝜏)] (1) 

which requires a time delay, 𝜏, and an embedding dimension, 𝑑𝐸. Theoretically, the LyE 

is invariant under smooth transformations of the phase space, irrespective of the details of 

measurement process and the reconstruction of the state space. (Kantz and Schreiber, 2004) 

This is due to the fact that the LyE describes the long-term behavior of the system being 

investigated. Thus the average mutual information function (Fraser and Swinney, 1986) 

and global false nearest neighbors (Kennel et al., 1992) are generally used to determine 𝜏 

and 𝑑𝐸, respectively. This method is employed in physics as well as most biomechanics 

papers calculating the LyE. While the LyE is generally invariant when the systems being 

investigated are built of first order differential equations, in experimentally collected  data, 

even linear transformations of the phase space can affect the mean and standard deviation 

of the LyE. (Gates and Dingwell, 2010; Rosenstein et al., 1994) In gait, Van Schooten and 

colleagues (van Schooten et al., 2013) found that phase space reconstruction influences the 

test-retest reliability of the LyE when comparing intra and between-sessions. They 

concluded that the same fixed embedding dimension and time delay for all subjects yielded 
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the most consistent results, which has been corroborated by Raffalt et al. (2018), and 

adopted as the prime methodology for reconstructing the phase space.  

Additionally, different time series normalization methods have also been shown to 

affect the LyE and that different normalization methods work better for different LyE 

algorithms.(Raffalt et al., 2019; Stenum et al., 2014) In recent years, four gait data 

normalization methods have emerged that are common to use when calculating the LyE: 

1) Fixed number of strides with a variable number of time series data points 

2) Fixed number of data points with variable number of strides per time series 

3) Fixed number of strides with a fixed number of points per stride 

4) Fixed number of strides with a fixed number of points for the entire data series 

Method 1 is raw gait data that is segmented by the number of strides that each subject must 

have in order to be included in the analysis. The second method is similar but uses time as 

the cut-off point, generally 2-3 minutes of data. Gait cycle normalization (method 3) is the 

most commonly seen in the literature, however the data point normalization method 

(method 4) is gaining popularity because it does not interfere with the temporal stride 

variation in gait. Each of these preprocessing methods is likely to have some kind of effect 

on the reconstruction of the gait attractor and perform better with either the Rosenstein et 

al. or Wolf et al. algorithm. For instance, having a fixed number of strides or a fixed 

number of data points for the time series is better for calculating the LyE with the Wolf 

algorithm. While normalizing the data to have a fixed number of strides with a fixed 

number of points per stride or with a fixed number of points for the entire time series 

performs better using the Rosenstein algorithm. (Raffalt et al., 2019)  Therefore, it is also 
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important standardize how gait data is preprocessed or normalized in order to improve 

reliability and repeatability of publications using LyE and IMUs.  

Currently, it is assumed that time delay and embedding dimension do not play a 

large role in the final calculated LyE for gait. This assumption is built off of classical 

nonlinear systems like the Lorenz, shown in Figure 4-1. In this figure, we can see that time 

delay does not have a significant effect when using the Rosenstein algorithm, even if the 

LyE is underestimated with this algorithm. And once a sufficient time delay (approximately 

10 based on the graph) is established, Wolf’s algorithm also has a plateau region where a 

more accurate LyE can be found. It is also evident that embedding dimension does not 

significantly affect the LyE value once a sufficient embedding dimension is chosen. This 

convincingly would lead us to believe that if a sufficient embedding dimension and time 

delay are chosen for a different nonlinear system, such as gait, then the LyE would be 

stable.  

  



  51 

Figure 4-1: Lorenz Lyapunov Exponent calculated using the Rosenstein (left) and Wolf 

(right) algorithms. The x time series of the Lorenz equations was used. The top row 

compares the mean LyE when each combination of embedding dimensions (m = 2 − 5) 

and time delay (τ = 1 − 30) values are used as input parameters. The bottom row focuses 

on a single embedding dimension displaying the mean and standard deviation (SD). An 

embedding dimension of 3 was used for the Rosenstein calculation while an embedding 

dimension of 5 was used for the Wolf algorithm. 
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Up until this point there has not been a systematic comparison of embedding 

dimension and time delay’s effect on the LyE for walking. The LyE should be an invariant 

value for a given system, i.e. time delay and embedding dimension shouldn’t play a large 

role in the calculation of the LyE. Experimentally, it is known that finding a good 

combination of these parameters does help in the calculation since experimental data is 

prone to noise and measurement error unlike simulated mathematical differential 

equations.  A full factorial study of how 𝜏 and 𝑑𝐸 affect the LyE in gait data has not been 

done to the authors’ knowledge. Therefore, the objective of this study was to investigate 

the effect of 𝜏 and 𝑑𝐸 on the LyE using both the Rosenstein’s and Wolf’s algorithm on gait. 

Gait is a noisy biological signal and therefore it is important to know if reconstructing the 

phase space under different conditions significantly changes the LyE. To fulfill this 

purpose, we used lumbar acceleration data from young healthy subjects who walked on a 

treadmill for thirty minutes. We then calculated the LyE after systematically reconstructing 

the phase space with different parameters using three normalization methods discussed 

above. The more advantageous and appropriate algorithm(s) with a specific preprocessing 

method(s) would be robust against changes in the LyE value when time delay and 

embedding dimension are varied. 

 

METHODS 

After this study was approved by the Institutional Review Board of Arizona State 

University, twenty young healthy subjects (12 males and 8 females) were recruited. All 

subjects were physically active and familiar with walking on a treadmill. Subjects reported 

no cardiovascular issues, neurological diseases, nor lower extremity surgeries in the last 3 
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months. Subjects proceeded written informed consent before participating in this study. Of 

the 20 subjects tested, only 17 subjects were used in the analyses due to sensor failure or 

signal anomalies (e.g. stumbling due to subject talking to researchers behind them). The 

final group of young healthy subjects (10 males and 7 females) had a mean ± standard 

deviation age of 23.9 ± 3.5 years, body height of 1.72 ± 0.11 meters, and body mass of 

74.1 ± 18.6 kg.  

Participants wore three tri-axial acceleration sensors sampling at 128 Hz (APDM, 

Mobility Lab, APDM, Inc., Portland, OR) fitted with elastic bands and Velcro straps. They 

were placed at each ankle and the lower lumbar, around vertebrae L4. The accelerometer 

(IMU) measured trunk accelerations along 3 axes: vertical (VT), anteroposterior (AP), and 

mediolateral (ML). After subjects became familiar with the treadmill in their own sneakers, 

each subject’s preferred walking speed (PWS) was determined using a standardized 

protocol (Dingwell and Marin, 2006). The mean and standard deviation of PWS was 1.15 

± 0.09 m/s.  After a short rest period, each subject walked on the treadmill for 30 minutes 

at their PWS. The treadmill used in this experiment was a split-belt treadmill and is a part 

of the GRAIL system (Motekforce Link, Amsterdam, The Netherlands). Measurements 

were started 30 seconds after the treadmill and the subject reached their individual PWS. 

Three-dimensional acceleration data of the lumbar sensor was used for all of the 

calculations in this paper. 

Data Analysis  

All data were analyzed using custom MATLAB (version 2018b, Mathworks Inc., 

Natwick) programs. The heel contacts for each step were determined and indexed and the 

time series was truncated to start and end on a heel contact. (Dingwell et al., 2001; England 



  54 

and Granata, 2007)  Using this data, the greatest number of strides shared by all subjects 

was determined to be 1300 gait cycles. Each subject time series data was then preprocessed 

using the following three methods with each containing the maximum number of gait 

cycles: 

(1) Fixed number of strides with a variable number of data points per stride (gc) 

(2) Fixed number of strides with a 100 data points per stride (gcNorm) 

(3) Fixed number of strides with a total of 130,000 data points in the time series 

(dpNorm) 

No other filtering or preprocessing was performed on the data. The LyE was calculated 

for every direction using each of the preprocessing methods and the Rosenstein et al. 

(1993) and Wolf et al. (1985) algorithms, which will be referred to R- and W-algorithms, 

respectively. And within these conditions each permutation of the embedding dimension 

(𝑑𝐸 = 4,5,6,7) and time delay (𝜏 = 1,2, … ,30) were used to calculate the LyE. 

In Rosenstein’s algorithm, the LyE is the slope of the divergence curve. When 

normalized gait cycles are analyzed, the slope is taken over a span of 0 – 0.5 strides or the 

first 50 points of the divergence curve. In order to compare normalized and raw gait data, 

we found the average stride length for each subject and used the individualized half stride 

length as the bounds for taking the slope. For example, if a subject had an average stride 

length of 150 samples, then the slope of the mean divergence curve was taken from the 

first 75 points. And in the W-algorithm a time evolution step of seven was used. 

Statistical Analysis 

The performed analyses consisted of a systematic permutation of thirty time delays 

and four embedding dimensions. This was applied to 6 different LyE algorithm-time series 
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normalization procedure combinations for each acceleration direction. The Friedman test, 

a nonparametric repeated measures ANOVA, was used to explore the effect of time delay 

and embedding dimension on the LyE. The nonparametric test was used for all analyses 

because the assumption of sphericity was violated, in addition to not all parameters were 

normally distributed. This test was performed independently for each acceleration 

direction, algorithm choice and preprocessing method.  

Then, slices of the data set were taken for a more specific look at how time delay 

and embedding dimension independently played a role in the calculation of the LyE. First, 

a post-hoc pairwise comparison with a Bonferroni correction for multiple comparisons was 

used to determine the specific differences between each time delay when the embedding 

dimension of five or seven was chosen for the Rosenstein and Wolf algorithm, respectively. 

Then the same post-hoc comparison was used to determine the differences in embedding 

dimension for a set of time delays (𝜏 = 5,8,10,12,15). This range of time delays was 

selected because most time delays chosen in publications are within this range, based on 

the meta- and supplementary data from Mehdizadeh (2018). For all statistical tests, a 𝑝-

value < 0.05 was considered significant. All statistical analysis was performed using SPSS 

Statistics (version 25, IBM, USA). The outcome of these statistical analyses is summarized 

in a result paragraph and presented in full in the appendix. 
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RESULTS 

Overall, time delay and embedding dimension had a significant impact (p < 0.005, 

respectively) on the value of the LyE regardless of direction, algorithm, and preprocessing 

method.  The differences between each direction and preprocessing methods are shown in 

Figure 4-2 for the R-algorithm and in Figure 4-3 for the W-algorithm. 

 

Figure 4-2: Effect of embedding dimension and time delay in the VT, AP, and ML 

direction using Rosenstein et al algorithm using three different preprocessing 

methods.  
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We found that embedding dimension, at particular time delays, had significant 

effects on the LyE calculated by the R- and W-algorithm. Table 4-1 shows the differences 

between different embedding dimensions at the selected time delays (𝜏 = 5,8,10,12,15) 

when gc, gcNorm, and dpNorm data was utilized with the R-algorithm, while Table 4-2 

shows the results using the W-algorithm. Notably when the R-algorithm was used, there 

were no significant differences between embedding dimensions 5, 6, and 7 in any direction 

Figure 4-3: Effect of embedding dimension and time delay in the VT, AP, and ML 

direction using Wolf et al algorithm using three different preprocessing methods. 
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within this time delay selection regardless of the data set used. In gcNorm and dpNorm, 

most of the significant differences were between embedding dimension 4 and 7 for time 

delays greater than 8. The W-algorithm was more sensitive to differences in embedding 

dimension as seen in Figure 4-1. In all normalization methods, there were many significant 

differences between dimension pairs d4-d7, d5-d7, and d6-d7. Normalized gait data 

increased the number of significant differences between the embedding dimensions 

regardless of acceleration direction used. Although there were no significant differences 

between dimension pairs d4-d5 and d5-d6, these dimensions were found not to be sufficient 

for use with the W-algorithm. The W-algorithm overestimates the LyE when the dimension 

is not large enough, as exemplified in Figure 4-1 with the Lorenz system. The continuous 

decrease in the value of the LyE is also seen in Figure 4-3 with the smaller embedding 

dimensions. Therefore, we conclude that and embedding dimension of seven is more 

appropriate for the W-algorithm. 
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Table 4-1: Effect of embedding dimension on the LyE under select time delays using the 

R-algorithm. p-values > 0.5 are marked NS. 

Normalization 

Method 

    Dimension Pairwise Comparison (p-value) 

Dir. Tau d4-d5 d4-d6 d4-d7 d5-d6 d5-d7 d6-d7 

Raw Gait 

Cycles 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS NS NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS 0.4439 NS NS NS 

15 NS NS NS NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 < 0.0005 < 0.0005 < 0.0005 NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS NS NS NS NS 

15 NS NS NS NS NS NS 

Gait Cycle 

Normalization 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0094 NS NS NS 

12 NS 0.132 0.0026 NS NS NS 

15 NS NS 0.1807 NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0195 NS NS NS 

12 NS 0.1467 0.0034 NS NS NS 

15 NS NS 0.1467 NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 NS NS 0.4439 NS NS NS 

10 NS NS 0.0136 NS NS NS 

12 NS 0.0278 0.0007 NS NS NS 

15 NS 0.2003 0.0247 NS NS NS 

Data Point 

Normalization 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0173 NS NS NS 

12 NS 0.2455 0.005 NS NS NS 

15 NS NS 0.3655 NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS 0.4886 NS NS NS 

10 NS NS 0.0153 NS NS NS 

12 NS 0.0552 0.0015 NS NS NS 

15 NS 0.3313 0.0493 NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0312 NS NS NS 

12 NS 0.2715 0.0064 NS NS NS 

15 NS NS 0.2003 NS NS NS 
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Table 4-2: Effect of embedding dimension on the LyE under select time delays using the 

W-algorithm. p-values > 0.5 are marked NS. 

Normalization 

Method 

    Dimension Pairwise Comparison (p-value) 

Dir. Tau d4-d5 d4-d6 d4-d7 d5-d6 d5-d7 d6-d7 

Raw Gait 

Cycles 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS NS NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS 0.0153 NS 0.2455 NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS NS NS 0.1467 NS 

15 NS NS 0.4439 NS 0.1628 0.4886 

ML 

5 NS 0.2715 < 0.0005 NS 0.1187 NS 

8 NS NS 0.0073 NS NS NS 

10 NS NS < 0.0005 NS 0.0026 NS 

12 NS NS < 0.0005 NS < 0.0005 0.1067 

15 NS 0.0958 < 0.0005 NS < 0.0005 0.1628 

Gait Cycle 

Normalization 

VT 

5 NS NS 0.0006 NS 0.069 NS 

8 NS NS 0.003 NS 0.012 NS 

10 NS NS < 0.0005 NS < 0.0005 0.0859 

12 NS 0.0859 < 0.0005 NS < 0.0005 0.069 

15 NS NS < 0.0005 NS < 0.0005 0.0173 

AP 

5 NS 0.1628 < 0.0005 NS 0.0034 NS 

8 NS NS < 0.0005 NS 0.0247 NS 

10 NS 0.0136 < 0.0005 NS < 0.0005 0.2715 

12 NS 0.1187 < 0.0005 NS < 0.0005 0.1467 

15 NS 0.0195 < 0.0005 NS < 0.0005 0.1628 

ML 

5 NS NS 0.1807 NS 0.069 NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0044 NS < 0.0005 0.0393 

12 NS NS < 0.0005 NS < 0.0005 0.077 

15 NS NS 0.069 NS 0.0057 0.0312 

Data Point 

Normalization 

VT 

5 NS NS 0.0015 NS 0.0552 NS 

8 NS NS 0.0044 NS 0.0312 NS 

10 NS NS < 0.0005 NS < 0.0005 0.0859 

12 NS 0.4439 < 0.0005 NS < 0.0005 0.0247 

15 NS NS < 0.0005 NS < 0.0005 0.0219 

AP 

5 NS NS 0.4029 NS 0.1467 NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0064 NS 0.002 0.1067 

12 NS NS < 0.0005 NS < 0.0005 0.0958 

15 NS NS 0.1628 NS 0.0034 0.035 

ML 

5 NS 0.132 < 0.0005 NS 0.0034 NS 

8 NS NS < 0.0005 NS 0.0278 NS 

10 NS 0.012 < 0.0005 NS < 0.0005 0.3 

12 NS 0.0552 < 0.0005 NS < 0.0005 0.3313 

15 NS 0.0493 < 0.0005 NS < 0.0005 0.1467 



  61 

For the Rosenstein et al algorithm, the effect of time delay when all embedding 

dimensions were included had significant differences (𝑝 < 0.05). These differences were 

also seen when only viewing time delays when 𝑑𝐸 = 5, shown in Figure 4-4. In Figure 4-4, 

significant differences between time delays were separated by 10 or more steps in raw gait 

data and time-normalized gait data. The normalized gait data (gcNorm and dpNorm) had 

less significant differences when the time delay was between 20 and 30. There is a more 

consistent region of time delays that can be chosen without significant altering the value of 

the LyE when raw gait data is used with the R- algorithm.  

We also found that time delay had significant effects on the LyE when calculated 

by the Wolf et al. algorithm. Time delay (when all embedding dimensions are included) 

created a complex pattern of time delay pairs that were significantly different (𝑝 < 0.05), 

shown in Figure 4-5. When only time delay effects with an embedding of 7 are extracted, 

there are far fewer significant differences between different time delays than compared to 

the R-algorithm.  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

12 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

13 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

14 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

15 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

16 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

17 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

18 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

19 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

20 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0

12 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0

13 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0

14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0

15 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0

16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

17 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0

18 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

19 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1

25 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

27 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0

12 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0

13 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0

14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0

15 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0

16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

17 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0

18 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0

19 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

20 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1

25 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

27 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1

DP Normalized GC Normalized Raw Gait 

Figure 4-4: Effect of time delay on the LyE using the R-algorithm on 3 data pre-processing methods. This graphic shows the 

significant differences when two distinct time delays are compared when 𝑑𝐸 = 5 in the VT direction. Filled in (black) boxes 

indicate significant differences and empty (white) boxes show where there are no significant differences between a pair of time 

delays. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1

2 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

4 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

5 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

6 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

7 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

9 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0

10 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

11 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

12 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0

14 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

15 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0

16 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

17 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

19 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1

20 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0

22 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

23 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

24 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

25 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

26 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

27 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

28 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

29 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

30 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1

2 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

5 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0

6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0

7 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0

10 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

11 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0

12 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0

13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0

14 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

15 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0

16 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

17 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1

18 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1

19 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

20 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

21 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

22 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0

23 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

24 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1

26 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

27 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1

28 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0

29 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1

30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1

2 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0

3 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

5 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0

6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0

7 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

8 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

9 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0

10 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0

11 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0

12 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

13 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0

14 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

15 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0

16 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

17 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1

18 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1

19 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

20 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1

21 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

22 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

23 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

24 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1

26 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

27 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1

28 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0

29 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

30 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

DP Normalized GC Normalized Raw Gait 

Figure 4-5: Effect of time delay on the LyE using the W-algorithm on 3 data pre-processing methods. This graphic shows the 

significant differences when two distinct time delays are compared when 𝑑𝐸 = 7 in the VT direction. Filled in (black) boxes 

indicate significant differences and empty (white) boxes show where there are no significant differences between a pair of time 

delays. 
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DISCUSSION 

This study investigated the effect of time delay and embedding dimension on the 

LyE calculated by the Rosenstein et al and the Wolf et al algorithms under different gait 

data preprocessing methods. Embedding dimension and time delay had a significant impact 

on the value of the LyE in each of the 6 algorithm-time series normalization methods 

combinations. We also found that when looking at an individual 𝑑𝐸, there exists windows 

of 𝜏 that are not statistically different from one another. The R-algorithm was more 

invariant to changes in the embedding dimension than the W-algorithm. While the W-

algorithm was more invariant to the changes in time delay than the R-algorithm.  

The objective of this study was to understand how different variations in calculating 

the LyE – from algorithm choice, various preprocessing methods, and to the parameters 

used for reconstructing the phase space – impact the final LyE values that are reported in 

the literature in order to standardize the procedure of calculating the LyE for 

accelerometers. In Figure 4-6, when the R- and W-algorithm results are overlaid on the 

same plot, it is evident that algorithm choice has drastic impact on the value of the LyE 

across all preprocessing methods and time delay choices. Therefore, we should not expect 

similar LyE values when comparing algorithms across papers. From this figure, we might 

also infer that for IMU data, R-algorithm has greater sensitivity than the W-algorithm. The 

average standard deviations for each direction and preprocessing method is shown in Table 

4-3. However, deeper investigation into the sensitivity of each algorithm for IMU data is 

out of the scope of this paper. 



 
 6

5
 

 

Figure 4-6: Comparing R- and W-algorithm across preprocessing methods 
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Normalization Dir. R-algorithm W-algorithm 

Raw Gait 

VT 0.14 2.01 

AP 0.11 2.56 

ML 0.13 2.66 

GC 

Normalized 

VT 0.18 2.17 

AP 0.13 2.29 

ML 0.15 2.80 

DP 

Normalized 

VT 0.12 1.66 

AP 0.08 2.10 

ML 0.11 1.91 

 

An important aspect on the discussion of reconstructing the gait attractor includes 

what filtering or preprocessing has been done to the experimental data. In this study, we 

did not filter any of our data due to the possible loss of information. It is generally not 

recommended to filter the signal when calculating the LyE (Dingwell and Marin, 2006), 

even though 23% of publications do apply some form of filtering. And even then, the 

filtering depends largely on what instrumentation was used for data collection. 

(Mehdizadeh, 2018) Time normalization was first introduced to remove the individual gait 

velocity variations from person to person (Dingwell et al., 2001) and to investigate how 

gait speed influenced the LyE (Dingwell and Marin, 2006; England and Granata, 2007) 

while still keeping the time series lengths equal across all walking velocities.  These studies 

either used a set number of strides with 100 points in each stride (gcNorm) or a set number 

of strides within a fixed number of data points (dpNorm), e.g. 3000 data points for 30 

strides. The first removes stride-to-stride temporal variables but provides and equal number 

of data points per stride. The latter method allows for stride-to-stride temporal variation 

while still allowing for a similar number of points per stride regardless of walking velocity. 

Table 4-3: Average standard deviations across preprocessing methods. An 

embedding dimension of 5 and 7 were used for R- and W-algorithm, respectively. 
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Only one of the early studies (England and Granata, 2007) used both normalizations and 

found that walking velocity significantly influences the LyE in both techniques, but the 

two methods were not compared against each other, specifically.  

In this study, three normalization procedures were evaluated: fixed number of 

strides (gc), fixed number of strides with 100 points per stride (gcNorm), and fixed number 

of strides with a fixed number of data points for the entire time series (dpNorm). The effect 

of each of these preprocessing methods in tandem with 𝑑𝐸 and/or 𝜏 is discussed below.  

Embedding Dimension 

As previously mentioned, Table 4-1 and Table 4-2 show the results of the effect of 

changing the embedding dimension while time delay is kept constant for both the 

Rosenstein and Wolf algorithms, respectively. In general, the R-algorithm is invariant to 

𝑑𝐸 changes in the VT, AP, and ML directions for all preprocessing methods. The R-

algorithm had no significant differences between the embedding dimensions of 5, 6, and 7 

regardless of direction and normalization method used. Therefore, we recommend using 

an embedding dimension of 5 for the R-algorithm when using IMU acceleration data. We 

recommend an embedding dimension of 5 over the higher dimensions because larger 

dimensions are computationally more expensive. And more importantly, when a signal is 

reconstructed in larger than necessary dimensions the attractor lies in smaller and smaller 

regions of the created phase space. The “extra” dimensions in the phase space will not be 

populated by more of the dynamical system but will instead be filled with more signal 

contamination and higher dimensional noise. (Abarbanel et al., 1993) Both the gcNorm 

and dpNorm methods had more significant differences between 𝑑𝐸 than when raw gait was 

used. However, most of these differences were between 𝑑𝐸 = 4 and higher 𝑑𝐸 = 6 or 7. 
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Overall, the preprocessing methods did not affect the invariance of the LyE when 

embedding dimension was varied and calculated by the R-algorithm.  

The W-algorithm was less robust against the change of the embedding dimension 

when data is normalized compared to raw gait data, as seen in Figure 4-3. The raw gait 

data had a total of 9 significant differences out of the 90 permutations, while the gcNorm 

and dpNorm had 29. The most significant differences were between d4-d7 in all 

normalization methods. Thus, we can infer that an 𝑑𝐸 = 4 is not a sufficiently large enough 

embedding dimension when using the W-algorithm to calculate the LyE using IMU data. 

This is also seen in the literature, where an embedding dimension of 7 is most commonly 

chosen when using the W-algorithm with IMU data. (Cignetti et al., 2012b; Huisinga et al., 

2013; Rispens et al., 2015, 2014a) Additionally, parallels are seen when we compare how 

increasing the embedding dimension settles the LyE values in the W-algorithm in both the 

Lorenz (Figure 4-1, top right) and the gait attractor (Figure 4-3). It is likely that if we had 

investigated even larger embedding dimensions, the mean LyE would be more similar to 

𝑑𝐸 = 7 than the lower embedding dimensions. Both normalization methods had significant 

differences across multiple time delays and in all directions in all dimension comparisons 

except for d4-d5 and d5-6.   

Time Delay 

Up until this point, all the statistical analyses presented in this paper were 

performed using 1300 gait cycles of continuous walking on a treadmill. Bruijn et al. found 

that the duration of walking and/or the number of strides has a significant impact on the 

value of the LyE.(Bruijn et al., 2009b) This could be interpreted to mean that not enough 

data is being used to find the LyE or that only local rates or exponents of expansion are 
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being found/calculated instead of the LyE. Therefore, we used an extreme amount of gait 

cycles to ensure that data length was sufficient for calculating the LyE. Now, as the data 

length does have an effect on the LyE, we also used an abbreviated data analysis protocol 

to validate our findings in smaller data sets using the first 150 gait cycles from the original 

dataset. The LyE was calculated using an embedding dimension of five and seven for the 

Rosenstein and Wolf algorithm, respectively, and with a range of time delays 

𝜏 = 5,10,15, …, 80 under the three normalization methods used in the original analysis. 

The range of the time delays were expanded to investigate anomaly peaks seen at 25% of 

the gait cycle in gcNorm and dpNorm when the W-algorithm was used (Figure 4-7, left 

column). The results of these additional analyses are depicted in Figure 4-8 and the 

statistical results for the vertical direction (similar to Figure 4-4 and Figure 4-5) are shown 

in Figure 4-9. All statistical results and figures are presented in the appendix for all 

directions and preprocessing methods.  
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Figure 4-7: Mean and standard deviation of the LyE calculated from vertical acceleration 

data using 1300 gait cycles when the phase space was reconstructed with different time 

delays and an embedding dimension of 5 for Rosenstein et al algorithm (left) and 7 for 

Wolf et al algorithm (right). The phase space was also reconstructed using different data 

normalization methods for comparison – fixed number of strides or raw gait data (top), gait 

cycle normalized (middle), and data point normalization (bottom), and the LyE was 

calculated using both algorithms. 
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Time delay had a significant effect (p < 0.005) on the LyE regardless of algorithm 

choice and preprocessing method when 1300 and 150 gait cycles were used. When the R-

algorithm and raw data is used, we found that a time delay of ±5 points is not significantly 

different, but beyond that range the values of the LyE will be significantly different for the 

VT, AP, and ML direction. When gait is normalized using either gcNorm or dpNorm 

methods, a similar leeway of 5-point time delay range is used until it widens to a 10-point 

range when 𝜏 = 20. This occurs in all three directional time series and for both 1300 and 

150 strides. The W-algorithm had a more varied range of time delays that were not 

statistically different and was dependent on the acceleration direction. For AP and ML 

direction, the LyE were significantly different when the time delays were farther than 10 

from each other in all preprocessing methods, except for when 𝜏 = 7.  In the VT direction 

this was also generally true, but it had exceptions when 1300 strides were used. In addition, 

𝜏 = 10 had significant differences when 150 strides was used, with a significant difference 

in the LyE between 𝜏 = 10 and 15. When the W-algorithm is used with normalized data, 

there are almost no differences between time delays when 𝜏 is less than 15 in long and short 

data lengths. Additionally, when time delay is 25% of the gait cycle, it is significantly 

different from 𝜏 less than 20% of the gait cycle in all directions. When 150 strides are used, 

time delays greater than or equal to 20 are comparable in all directions, except for in the 

ML direction where time delays greater than 25 are similar.  
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Figure 4-8: Abbreviated data analysis for 150 gait cycles using each of the preprocessing 

methods for Rosenstein et al (left) and Wolf et al (right) algorithms. The mean LyE for 

all subjects is depicted with the standard deviation as the error bars. 
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When the time series was gait cycle normalized or data point normalized, the Wolf 

algorithm had significantly higher LyE values, seen as peaks in Figure 4-7 and Figure 4-8. 

This peak did not appear when raw gait data was used. To test that this was not a sampling 

anomaly in our raw data (𝐹𝑠 = 128 𝐻𝑧), we resampled the 150 gait cycle data to 100 Hz. 

This peak was again not present. We hypothesized that this spike was caused by a 

harmonicity issue when the data is normalized to 100 pts/stride.  

In order to test this theory, we calculated the LyE for time delays 35 to 80 by 5s 

using the 150 gait cycle data. Figure 4-8 shows that this harmonic peak is seen at 25%, 

50%, and 75% of the gait cycle under both normalization methods but using raw data. We 

believe this peak also occurs in the data point normalization analysis because 

approximately 100 points are allocated to each stride, even though each stride is variable 

and the time series, as a whole, was resampled and not each individual stride. It is currently 

unknown if this phenomenon would also occur in motion capture data. However, we 

believe that if IMUs are being used and the LyE is calculated with W-algorith,m the data 

should not be preprocessed with either the gcNorm or dpNorm methods. This is consistent 

with Raffalt and colleagues' (2019) conclusion when investigating normalization 

procedures for each LyE algorithm. Additionally, researchers should be wary when 

comparing LyE calculated using W-algorithm when the time delay is 25 (points or % gait 

cycle).   
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Figure 4-9: Abbreviated statistical analysis on the effect of time delay on the LyE using 

the R- and W-algorithm and all three data pre-processing methods for 150 gait cycles. This 

graphic shows the significant differences when two distinct time delays are compared when 

𝑑𝐸 = 5 for the R-algorithm and 𝑑𝐸 = 7 for the W-algorithm in the VT direction. Filled in 

(black) boxes indicate significant differences and empty (white) boxes show where there 

are no significant differences between a pair of time delays. 
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As previously mentioned, the time delay is usually determined by using the average 

mutual information (AMI). To put the factorial results into perspective, we also calculated 

𝜏 for each preprocessing method in every direction using AMI, shown in Table 4-4. One 

hundred and fifty strides were used for calculating the AMI, which was determined to be 

sufficient as time delay calculated via AMI is invariant to data length in the previous 

chapter. All mean time delays across all subjects were between 6 and 10, while the 

individual subject time delays ranged between 4 and 18. This combined with our results in 

Figure 4-4, Figure 4-5, and Figure 4-9 implies that using multiple time delays for different 

directions does not play a large role in determining the LyE. Therefore, we suggest that a 

single time delay of 10 should be used as the standard 𝜏 to improve comparisons across 

publications and research groups. We chose 𝜏 = 10 because of the effect of time delay on 

the mean divergence curve, shown in Figure 4-10. The mean divergence curvature becomes 

less pronounced and the “linear” portion of the curve, where the slope is supposed to be 

taken, becomes obscure as time delay increases. This pattern is seen regardless of 

normalization method.  

 

Table 4-4: Time Delays calculated using Average Mutual Information 

  VT AP ML 

  gc gcN dpN gc gcN dpN gc gcN dpN 

Avg 10 6 7 10 6 7 8 8 6 

SD 3.1 2.2 3.2 3.1 2.2 2.4 3.2 2.8 2.2 

Min 5 4 4 5 4 4 5 4 4 

Max 16 13 15 16 13 11 18 14 13 

Median 10 5 6 10 5 7 7 7 5 
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Figure 4-10: Average mean divergence curve across all subjects using 150 gait cycles. 
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The current study provides novel information by systematically studying the effect 

of embedding dimension and time delay on the LyE, but it also has its limitations. One of 

the major limitations of our study was that only young healthy adults were used. The 

objective of this investigation required a long continuous walk in order to assume the data 

used were sufficient in length for calculating the LyE. Secondly, the use of the treadmill 

may limit the generalizability of our results to over ground walking since treadmill walks 

tend to be more stable and less variable.(Eduardo Cofré Lizama et al., 2015; Rispens et al., 

2016) However, a treadmill was necessary to collect uninterrupted thirty-minute gait data.  

Overall, the R-algorithm was more robust against changes in the embedding 

dimension regardless of preprocessing method compared to the W-algorithm.  And the W-

algorithm was more invariant to changes in time delay. In terms of reliability and 

consistency, the Rosenstein algorithm might be better for IMU data than the Wolf 

algorithm. The Rosenstein algorithm had much smaller standard deviations of the mean 

LyE compared to the Wolf algorithm. The Wolf algorithm is also notably susceptible to 

data length when comparing 150 strides to 1300 gait cycles. Additionally, this investigation 

revealed a harmonics issue when gait data is gait cycle or data point normalized. For these 

reasons, we recommend that Rosenstein’s might be more advantageous for processing IMU 

data. However, if studies are going to use the Wolf algorithm with IMU data, we 

recommend that data should be segmented using either a fixed number of strides or a fixed 

number of data points which is consistent with a recent study. (Raffalt et al., 2019) Future 

studies should further investigate the effect of data length on the LyE when an IMU is used, 

with respect to both algorithms. Currently, there are only a handful of studies (Bruijn et al., 
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2009b; Raffalt et al., 2018b; F. Riva et al., 2014) that have investigated the effect of data 

length on the LyE, but none have used both the R and W-algorithm with accelerometer 

data. As the use of accelerometers increases in the field of biomechanics, the limitations 

and data requirements for applying nonlinear dynamics with this data collection method 

must be defined.  

CONCLUSION 

To summarize, the purpose of this study was to begin the process of standardizing 

the protocol used to calculate the LyE from accelerometer data. These results did not 

provide enough information to definitively claim one algorithm is superior than the other 

when using IMUs. However, we can standardize the value of the embedding dimension for 

both the R-algorithm (𝑑𝐸 = 5) and the W-algorithm (𝑑𝐸 = 7) for all preprocessing 

methods. The R- algorithm was more robust against varying embedding dimensions than 

the W-algorithm which required the higher embedding dimension for all preprocessing 

methods. We also recommend that time delay should be standardized to 𝜏 = 10 (in samples 

and % gait cycle), regardless of algorithm, pre-processing method, and acceleration 

direction. Although we found that the W-algorithm was more robust when time delay was 

varied, we also noted this robustness was not always a predictable pattern across directions 

and with respect to different normalization methods. The R-algorithm was more 

susceptible to significant differences in the LyE across time delays with an absolute 

distance greater than 5, but this pattern was seen regardless of acceleration direction and 

normalization method. Therefore, when comparing LyE values across publications, 

researchers must be cognizant of time delay differences between the different publication 
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methodologies for both algorithms, as well as differences in the embedding dimension 

when specifically comparing studies using the W-algorithm.  
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CHAPTER 5: DATA LENGTH AFFECTS THE ROSENSTEIN’S AND WOLF’S 

ALGORITHMS DIFFERENTLY WHEN ESTIMATING THE LYAPUNOV 

EXPONENT FOR GAIT DATA 

 

ABSTRACT 

There are many inconsistencies in the literature regarding how to estimate the Lyapunov 

Exponent (LyE) for gait. These issues could be potentially solved by standardizing the 

process of calculating the LyE. In this paper, we explore how data length affects the value 

of the LyE when using both the Rosenstein et al. and the Wolf et al. algorithms. 

Additionally, how the gait time series is normalized before the reconstruction of the phase 

space has recently come under investigation, and thus we also looked at the effect of three 

different normalization methods with respect to each algorithm. We compared LyE values 

from a range of data lengths as well as calculated the minimum number of required strides 

for each of the 6 algorithm-normalization method combinations. Based on our results, we 

recommend that using between 50 and 100 gait cycles because this range is easily 

comparable across most published papers. We also found that the Rosenstein et al. 

algorithm requires less strides to estimate the LyE with greater reliability than the Wolf et 

al. algorithm. Therefore, we recommend that future studies use the Rosenstein et al. 

algorithm when using accelerometer data. 
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INTRODUCTION 

There is an ever-increasing interest in quantifying gait dynamics using nonlinear 

methods. The calculation of the Lyapunov Exponents (LyE) is used as a method to assess 

the sensitivity of gait to small perturbations, also known as local dynamic stability. The 

LyE calculates the rate of divergences between neighboring trajectories in the 

reconstructed phase space which describes the overall dynamics of a system (Dingwell and 

Cusumano, 2000; Kantz and Schreiber, 2004). The ability of the LyE to quantify gait 

instability (Dingwell and Cusumano, 2000; Granata and Lockhart, 2008b) and be used 

determine fall risk (Daniel Hamacher et al., 2015; Lockhart and Liu, 2008) has been well 

established in the literature. However, there are many variations reported in the literature, 

primarily due to the lack of standardization in the methodology of its calculation.  

Standardization is difficult to achieve because there are many parameters that need 

to be standardized, these range from algorithm choice and how data is normalized to the 

amount of data used in the final calculation. In practice, there are two main algorithms that 

have been used to calculate the LyE in gait: the Wolf et al. (1985) (W-algorithm) and the 

Rosenstein et al. (1993) (R-algorithm). The R-algorithm is generally favored because it is 

more robust against noise for small data sets, but there have been conflicting studies (Bruijn 

et al., 2009b; Cignetti et al., 2012b; Rispens et al., 2016, 2014a) about its precision and 

reliability. In addition to the difference in algorithm choice, previous studies have also 

applied various time series normalization procedures. The most common of which are: 

1) Raw Gait Cycle data (gc): The time series is truncated to keep a fixed number of 

strides regardless of the total number of data points. This maintains the original 
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distance between points in the phase space but allows for individuals with a faster 

pace to have fewer data point available over all for the calculation. 

2) Gait Cycle Normalized (gcNorm): As in the first method the time series is 

segmented to a include a fixed number of strides. Then each stride is resampled to 

have a fixed number of data points, usually 100. Therefore, all strides in this method 

will contain the same number of data points regardless of an individual’s stride 

time.  

3) Data Point Normalized (dpNorm): The time series is first truncated to include a 

fixed number of strides. Then the data is resampled to a specific number of total 

samples for the time series. This allows for fluctuations in data length for individual 

strides. 

Recently, it has been found that different normalization methods might be more 

advantageous when used with either the R or the W-algorithms (Raffalt et al., 2019). 

Another obstacle in standardizing the protocol for calculating LyE is deciding how 

many strides are required. A wide variety of stride lengths have been used in past studies, 

ranging from 10 strides or fewer strides in some studies (Chini et al., 2017; Eduardo Cofré 

Lizama et al., 2015; Huisinga et al., 2013; Rispens et al., 2016; Sloot et al., 2011; Van 

Schooten et al., 2014) to 200 strides or more strides in other studies (Liu et al., 2019; Terrier 

and Reynard, 2018; van Schooten et al., 2013). The median number of strides used by 

papers published before 2018 was 110 strides (Mehdizadeh, 2018). Many factors influence 

the data length requirements used for each study. As an example, some studies use shorter 

data lengths as it can be difficult for elderly or frail patients to perform extended walking 

tests. The effect of data length has been studied with respect to motion capture marker 
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displacement (Bruijn et al., 2009b; Cignetti et al., 2012b) and joint angles (Raffalt et al., 

2018b) using the R- and W-algorithm, respectively. However, the effect of data length 

using accelerometer data (Reynard and Terrier, 2014; F. Riva et al., 2014) has only been 

investigated with the R-algorithm. These studies found conflicting minimum number of 

strides from 150 (Bruijn et al., 2009b) to 90 (F. Riva et al., 2014) to 54 (Terrier and 

Reynard, 2014) strides while other studies claim a range of 2 to 3 minutes of data (Cignetti 

et al., 2012b) is sufficient. It’s possible that these differences can be reconciled by looking 

at the combinations of algorithms and sensors used. 

There is currently no literature on the effect of data length on the calculated LyE 

using both the Rosenstein and Wolf algorithms for accelerometer data. There have also 

been no studies to determine whether time normalization methods affect the minimum data 

length for accelerometers. The aim of this investigation was two-fold, (1) to assess the 

effect of data length on the LyE and (2) determine the minimum number of required strides 

using both the R- and the W-algorithm under three different time series normalization 

methods. To achieve this, we recorded three-dimensional accelerations of the lumbar from 

young healthy subjects who walked on a treadmill at their preferred walking speed for 30 

minutes.  

METHODS 

Seventeen young healthy subjects (10 males and 7 females) were included with a 

mean ± standard deviation age of 23.9 ± 3.5 years, body height of 1.72 ± 0.11 meters, and 

body mass of 74.1 ± 18.6 kg. All subjects were physically active and familiar with walking 

on a treadmill. Subjects reported no cardiovascular issues, neurological diseases, nor lower 

extremity surgeries in the last 3 months. Subjects gave written informed consent before 
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participating in this study, which was approved by the Institutional Review Board of 

Arizona State University.  

Participants wore three tri-axial acceleration sensors (APDM, Mobility Lab, 

APDM, Inc., Portland, OR) with a sampling frequency of 128 Hz. The accelerometers were 

fitted with elastic bands and Velcro straps and placed at each ankle and the lower lumbar, 

around vertebrae L4. After subjects became familiar with the treadmill in their own 

sneakers, each subject’s preferred walking speed (PWS) was determined using a 

standardized protocol (Dingwell and Marin, 2006). The mean and standard deviation of 

PWS was 1.15 ± 0.09 m/s.  After a short rest period, each subject walked on the treadmill 

for 30 minutes at their PWS. Measurements were started 30 seconds after the treadmill and 

the subject reached the PWS. Three-dimensional acceleration data of the lumbar sensor 

were used for all of the calculations in this paper. 

Data Analysis 

Raw data was used to avoid problems associated with filtering nonlinear signals (Kantz 

and Schreiber, 2004). The heel contacts for each step were determined and indexed and the 

time series was truncated to start and end on a heel contact (Dingwell et al., 2001; England 

and Granata, 2007). From this, different data lengths, ranging from 30 to 1300 strides were 

extracted. Each data length was then processed using three normalization procedures: (1) 

Fixed number of strides with a variable number of data points per stride, gc; (2) Fixed 

number of strides with a 100 data points per stride, gcNorm; (3) Fixed number of strides 

with a fixed number of data point in the time series(100 points for each stride used), 

dpNorm.  
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The LyE was calculated for every direction using each of the preprocessing methods 

and both the R- and W-algorithms. Briefly, the R-algorithm calculates the average 

divergence distance of all possible nearest neighbor pairs in the phase space. This is tracked 

through time creating a mean divergence curve.  The LyE is then estimated using a least-

squares fit to the linear slope of the divergence curve. The slope was estimated from 0 – 

0.5 strides when normalized (gcNorm and dpNorm) gait cycles were being analyzed as it 

was found to be more reliable than 0-1 strides (Reynard et al., 2014). In order to compare 

normalized and raw (gc) gait data, the average half stride length for each subject were used 

as the bounds for taking the slope. For example, if a subject had an average stride length 

of 150 samples, then the slope of the mean divergence curve was taken of the first 75 points. 

The W-algorithm, on the other hands, tracks a single reference trajectory in the phase space 

and its nearest neighbor until the separation between the two paths exceeds a specific limit. 

Then a new nearest neighbor is found, and the rate of expansion or contraction is calculated 

again. The final rate of divergence is calculated from the expansion and contraction rates.  

The phase space was reconstructed from each acceleration direction using the method 

of delays. A constant time delay of 10 was used across all preprocessing methods and 

directions were used and an embedding dimension of 𝑑𝐸 = 5 was chosen for the R-

algorithm and an 𝑑𝐸 = 7 was used for the W-algorithm. Additionally, a time evolution of 

7 was used in the calculation of the W-algorithm. All calculations were performed using 

custom MATLAB programs (version 2018b, Mathworks Inc., Natwick). 

Statistical Analysis 

The Friedman test, a nonparametric repeated measures ANOVA, was used to 

explore the effect of data length on the LyE. The nonparametric test was used for all 
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analyses because the assumption of sphericity was violated and because not all of the 

parameters were normally distributed. This test was performed independently for each 

acceleration direction, algorithm choice and preprocessing method. A post-hoc pairwise 

comparison with a Bonferroni correction for multiple comparisons was then used to 

determine the specific differences between select data lengths for each algorithm-

normalization combination in all three accelerometer directions. For all statistical tests a 

𝑝-value < 0.05 was considered significant. Statistical analysis was performed using SPSS 

(version 25, IBM, USA). 

Additionally, to determine the minimum number of required strides, we calculated 

interquartile range/median ratio (imr) of the LyE for windows of decreasing length (from 

300 to 30 strides, 1 stride resolution). The interquartile range and median value of the LyE 

was calculated for all data length windows starting at 300 strides and progressing 

backwards. This method was adapted from Riva et al. (2014). In this context percent imr 

indicates variations about the median with the lowest imr occurring at the largest window. 

As the LyEs from decreasing windows of strides are added to the pool, a new imr will be 

calculated. A consistently low imr as the number of included strides increases will indicate 

when a steady state value has been reached. Conversely, a high imr reveals that the measure 

undergoes large variations as the number of strides increases; this means that the measure 

it not fully reliable. A threshold of 10% was used to define the smallest required number 

of strides. This low imr threshold was set to ensure a reliable LyE would be calculated from 

the final minimum number of strides. The minimum number of strides was calculated per 

subject for each direction and algorithm-preprocessing method combination. Then the 
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largest number of strides across all subjects was selected as the recommended minimum 

number of strides.  

 

RESULTS 

We found that data length significantly affects the value of the LyE calculated using 

both the R- and W-algorithm in every direction and for all preprocessing methods (p < 

0.0005, for each). Figure 5-1 and Figure 5-2 show the results of how data length changes 

the LyE when the R-algorithm and the W-algorithm are used, respectively. As can be seen, 

the R-algorithm saturates between 300 and 500 strides, in each direction regardless of how 

the data was preprocessed. While W-algorithm has a less obvious saturation point due to 

the large standard deviations of the LyE in each direction. All statistical tables are presented 

in full in the appendix. 
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Figure 5-1: Data length effect on the LyE using the Rosenstein et al. algorithm. (*) Raw gait, (o) gait cycle normalization, and (∆) 

data point normalization. Top panels show the mean for each of the different sample lengths; bottom panels show standard 

deviations. 
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Figure 5-2: Data length effect on the LyE using the Wolf et al. algorithm. (*) Raw gait, (o) gait cycle normalization, and (∆) data 

point normalization. Top panels show the mean for each of the different sample lengths; bottom panels show standard deviations. 
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Common data lengths (30, 50, 100, 150, and 200 strides) and longer than usual data 

lengths (300, 500, and 1000 strides) were compared to determine specifically how data 

length affects the LyE using an accelerometer. The statistical pairwise comparison across 

normalization methods and for both the R and W-algorithm when using VT acceleration 

data is shown in Figure 5-3. Across all algorithms, preprocessing methods, and signal 

directions, we found that there existed a sliding window of non-significance as best seen 

in Figure 5-3 (top left, R-algorithm used with raw gait). In the R-algorithm, this window 

increased to include no significant differences between 30 and 150 strides when raw gait 

was used in the ML direction, as well as, when gcNorm method was used in the VT and 

ML directions. Additionally, in the gcNorm method, no significant differences were found 

between 150 and 500 strides in the VT (Figure 5-3, center left) and between 200 and 1000 

strides in the AP direction. When using the W-algorithm, the VT acceleration has the same 

significant differences across both the AP and ML direction when using gc and gcNorm 

processing methods. When dpNorm is used with AP and ML directions the non-

significance window for 30 gait cycles expanded to include 150 gait cycles, while this 

window remained at 100 gait cycles when using the VT direction. 
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Figure 5-3: Statistical results on the effect of data length on the LyE using the R- and W-

algorithm and all three data pre-processing methods. This graphic shows the significant 

differences between each data length. Data length in figure is reduce by a factor of ten. 

Only the VT direction results are shown above. Filled in (black) boxes indicate significant 

differences and empty (white) boxes show where there are no significant differences 

between a pair of data lengths. 
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Table 5-1: Number of required strides for each algorithm, preprocessing method, and 

acceleration direction at the 10% threshold. Additionally, reliability of each measure based 

on the maximum inter-subject imr is shown with the median values of the inter-subjects’ 

medians for reference. 

    
Min. Number of 

Strides 

Max inter-

subject imr 

Median inter-

subject LyE 

Normalization Dir. R  W R W R   W 

gc 

VT 74 197 14% 39% 1.18 2.19 

AP 38 200 11% 33% 0.94 3.20 

ML 40 204 10% 36% 1.16 2.79 

gcNorm 

VT 69 222 11% 41% 1.09 2.00 

AP 66 196 13% 34% 1.11 2.92 

ML 30 174 10% 31% 0.95 3.12 

dpNorm 

VT 78 192 15% 30% 1.09 1.81 

AP 56 182 11% 32% 0.93 2.58 

ML 49 201 12% 32% 1.08 2.55 

 

The minimum number of required strides for each of the 6 algorithm-normalization 

method combinations in the VT, AP, and ML direction are reported in Table 5-1. The R-

algorithm had a lower minimum number of required strides and maximum variation about 

the median (imr) than the W-algorithm. The R-algorithm required between 30 and 78 

strides across all directions and preprocessing methods, while the W-algorithm required a 

large number of strides of at least 174 strides and up to 222 strides. 

 

DISCUSSION 

While LyE is a commonly used nonlinear dynamical measures in assessing gait 

stability, there is still no single protocol for how to apply this measure. This includes 

decisions of which algorithm to use based on data collection methods (e.g. IMU vs motion 

capture), how much data is required (in number of strides or in time duration) and then 

finally how to process the data before reconstructing the phase space. The aim of this study 
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was to understand how data length affects the LyE when the Rosenstein et al. and the Wolf 

et al. algorithms were used for each of the three pre-processing/normalization methods. 

We compared common data lengths (30, 50, 100, 150, and 200 strides) with longer than 

usual data lengths (300, 500, and 1000 strides) to determine specifically how data length 

affects the LyE using an accelerometer. We found that there existed a sliding window of 

non-significance across all algorithms, preprocessing methods, and signal directions. 

Figure 5-3 and additional figures provided in Appendix B can be utilized as a guide for 

appropriate and inappropriate comparisons of results across studies. For instance, if a study 

used 100 gait cycles it should have similar LyE results as a study that used as low as 30 

strides and no more than 200 strides. However, different algorithms are not comparable, 

and caution should be used when comparing normalization methods.   

Prior research has explored the effect of data length (Reynard and Terrier, 2014; F. 

Riva et al., 2014) for IMU data but each study used different preprocessing methods and 

only examined the R-algorithm. Other studies (Bruijn et al., 2009b; Raffalt et al., 2018b) 

have also used motion capture data to explore this question using both the R- and W-

algorithm.  Only recently has research begun to look at the effect of different algorithms 

with different normalization methods in  motion capture data (Raffalt et al., 2019). In this 

study, we found that the reliability of each of the three normalization methods we tested 

had good to average (10-15%) reliability for the R-algorithm but poor to very poor (30-

41%) reliability for the W-algorithm. None of the normalization methods outperformed the 

other when the R-algorithm was used. For the W-algorithm, the data point normalization 

method had better reliability (30-32%) than both the raw gait (33-39%) and gait cycle 

normalization method (31-41%). This is contrary to previous findings by Raffalt et al. 
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(2019), but this could be due to different experimental instrumentation; the current study 

used accelerometer data while motion capture data was used in the other study.  

The R-algorithm had smaller standard deviations (SD) across all normalization 

methods and acceleration directions (Figure 5-1) compared to the W-algorithm. The gc 

method (0.16, 0.13, 0.13 in the VT, AP, ML directions, respectively) and the dpNorm 

method (0.16, 0.11, 0.18) had fairly similar SD in the VT and AP direction. The gcNorm 

method had the largest SD (0.21, 0.16, 0.14) in all directions except for the ML compared 

to the other two processing methods when using the R-algorithm. These standard 

deviations are larger than what has been reported in the literature (Rispens et al., 2014b) 

but not far from others (Terrier and Dériaz, 2011). When the W-algorithm was used the 

gcNorm method also had the largest SD (1.10, 1.00, 1.06, in the VT, AP, and ML 

directions). The gc method (0.80, 1.14, 0.69) had smaller SD in the VT and ML directions, 

while the dpNorm method (0.93, 0.91, 0.89) had the smallest SD in the AP direction, shown 

in Figure 5-2. From these standard deviations we can infer that the R-algorithm is more 

precise for accelerometer data. This is further supported by Table 3-1, where the minimum 

number of required strides and maximum variation about the median (imr) is much less for 

the R-algorithm than the W-algorithm.  

We recommend that 50-100 strides should be used when computing the LyE with 

the R-algorithm based on the statistical comparison of data length and the minimum 

required number of strides calculated using imr. For the W-algorithm, we recommend at 

least 200 strides should be used when calculating the LyE from accelerometer data. The 

minimum number of required strides found in this study were lower than previously 

published values (F. Riva et al., 2014), however this is believed to be due to differences in 
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how the slope of the mean divergence curve was calculated. In the previous study, the slope 

was taken over an entire stride, while this study took the slope of the divergence curve for 

a single step. A single step was used instead of a stride, because it has been shown to be 

more reliable. (Reynard et al., 2014) Reliability as measured by percent imr was less than 

15% across all preprocessing methods with the R-algorithm, with gcNorm having the best 

reliability overall. The W-algorithm has poor reliability with a percent imr between 30%-

41%, with dpNorm having the best reliability of 30-32%.  

Several limitations existed in the current study. First, we only tested young healthy 

subjects. Second, the performance of walking on a treadmill is significantly different than 

walking over ground (Dingwell and Cusumano, 2000; Terrier and Dériaz, 2011). However, 

treadmill walking was necessary to collect 30 minutes of continuous and uninterrupted 

walking for this experiment. Additional studies will be necessary to confirm that similar 

results are found across subject populations and in over ground walking. 

Overall, we conclude that the R-algorithm has better precision than the W-

algorithm for accelerometer data. This is consistent with a previous algorithm comparison 

study (Rispens et al., 2014a) which found that the R-algorithm had equal to or greater 

precision than the W-algorithm when using known nonlinear systems. Notably, the R-

algorithm may not have the same advantages over the W-algorithm when joint angles are 

used for calculating the LyE (Raffalt et al., 2018a). The previous study also found that the 

W-algorithm was more accurately calculate the “true” LyE as long as the signal length was 

sufficient the noise levels were low. Generally, biological data is on the noisier side of the 

spectrum of ideal to noisy data. Therefore, it is understandable that the W-algorithm gives 

less precise measurements for gait data. It can be argued that precision is more important 
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in the estimation of the LyE for gait because the reproducibility of the LyE value is critical 

for creating diagnostic tools, etc. rather than the accuracy of the “true” LyE.  

 

CONCLUSION 

The importance of creating a standardized protocol for calculating the LyE based on 

the data collection instrumentation cannot be stressed enough. The standardization of this 

process will open the doors to the application of LyE in clinical trials and to create 

diagnostic tools which require an easily reproducible and precise measure. In this paper we 

investigate the implications of data length when calculating the LyE under 6 algorithm-

preprocessing method combinations for accelerometer data. We found that different data 

lengths can be compared against a given range of data lengths across publications. For 

example, if one paper used 50 strides you can compare this to publications that used similar 

methodologies from 30 to 150 strides. We also contribute to the literature about the 

minimum data requirements for calculating the LyE based on algorithm and preprocessing 

method choices for future reference. Finally, we recommend using the R-algorithm over 

the W-algorithm for accelerometer data due to better precision (calculated by the SD) and 

reliability (calculated by % imr) found in this study. 
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CHAPTER 6: MINIMUM NUMBER OF STRIDES TO CALCULATE THE 

LYAPUNOV EXPONENT USING ROSENSTEIN’S AND WOLF’S 

ALGORITHMS FOR YOUNG AND ELDERLY ADULTS 

ABSTRACT 

Falls are the leading cause of disability in older adults with a third of adults over the age 

of 65 falling every year. Quantitative fall risk assessments using inertial measurement units 

and Lyapunov exponents (LyE) have shown that it is possible to identify at-risk 

individuals. However, there are inconsistencies in the literature on how to calculate LyE 

and how much data is required for a reliable result. This study investigates the reliability 

and minimum required strides for 6 algorithm-normalization method combinations when 

computing LyE using young healthy and community dwelling elderly individuals. 

Participants wore an accelerometer at the lower lumbar while they walked for three minutes 

up and down a long hallway. This study concluded that the Rosenstein et al. algorithm was 

successfully and reliably able to differentiate between both populations using only 50 

strides. It was also found that normalizing the gait time series data by either truncating the 

data using a fixed number of strides or using a fixed number of strides and normalizing the 

entire time series to a fixed number of data points performed better when using the 

Rosenstein et al. algorithm.  

INTRODUCTION 

Falls are among the most common cause of decreased mobility and independence 

in older adults and rank as one of the most serious public health problems in the U.S., with 

costs exceeding $50 billion in 2015 (Ambrose et al., 2013; Bergen et al., 2016; Burns et 

al., 2016; Weisenfluh et al., 2012). Analogous to this reduction is the inherent decline in 

gait stability that impairs balance and predisposes older adults to falls and fall-related 
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injuries. Dynamic stability, defined as the ability to maintain equilibrium despite the 

presence of small disturbances or control errors, is a fundamental motor task that must be 

rapidly adapted in the face of a dynamically varying environment (Dingwell et al., 2001; 

Dingwell and Cusumano, 2000; Wurdeman, 2016). Evidence suggests that older adults 

experience a gradual deterioration in these balance mechanisms and may require more task-

dependent rehabilitative and training interventions. Quantitative assessment of gait has 

been shown to identify age-related decrements, fall risk and pathology (Bruijn et al., 2013; 

Hamacher et al., 2011; Toebes et al., 2012). In particular, gait measures derived from trunk 

acceleration signals can characterize trunk movement dynamics that regulate gait-related 

oscillations. However, aging may induce subtle impairments in gait without obvious 

detectable unsteadiness; therefore, nonlinear measures which are able to detect the hidden, 

subtle characteristics of aging in detrimental effects on locomotor control are used. In 

particular, Lyapunov exponents (LyE), also known as local dynamic stability, has become 

a popular approach for quantifying gait stability during continuous walking. 

Modern motion capture laboratories collect precise data during walking and 

postural stability tasks; however, they are prohibitively expensive, immobile, and require 

well trained technicians to collect and process experimental results. Inertial measurement 

units (IMUs) or accelerometers have become widely used in assessing and monitoring gait 

and other daily living activities as an alternative to traditional motion capture. These 

sensors are more flexible, mobile, and inexpensive. They also have the advantage of 

unlimited measurement volume and the opportunity of recording gait in various 

environments – e.g. clinical offices, community centers, or outdoor tracks – with ease (Tao 

et al., 2012). Accelerometers and LyE have been used together as biomarkers for 
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differentiating between healthy controls and various ailments, e.g. patient with dementia 

(IJmker and Lamoth, 2012), multiple sclerosis (Huisinga et al., 2013), and concussions 

(Fino, 2016). However, not all of these studies are comparable. Some studies use different 

data collection equipment, algorithms, and/or normalization methods. And even when 

publications research similar paradigms, some studies find significant differences while 

others do not. This could be due to sample and effect size within particular studies, but the 

inconsistency across publications could also be due to the lack of a universal methodology 

for calculating the LyE during gait.  

To date, there has been several pivotal publications about the issues in calculating 

the LyE when using gait data and how various factors can impact the value of the LyE. In 

this study we will focus on the choice of algorithm and normalization methods used and 

examine their reliability and determine the minimum number of required strides for reliable 

computation in both young healthy and elderly adults. The most common algorithms for 

calculating LyE in gait are the Rosenstein et al. (R-algorithm) and Wolf et al. (W-

algorithm) algorithms. We hypothesize that each algorithm will require significantly 

different number of strides for the calculation of LyE. Additionally, different time series 

normalization methods have also been shown to affect the LyE and that different 

normalization methods work better for different LyE algorithms (Raffalt et al., 2019; 

Stenum et al., 2014). Therefore, we will investigate three of the most common 

normalization methods with both the R- and W-algorithm. We hypothesize that 

normalization methods will affect the reliability of the calculated LyE. These findings 

augment wearable sensor’s potential as an ambulatory fall risk identification tool in 

community-dwelling settings. Furthermore, they highlight the importance of gait features 
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that rely less on step-detection methods, and more on time series analysis techniques in the 

community-dwelling elderly population.   

METHODS 

Seventeen young healthy adults participated in this study and eleven community 

dwelling older adult’s data from an ongoing fall risk assessment study was used. All 

subjects reported no cardiovascular issues, neurological diseases, nor lower extremity 

surgeries in the last 3 months. Additionally, the elderly participants were required to be 

able to perform a 2-3-minute walk without the aid of a cane or a walker. Table 6-1 

summarized each groups’ subject characteristics. All subjects gave written informed 

consent before participating in this study, which was approved by the Institutional Review 

Board of Arizona State University.  

Young healthy participants wore three tri-axial acceleration sensors (APDM, 

Mobility Lab, APDM, Inc., Portland, OR) with a sampling frequency of 128 Hz. The 

accelerometers were fitted with elastic bands and Velcro straps and placed at each ankle 

and the lower lumbar, around vertebrae L5. Elderly participants wore a single 

accelerometer (DynaPort, McRoberts, Den Haag, the Netherlands) at the lower lumbar 

attached to elastic bands with a sampling frequency of 100 Hz. All participants were asked 

to walk for 3 minutes on a makeshift walking track at their preferred walking speed. This 

track was secluded so no outside factors could interfere with or interrupt the data collection. 

Ten seconds were removed from the beginning and end of the acceleration measurements 

to avoid non-stationary periods. The trials from young healthy participants was down 

sampled to 100 Hz to match the elderly community dwelling data collection. 
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Table 6-1:Subject characteristics 

  Young Adults Older Adults 

Gender (M/F) 11/7 2/9 

Age (years) 23.9 ± 3.5 79.4 ± 7.9 

Height (cm) 171.8 ± 11.4 169.7 ± 10.4 

Weight (kg) 74.1 ± 18.6 77.3 ± 16.5 

BMI 24.9 ± 4.4 26.9 ± 5.5 

 

The following three preprocessing normalization methods were applied before 

calculating the LyE:  

(1) Raw Gait Cycle data (gc): The time series is truncated to keep a fixed number of 

strides regardless of the total number of data points. This maintains the original 

distance between points in the phase space but allows for individuals with a faster 

pace to have fewer data point available over all for the calculation. 

(2) Gait Cycle Normalized (gcNorm): As in the first method the time series is 

segmented to a include a fixed number of strides. Then each stride is resampled to 

have a fixed number of data points, usually 100. Therefore, all strides in this method 

will contain the same number of data points regardless of an individual’s stride 

time.  

(3) Data Point Normalized (dpNorm): The time series is first truncated to include a 

fixed number of strides. Then the data is resampled to a specific number oftotal 

samples for the time series. This allows for fluctuations in data length for individual 

strides. 

For method (3), the total number of data points in the series was allocated 100 samples for 

every stride used. A time delay of 10 samples was used for all directions and all 

preprocessing methods. An embedding dimension of 5 was used when the LyE is 
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calculated using the R-algorithm and a dimension of 7 was used for the W-algorithm. In a 

previous chapter, these values were proven acceptable for treadmill walking of young 

health adults when using 150 strides in the LyE calculation. In Appendix C we perform a 

similar analysis for both the young and elderly adults using 100 strides. Based on those 

results, we concluded that the same time delay and embedding dimensions are also 

sufficient for our current study. The LyE was calculated for all 6 algorithm-normalization 

method combinations since neither the R-algorithm nor the W-algorithm have been proven 

to outperform the other and both are widely used with gait data calculations (Mehdizadeh, 

2018; Rosenstein et al., 1993; Wolf et al., 1985). The LyE was taken from 0 to 0.5 strides 

using the R-algorithm. Additionally, a time evolution of 7 was found to be appropriate for 

calculating the LyE with the W-algorithm. 

To determine the minimum number of strides, we use the same procedure as Riva 

et al. (2014) using interquartile range/median ratio (imr). Briefly, the LyE was calculated 

using decreasing windows of strides, from 120 to 10 strides with a resolution of 1 stride. 

The imr is calculated starting from the largest window (which gives the smallest ratio) and 

proceeds to the smallest window. The minimum number of strides was calculated per index 

and per subject at an imr threshold of 10%. Then the largest number of strides required 

across all subjects was chosen.  Percent imr is an indication of the variation around the 

median. When variations of the measure around the median value are small, imr percentage 

will be low. This is indicative of a steady state being reached.  

Additionally, statistical differences between population groups were compared to 

test the effectiveness of algorithm and normalization method combinations. The groups 

were compared based on the found sufficient number of strides when using imr. A one-
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way ANCOVA was used for each directional signal –anteroposterior (AP), vertical (VT), 

and mediolateral (ML) – with respect to both algorithms, while population and 

normalization methods were used as model effects. A post-hoc Tukey was then used to 

determine differences between each of the model effects.  

RESULTS 

Algorithm and preprocessing method choice affected the number of strides 

required to reach a steady state using the 10% threshold. The minimum required strides 

for calculating the LyE are summarized in  

Table 6-2 by subject group.  

Table 6-2: Number of required strides for calculating the LyE using different normalization 

methods. Values used a 10% imr threshold for both young health (YH) and elderly adults 

(EA). 

      Min. Number of Strides 

Group Algorithm Dir. gc gcNorm dpNorm 

YH 

Rosenstein 

VT 47 72 41 

AP 44 40 45 

ML 41 26 46 

Wolf 

VT 96 109 99 

AP 98 112 108 

ML 117 113 113 

EA 

Rosenstein 

VT 41 43 36 

AP 31 36 24 

ML 60 46 55 

Wolf 

VT 92 105 89 

AP 101 75 81 

ML 98 114 120 

 

For Rosenstein et al. algorithm, generally 50 strides was sufficient for the young 

healthy adults to calculate the LyE with any normalization method. The minimum number 

of strides for gc and dpNorm methods did not vary greatly when different acceleration 
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directions were used. While the number of required strides for gcNorm method heavily 

depended on the acceleration direction. The elderly adults usually required less than 50 

strides to calculate the LyE. Acceleration direction had more of an effect on the number of 

strides than any of the preprocessing methods.  The required number of strides increased 

from the AP to the VT and then to ML direction, respectively. 

The Wolf et al. algorithm required twice the number of strides compared to the 

Rosenstein algorithm. For the young healthy, gcNorm and dpNorm methods required 

approximately 110 strides for all directions, while gc required 98 strides for VT and AP 

directions and 117 for the ML direction. The required number of strides for the elderly 

were less consistent than the young healthy and heavily depended on the normalization 

method.  

Table 6-3: Reliability of LyE calculated for young healthy (YH) and community dwelling 

elderly adults (EA). Reliability is based on the maximum inter-subject imr. The median 

values of inter-subjects’ medians have been included for reference values.  

    

Maximum inter-subject 

imr 

Median inter-subject 

value of LyE 

 Group Algorithm   Dir. gc gcNorm dpNorm gc gcNorm dpNorm 

YH 

Rosenstein 

VT 17% 19% 16% 1.04 1.00 1.09 

AP 16% 15% 15% 0.89 1.06 0.93 

ML 19% 16% 18% 1.06 0.88 1.10 

Wolf 

VT 36% 41% 35% 1.48 1.56 1.59 

AP 29% 51% 32% 2.04 2.08 2.20 

ML 35% 33% 39% 1.83 2.29 2.14 

EA 

Rosenstein 

VT 19% 19% 19% 1.29 1.12 1.31 

AP 12% 19% 13% 1.13 1.05 1.18 

ML 20% 16% 19% 1.19 1.12 1.21 

Wolf 

VT 32% 32% 32% 1.70 1.49 1.78 

AP 27% 28% 20% 2.64 2.44 2.60 

ML 23% 43% 21% 1.94 1.77 2.21 
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The reliability results are shown in Table 6-3. The maximum inter-subject imr was 

less than 20% for both young healthy and elderly adults when using the R-algorithm. The 

W-algorithm ranged from 29% to 51% for young healthy subjects and 20% to 43% for 

elderly adults. The median inter-subject value of the LyE is also provided as a reference 

for both young and community dwelling elderly adults.  

Lastly, the two populations were compared when 50 and 75 strides were used with 

the R-algorithm and when 110 strides were used with the W-algorithm, shown in Table 

6-4. Significant differences between the two population groups were found using the AP 

signal when both data lengths were used with the gc and dpNorm normalization methods. 

The normalization methods also found significant differences in the VT signal when 75 

strides were used in the calculation. No significant differences between young healthy and 

community dwelling elderly adults were found when using the W-algorithm and any of the 

normalization methods.  

Table 6-4: Significant differences between young health and elderly community dwelling 

adults  

  Normalization  VT AP ML 

R-algorithm 

50 strides 

gc 0.0942 0.0001* NS 

gcNorm NS NS NS 

dpNorm 0.1025 0.0001* NS 

R-algorithm 

75 strides 

gc 0.0344* 0.0001* 0.4890 

gcNorm NS NS NS 

dpNorm 0.0273* 0.0001* 0.4867 

W-algorithm 

110 strides 

gc NS NS NS 

gcNorm NS NS NS 

dpNorm NS NS NS 

NS represent no significance with p > 0.5 
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DISCUSSION 

Gait stability is directly quantified by the LyE value. However, the implementation 

parameters are ill-defined and lack standardization procedures. Therefore, the aim of the 

present study was to investigate the reliability of the LyE and determine the minimum 

number of strides for its calculation using 6 algorithm-normalization method combinations. 

The Rosenstein et al. and the Wolf et al. algorithms were used along with three 

preprocessing methods: gc. gcNorm, and dpNorm. The R-algorithm required a 

significantly smaller number of steps with good reliability compared to the W-algorithm 

which only achieved average to poor reliability. And only the R-algorithm was able to 

differentiate the young healthy and elderly community-dwelling adults.  

The minimum number of strides required for the R-algorithm were found to be 

much smaller than previously reported (F. Riva et al., 2014); this may be due to differences 

in methodology. The present study calculated the LyE using a single step, while Riva et al. 

calculated it from a stride. Even though our method requires less strides, it was deemed 

more reliable based on the maximum inter-subject imr values -- imr values rank reliability 

scores accordingly: excellent (imr < 10%), good (imr =10-20%), average (imr =20-30%), 

poor (imr =30-40%), and very poor (imr > 40%). The R-algorithm had good reliability in 

this study for both young healthy and community-dwelling older adults, while Riva et al. 

reported only average reliability for its young healthy subjects. This is the first paper, to 

the authors’ knowledge, that has investigated the required minimum number of strides and 

reliability using imr with the W-algorithm. The W-algorithm required between 100 and 

110 strides for all normalization methods and population groups which is almost double 

the number of strides required for the R-algorithm. Additionally, the W-algorithm had 
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average to poor reliability across both populations with gc normalization method 

performing better for young healthy adults and dpNorm performing better for elderly 

adults. 

 The results of the present study also show that the R-algorithm was able to 

differentiate between both populations while the W-algorithm was unable. Significant 

differences between elderly and young healthy adults were found in the AP direction which 

is consistent with the literature (Liu et al., 2012; Lockhart and Liu, 2008). But interestingly, 

no significant differences were found in the ML direction, which is more commonly 

reported as significant. (Dennis Hamacher et al., 2015; Terrier and Reynard, 2015) This 

could be due to different data lengths and normalization methods used in those publications 

or even differences between over-ground and treadmill walking studies. It is also important 

to note that not all studies find significant differences between these populations like 

Bizovska et al. (2018). They found no differences in their young and elderly populations 

in both over-ground and treadmill walking trials.  

Recent research has reported that raw gait data is ideal for the W-algorithm, i.e. just 

signal truncation, while both gcNorm and dpNorm normalization methods should be used 

for the R-algorithm (Raffalt et al., 2019). When the R-algorithm is used, dpNorm and the 

gc method had the lowest number of required strides and had good measurement reliability, 

as interpreted from percent imr. Both young healthy and elderly community dwelling 

participants required less than 60 strides to calculate the LyE. We recommend either the 

dpNorm or gc method of normalization over the gcNorm method for young healthy subject 

studies. The Wolf algorithm was more reliable for young healthy adults when raw gait was 

used than gcNorm or dpNorm methods. The gc method also required less strides for this 
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group. For the community dwelling elderly adults, gc method was slightly less reliable 

compared to dpNorm method. Additionally, dpNorm required the least amount of data 

except for in the ML range. However, there isn’t a large enough difference between gc and 

dpNorm to definitively state one normalization method is more advantageous than the other 

when using the W-algorithm.  

The present study has a few key limitations. First, we only calculated the LyE 

starting from 120 gait cycles. This has been deemed a sufficient data length with limited 

gains in precision if more strides could have been included. (Bruijn et al., 2009b; Raffalt 

et al., 2018b; Reynard and Terrier, 2014; F. Riva et al., 2014; Terrier and Reynard, 2014) 

However, not all of these studies used accelerometers for data collection and there are a 

limited number of studies on the required number of strides for the W-algorithm. Secondly, 

there was a much larger proportion of females in the community dwelling elderly 

participants. This is largely due to participation in ongoing fall risk assessments that meet 

the criteria of this paper. In theory, the minimum number of strides is not gender based but 

this was out of scope to be tested in this paper. It should also be noted that the findings of 

this study were derived from a fairly small sample size, although similar studies have used 

as many or fewer subjects (Dennis Hamacher et al., 2015; Federico Riva et al., 2014) than 

the present study. 

CONCLUSION 

The present study investigated the reliability and minimum required number of 

strides to using to calculate LyE in young healthy and elderly community dwelling adults. 

As there is no universally accepted standard methodology for this calculation, 6 algorithm-

normalization method combinations were used in order to help work towards creating a 
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standardized process for accelerometers. We found that the Rosenstein et al. algorithm 

requires less strides for reliably calculating the LyE compared to the Wolf et al. algorithm. 

And the R-algorithm was able to differentiate between young healthy and elderly 

community-dwelling adults in the AP and VT direction using only 75 strides, while the W-

algorithm was unable to differentiate these groups when using 110 strides. Our results show 

that either truncating the gait signal to a fixed number of strides or normalizing the signal 

to a fixed number of strides with a fixed number of total data points will compute a more 

reliable LyE when using the R-algorithm.   
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CHAPTER 7: CONCLUSION 

 

Lyapunov exponents (LyE) calculated from accelerometers have been used as 

biomarkers for detecting fall risk (Bruijn et al., 2013; Dingwell and Cusumano, 2000; 

Granata and Lockhart, 2008b; Hamacher et al., 2011; Lockhart and Liu, 2008; Rispens et 

al., 2015; Toebes et al., 2012) and various ailments: dementia (IJmker and Lamoth, 2012), 

multiple sclerosis (Huisinga et al., 2013), Parkinson's disease, (Fino et al., 2018) and 

concussions (Fino, 2016). However, there are inconsistencies in the literature regarding 

how to compute the LyE for gait. LyE calculation has led to conflicting numerical values 

for the literature to build upon. Without a unified methodology for calculating the LyE, 

researchers can only look at the trends found in studies. As inertial measurement units 

become the prominent method of collecting gait data –due to their flexibility, mobility, and 

ability to record in any environment – it is important to standardize and tailor the protocol 

for calculating the LyE. Therefore, this dissertation was dedicated to developing a 

standardized methodology for calculating the LyE for human gait when using 

accelerometers. The effects of phase space reconstruction parameters (time delay and 

embedding dimension), algorithms (Rosenstein et al. (1993) and Wolf et al. (1985) 

algorithms), normalization methods (raw, gait cycle normalized, and data point normalized 

gait data), and amount of data used were investigated using young healthy and elderly 

community-dwelling adults. The result of this dissertation will allow for biomechanical 

researchers to utilize LyE while understanding the implications of choosing various input 

variables associated with its calculation.  

The first aim of this dissertation was to develop guidelines for phase space 

reconstruction for gait data. We investigated the effects of calculating time delay (𝜏) and 
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embedding dimension (𝑑𝐸) at different data lengths (Chapter 3). We found that data length 

does not affect the calculation of time delay, when using average mutual information 

algorithm. However, calculating the embedding dimension using global false nearest 

neighbors required 100 strides to reach a steady state value. This study also found that 

preprocessing the data using a fixed number of strides or a fixed number of data points had 

significantly different values for time delay compared to a time series that used a fixed 

number of normalized gait cycles, which have a fixed number of data points per stride. 

Additionally, the impact of different time delay and embedding dimension combinations 

on the value of the LyE was investigated for young healthy adults (Chapter 4) and 

community-dwelling elderly adults (Chapter 6 & Appendix C).  This study systematically 

investigated the effect of time delay, embedding dimension, and three pre-processing 

methods on the LyE using both the Rosenstein et al. (R) and Wolf et al. (W) algorithms. 

We concluded that the time delay can be standardized to 𝜏 = 10  (in data points and % gait 

cycle) while the embedding dimension can be set to 𝑑𝐸 = 5 for the R-algorithm or 𝑑𝐸 = 7 

for the W-algorithm when calculating the LyE from accelerometers regardless of the 

normalization method.  These results did not provide enough information to definitively 

claim one algorithm or normalization method is superior than the other when using 

accelerometers.   

The second aim of this dissertation evaluated the effect of data length on the 

computation of the LyE when using 6 algorithm-normalization method combinations for 

accelerometer data. We initially hypothesized that data lengths greater than 150 strides 

could not be directly comparable to smaller data sets with 50 strides or less, regardless of 

the algorithm and normalization method used to calculate the LyE. However, when 
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studying young healthy adults (Chapter 5) we found that different data lengths can be 

compared against a given range of data lengths across publications. For example, if one 

paper used 50 strides, it can be compared to publications that used 30 to 150 strides with 

similar calculation methodologies. We also contributed to the literature regarding the 

minimum data requirements for calculating the LyE; based on algorithm and preprocessing 

method choices for future reference. Based on our results in young healthy and community-

dwelling elderly adults, we recommend that 50 to 100 strides should be used when 

computing the LyE with the R-algorithm and at least 200 strides should be used when 

calculating with the W-algorithm (Chapter 5 & 6). We found that the reliability of the R-

algorithm using each of the three normalization methods had good to average (10-15%) 

reliability, but poor to very poor (30-41%) reliability for the W-algorithm. The results show 

that either truncating the gait signal to a fixed number of strides (raw gait) or using data 

point normalization will compute a more reliable LyE when using the R-algorithm.  For 

the W-algorithm, the data point normalization method had better reliability than the other 

methods. Lastly, we recommend using the R-algorithm over the W-algorithm for 

accelerometer data due to better precision and reliability found in this dissertation. 

In conclusion, we recommend the following methodological choices for calculation 

of the LyE using accelerometer data: 

1. Time Delay: 10 data points or 10% of the gait cycle 

2. Embedding Dimension: 5 

3. Algorithm: Rosenstein et al. algorithm 

4. Normalization Method: raw gait or data point normalized data 

5. Data Length: 50 to 100 strides 
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This standardized methodology for calculating LyE will allow for the comparison of data 

and conclusions across all studies that employ their use. Having a transparent protocol for 

calculating the LyE will enable study replication which will substantiate current and future 

findings with more confidence. This, in turn, will allow for better meta-analyses identifying 

optimal measures for more precise and sensitive fall risk assessment tools and biomarkers 

for various gait impairment diseases. Additionally, this dissertation outlines a methodology 

for other researchers to follow for determining their own standardized calculation of the 

LyE – and other nonlinear measures that are dependent on phase space reconstruction –

regardless of the biomechanical system being evaluated.  

While the outcomes from these investigations reveal that the LyE calculation 

methodology can be standardized, there are areas that require further investigation. 

Although we recommended using either truncated gait data or data point normalized data, 

more research is necessary to conclusively determine the optimal normalization method 

for accelerometer data. Additionally, this dissertation focused solely on the standardization 

of LyE calculation methodology for accelerometer data. Future research will be needed to 

standardize the computation of the LyE using motion capture data and potentially for 

different signal types, e.g. joint angles or marker displacement data. 
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COMPLETE STATISTICAL ANALYSES OF TIME DELAY AND EMBEDDING 

DIMENSION EFFECT ON THE LYAPUNOV EXPONENT IN GAIT 

[Consult Attached Files] 
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In the following pages are the full statistical results for the full factorial comparison 

of data lengths investigated in the vertical (VT), anteroposterior (AP), and mediolateral 

(ML) directions of the lumbar accelerometer. There are tables for each of the three 

normalization methods – raw gat (gc), gait cycle normalized (gcNorm), and data point 

normalized (dpNorm) data – with respect to both the Rosenstein et al. and Wolf et al. 

algorithms. The final tables contain the mean and standard deviation of the LyE for all data 

lengths when using the 6 algorithm-normalization method combinations in the VT, AP, 

and ML directions.  

 



 
 1

2
8
 

Table B-1: Significant differences between data lengths when using R-algorithm with raw gait data in all directions. p > 0.5 

marked as NS 

Direction Data Length 30 50 100 150 200 300 500 1000 

VT 

30   NS NS 0.013 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.177 0.0044 <0.0005 <0.0005 <0.0005 

100 NS NS   NS 0.2683 0.0058 <0.0005 <0.0005 

150 0.013 0.177 NS   NS NS 0.0456 <0.0005 

200 <0.0005 0.0044 0.2683 NS   NS NS 0.0169 

300 <0.0005 <0.0005 0.0058 NS NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.0456 NS NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0169 NS NS   

AP 

30   NS NS 0.013 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.3995 0.0169 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0076 <0.0005 <0.0005 

150 0.013 0.3995 NS   NS NS 0.013 <0.0005 

200 <0.0005 0.0169 NS NS   NS 0.3281 0.0058 

300 <0.0005 <0.0005 0.0076 NS NS   NS 0.4841 

500 <0.0005 <0.0005 <0.0005 0.013 0.3281 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0058 0.4841 NS   

ML 

30   NS NS 0.1428 0.0058 <0.0005 <0.0005 <0.0005 

50 NS   NS NS 0.0358 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.028 <0.0005 <0.0005 

150 0.1428 NS NS   NS NS 0.0058 <0.0005 

200 0.0058 0.0358 NS NS   NS 0.1428 0.0033 

300 <0.0005 <0.0005 0.028 NS NS   NS 0.2683 

500 <0.0005 <0.0005 <0.0005 0.0058 0.1428 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0033 0.2683 NS   
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Table B-2: Significant differences between data lengths when using W-algorithm with raw gait data in all directions. p > 0.5 

marked as NS 

Direction Data Length 30 50 100 150 200 300 500 1000 

VT 

30   NS NS 0.028 0.0007 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.2683 0.013 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0076 <0.0005 <0.0005 

150 0.028 0.2683 NS   NS 0.4841 0.01 <0.0005 

200 0.0007 0.013 NS NS   NS 0.2184 0.01 

300 <0.0005 <0.0005 0.0076 0.4841 NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.01 0.2184 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.01 NS NS   

AP 

30   NS NS 0.0358 0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.3281 0.01 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0169 <0.0005 <0.0005 

150 0.0358 0.3281 NS   NS 0.3281 0.01 <0.0005 

200 0.0005 0.01 NS NS   NS 0.3281 0.0044 

300 <0.0005 <0.0005 0.0169 0.3281 NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.01 0.3281 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0044 NS NS   

ML 

30   NS NS 0.0358 0.001 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.1147 0.0044 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.01 <0.0005 <0.0005 

150 0.0358 0.1147 NS   NS NS 0.0169 <0.0005 

200 0.001 0.0044 NS NS   NS 0.3281 0.0058 

300 <0.0005 <0.0005 0.01 NS NS   NS 0.3995 

500 <0.0005 <0.0005 <0.0005 0.0169 0.3281 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0058 0.3995 NS   
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Direction Data Length 30 50 100 150 200 300 500 1000 

VT 

30   NS NS 0.2683 0.0033 <0.0005 <0.0005 <0.0005 

50 NS   NS NS 0.01 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0218 0.0044 <0.0005 

150 0.2683 NS NS   NS 0.3281 0.0917 <0.0005 

200 0.0033 0.01 NS NS   NS NS 0.0578 

300 <0.0005 <0.0005 0.0218 0.3281 NS   NS NS 

500 <0.0005 <0.0005 0.0044 0.0917 NS NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0578 NS NS   

AP 

30   NS NS 0.0456 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.177 0.0025 <0.0005 <0.0005 <0.0005 

100 NS NS   NS 0.3281 0.0058 <0.0005 <0.0005 

150 0.0456 0.177 NS   NS 0.4841 0.0456 0.001 

200 <0.0005 0.0025 0.3281 NS   NS NS 0.0917 

300 <0.0005 <0.0005 0.0058 0.4841 NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.0456 NS NS   NS 

1000 <0.0005 <0.0005 <0.0005 0.001 0.0917 NS NS   

ML 

30   NS NS 0.3281 0.013 <0.0005 <0.0005 <0.0005 

50 NS   NS NS 0.2184 0.001 <0.0005 <0.0005 

100 NS NS   NS NS 0.0044 <0.0005 <0.0005 

150 0.3281 NS NS   NS 0.3995 0.028 <0.0005 

200 0.013 0.2184 NS NS   NS NS 0.0058 

300 <0.0005 0.001 0.0044 0.3995 NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.028 NS NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0058 NS NS   

 

Table B-3: Significant differences between data lengths when using R-algorithm with gait cycle normalized data in all 

directions. p > 0.5 marked as NS  
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Table B-4: Significant differences between data lengths when using W-algorithm with gait cycle normalized data in all 

directions. p > 0.5 marked as NS   

Direction Data Length 30 50 100 150 200 300 500 1000 

VT 

30   NS NS 0.2184 0.013 <0.0005 <0.0005 <0.0005 

50 NS   NS NS 0.073 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0169 <0.0005 <0.0005 

150 0.2184 NS NS   NS NS 0.0218 <0.0005 

200 0.013 0.073 NS NS   NS 0.3281 0.0025 

300 <0.0005 <0.0005 0.0169 NS NS   NS 0.3995 

500 <0.0005 <0.0005 <0.0005 0.0218 0.3281 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0025 0.3995 NS   

AP 

30   NS NS 0.2683 0.0169 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.3995 0.028 <0.0005 <0.0005 <0.0005 

100 NS NS   NS 0.4841 0.0033 <0.0005 <0.0005 

150 0.2683 0.3995 NS   NS NS 0.013 <0.0005 

200 0.0169 0.028 0.4841 NS   NS 0.2184 0.0033 

300 <0.0005 <0.0005 0.0033 NS NS   NS 0.4841 

500 <0.0005 <0.0005 <0.0005 0.013 0.2184 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0033 0.4841 NS   

ML 

30   NS NS 0.073 0.0033 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.4841 0.0358 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0033 <0.0005 <0.0005 

150 0.073 0.4841 NS   NS 0.3995 0.013 <0.0005 

200 0.0033 0.0358 NS NS   NS 0.2184 0.0025 

300 <0.0005 <0.0005 0.0033 0.3995 NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.013 0.2184 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0025 NS NS   
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Table B-5: Significant differences between data lengths when using R-algorithm with data point normalized data in all 

directions 

Direction Data Length 30 50 100 150 200 300 500 1000 

VT 

30   NS NS 0.0218 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.3995 0.0076 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0218 <0.0005 <0.0005 

150 0.0218 0.3995 NS   NS NS 0.01 <0.0005 

200 <0.0005 0.0076 NS NS   NS 0.4841 0.0218 

300 <0.0005 <0.0005 0.0218 NS NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.01 0.4841 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0218 NS NS   

AP 

30   NS NS 0.0076 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.4841 0.0578 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.01 <0.0005 <0.0005 

150 0.0076 0.4841 NS   NS NS 0.0169 <0.0005 

200 <0.0005 0.0578 NS NS   NS 0.177 0.0025 

300 <0.0005 <0.0005 0.01 NS NS   NS 0.4841 

500 <0.0005 <0.0005 <0.0005 0.0169 0.177 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0025 0.4841 NS   

ML 

30   NS NS 0.0456 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS NS 0.0058 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0169 <0.0005 <0.0005 

150 0.0456 NS NS   NS 0.2683 0.0044 <0.0005 

200 <0.0005 0.0058 NS NS   NS 0.4841 0.01 

300 <0.0005 <0.0005 0.0169 0.2683 NS   NS 0.4841 

500 <0.0005 <0.0005 <0.0005 0.0044 0.4841 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.01 0.4841 NS   
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Table B-6: Significant differences between data lengths when using W-algorithm with data point normalized data in all 

directions. p > 0.5 marked as NS 

Direction Data Length 30 50 100 150 200 300 500 1000 

VT 

30   NS NS 0.028 0.0014 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.1147 0.0076 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.0076 <0.0005 <0.0005 

150 0.028 0.1147 NS   NS NS 0.0169 <0.0005 

200 0.0014 0.0076 NS NS   NS 0.2184 0.0058 

300 <0.0005 <0.0005 0.0076 NS NS   NS 0.4841 

500 <0.0005 <0.0005 <0.0005 0.0169 0.2184 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0058 0.4841 NS   

AP 

30   NS NS 0.0578 <0.0005 <0.0005 <0.0005 <0.0005 

50 NS   NS NS 0.01 <0.0005 <0.0005 <0.0005 

100 NS NS   NS NS 0.013 <0.0005 <0.0005 

150 0.0578 NS NS   NS 0.2184 0.0076 <0.0005 

200 <0.0005 0.01 NS NS   NS NS 0.0076 

300 <0.0005 <0.0005 0.013 0.2184 NS   NS NS 

500 <0.0005 <0.0005 <0.0005 0.0076 NS NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0076 NS NS   

ML 

30   NS NS 0.1147 0.0044 <0.0005 <0.0005 <0.0005 

50 NS   NS 0.1428 0.0058 <0.0005 <0.0005 <0.0005 

100 NS NS   NS 0.3995 0.0033 <0.0005 <0.0005 

150 0.1147 0.1428 NS   NS NS 0.013 <0.0005 

200 0.0044 0.0058 0.3995 NS   NS 0.2683 0.0044 

300 <0.0005 <0.0005 0.0033 NS NS   NS 0.4841 

500 <0.0005 <0.0005 <0.0005 0.013 0.2683 NS   NS 

1000 <0.0005 <0.0005 <0.0005 <0.0005 0.0044 0.4841 NS   
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Table B-7: Means (SD) of the LyE for all data lengths calculated using the R-algorithm for 

each direction using raw gait data 

  Raw Gait 

Strides VT AP ML 

30 1.07 (0.165) 0.87 (0.121) 1.04 (0.141) 

50 1.11 (0.167) 0.91 (0.130) 1.07 (0.137) 

100 1.16 (0.164) 0.95 (0.131) 1.11 (0.135) 

150 1.20 (0.168) 0.97 (0.129) 1.13 (0.131) 

200 1.23 (0.165) 0.99 (0.127) 1.16 (0.128) 

300 1.25 (0.160) 1.01 (0.125) 1.18 (0.127) 

400 1.26 (0.158) 1.03 (0.123) 1.20 (0.130) 

500 1.27 (0.157) 1.04 (0.123) 1.22 (0.129) 

600 1.28 (0.161) 1.05 (0.124) 1.23 (0.131) 

700 1.29 (0.162) 1.06 (0.122) 1.24 (0.130) 

800 1.30 (0.164) 1.06 (0.122) 1.25 (0.131) 

900 1.31 (0.169) 1.07 (0.123) 1.26 (0.131) 

1000 1.31 (0.168) 1.08 (0.125) 1.26 (0.130) 

1100 1.32 (0.169) 1.08 (0.128) 1.27 (0.128) 

1200 1.32 (0.168) 1.09 (0.126) 1.27 (0.128) 

1300 1.32 (0.168) 1.09 (0.126) 1.28 (0.128) 

  

  



  135 

Table B-8: Means (SD) of the LyE for all data lengths calculated using the R-algorithm for 

each direction using gait cycle normalized gait data 

  Gait Cycle Normalized 

Strides VT AP ML 

30 1.02 (0.228) 1.03 (0.196) 0.85 (0.173) 

50 1.04 (0.225) 1.06 (0.193) 0.88 (0.172) 

100 1.10 (0.225) 1.11 (0.191) 0.92 (0.141) 

150 1.13 (0.222) 1.14 (0.193) 0.95 (0.137) 

200 1.15 (0.221) 1.16 (0.181) 0.97 (0.139) 

300 1.18 (0.213) 1.18 (0.175) 0.99 (0.142) 

400 1.19 (0.199) 1.20 (0.162) 1.00 (0.132) 

500 1.21 (0.195) 1.21 (0.155) 1.02 (0.131) 

600 1.22 (0.194) 1.22 (0.154) 1.03 (0.132) 

700 1.23 (0.195) 1.24 (0.150) 1.04 (0.132) 

800 1.24 (0.193) 1.24 (0.149) 1.05 (0.132) 

900 1.25 (0.193) 1.25 (0.149) 1.05 (0.134) 

1000 1.25 (0.193) 1.25 (0.146) 1.06 (0.134) 

1100 1.26 (0.195) 1.26 (0.144) 1.07 (0.137) 

1200 1.27 (0.195) 1.26 (0.144) 1.07 (0.138) 

1300 1.27 (0.194) 1.27 (0.142) 1.08 (0.137) 
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Table B-9: Means (SD) of the LyE for all data lengths calculated using the R-algorithm for 

each direction using data normalized gait data 

  Data Point Normalized 

Strides VT AP ML 

30 0.99 (0.156) 0.83 (0.108) 1.02 (0.192) 

50 1.04 (0.154) 0.87 (0.112) 1.05 (0.194) 

100 1.10 (0.155) 0.92 (0.114) 1.10 (0.187) 

150 1.14 (0.161) 0.95 (0.107) 1.14 (0.176) 

200 1.17 (0.163) 0.96 (0.108) 1.16 (0.174) 

300 1.20 (0.162) 0.99 (0.105) 1.19 (0.172) 

400 1.21 (0.160) 1.01 (0.105) 1.21 (0.173) 

500 1.23 (0.162) 1.02 (0.107) 1.23 (0.172) 

600 1.24 (0.164) 1.03 (0.109) 1.24 (0.173) 

700 1.25 (0.165) 1.04 (0.108) 1.25 (0.171) 

800 1.26 (0.167) 1.05 (0.109) 1.26 (0.170) 

900 1.27 (0.170) 1.06 (0.110) 1.27 (0.173) 

1000 1.28 (0.171) 1.06 (0.111) 1.28 (0.172) 

1100 1.28 (0.172) 1.07 (0.113) 1.28 (0.170) 

1200 1.29 (0.172) 1.08 (0.112) 1.28 (0.168) 

1300 1.29 (0.172) 1.08 (0.112) 1.29 (0.168) 
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Table B-10: Means (SD) of the LyE for all data lengths calculated using the W-algorithm 

for each direction using raw gait data 

  Raw Gait 

Strides VT AP ML 

30 1.71 (0.578) 2.21 (0.649) 1.83 (0.536) 

50 1.86 (0.640) 2.46 (0.727) 2.02 (0.513) 

100 2.16 (0.809) 3.00 (0.814) 2.49 (0.542) 

150 2.38 (0.801) 3.30 (0.968) 2.89 (0.600) 

200 2.55 (0.884) 3.52 (1.000) 3.07 (0.646) 

300 2.82 (0.889) 3.99 (1.089) 3.38 (0.620) 

400 3.05 (0.885) 4.32 (1.136) 3.61 (0.679) 

500 3.28 (0.918) 4.58 (1.219) 3.82 (0.738) 

600 3.43 (0.879) 4.84 (1.262) 4.02 (0.690) 

700 3.63 (0.832) 5.02 (1.295) 4.15 (0.732) 

800 3.76 (0.847) 5.19 (1.299) 4.34 (0.767) 

900 3.92 (0.850) 5.38 (1.340) 4.46 (0.808) 

1000 4.01 (0.778) 5.45 (1.331) 4.58 (0.800) 

1100 4.13 (0.770) 5.54 (1.321) 4.69 (0.797) 

1200 4.25 (0.753) 5.66 (1.354) 4.82 (0.811) 

1300 4.37 (0.744) 5.73 (1.348) 4.92 (0.813) 
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Table B-11: Means (SD) of the LyE for all data lengths calculated using the W-algorithm 

for each direction using gait cycle normalized gait data 

  Gait Cycle Normalized 

Strides VT AP ML 

30 1.80 (0.810) 2.34 (0.904) 2.54 (0.676) 

50 2.04 (0.864) 2.44 (0.816) 2.85 (0.765) 

100 2.27 (0.832) 2.95 (0.740) 3.27 (0.686) 

150 2.50 (1.038) 3.41 (0.936) 3.67 (0.876) 

200 2.69 (1.116) 3.64 (0.905) 3.87 (0.837) 

300 2.99 (1.118) 3.98 (0.930) 4.30 (0.976) 

400 3.21 (1.229) 4.26 (0.971) 4.68 (1.032) 

500 3.41 (1.192) 4.54 (1.072) 4.96 (1.118) 

600 3.57 (1.206) 4.77 (1.068) 5.20 (1.117) 

700 3.70 (1.189) 4.91 (1.035) 5.37 (1.133) 

800 3.87 (1.205) 5.01 (1.065) 5.56 (1.228) 

900 3.97 (1.179) 5.19 (1.068) 5.70 (1.246) 

1000 4.09 (1.116) 5.30 (1.095) 5.86 (1.261) 

1100 4.24 (1.154) 5.40 (1.110) 6.00 (1.279) 

1200 4.34 (1.173) 5.59 (1.137) 6.13 (1.310) 

1300 4.47 (1.187) 5.70 (1.145) 6.25 (1.340) 

   



  139 

Table B-12: Means (SD) of the LyE for all data lengths calculated using the W-algorithm 

for each direction using data point normalized gait data 

  Data Point Normalized 

Strides VT AP ML 

30 1.43 (0.614) 1.87 (0.523) 1.73 (0.706) 

50 1.50 (0.630) 2.07 (0.510) 1.92 (0.612) 

100 1.81 (0.779) 2.39 (0.621) 2.25 (0.638) 

150 2.01 (0.835) 2.68 (0.724) 2.61 (0.799) 

200 2.17 (0.960) 2.96 (0.813) 2.78 (0.795) 

300 2.40 (0.968) 3.26 (0.870) 3.05 (0.861) 

400 2.50 (0.988) 3.46 (0.865) 3.30 (0.851) 

500 2.69 (1.056) 3.67 (0.968) 3.47 (0.911) 

600 2.78 (1.038) 3.85 (1.034) 3.66 (0.933) 

700 2.91 (0.999) 4.02 (1.048) 3.76 (0.965) 

800 3.03 (0.996) 4.12 (1.081) 3.83 (0.973) 

900 3.15 (1.075) 4.25 (1.076) 3.94 (0.995) 

1000 3.21 (0.990) 4.37 (1.089) 4.08 (1.000) 

1100 3.29 (0.949) 4.48 (1.111) 4.18 (1.046) 

1200 3.41 (1.038) 4.58 (1.131) 4.22 (1.032) 

1300 3.49 (1.015) 4.65 (1.150) 4.34 (1.073) 
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APPENDIX C 

INVESTIGATION OF THE EFFECT OF TIME DELAY AND EMBEDDING 

DIMENSION ON OVERGROUND WALKING IN YOUNG AND ELDERLY 

ADULTS 
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This supplementary material had two purposes: 

1) To investigate the effect of time delay (𝜏) on the calculation of the Lyapunov 

exponent (LyE) using both the Rosenstein et al. (R-algorithm) and Wolf et al. 

(W-algorithm) algorithms and three normalization methods 

2) To investigate the effect of embedding dimension (𝑑𝐸) on the calculation of the 

LyE with respect to each of the 6 algorithm-normalization method combinations. 

The present study used an equal number of 100 strides for all subjects, young healthy and 

elderly community dwelling adults. Each subject time series data was then preprocessed 

using the following three methods with each containing the maximum number of gait 

cycles: 

(1) Fixed number of strides with a variable number of data points per stride (gc) 

(2) Fixed number of strides with a 100 data points per stride (gcNorm) 

(3) Fixed number of strides with a total of 10,000 data points in the time series 

(dpNorm) 

No other filtering or preprocessing was performed on the data. The LyE was calculated 

for every direction using each of the preprocessing methods and the Rosenstein et al. 

(1993) and Wolf et al. (1985) algorithms, which will be referred to R- and W-algorithms, 

respectively. And within these conditions each permutation of the embedding dimension 

(𝑑𝐸 = 4,5,6,7) and time delay (𝜏 = 2,4,6, … ,30) were used to calculate the LyE. 

In Rosenstein’s algorithm, the LyE is the slope of the divergence curve. When 

normalized gait cycles are analyzed, the slope is taken over a span of 0 – 0.5 strides or the 

first 50 points of the divergence curve. In order to compare normalized and raw gait data, 

we found the average stride length for each subject and used the individualized half stride 
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length as the bounds for taking the slope. For example, if a subject had an average stride 

length of 150 samples, then the slope of the mean divergence curve was taken from the 

first 75 points. And in the W-algorithm a time evolution step of seven was used. 

The performed analyses consisted of a systematic permutation of fifteen time delays 

and four embedding dimensions. This was applied to 6 different LyE algorithm-time series 

normalization procedure combinations for each acceleration direction. The Friedman test, 

a nonparametric repeated measures ANOVA, was used to explore the effect of time delay 

and embedding dimension on the LyE. The nonparametric test was used for all analyses 

because the assumption of sphericity was violated, in addition to not all parameters were 

normally distributed. This test was performed independently for each population group, 

acceleration direction, algorithm choice and preprocessing method.  

Then, slices of the data set were taken for a more specific look at how time delay 

and embedding dimension independently played a role in the calculation of the LyE. First, 

a post-hoc pairwise comparison with a Bonferroni correction for multiple comparisons was 

used to determine the specific differences between each time delay when the embedding 

dimension of five or seven was chosen for the R- and W-algorithm, respectively. Then the 

same post-hoc comparison was used to determine the differences in embedding dimension 

for a set of time delays (𝜏 = 5,8,10,12,15). This range of time delays was selected because 

most time delays chosen in publications are within this range, based on the meta- and 

supplementary data from Mehdizadeh (2018). For all statistical tests, a 𝑝-value < 0.05 was 
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considered significant. All statistical analysis was performed using SPSS Statistics (version 

25, IBM, USA).  

Our results show that time delay and embedding dimension had a significant impact 

(p < 0.005, respectively) on the value of the LyE regardless of direction, algorithm, and 

preprocessing method. The differences between each direction and preprocessing methods 

are shown in Figure C- 1 for the R-algorithm and in Figure C- 2 for the W-algorithm for 

community dwelling elderly adults. These differences for young healthy adults are also 

shown in Figure C- 3 and Figure C- 4 for the R- and W-algorithms, respectively. We found 

that embedding dimension, at particular time delays, had significant effects on the LyE 

calculated by the R- and W-algorithm. Table C- 1 shows the differences between different 

embedding dimensions at the selected time delays (𝜏 = 5,8,10,12,15) when gc, gcNorm, 

and dpNorm data was utilized with the R-algorithm, while Table C- 2 shows the results 

using the W-algorithm in elderly adults.. Table C- 3 and Table C-4 show this effect in 

young healthy adults for the R- and W- algorithms, respectively. 

Overall, the W-algorithm was more invariant to changes in time delay. This is 

shown in Figure C- 5 and Figure C- 6, which depict the statistical differences between two 

time delays when an embedding dimension of 5 and 7 were used for the R- and W-

algorithms, respectively. And the R-algorithm was more robust against changes in the 

embedding dimension regardless of preprocessing method compared to the W-algorithm. 

In terms of reliability and consistency, the Rosenstein algorithm might be better for IMU 

data than the Wolf algorithm. The Rosenstein algorithm had much smaller standard 

deviations of the mean LyE compared to the Wolf algorithm. This is consistent with 
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unpublished results using young healthy adults walking on a treadmill with 1300 and 150 

gait cycles.  

In conclusion, the data presented in this supplementary material validates the 

methodological choices made in the present study with respect to the choice of time delay 

and embedding dimension.  
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Figure C- 1: Effect of embedding dimension and time delay in the VT, AP, and ML 

direction using Rosenstein et al algorithm using three different preprocessing methods 

using elderly over-ground walking data. 
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Figure C- 2: Effect of embedding dimension and time delay in the VT, AP, and ML 

direction using Wolf et al algorithm using three different preprocessing methods using 

elderly over-ground walking data. 
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Figure C- 3: Effect of embedding dimension and time delay in the VT, AP, and ML 

direction using Rosenstein et al algorithm using three different preprocessing methods 

using young healthy adults over-ground walking data. 
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Figure C- 4: Effect of embedding dimension and time delay in the VT, AP, and ML 

direction using Wolf et al algorithm using three different preprocessing methods using 

young healthy adults over-ground walking data.  
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Table C- 1: Effect of embedding dimension on the LyE under select time delays using the 

R-algorithm calculated from over-ground walking of elderly adults. NS: p-values > 0.5 

Normalization 

Method 

    Dimension Pairwise Comparison (p-value) 

Dir. 𝝉  d4-d5 d4-d6 d4-d7 d5-d6 d5-d7 d6-d7 

Raw Gait Cycles 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS 0.3895 NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.2775 NS NS NS 

12 NS NS 0.2474 NS NS NS 

15 NS NS NS NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.4857 NS NS NS 

12 NS NS 0.1075 NS NS NS 

15 NS NS NS NS NS NS 

Gait Cycle 

Normalization 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.1371 NS NS NS 

12 NS NS 0.0740 NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS NS < 0.0005 NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.1214 NS NS NS 

12 NS NS 0.0444 NS NS NS 

15 NS NS NS NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.095 NS NS NS 

12 NS 0.4857 0.0200 NS NS NS 

15 NS NS NS NS NS NS 

Data Point 

Normalization 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS 0.4857 NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.3895 NS NS NS 

12 NS NS 0.1371 NS NS NS 

15 NS NS NS NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS NS NS NS NS 

12 NS NS 0.1075 NS NS NS 

15 NS NS NS NS NS NS 
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Table C- 2: Effect of embedding dimension on the LyE under select time delays using the 

W-algorithm calculated from over-ground walking of elderly adults. NS: p-values > 0.5 

Normalization 

Method 

    Dimension Pairwise Comparison (p-value) 

Dir. 𝝉 d4-d5 d4-d6 d4-d7 d5-d6 d5-d7 d6-d7 

Raw Gait 

Cycles 

VT 

5 0.02 NS < 0.0005 < 0.0005 0.1546 NS 

8 NS 0.0342 < 0.0005 NS 0.0049 NS 

10 NS 0.0031 < 0.0005 NS < 0.0005 NS 

12 NS 0.0031 < 0.0005 NS < 0.0005 NS 

15 NS 0.0015 < 0.0005 NS < 0.0005 NS 

AP 

5 0.1546 NS < 0.0005 < 0.0005 0.4857 NS 

8 NS NS < 0.0005 NS 0.0020 NS 

10 NS 0.0152 < 0.0005 NS < 0.0005 NS 

12 NS 0.0049 < 0.0005 NS < 0.0005 NS 

15 NS 0.0200 < 0.0005 NS < 0.0005 NS 

ML 

5 0.1546 NS < 0.0005 < 0.0005 0.4857 NS 

8 NS NS < 0.0005 NS 0.0020 NS 

10 NS 0.0152 < 0.0005 NS < 0.0005 NS 

12 NS 0.0049 < 0.0005 NS < 0.0005 NS 

15 NS 0.0200 < 0.0005 NS < 0.0005 NS 

Gait Cycle 

Normalization 

VT 

5 NS 0.0444 < 0.0005 NS 0.1075 NS 

8 NS 0.0505 < 0.0005 NS 0.0200 NS 

10 NS 0.002 < 0.0005 NS 0.0008 NS 

12 NS 0.0027 < 0.0005 NS < 0.0005 NS 

15 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

AP 

5 NS 0.3110 < 0.0005 NS 0.3482 NS 

8 NS 0.2775 < 0.0005 NS 0.0017 NS 

10 NS 0.0262 < 0.0005 NS < 0.0005 NS 

12 NS 0.0023 < 0.0005 NS < 0.0005 NS 

15 NS 0.0006 < 0.0005 NS < 0.0005 NS 

ML 

5 NS 0.0132 < 0.0005 NS 0.0262 NS 

8 NS 0.0075 < 0.0005 NS 0.0065 NS 

10 NS 0.0049 < 0.0005 NS 0.0042 NS 

12 NS 0.0011 < 0.0005 NS 0.0009 NS 

15 NS 0.0009 < 0.0005 NS < 0.0005 NS 

Data Point 

Normalization 

VT 

5 NS 0.0262 < 0.0005 NS 0.1214 NS 

8 NS 0.0100 < 0.0005 NS 0.0017 NS 

10 NS 0.0017 < 0.0005 NS 0.0015 NS 

12 NS 0.0031 < 0.0005 NS < 0.0005 NS 

15 NS 0.0011 < 0.0005 NS < 0.0005 NS 

AP 

5 NS 0.1371 < 0.0005 NS 0.2474 NS 

8 NS 0.4857 < 0.0005 NS 0.0031 NS 

10 NS 0.0075 < 0.0005 0.311 < 0.0005 NS 

12 NS 0.0012 < 0.0005 NS < 0.0005 NS 

15 NS 0.0262 < 0.0005 NS < 0.0005 NS 

ML 

5 NS 0.0087 < 0.0005 NS 0.0087 NS 

8 NS 0.0200 < 0.0005 NS 0.0132 NS 

10 NS 0.0042 < 0.0005 NS 0.0031 NS 

12 NS 0.0049 < 0.0005 NS 0.0012 NS 

15 NS < 0.0005 < 0.0005 NS 0.0007 NS 
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Table C- 3: Effect embedding dimension on the LyE under select time delays using the R-

algorithm calculated from over-ground walking of young health adults. NS: p-values > 0.5 

Normalization 

Method 

    Dimension Pairwise Comparison (p-value) 

Dir. 𝝉 d4-d5 d4-d6 d4-d7 d5-d6 d5-d7 d6-d7 

Raw Gait 

Cycles 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0401 NS NS NS 

12 NS NS 0.0281 NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0716 NS NS NS 

12 NS NS 0.0401 NS NS NS 

15 NS NS 0.2636 NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 < 0.0005 NS NS NS NS NS 

10 NS NS 0.0802 NS NS NS 

12 NS NS 0.0897 NS NS NS 

15 NS NS NS NS NS NS 

Gait Cycle 

Normalization 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0195 NS NS NS 

12 NS 0.3238 0.0081 NS NS NS 

15 NS NS 0.4835 NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0451 NS NS NS 

12 NS 0.3584 0.0118 NS NS NS 

15 NS NS 0.4379 NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0249 NS NS NS 

12 NS 0.1395 0.0037 NS NS NS 

15 NS NS 0.0897 NS NS NS 

Data Point 

Normalization 

VT 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.1395 NS NS NS 

12 NS NS 0.0639 NS NS NS 

15 NS NS NS NS NS NS 

AP 

5 NS NS NS NS NS NS 

8 NS NS NS NS NS NS 

10 NS NS 0.0716 NS NS NS 

12 NS NS 0.0316 NS NS NS 

15 NS NS 0.4379 NS NS NS 

ML 

5 NS NS NS NS NS NS 

8 < 0.0005 NS NS NS NS NS 

10 NS NS 0.2923 NS NS NS 

12 NS NS 0.0716 NS NS NS 

15 NS NS NS NS NS NS 
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Table C- 4: Effect embedding dimension on the LyE under select time delays using the W-

algorithm calculated from over-ground walking of young health adults. NS: p-values > 0.5 

Normalization 

Method 

    Dimension Pairwise Comparison (p-value) 

Dir. Tau d4-d5 d4-d6 d4-d7 d5-d6 d5-d7 d6-d7 

Raw Gait Cycles 

VT 

5 NS 0.0071 < 0.0005 NS 0.0316 NS 

8 NS 0.0118 < 0.0005 NS 0.0016 NS 

10 NS 0.0016 < 0.0005 NS < 0.0005 NS 

12 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

15 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

AP 

5 NS 0.0802 < 0.0005 NS 0.1121 NS 

8 NS 0.0639 < 0.0005 NS 0.0014 NS 

10 NS 0.0249 < 0.0005 NS < 0.0005 0.4379 

12 NS 0.0008 < 0.0005 0.1925 < 0.0005 NS 

15 NS 0.0071 < 0.0005 NS < 0.0005 NS 

ML 

5 NS 0.0037 < 0.0005 NS 0.0092 NS 

8 NS 0.0092 < 0.0005 NS 0.0012 NS 

10 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

12 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

15 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

Gait Cycle 

Normalization 

VT 

5 NS 0.0118 < 0.0005 NS 0.0152 NS 

8 NS 0.0134 < 0.0005 NS 0.0016 NS 

10 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

12 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

15 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

AP 

5 NS 0.0021 < 0.0005 NS 0.0048 NS 

8 NS < 0.0005 < 0.0005 NS 0.0007 NS 

10 NS < 0.0005 < 0.0005 NS 0.0009 NS 

12 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

15 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

ML 

5 NS 0.0316 < 0.0005 NS 0.0172 NS 

8 NS 0.022 < 0.0005 NS 0.0006 NS 

10 NS 0.0005 < 0.0005 0.3963 < 0.0005 NS 

12 NS 0.0009 < 0.0005 NS < 0.0005 NS 

15 NS 0.0016 < 0.0005 NS < 0.0005 NS 

Data Point 

Normalization 

VT 

5 NS 0.0134 < 0.0005 NS 0.0172 NS 

8 NS 0.0014 < 0.0005 NS 0.0009 NS 

10 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

12 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

15 NS 0.0007 < 0.0005 NS < 0.0005 NS 

AP 

5 NS 0.1395 < 0.0005 NS 0.0104 NS 

8 NS 0.0281 < 0.0005 NS < 0.0005 NS 

10 < 0.0005 NS < 0.0005 < 0.0005 NS < 0.0005 

12 < 0.0005 NS < 0.0005 < 0.0005 NS < 0.0005 

15 < 0.0005 NS < 0.0005 < 0.0005 NS < 0.0005 

ML 

5 NS 0.0062 < 0.0005 NS 0.0062 NS 

8 NS < 0.0005 < 0.0005 NS 0.0006 NS 

10 NS < 0.0005 < 0.0005 NS 0.0005 NS 

12 NS < 0.0005 < 0.0005 NS < 0.0005 NS 

15 NS < 0.0005 < 0.0005 NS < 0.0005 NS 
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Figure C- 5: Effect of time delay on the LyE in elderly adults using 6 algorithm-

normalization method combinations. This graphic shows the significant differences when 

two distinct time delays are compared in the AP direction. Filled in (black) boxes indicate 

significant differences and empty (white) boxes show where there are no significant 

differences between a pair of time delays. 
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Figure C- 6: Effect of time delay on the LyE in young healthy adults using 6 algorithm-

normalization method combinations. This graphic shows the significant differences when 

two distinct time delays are compared in the AP direction. Filled in (black) boxes indicate 

significant differences and empty (white) boxes show where there are no significant 

differences between a pair of time delays 
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APPROVAL: EXPEDITED REVIEW 

Thurmon Lockhart 

Biological and Health Systems Engineering, School of (BHSE) 

- 

Thurmon.Lockhart@asu.edu 

Dear Thurmon Lockhart: 

On 7/22/2017 the ASU IRB reviewed the following protocol: 

Type of Review: Initial Study  

Title: Application of Nonlinear Dynamics in Gait and 

Balance 

Investigator: Thurmon Lockhart 

IRB ID: STUDY00006518 

Category of review: (4) Noninvasive procedures, (7)(a) Behavioral 

research 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • Consent, Category: Consent Form; 

• Protocol, Category: IRB Protocol; 

• Medical History Form, Category: Measures (Survey 

questions/Interview questions /interview guides/focus 

group questions); 

• Recruitment, Category: Recruitment Materials; 

 

The IRB approved the protocol from 7/22/2017 to 7/21/2018 inclusive. Three weeks 

before 7/21/2018 you are to submit a completed Continuing Review application and 

required attachments to request continuing approval or closure.  

If continuing review approval is not granted before the expiration date of 7/21/2018 

approval of this protocol expires on that date. When consent is appropriate, you must use 

final, watermarked versions available under the “Documents” tab in ERA-IRB. 

In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5B07AC436C632709499868323F12ADC3D9%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
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IRB Administrator 

cc: Victoria Smith 

Seong Hyun Moon 

Thurmon Lockhart 

Markey Olson 

Christopher Frames 

Saba Rezvanian 

Victoria Smith 

 

  



  158 

 

APPROVAL:CONTINUATION 

Thurmon Lockhart 

Biological and Health Systems Engineering, School of (BHSE) 

- 

Thurmon.Lockhart@asu.edu 

Dear Thurmon Lockhart: 

On 6/28/2018 the ASU IRB reviewed the following protocol: 

Type of Review: Continuing Review 

Title: Application of Nonlinear Dynamics in Gait and 

Balance 

Investigator: Thurmon Lockhart 

IRB ID: STUDY00006518 

Category of review: (4) Noninvasive procedures, (7)(a) Behavioral 

research 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • Consent, Category: Consent Form; 

• Medical History Form, Category: Measures (Survey 

questions/Interview questions /interview guides/focus 

group questions); 

• Recruitment, Category: Recruitment Materials; 

• Protocol-perturbations, Category: IRB Protocol; 

 

The IRB approved the protocol from 6/28/2018 to 7/20/2019 inclusive.  Three weeks 

before 7/20/2019 you are to submit a completed Continuing Review application and 

required attachments to request continuing approval or closure.  

If continuing review approval is not granted before the expiration date of 7/20/2019 

approval of this protocol expires on that date. When consent is appropriate, you must use 

final, watermarked versions available under the “Documents” tab in ERA-IRB. 

In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
https://era.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5B07AC436C632709499868323F12ADC3D9%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
https://era.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
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IRB Administrator 

cc: Victoria Smith 

Seong Hyun Moon 

Thurmon Lockhart 

Markey Olson 

Christopher Frames 

Saba Rezvanian 

Victoria Smith 
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APPROVAL: MODIFICATION 

Thurmon Lockhart 

BHSE: Biological and Health Systems Engineering, School of 

480/965-1499 

Thurmon.Lockhart@asu.edu 

Dear Thurmon Lockhart: 

On 5/8/2019 the ASU IRB reviewed the following protocol: 

Type of Review: Modification 

Title: Application of Nonlinear Dynamics in Gait and 

Balance 

Investigator: Thurmon Lockhart 

IRB ID: STUDY00006518 

Funding: None 

Grant Title: None 

Grant ID: None 

Documents Reviewed: • Consent_subStudy1, Category: Consent Form; 

• Protocol-perturbations, Category: IRB Protocol; 

• Medical History Form, Category: Measures (Survey 

questions/Interview questions /interview guides/focus 

group questions); 

• Volunteer Ad 2, Category: Recruitment Materials; 

• Recruitment, Category: Recruitment Materials; 

• Consent, Category: Consent Form; 

 

The IRB approved the modification.  

When consent is appropriate, you must use final, watermarked versions available under 

the “Documents” tab in ERA-IRB. 

In conducting this protocol you are required to follow the requirements listed in the 

INVESTIGATOR MANUAL (HRP-103). 

Sincerely, 

IRB Administrator 

https://era4.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
https://era4.oked.asu.edu/IRB/RMConsole/Organization/OrganizationDetails?detailView=true&Company=com.webridge.account.Party%5BOID%5B07AC436C632709499868323F12ADC3D9%5D%5D
https://era4.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
https://era4.oked.asu.edu/IRB/Personalization/MyProfile?Person=com.webridge.account.Person%5BOID%5BB2DBAE99C127CA479C334D733A63C61A%5D%5D
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cc: Victoria Smith 

Seong Hyun Moon 

Thurmon Lockhart 

Markey Olson 

Christopher Frames 

Saba Rezvanian 

Victoria Smith 
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Consent Form: Bioscience 

Title of research study: Application of Nonlinear Dynamics in 
Gait and Balance 

Investigator: Thurmon E. Lockhart, Ph.D., Professor, School of 
Biological and Health Systems Engineering 

Why am I being invited to take part in a research study? 

We invite you to take part in a research study because you may be eligible for 
the research concerning the fall risk for healthy individuals. 

Why is this research being done? 

Balance is vital to being able to perform basic everyday activities such as sitting 
down, standing up, and walking. Just about everything an individual does 
physically requires balance control and most of the time this is done 
automatically without conscious attention. Posture and gait stability is a vital 
indicator of fall risk assessment.  

1. This study is being done for two reasons: 

2. To apply a new math technique to better understand the dynamics of how 

people balance and walk 

To see how balance while standing and while walking changes when a 
perturbation is given 

How long will the research last? 

We expect that individuals will spend on average 2 hours participating in the 
proposed activities. However, testing can take between one and five hours. The 
proposed activities includes walking on a treadmill and may or may not include 
wearing a headset.  

How many people will be studied? 

We expect between 25 and 500 people will participate in this research study. 

What if I say yes, I want to be in this research? 
It is up to you to decide whether or not to participate. Participation is voluntary. 

The proposed activities in this research includes walking and standing on an 
instrumented treadmill that may or may not move unexpected, as well as, you 
may or may not be asked to wear a headset during these activities. Prior to any 
testing, you will first sign this document and then fill out a medical history exam to 
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determine your eligibility for the study. The survey will take about 10-15 minutes 
to complete. If you are not eligible to participate in the study, we will thank you for 
your time and you will be free to go. If you are eligible, then we will measure your 
height and weight and proceed with testing. You will be outfitted with one or more 
sensors and reflective markers which will be used to collect data. You will then 
perform walking and standing balance trials with and without perturbations. This 
part of the protocol and take from an hour to five hours in duration depending on 
the detailed protocol that the research is using. The researcher will provide you 
with a more detailed timeline at the time of signing this consent form.   

What happens if I say yes, but I change my mind later? 

You can leave the research at any time it will not be held against you. If you stop 
being in the research, already collected data may not be removed from the study 
database.  

Is there any way being in this study could be bad for me? 

Perturbations occur in normal daily walking and by itself is not dangerous, 
however, a fall due to perturbations have a negative consequences. Since in this 
study, you will wear a fall arresting harness system that prevents you from falling 
to the ground, the risk of this experiment is very low. Although rare, bruising from 
the harness is possible. You will be given rest at regular intervals and you can 
always ask to take additional breaks. 

What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of your personal information to 
people who have a need to review this information. We cannot promise complete 
secrecy. Organizations that may inspect and copy your information include the 
IRB and other representatives of this organization. 

What else do I need to know? 

Your participation in this study is voluntary. You must be at least 18 years old 
and we ask that you wear athletic, non-reflective clothing and athletic sneakers 
for this experiment. If you are not wearing the appropriate clothing, we will 
provide a change of clothes for you to wear for the duration of the experiment.  

If you agree to participate in the study, then consent does not waive any of your 
legal rights. However, no funds have been set aside to compensate you in the 
event of injury. 

Who can I talk to? 

If you have questions, concerns, or complaints, or think the research has hurt you, 
talk to the research team at team at Arizona State University – Dr. Thurmon E. 
Lockhart, thurmon.lockhart@asu.edu, or 480-965-1499. 

mailto:thurmon.lockhart@asu.edu
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This research has been reviewed and approved by the Bioscience IRB (“IRB”). 
You may talk to them at (480) 965-6788 or research.integrity@asu.edu if: 

• Your questions, concerns, or complaints are not being answered by the 
research team. 

• You cannot reach the research team. 

• You want to talk to someone besides the research team. 

• You have questions about your rights as a research participant. 

• You want to get information or provide input about this research. 
 

Signature Block for Capable Adult 

Your signature documents your permission to take part in this research. 

   

Signature of participant  Date 

 
 

Printed name of participant 

   

Signature of person obtaining consent 
 
 

 Date 

                   Printed name of person obtaining 
consent 
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AFTER MODIFICATION APPROVAL: 

Consent Form: Bioscience 

Title of research study: Application of Nonlinear Dynamics in 
Gait and Balance 

Investigator: Thurmon E. Lockhart, Ph.D., Professor, School of 
Biological and Health Systems Engineering 

Why am I being invited to take part in a research study? 

We invite you to take part in a research study because you may be eligible for 
the research concerning the fall risk for healthy individuals. 

Why is this research being done? 

Balance is vital to being able to perform basic everyday activities such as sitting 
down, standing up, and walking. Just about everything an individual does 
physically requires balance control and most of the time this is done 
automatically without conscious attention. Posture and gait stability is a vital 
indicator of fall risk assessment. This study is being done for two reasons to 
apply a new math technique to better understand the dynamics of how people 
walk. 

How long will the research last? 

We expect that individuals will spend on average 1 hour participating in the 
proposed activities. However, testing can take between 60 and 90 minutes. The 
proposed activities includes walking on a treadmill and in a hallway.  

How many people will be studied? 

We expect between 10 and 30 people will participate in this research study. 

What happens if I say yes, I want to be in this research? 
It is up to you to decide whether or not to participate. Participation is voluntary. 

The proposed activities in this research includes walking on an instrumented 
treadmill. Prior to any testing, you will first sign this document and then fill out a 
medical history exam to determine your eligibility for the study. The survey will 
take about 5 minutes to complete. If you are not eligible to participate in the 
study, we will thank you for your time and you will be free to go. If you are 
eligible, then we will measure your height and weight and proceed with testing. 
You will be outfitted with one or more sensors and reflective markers which will 
be used to collect data. You will then walk on the treadmill for 30 minutes and 
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then a short break 2-5 minutes, as needed, will be given. Then the final task of 
walking over a level plane (hallway) for 3 minutes will be performed.   

What happens if I say yes, but I change my mind later? 

You can leave the research at any time it will not be held against you. If you stop 
being in the research, already collected data may not be removed from the study 
database.  

Is there any way being in this study could be bad for me? 

This study does not have any added risks than if the participant was walking on a 
regular treadmill. This treadmill has additional safety measures, such as stopping 
if an individual walks too close to the front or back of the treadmill.  

What happens to the information collected for the research? 

Efforts will be made to limit the use and disclosure of your personal information to 
people who have a need to review this information. We cannot promise complete 
secrecy. Organizations that may inspect and copy your information include the 
IRB and other representatives of this organization. 

What else do I need to know? 

Your participation in this study is voluntary. You must be at least 18 years old 
and we ask that you wear athletic, non-reflective clothing and athletic sneakers 
for this experiment. If you are not wearing the appropriate clothing, we will 
provide a change of clothes for you to wear for the duration of the experiment or 
we will reschedule your participation to a later date when you are wearing 
appropriate clothing.  

If you agree to participate in the study, then consent does not waive any of your 
legal rights. However, no funds have been set aside to compensate you in the 
event of injury. 

Who can I talk to? 

If you have questions, concerns, or complaints, or think the research has hurt you, 
talk to the research team at team at Arizona State University – Dr. Thurmon E. 
Lockhart, thurmon.lockhart@asu.edu, or 480-965-1499. 

This research has been reviewed and approved by the Bioscience IRB (“IRB”). 
You may talk to them at (480) 965-6788 or research.integrity@asu.edu if: 

• Your questions, concerns, or complaints are not being answered by the 
research team. 

• You cannot reach the research team. 

mailto:thurmon.lockhart@asu.edu
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• You want to talk to someone besides the research team. 

• You have questions about your rights as a research participant. 

• You want to get information or provide input about this research. 
 
Signature Block for Capable Adult 

Your signature documents your permission to take part in this research. 

   

Signature of participant  Date 

 
 

Printed name of participant 

   

Signature of person obtaining consent 
 
 

 Date 

                   Printed name of person obtaining 
consent 
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