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ABSTRACT

In the first chapter, I study the two-sided, dynamic matching problem that occurs

in the United States (US) foster care system. In this market, foster parents and

foster children can form reversible foster matches, which may disrupt, continue in a

reversible state, or transition into permanency via adoption. I first present an empiri-

cal analysis that yields four new stylized facts related to match transitions of children

in foster care and their exit through adoption. Thereafter, I develop a two-sided dy-

namic matching model with five key features: (a) children are heterogeneous (with

and without a disability), (b) children must be foster matched before being adopted,

(c) children search for parents while foster matched to another parent, (d) parents

receive a smaller per-period payoff when adopting than fostering (capturing the pres-

ence of a financial penalty on adoption), and (e) matches differ in their quality. I use

the model to derive conditions for the stylized facts to arise in equilibrium and carry

out predictions regarding match quality. The main insight is that the intrinsic dis-

advantage (being less preferred by foster parents) faced by children with a disability

exacerbates due to the penalty. Moreover, I show that foster parents in high-quality

matches (relative to foster parents in low-quality matches) might have fewer incen-

tives to adopt.

In the second chapter, I study the Minnesota’s 2015 Northstar Care Program which

eliminated the adoption penalty (i.e., the decrease in fostering-based financial trans-

fers associated with adoption) for children aged six and older, while maintaining it

for children under age six. Using a differences-in-differences estimation strategy that

controls for a rich set of covariates, I find that parents were responsive to the change

in direct financial payments; the annual adoption rate of older foster children (aged

six to eleven) increased by approximately 8 percentage points (24% at the mean) as

a result of the program. I additionally find evidence of strategic adoption behavior as
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the adoption rate of younger children temporarily increased by 9 percentage points

(23% at the mean) while the adoption rate of the oldest children (aged fifteen) tem-

porarily decreased by 9 percentage points (65% at the mean) in the year prior to the

program’s implementation.
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Chapter 1

FOSTER CARE: A DYNAMIC MATCHING APPROACH

1.1 Introduction

Each year more than a half-million children spend at least one day in the US

foster care system, a federal program that costs taxpayers almost US$30 billion dollars

annually. The foster care system provides out-of-home care for children removed from

their homes due to abuse, maltreatment, neglect, or other reasons.1 While in foster

care, children are placed in foster family homes or institutional care and can be moved

from one foster home to another or from a foster home to institutional care.2 The

stay in foster care is meant to be temporary until children can reunite with their

birth families, but when reunification is not possible, children are relinquished for

adoption.3 In practice, each year, close to 18% of children in foster care are at risk of

experience long-term care if they are not adopted. In fact, more than 20, 000 children

leave foster care each year without an adoptive family, and out of those children, less

than 3% will earn a college degree, and almost 20% will become homeless.4

1A child can enter foster care for several reasons such as sexual or physical abuse, parents’

drug or alcohol addictions, parents’ incarceration, parents’ inability to provide care, parents’ death,

inadequate housing, abandonment, child’s behavioral problem, child’s drug addiction, or child’s

alcohol addiction.
2Foster homes are private homes licensed to provide 24-hour care for children in a family-based

environment. Institutional care are licensed facilities that provide 24-hour care for several children at

once (groups from seven to twenty), and it includes group homes, shelter care, and other institutions.
3By federal law, if a child has been in foster care for at least 15 of the last 22 months, the

process to terminate her parental rights must be started immediately. Further, a judge can decide

to terminate parental rights at any moment in time if it is in the best interest of the child.
4Source: National Foster Youth Institute.
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Foster care can be viewed as a two-sided matching market, where foster parents

have preferences over children, and social workers have preferences over foster par-

ents (on behalf of children). In this market, foster parents and foster children can

form reversible foster matches, which may disrupt, continue in a reversible state, or

transition into permanency via adoption. Moreover, foster parents and foster children

meet randomly over time, making matching decisions inherently dynamic. A crucial

aspect of this environment is that foster matches are reversible, and so agents not

only decide with whom to form a match but also which matches to disrupt. This

introduces a new feature in the match decision process (absent in environments with

only irreversible matches): agents must take into account that a partner might leave

the foster match in the future.

For policymakers, the main concerns regarding the foster care system are match

disruptions and permanency via adoption. First, research has shown that match dis-

ruptions have adverse effects on children, and it has become a priority for child welfare

agencies to limit the match disruptions experienced by children.5 And, since evidence

suggests that adoption is a better alternative than long-term foster care, policymak-

ers had made significant efforts to increase the adoption rates of children through

major federal policies.6 However, my results suggest that limiting match disruptions

might be counterproductive for the adoption goal: parents have incentives to foster a

child indefinitely (without adopting) due to the presence of a financial penalty. First,

the monthly payments received by parents (from the state child welfare agency) are

5Match disruptions experienced by children is part of the national outcome standards used by

federal agencies to monitor the state’s performance.
6The Adoption and Safe Families Act of 1997 (ASFA), created the Adoption Incentive Program,

which establishes performance bonuses to states that increase the adoption of children. The perfor-

mance bonuses consisted of US$4,000 dollars per child plus an additional US$2,000 if the child has

special needs (including disability). Later on, the Increasing Adoptions Act of 2008 increased the

extra bonus to US$4,000 if the child has special needs.
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lower as an adoptive parent than as a foster parent and often fall to zero. Second,

parents are responsible for the medical and educational expenditures of adopted chil-

dren. Thus, parents face the following trade-off when deciding to adopt: accept the

adoption penalty in exchange for eliminating the likelihood that the child disrupts the

match in the future. Hence, match disruptions play a crucial role in adoption by influ-

encing the incentives of foster parents to adopt. The empirical literature supports this

intuition; Argys and Duncan (2012) show that when the difference between the foster

and adoption monthly payments decreases, the probability of adoption increases.

From a policy perspective, it is crucial to understand why certain children are

more likely to have their matches disrupted and why certain children are less likely to

be adopted. Besides, the presence of the adoption penalty might have a different effect

on certain children, and it might influence the type of matches that transit to adoption

(in terms of match quality). I distinguish children by whether they have a disability

and study how this affects match disruption and adoption. I focus on disability for two

reasons. First, most of the efforts made to increase adoption target children with a

disability. Second, the adoption penalty might be higher for children with a disability

as parents are responsible for potentially higher medical expenditures. Nevertheless,

the model can be used to study the effect of other observable characteristics of the

child, such as gender, race, and ethnicity.

This paper studies both, theoretically and empirically, the two-sided dynamic

matching problem that occurs in the US foster care system. First, I present an

empirical analysis that yields four new stylized facts related to match transitions of

children in foster care and their exit through adoption. Second, I develop a two-sided

dynamic matching model to disentangle the driving forces behind the stylized facts

and derived other equilibrium properties. The main finding is that the presence of the

financial penalty on adoption exacerbates the intrinsic disadvantage faced by children

3



with a disability (being less preferred by parents), and it also creates incentives for

high-quality matches to not transit from a reversible fostering to adoption.

Using a rich panel dataset, describing the universe of children relinquished for

adoption in the US foster care system over the period 2010 to 2016, I document the

following stylized facts: (1) the presence of a disability decreases the probability that

a child transits to permanency via adoption (becomes adoption matched), (2) the

presence of a disability increases the probability that a foster placement is disrupted

(foster match disruption), (3) the presence of a disability decreases the probability

that a child transits from institutional care to a foster home (becomes foster matched),

and (4) the presence of a disability increases the probability that a child transits from

a foster home to institutional care (becomes unmatched).

To analyze how different forces interact in the agents’ decisions of forming a foster

match, disrupting a foster match, and transiting to permanency via adoption, I de-

velop a dynamic matching model with search frictions (it takes time to find a match)

and non-transferable utility (transfers are exogenously given). Children and parents

can form two types of matches: foster (reversible) or adoption (irreversible). The set-

ting assumes that (a) children are heterogeneous (with and without a disability), (b)

agents must be foster matched before forming an adoption match, (c) parents receive

a smaller per-period payoff when adoption matched than when foster matched, and

(d) matches differ in their quality. Children and parents prefer matches of higher

quality, and parents prefer children without a disability to children with a disability.

The timing is as follows. Every period, when a child (unmatched or foster matched)

and parent meet (unmatched only), agents draw a match quality. Before deciding

whether to form a foster match, they observe only a noisy signal about this quality.

A foster match forms if and only if both accept. If a new foster match forms, any old

foster match dissolves. The uncertainty about the quality resolves once foster match
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forms, and it remains constant throughout the match. After observing the match

quality, agents decide whether to destroy the foster match (and become unmatched),

transit to an adoption match, or remain foster matched.

The model allows me to disentangle the driving forces behind the aforementioned

stylized facts. More concretely, I establish sufficient conditions on primitives for

these facts to emerge in equilibrium. One of the key features captured by the model

is that a foster disruption can be the result of a destruction (child and parent become

unmatched after the uncertainty resolves), or it can be the result of a dissolution (child

forms a new foster match). Thus, foster match disruptions allow agents to avoid ‘bad

matches’, and more importantly, it enables children to search for ‘better matches’

while in a foster environment. Concerning the child’s observable characteristics, I

find that foster disruptions involving children with a disability are mainly driven by

destruction due to the uncertainty on the quality of the match, while foster disruptions

affecting children without a disability are driven mostly by dissolution to improve the

match quality. Moreover, I show that the increase in the probability of foster match

disruption due to a disability (stylized fact 2) depends on two driving forces working

in opposite directions. On the one hand, children with a disability are more likely

(relative to children without a disability) to have a foster match destroyed, which

itself makes them more likely to disrupt. On the other hand, I find that children with

a disability are less likely (relative to children without a disability) to dissolve a foster

match, which itself makes them less likely to disrupt. Hence, stylized fact 2 suggests

that the former driving force prevails.

Another important insight of the model is that the decrease in the probability of

becoming adoption matched due to a disability (stylized fact 1) arises for two reasons.

First, I show that children with a disability are less likely to form a foster match

because foster parents require higher signals to be willing to form a foster match with
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them. Second, parents foster matched to these children (relative to parents foster

matched to children without a disability) have a greater incentive to remain in the

reversible foster match and not transit to adoption. The reason is that the adoption

penalty for children with a disability is higher, and the likelihood that they dissolve

the match in the future is lower. Thus, the intrinsic disadvantage (being less preferred

by foster parents) faced by children with a disability exacerbates in the presence of

the adoption penalty.

Furthermore, the model allows me to obtain additional predictions that contribute

to understanding the mechanics behind the match transitions and adoption of chil-

dren. In particular, I analyze the impact of match quality on the probability of foster

match disruption, the probability of becoming unmatched, and the probability of

becoming adoption matched. Concerning foster match disruptions, I find that high-

quality matches are less likely to disrupt. In this case, the driving forces of destruction

and dissolution are aligned. Both the probability of destruction and the probability

of dissolution are decreasing in the match quality. Surprisingly, I find that parents

in high-quality matches might have fewer incentives to adopt. The result is driven

by the fact that children in foster matches of high-quality have fewer incentives to

dissolve the foster match in the future. Hence, the adoption penalty not only exacer-

bates the intrinsic disadvantage faced by children with a disability, but it also creates

incentives for high-quality matches to not transit to adoption.

Related Literature. As a first attempt to analyze the foster care system, this pa-

per contributes to the literature on dynamic matching and research on foster care.

Most of the literature on dynamic matching with heterogeneous agents, analyze en-

vironments where matches do not reverse endogenously. Under this assumption, the

literature has addressed issues regarding stability [Doval (2019)], matching algorithms

and its implications on welfare [Üner (2010), Anderson et. al. (2015), Leshno (2017),
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Akbarpour et.al. (2019), Baccara et. al. (2019)], and positive assortative matching

[Burdett and Coles (1997), Eeckhout (1999), Shimer and Smith (2000), Chade (2001),

Chade (2006), Smith (2006)]. In these papers, agents face the trade-off of whether

form a match today or wait for a better partner. Now, if agents are allowed to form

a match today and reverse it when a better partner arrives, an additional feature

arises. In the presence of reversibility, agents must take into account that today’s

partner and the potential better partner of tomorrow might leave the match in the

future. There is a small literature analyzing dynamic matching environments with re-

versibility of matches, but the focus is on stability and cooperative solution concepts

[Damiano and Lam (2005), Kurino (2009), Kadam and Kotowski (2018), Liu (2018)].

This paper is more related to the literature on positive assortative matching ana-

lyzing two-sided markets with search frictions, heterogeneous agents, and irreversible

matches. My project differs from the sorting research in two dimensions. First, I allow

for irreversible and reversible matches. Second, instead of addressing positive sorting,

I estimate stylized facts present on the market and establish sufficient conditions for

these patterns to arise in equilibrium.

Regarding foster care, there is a vast literature analyzing the effect of children’

characteristics on, placement disruption and adoption using a reduced-form approach

[Wulczyn et.al. (2003), James (2004), Courtney and Wong (1996), Barth (1997),

Snowden et. al. (2008)]. A few papers are studying the effect of the number of

placements on adoption from a quantitative perspective. The results are ambiguous.

Some studies found that the number of placements does not affect the probability

of being adopted [Potter and Klein-Rothschild (2002), Park and Ryan (2009)]. On

the contrary, other studies show that the number of placements negatively affect

adoption [Smith (2003), Akin (2011)]. This paper contributes by proving a theoretical

environment that analyzes how different forces interact in the agents’ decisions of
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forming a foster-match, disrupting a foster-match, and transiting to permanency via

adoption.

1.2 Background: Foster Care in the US

1.2.1 Overview

The foster care program is authorized by title IV-E of the Social Security Act and

implemented under the Code of Federal Regulations. All states are eligible to partici-

pate in the program and receive federal funding. According to Rosinsky and Connelly

(2016), the national spending on child welfare in 2014 was approximately $29.1 bil-

lion dollars, out of which $12.8 billion was federally funded, and the remaining was

financed directly by states.7 In practice, 47% of the national spending was destined

to out-of-home placement expenditure, including monthly payments to foster par-

ents and their training; and 17% was intended to finance adoption and guardianship

programs, including monthly payments to adoptive parents and adoption fees.

Researchers and child welfare agencies have focused their attention on three sig-

nificant issues: children’s placements while in foster care, children’ exit from foster

care through adoption, and placement disruption.

Foster Homes and Institutional Care. Foster parents provide the highest source

of out-of-home care.8 For example, at the end of the federal fiscal year of 2014, the

number of children in foster care was 415,129, out of which 79% were placed with

7Federal fund sources include Title IV-E and Title IV-B of the Social Security Act, Medicaid,

Social Services Block Grant, Temporary Assistance for Needy Families, and other federal grants and

awards.
8Foster homes are divided in relative and non-relative. In a relative foster home, the foster parent

is a relative or someone with a prior connection to the child who joins the program to care for a

particular child. In a non-relative foster-home, the foster parent joins the program without prior

connection to any child and later on is matched to a child to care for.
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foster parents, and 14% were placed in institutional care [U.S. DHHS (2014)]. Fed-

eral and state child welfare agencies have a strong preference for foster homes over

institutional care. Furthermore, the Adoption Assistance and Child Welfare Act of

1980 (AACWA) requires children to be placed in the most family-like placement when

possible. Research supports this preference. On the one hand, evidence shows that

institutional care is between six to ten times more expensive than foster family homes

[Barth (2002)]. Furthermore, research suggests that children placed with foster par-

ents exhibit better short and long-run outcomes. In particular, children placed in

institutional care have lower academic outcomes, lower levels of education, higher

risk to engage in delinquent behavior, and a higher risk of criminal convictions when

adults [Berrick et. al. (1993), Mech. et. al. (1994), Ryan et. al. (2008), Dregan and

Gulliford (2012)]. In conclusion, institutional care is not only more expensive but

also unable to support the healthy development of children.

Adoption and Long-term Care. At the end of the federal fiscal year of 2014,

18% of children in foster care had their parental rights terminated and waited to be

adopted, out of which 41% were adopted [U.S. DHHS (2014)]. Research suggests

that adoption is a better alternative to long-term care. First, maintaining a child in

long-term care is more expensive than adoption [Barth (1993), Barth et. al. (2006),

Hansen (2008)]. Second, adoption generates better outcomes for children. For exam-

ple, Triseliotis (2002) and Hansen (2008) show that children who are adopted exhibit

better social and educational outcomes. Since adoption from foster care is a major

concern for policy markets, laws have been enacted to increase adoption. In partic-

ular, AACWA created the Adoption Assistance Program, which mandates states to

make adoption assistance payments to parents who adopt children with special needs,

including disability.9

9AACWA states that ‘a child with special needs is a child who: can not be returned to her birth-
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Placement Disruption. Research shows that an increase in the number of place-

ments can delay academic skills formation, increase problematic behavior among chil-

dren, and increase the risk of delinquency among male children [Zima et. al. (2000),

Newton et. al. (2000), Ryan and Testa (2005)]. At the end of the federal fiscal year

of 2014, children exhibited in average 2.7 placements for a single foster care episode.10

This is above the ideal number set by the Children’s Bureau that defines adequate

placement stability as limiting the number of placements for a child to no more than

two for a single foster care episode. This paper focuses on the role that placement

disruption plays on adoption, which has not been addressed in the literature.

1.2.2 Matching Process

Foster care is conducted and administered at the state level by Child Protective

Services (CPS).11 When an allegation concerning a child’s well-being is received, CPS

assigns a social worker to the case and initiates an investigation. If sufficient evidence

supporting an accusation is found, the case is presented to a juvenile or family court,

where a judge decides whether the child is removed from her birth-family home and

placed in foster care.12

In most states, decisions concerning children’ placements are made by social work-

ers.13 On behalf of a child, the social worker (a) searches and contacts foster parents,

family home, has a special condition such that the child can not be placed for adoption without

providing assistance, and has not been able to be placed for adoption without assistance’.
10A child can enter foster care multiple times, each time a child enters foster care is a different

foster care episode.
11Also known as Department of Children and Families, Department of Children and Family Ser-

vices or Department of Human Services.
12If the social worker believes that the child is in serious or imminent danger; she is allowed to

execute an emergency removal without the court’s approval. Yet, the decision must be later on

approved by the judge.
13In a small fraction of states, placement decisions are made by judges from juvenile or family
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(b) arranges a meeting between the foster parent and child in order to obtain informa-

tion of whether the foster parent is a good fit for the child, and (c) decides where to

place the child. A placement in a foster home must be mutually agreed upon between

the foster parent and social worker. The social worker can switch a child from one

foster home to another or from a foster home to institutional care. Similarly, foster

parents can request the child’s removal from their home. Adoptions must be mutually

agreed upon between the foster parent and social worker. Once the child is adopted,

she exits foster care. It is essential to mention that an increasing number of states

require parents to foster a child before adopting.14

Foster parents must hold a license to provide care for children. The licensing

process includes a home study and training requirements. The home study ensures

that the foster parent’s house is clean, in good condition, and free from danger. The

initial training (15 to 30 hours of mandatory classes) addresses topics such as agency

policies and procedures, roles and responsibilities of foster parents, and behavior

management. Also, most states require ongoing post-training to maintain the license.

Foster parents receive financial transfers when a child is placed on their care,

which differ on whether the parent is fostering or adopting. While in foster, the

parent receives financial payments for the duration of the placement. If the child is

adopted, the parent gets monthly financial payments until the child reaches at least 18

years old. Each state has its payment scheme, but as a rule-of-thumb, foster parents

who provide care for a child with higher needs receive higher payments and adoption

payments are lower than foster payments.15

courts.
14For example, some states mandate that the child must reside in the foster home for at least six

months before foster parents can adopt.
15For more detail on payment schemes, see DeVooght, K. and Blazey, D. (2013)
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1.3 Empirical Analysis

In this section, I motivate the key features of the two-sided dynamic matching

model described in the next section with empirical analysis. Using data describing

the universe of children in the US foster care system over the period 2010 to 2016, I

document four new stylized facts about the matching process between foster children

and foster parents.

1.3.1 Data and Descriptive Statistics

I use the 6-month Foster Care File from AFCARS,16 which contains an unbalanced

panel of all children in foster care (all fifty US states and the District of Columbia)

between the federal fiscal years of 2010 and 2016.

The data track a child upon entry into the foster care system until the child exits

the system, which could be due to reunification with birth parents or other relatives,

adoption, emancipation, guardianship, transfer to another agency, runaway, or death.

If a child exits foster care, both the exit manner and date of exit are indicated. The

data additionally include a rich set of variables describing the child,17 such as gender,

race, ethnicity, disability, whether the child is federally funded by Title IV-E,18, date

of birth, date of most recent entry into foster care, and date of termination of parental

rights (if applicable). To protect the confidentiality of the child, the date of birth is

set to the 15th of the month and all dates are recoded to maintain consistent spans

16Adoption and Foster Care Analysis and Reporting System (AFCARS) is a federally mandated

data collection system. States are required to collect data on all children in foster care and all

children adopted from foster care. This dataset was made available by the National Data Archive

on Child Abuse and Neglect at Cornell University.
17Following Buckles (2013) and Brehm (2017), for all demographics I use the most recent record

of each child since it updates all information.
18Title IV-E is a federal program through which states receive reimbursement of payments made

on behalf of eligible children.
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of time. The disability variable, which is the focus of my empirical analysis, indicates

whether a child has been clinically diagnosed with a disability, clinically diagnosed

without a disability, or not yet diagnosed.19 I define disability as follows: a child

has a disability if she has been clinically diagnosed with at least one disability, and a

child has no disability otherwise.

For each period (semester in the data) that a child remains in foster care, the

data provide specific information about the last placement of the child during that

period, including the start date of the placement. These placements are classified

as: pre-adoptive home, non-relative foster home, relative foster home, group home,

institution, supervised independent living, and runaway. Using these variables, I

define a child as being foster matched in a given period if the child is placed in a

pre-adoptive home, a non-relative foster home, or a relative foster home.20 I define a

child as being unmatched in a given period if the child is placed in a group home

or institution.

To maintain a consistent estimation sample, I restrict the sample to children

younger than age 16 whose parental rights have been terminated. The latter restric-

tion is to ensure that children are eligible for adoption, and the former excludes older

children who often exit through legal emancipation. I also restrict the sample to chil-

dren who are either foster matched or unmatched. This leaves a full sample of 451, 967

children (sample A). Besides, I create two subsamples. The first subsample (sample

B) keeps only those child-period observations such that the child is foster matched

at the beginning of the period and still in foster care at the end of the period. The

second subsample (sample C) keeps only those child-period observations such that

19A child can be diagnosed with more than one disability; unfortunately data do not allow to

quantify either the number of disabilities nor the severity.
20It is important to mention that foster parents are not identifiable; when a child is placed in a

foster home only family structure, foster parents’ race and foster parents’ year of birth are reported.
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the child is unmatched at the beginning of the period and still in foster care at the

end of the period. Table 2.2 presents summary statistics for the full sample and the

two subsamples. Appendix table A1 presents these summary statistics conditioned

on, the variable of interest, child’s disability.

In table 2.2 (sample A), children are, on average, almost 7 years old and have

had their parental rights terminated for 17 months. Out of all children, 41 percent

have been diagnosed with a disability. In a given period, 93 percent of children are

foster matched, with the average duration of that match being 16 months. I say a

child becomes adoption matched if she exits the system through adoption. On

average, 28 percent of children become adoption matched in each period. I say a child

becomes unmatched if conditional on being foster matched at the beginning of a

period she is unmatched at the end of the same period. Conditional on starting the

period foster matched (sample B), the probability that a child becomes unmatched

is 2 percent. Now, I say a child becomes foster matched if conditional on being

unmatched at the beginning of a period she is foster matched at the end of the same

period. Conditional on starting the period unmatched (sample C), the probability

that a child becomes foster matched is 24 percent. It is important to highlight that

the probabilities at which children become foster matched or unmatched are affected

by the rates at which foster matches are disrupted. I say a child’s foster match

disrupts if conditional on being foster matched at the beginning of a period the

child is no longer foster matched to the same parent at the end of the period.21 Table

2.2 (sample B) shows that foster matches disrupt with probability 19 percent. In

practice, a disruption can arise for different reasons such as the social worker decides

to move the child to institutional care, the parent requests the removal of the child,

21Even though, foster parents are not identifiable, a variable recording the number of placements

allows me to identify whether the child is being fostered by the same parent.
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or the social worker finds a more suitable foster parent for the child and decides to

move the child. Unfortunately, the dataset does not contain this information.

To evaluate these transitions conditional on the child’s demographics, I specify an

econometric framework in the next subsection that will provide a set of stylized facts

that will motivate the key features of the two-sided dynamic matching model develop

in section 1.4.

1.3.2 Empirical Specifications and Stylized Facts

I estimate the effect of disability on four outcomes: (a) the probability that a child

becomes adoption matched, (b) the probability that a foster match disrupts, (c) the

probability that a child becomes foster matched, and (d) the probability that a child

becomes unmatched. For each outcome, I estimate the following linear probability

model:

yijt = α + γ disabilityi + βXi + θZit + ξj + λt + εijt (1.1)

where yijt is an indicator for the outcome of child i in state j at period t. disabilityi

is an indicator equal to one if child i has been clinically diagnosed with at least one

disability and zero otherwise. Xi is a vector of time-invariant characteristics of child

i such as gender, race, ethnicity, and whether the child is federally funded through

Title IV-E. Zit is a vector of time-varying characteristics of child i including age in

months, number of months in foster care, and number of months since parental rights

have been terminated. I include a vector of state fixed-effects, ξj, to control for un-

observed state characteristics and a vector of period fixed-effects, λt, to control for

time-trends.

Stylized Fact 1: Disability Decreases the Probability of Becoming Adop-

tion Matched. From the data, the rates of adoption match formation of children

with and without a disability are 0.22 and 0.32, respectively (see Table A1). To eval-

15



uate whether this effect is significant conditional on other demographics, I use sample

A to estimate equation (1.1) where the dependent variable yijt is equal to one if child

i in state j is adopted in period t and zero if she either remains in foster care or exits

through any other manner. Table 2.3 column 1 shows that children with a disability

are less likely to become adoption matched than children without a disability. Specif-

ically, I find that disability decreases the probability of becoming adoption matched

by nearly 6 percent.

As many states require parents to foster a child before an adoption can take place,

the fact that children with a disability are less likely to become adoption matched

might be driven by the fact that these children are less likely to be foster matched

in the first place. To analyze this, I estimate a version of equation (1.1) where the

dependent variable yijt is redefined to take the value of one if child i in state j is foster

matched in period t and zero otherwise. As in adoption, the coefficient on disability

is negative (Table 2.3 column 2). While this is suggestive, the theoretical model will

allow me to identify separately, the effect of being foster matched and the effect of

transiting from a foster match to an adoption match, on the total probability of be-

ing adopted. Specifically, the model will show that children with a disability are less

likely to become adoption matched not only because they are less likely to be foster

matched, but they are also less likely to transit from a foster match to an adoption

match.

Stylized Fact 2: Disability Increases the Probability of Foster Match Dis-

ruption. From the data, foster matches constituted by children with and without a

disability disrupt at rates 0.19 and 0.18, respectively (see Table A1). Using sample

B, I estimate equation (1.1) where the dependent variable yijt is equal to one if child

i in state j has her foster match disrupted in period t and zero otherwise. Here,

the vector Zit includes the number of months that the child has been in her current
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foster match and what type of foster match it is (i.e., whether a pre-adoptive home,

non-relative foster home or relative foster home).

Table 2.3 column 3 shows that children with a disability are more likely to have

their foster match disrupted than children without a disability. Specifically, I find

that disability increases the probability of disrupting a foster match by more than

2 percent. Even though, the dataset does not allow to identify the reason of the

disruption, the theoretical model will separately identify two types of disruptions: the

child transits from foster matched to unmatched (from foster home to institutional

care), and the child transits from a foster match to another foster match (from foster

home to foster home). In the former case, I say the foster match is destroyed, and in

the latter case, I say the foster match is dissolved. The theoretical model will show

that these two forces behind disruptions work on opposition directions since children

with a disability are more likely to destroy but less likely to dissolve.

Stylized Fact 3: Disability Decreases the Probability of Becoming Foster

Matched. From the data, the rates of foster match formation (conditional on starting

the period unmatched) of children with and without a disability are 0.22 and 0.28,

respectively (see Table A1). To study the effect of disability on the probability of

becoming foster matched, I use sample C to estimate equation (1.1) where a dependent

variable yijt equal one indicates that child i in state j becomes foster matched in period

t and zero otherwise. In this specification, the vector Zit now additionally includes

the number of months that the child has been in her current unmatched state and

where she is currently living (i.e., whether a group home or institution).

Table 2.3 column 4 shows that disability decreases the probability of becoming

foster matched by 5 percent. That is, children with a disability are less likely to

become foster matched than children without a disability. The theoretical model will

show that this probability is driven by the fact that disability decreases the probabil-
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ity that a child finds a parent willing to foster her, and if they do, disability increases

the probability that the foster match is later on destroyed.

Stylized Fact 4: Disability Increases the Probability of Becoming Un-

matched. From the data, the rates of unmatched formation (conditional on starting

the period foster matched) of children with and without a disability are 0.03 and 0.01,

respectively (see Table A1). Here I use sample B to estimate equation (1.1) where a

dependent variable yijt equal one indicates child i in state j becomes unmatched in

period t and zero otherwise. As in the previous estimation, Zit includes the number

of months that the child has been in her current foster match and the type of foster

match.

As we can see from Table 2.3 column 5, disability increases the probability of be-

coming unmatched. In the theoretical model, the probability of becoming unmatched

will depend on the rate at which foster matches disrupt and the probability that a

child finds a parent willing to foster her. Thus, behind this stylized, there are driving

forces working on opposite directions, as in the case of disruptions.

Other Demographics. Table A2 exhibits the complete results of all regressions.

The effect of one more year of age is the same (in terms of sign) to the effect of a

disability. Similarly, being a male has a similar pattern to disability, except that it

decreases the probability of disruption. Now, an interesting result is that the proba-

bility of becoming adoption matched is decreasing in the length of time that a child

remains in foster care since her parental rights have been terminated. This is very

similar to the documented evidence relating to unemployment spells and job finding

rates. On the one hand, the child’s behavior might become ‘more difficult’ the longer

she stays in foster care, searching for an adoptive family. On the other hand, parents

might interpret a long wait as a signal that those children might be ‘difficult’. As
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future research, it would be interesting to build a model incorporating these features

and analyze these two effects.

1.4 Model

In this section, I develop a two-sided dynamic matching model to analyze how

different forces interact in the agents’ decisions of forming a foster match, disrupting

a foster match, and forming an adoption match. Later on, I will use the model to

show that some of the stylized facts estimated in the previous section are driven by

forces working in opposite directions. Also, I will also obtain predictions regarding

match quality.

Time t is discrete with an infinite-horizon. One side of the market is populated by

children who differ in an observable attribute x ∈ X = {x1, x2} where x1 denotes a

child with a disability, x2 indicates a child without a disability, and x1 < x2.22 Each

period, a strictly positive mass of children ρ enters the market and each child draws

an attribute from a full support probability distribution l : X → [0, 1]. The other side

of the market is constituted by homogeneous parents. Every period, parents make

entry/exit decisions and the mass of parents out of the market is strictly positive. I

refer to a child as ‘she’ and a parent as ‘he’.

Children and parents who are in the market can be unmatched or matched. Let

up ≥ 0 denote the endogenous distribution of unmatched parents in the market, and

uc : X → R+ denote the endogenous distribution of unmatched children in the market.

Matches are formed between children and parents, one-to-one, and heterogeneous in

22Even though social workers decide on behalf of children, I assume that children make their own

decisions. The assumption behind this is that children and social workers have the same preferences.

The drawback is that the model abstracts from any private incentives that social workers might have,

yet given that social workers are trained to ensure children’ well-being, it seems like a reasonable

assumption to begin with.
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their match quality denoted as q ∈ Q = {q1, q2, ..., qN} where q1 < q2 < ... < qN .23

Further, I define two types of matches: foster matches (reversible) and adoption

matches (irreversible). Agents who form a foster match (hereafter f-match) remain

in the market, while agents who form an adoption match (hereafter a-match) leave

the market. Hence, I define an endogenous distribution over f-matches denoted as

m : X × Q → R+ where m(x, q) is the time invariant mass of f-matches of quality q

involving a child x. Thus, the aggregate state of the economy is summarized by the

triple φ = (up, uc,m).

All agents are risk-neutral and discount future at rate β ∈ (0, 1). Payoffs for

unmatched children are normalized to zero. For children who are f-matched or a-

matched, payoffs are given by the real-valued function bc(x, q, z) where z ∈ {0, 1},

z = 0 indicates an f-match, and z = 1 indicates an a-match. I denote bc(x, q, 0) and

bc(x, q, 1) as bc(x, q) and bca(x, q), respectively. I assume that children’ payoff function

satisfies the following properties:

Assumption 1 (Children’ payoffs). (a) bca(x, q) > bc(x, q) ≥ 0 for all (x, q); (b) bc(x, q)

and bca(x, q) are decreasing in x for all q; (c) bc(x, q) and bca(x, q) are increasing in

q for all x; (d) bc(x, q′) > bca(x, q) whenever q′ > q for all x; (e) bc(x, q, z) is su-

permodular in (x, z) for all q; (f) bc(x, q, z) is submodular in (x, q) for all z; and

(g) bc(x1, q
′)− bca(x1, q) > bc(x2, q

′)− bca(x2, q) whenever q′ > q.

Assumption 1(a) captures that children are better-off with a foster parent than

in institutional care, and better-off when adopted than fostered. 1(b) reflects that

children with a disability benefit more from the family environment and emotional

stability provided by foster and adoption. The intuition that children are better-off

23Match quality captures other factors affecting the match independent of the child’s attribute,

such as the emotional bond between the child and parent, and the relationship between the parent

and the child’s birth family.
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in high-quality matches is addressed in 1(c). Assumption 1(d) states that children

prefer to be f-matched when the quality is high than a-matched when the quality is

low. 1(e) imposes that the gain of being adopted is greater for children without a

disability, and 1(f) captures that the gain of being in high-quality matches is greater

for children with a disability. Lastly, assumption 1(g) implies that the gain of being

in an f-match of high-quality versus being in an a-match of low-quality is geater for

children with a disability.

Payoffs for parents out of the market are normalized to zero. Parents incur on

a per-period cost k > 0 to hold a license and stay in the market. Parents who

are f-matched or a-matched receive payoffs according to the real-valued functions

ϕ(x, q, z) and τ(x, z) representing the preferences of parents over children and the

financial transfers received (in utility units) from the child welfare agency, respectively.

Additionally, I define a net payoff function bp(x, q, z) as follows:

bp(x, q, z) =


ϕ(x, q, z) + τ(x, z)− k if z = 0

ϕ(x, q, z) + τ(x, z) if z = 1

where bp(x, q, 0) and bp(x, q, 1) are denoted as bp(x, q) and bpa(x, q), respectively. The

analogous follows for functions ϕ and τ . Moreover, I assume that the parents’ net

payoff function satisfies the following properties:

Assumption 2 (Parents’ payoffs). (a) bp(x, q) > bpa(x, q) for all (x, q); (b) bp(x, q)

and bpa(x, q) are increasing in x for all q; (c) bp(x, q) and bpa(x, q) are increasing in

q for all x; (d) bp(x, q, z) is log-supermodular in (x, z) for all q; and (e) bp(x, q, z) is

log-submodular in (q, z) for all x.

Assumption 2(a) reflects the presence of the adoption penalty. 2(b) captures the

intuition that parents prefer children without a disability to children with a disabil-

ity. 2(c) reflects that parents in high-quality matches benefit more from fostering or
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adopting than parents in low-quality matches. Now, the term 1− bpa(x,q)
bp(x,q)

represents the

adoption penalty. Assumption 2(d) captures that the adoption penalty is higher for

children with a disability. Lastly, assumption 2(e) imposes that the adoption penalty

is increasing in the match quality. Intuitively, you can think that parents in f-matches

of low-quality need to make higher efforts to meet the necessary standards impose by

the child welfare agency, and once they adopt those standards vanish.

Figure 1.1 exhibits the timeline within a period. Each period is divided into four

stages: destruction and a-matching, entry and exit, search and f-matching, and payoff

realization.

Destruction and
a-matching

Entry and

exit

Search and
f-matching

Payoff

realization

Figure 1.1: Timeline

I start by describing the search and f-matching stage. Children and unmatched

parents meet over time according to a meeting technology that can be described

in terms of the parents-to-children ratio (i.e. market ‘tightness’). Children search

while unmatched or f-matched but not while a-match. Parents search only while

unmatched. Specifically, a child meets an unmatched parent according to the meeting

technology πc(θ), where the market tightness θ is given by:

θ =
up∑

x u
c(x) +

∑
qm(x, q)

. (1.2)

I assume that πc : R+ → [0, πc] is a strictly increasing and strictly concave function

such that πc(0) = 0 and 1 ≥ πc. Similarly, an unmatched parent meets a child with

probability πp(θ). I assume that πp : R+ → [0, 1] is a strictly decreasing and convex

function such that πp(θ) = πc(θ)
θ

and πp(0) = 1. Now, a parent can meet a child

who is unmatched or f-matched when the quality is q. Refer to child x in an f-match
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of quality q as child (x,q), and refer to child x who is unmatched as child (x,q0).

To make reference to a child’s match status, I define an auxiliary set Q̄ = Q ∪ {q0}.

Similarly, parent (x,q) is a parent f-matched to child x when the quality is q. Thus,

an unmatched parent meets a child (x,q̄) according to the probability distribution

m̂(x, q̄) where:

m̂(x, q̄) =


uc(x)∑

x u
c(x)+

∑
qm(x,q)

if q̄ = q0

m(x,q)∑
x u

c(x)+
∑
qm(x,q)

if q̄ = q

(1.3)

Therefore, an unmatched parent meets an unmatched child x with total probability

πp(θ) · m̂(x, q0). Similarly, an unmatched parent meets a child x f-matched when

the quality is q with total probability πp(θ) · m̂(x, q). When a child and parent

meet, a match quality q is drawn from the full support probability distribution h :

Q → [0, 1]. A match quality is constant through the duration of the f-match, and

learned through experience. Before forming an f-match, agents observe a noisy signal

s ∈ S = {s1, s2, ..., sN} generating a full support conditional probability distribution

g(q|s) such that G(q|s′) ≤ G(q|s) whenever s′ > s. After observing the signal, agents

announce simultaneously ‘foster’ or ‘reject’. An f-match is formed if and only if both

agents announce foster. If a new f-match is formed, any old f-match dissolves.

During the payoff realization stage, agents in a newly formed f-match perfectly

observe the match quality q. Once a match quality is complete information, payoffs

received during the remaining duration of the f-match are known.

Next, at the beginning of the destruction and a-matching stage, a child is

adopted (by a relative) with exogenous probability δx ∈ (0, 1) where δx2 ≥ δx1 .
24 If

a child is adopted by a relative, the f-match destroys. If an f-match remains, then

the child and parent announce simultaneously ‘adoption’, ‘destroy’, or ‘remain’. An f-

24In some cases, relatives reach out when they learn about the situation and request to adopt the

child. Child welfare agencies have strong preferences for relatives.
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match is destroyed if and only if at least one agent announces destroy, and an a-match

takes place if and only if both agents announce adoption. If an f-match destroys, the

parent remains unmatched that period and the child searches that period. Agents who

form an a-match receive adoption payoffs to perpetuity, and those children adopted

by a relative receive bca(x, qN) to perpetuity. I assume the match quality q remains

the same when transitioning from f-matched to a-matched.

Lastly, at the beginning of the entry and exit stage, a mass of new children

enters the market and parents make entry/exit decisions. Parents and children who

enter the market remain unmatched that period. I assume that only unmatched

parents can decide to exit the market. Furthermore, agents who formed an a-match

during the previous stage leave the market.

I restrict attention to stationary pure symmetric Markov strategies. Strategies

depend on the aggregate state of the economy φ = (up, uc,m), but to simplify nota-

tion, I suppress it. For each parent, a strategy consists of the tuple (in, out, f p, dp, ap)

where in ∈ {0, 1} and out = 1− in are the entry and exit strategies such that in = 1

when the parent enters the market (analogous for out), fp : X × S → {0, 1} is the

decision to form an f-match such that fp(x, s) = 1 if and only if the parent announces

foster after meeting child x and observing signal s, dp : X×Q→ {0, 1} is the decision

to destroy the f-match such that dp(x, q) = 1 when parent (x, q) announces destroy,

and ap : X × Q → {0, 1} is the decision to form an a-match such that ap(x, q) = 1

when parent (x, q) announces adoption. For each child x, a strategy consists of the

triple (fx, dx, ax) where fx : Q̄ × S → {0, 1} is the decision to form a new f-match

such that fx(q̄, s) = 1 when child (x, q̄) announces foster after observing signal s,

dx : Q→ {0, 1} is the decision to destroy the f-match such that dx(q) = 1 when child

(x, q) announces destroy, and ax : Q → {0, 1} is the decision to form an a-match

such that ax(q) = 1 when child (x, q) announces adoption. As an abuse of nota-
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tion, I denote the foster formation, destruction, and adoption strategies as f c(x, q̄, s),

dc(x, q) and ac(x, q). Moreover, let d(x, q) = dc(x, q) + (1 − dc(x, q)) dp(x, q) and

a(x, q) = ac(x, q) ap(x, q).

I express the f-match formation decisions on terms of whom a particular agent is

willing to form an f-match with. I call these sets foster sets. For each child (x, q̄), let

F c(x, q̄) denote the set of signals such that she is willing to form an f-match. Similarly,

for parents let F p(x) denote the set of signals such that he is willing to form an f-

match with child x. Formally, foster sets for children and parents are defined as

follows, F c(x, q̄) = {s ∈ S|f c(x, q̄, s) = 1} and F p(x) = {s ∈ S|fp(x, s) = 1}.

The f-matching and a-matching correspondences are defined as:

Definition 1.4.1. A foster-matching correspondence is a mapM : X×Q̄ 7→ S

such that s ∈ M(x, q̄) if and only if s ∈ F c(x, q̄) and s ∈ F p(x). Similarly, an

adoption-matching correspondence is a mapMa : X 7→ Q such that q ∈Ma(x)

if and only if ac(x, q) = 1 and ap(x, q) = 1

1.5 Recursive Formulation and Equilibrium

In this section, I present the value functions for children and parents, define the

aggregate state of the economy, and present the equilibrium definition used in this

environment.

1.5.1 Value Functions

To simplify the recursive formation, I define opportunity sets. An opportunity

set for child x is the set of signals such that parents announce foster after meeting

her; and the opportunity set for a parent who observes signal s is the set of children

(x, q̄) who announce foster after meeting him. Formally, the opportunity sets for

children and parents are Ωc(x) = {s ∈ S|s ∈ F p(x)} and Ωp(s) = {(x, q̄) ∈ X× Q̄|s ∈
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F c(x, q̄)}, respectively.

Value Functions for Children

Let C(x, q̄) denote the value function for child (x, q̄) at the end of a period, where

C(x, q0) represents the value for child x who is unmatched and C(x, q) represents the

value for child x who is f-matched when the quality is q. To simplify the presentation

of the value functions, I define Ĉ(x, q̄) as the value for child (x, q̄) at the beginning

of the search and f-matching stage and specified by equation (1.4). At the beginning

of the search and f-matching stage, child (x, q̄) meets an unmatched parent with

endogenous probability πc(θ). If no meeting takes place, the status-quo is preserved

and she receives the continuation value C(x, q̄). If a meeting takes place, a noisy signal

s is observed, where f(s) is the probability distribution over signals derived from

h(q) and g(q|s). Suppose agents meet and observe a common signal s such that the

potential new parent announces reject i.e s /∈ Ωc(x), then the status-quo is preserved.

Now, suppose agents meet and observe signal s such that the potential new parent

announces foster i.e s ∈ Ωc(x), then the child’s decision between announcing foster

or reject is payoff relevant. When the child announces foster, the f-match is formed

and she receives the conditional expected value Es[C(x, q)] =
∑

q C(x, q) g(q|s). On

the contrary, when she announces reject, the status-quo is preserved.

Ĉ(x, q̄) =
(

1− πc(θ)
∑
Ωc(x)

f(s)
)
C(x, q̄) + πc(θ)

∑
Ωc(x)

max
{
Es[C(x, q)] , C(x, q̄)

}
f(s)

(1.4)

From the search value function, we can see that child (x, q̄) announces foster after

observing signal s if and only if the conditional expected value of forming a new f-

match is greater than the continuation value of the status-quo i.e. s ∈ F c(x, q̄) if and
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only if Es[C(x, q)] ≥ C(x, q̄).25 Now, using the foster matching correspondence:

Ĉ(x, q̄) =
(

1− πc(θ)
∑
M(x,q̄)

f(s)
)
C(x, q̄) + πc(θ)

∑
M(x,q̄)

Es[C(x, q)]f(s) (1.5)

For a child x who is unmatched at the end of a period, the value function is equal

to C(x, q0) = 0 + β δx
bca(x,qN )

1−β + β (1 − δx) Ĉ(x, q0). That is, in the current period,

she receives the unmatched per-period payoff, and next period she is adopted by a

relative or searches while unmatched. Thus, the value function for an unmatched

child x is:

C(x, q0) =
β δx

bca(x,qN )
1−β + β (1− δx) β πc(θ)

∑
M(x,q0) Es[C(x, q)]f(s)

1− β (1− δx)
(

1− πc(θ)
∑
M(x,q0) f(s)

) (1.6)

Next, consider a child x f-matched when the quality is q at the end of a period.

Child (x, q)’s value function is specified by equation (1.7). In the current period, she

receives the f-match payoff bc(x, q). At the beginning of the next period, she is adopted

by a relative with probability δx. If the f-match remains, child and parent decide

between transit to an a-match, destroy the f-match, or remain f-matched. In each

case, child (x, q)’s possible continuation values are: she receives bca(x,q)
1−β when transiting

to adoption, she receives the search value Ĉ(x, q0) when the f-match destroys, and she

receives the search value Ĉ(x, q) when the f-match remains.

C(x, q) = bc(x, q) + β δx
bca(x, qN)

1− β
+ β(1− δx)

[
dp(x, q) Ĉ(x, q0)+

ap(x, q) max
{bca(x, q)

1− β
, Ĉ(x, q0) , Ĉ(x, q)

}
+(

1− dp(x, q)− ap(x, q)
)

max
{
Ĉ(x, q0) , Ĉ(x, q)

}]
(1.7)

Form equation (1.7), we can see that child (x, q) chooses adoption if and only

if the value of being adopted is greater than the value of continue searching while

unmatched and the value of continue searching while f-matched when the quality

25I assume all agents make decisions supposing their decision is payoff relevant
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is q. Thus, a child faces the following trade-off: receive a higher adoption payoff

but forgo the opportunity of finding a ‘better’ match. Similarly, child (x, q) chooses

destroy if and only if the value of searching while unmatched is greater than the value

of being adopted and the value of continue searching while f-matched. Intuitively,

when a child decides to destroy the f-match, she is destroying a ‘bad’ match.

Value Functions for Parents

Let Pu denote the value function for an unmatched parent at the end of a period, and

let P(x, q) denote the value function for parent (x, q) at the end of a period. First,

consider a parent who is unmatched, then his value function is presented in equation

(1.8). In the current period, the unmatched parent incurs in the per-period cost k of

holding a license. Next period, he decides between stay or exit the market. When

the parent exits his payoff is zero, and when the parent stays he meets a child with

probability πp(θ). If no meeting takes place, the parent remains unmatched. When

a meeting takes place, a child is drawn from the endogenous probability distribution

m̂(x, q̄) defined in equation (1.3). After a meeting with child (x, q̄) has taken place,

agents observe a noisy signal s. Suppose agents observe s such that child (x, q̄)

announces reject i.e. (x, q̄) /∈ Ωp(s), then the parent remains unmatched. On the

contrary, suppose agents observe s such that child (x, q̄) announces foster i.e. (x, q̄) ∈

Ωp(s), then the parent’s decision is payoff relevant. If the parent announces foster

he receives the conditional expected value Es[P(x, q)], and if the parent announces
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reject he receives the unmatched value Pu.

Pu = −k + βmax

{
0,(

1− πp(θ)
∑
s

∑
Ωp(s)

m̂(x, q̄)f(s)

)
Pu+

πp(θ)
∑
s

∑
Ωp(s)

max
{
Es[P(x, q)] , Pu

}
m̂(x, q̄)f(s)

}
(1.8)

An unmatched parent is willing to form an f-match with child (x, q̄) after observing

signal s if and only if the conditional expected value of forming a new f-match is

greater than the unmatched value i.e. s ∈ F p(x) if and only if Es
[
P(x, q)

]
≥ Pu.

Using the foster matching correspondence, the value function for an unmatched parent

is equal to:

Pu =
−k + β πp(θ)

∑
M(x,q̄)

∑
x,q̄ Es[P(x, q)]m̂(x, q̄)f(s)

1− β
(

1− πp(θ)
∑
M(x,q̄)

∑
x,q̄ m̂(x, q̄)f(s)

) (1.9)

Further, a parent enters the market if and only if the expected benefit of being in

the market is greater than the cost of the license, i.e. in = 1 if and only if inequality

(1.10) is satisfied.

β πp(θ)
∑
M(x,q̄)

∑
x,q̄

Es[P(x, q)]m̂(x, q̄)f(s)− k ≤ 0 (1.10)

At the end of a period, a parent f-matched to child x when the quality is q has

a value function given by equation (1.11). In the current period, he receives the f-

match payoff bp(x, q). At the beginning of next period, he becomes unmatched with

exogenous probability δx. If the f-match remains, child and parent decide between

transit to adoption, destroy the f-matched or remain f-matched. For each possible

outcome, the continuation values for the parent are the following. When transiting to

adoption, he receives bpa(x,q)
1−β . When the f-match destroys, he receives the unmatched

value Pu. Lastly, when the f-match remains, his continuation value depends on the
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outcome of the search and f-matching stage: with probability πc(θ)
∑
M(x,q) f(s) he

becomes unmatched due to the child forming a new f-match, and with probability(
1− πc(θ)

∑
M(x,q) f(s)

)
the f-match remains.

P(x, q) = bp(x, q) + β δx Pu + β(1− δx)
[
dc(x, q) Pu

+ ac(x, q) max
{bpa(x, q)

1− β
, Pu ,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
P(x, q) + πc(θ)

∑
M(x,q)

f(s) Pu
}

+
(

1− dc(x, q)− ac(x, q)
)

max
{
Pu ,

(
1− πc(θ)

∑
M(x,q)

f(s)
)
P(x, q) + πc(θ)

∑
M(x,q)

f(s) Pu
}]

(1.11)

A parent f-matched to child x when the quality is q announces adoption if and

only if the value of adopting is greater than the unmatched value and the value of

continue f-matched. When deciding to adopt, a parent faces the following trade-off:

he eliminates the likelihood that the f-match is destroyed or dissolved, but forgoes

part of the per-period payoff. Similarly, a parent f-matched to child x when the

quality is q announces destroy if and only if the value of begin unmatched is greater

than the value of adopting and the value of continue f-matched. Intuitively, when a

parent decides to destroy the f-match, he is destroying a ‘bad’ match.

1.5.2 Aggregate State of the Economy

The distribution of unmatched parents in the market depends on the entry and

exit strategies of parents. Thus, given uc(x) and m(x, q), the stationary mass of

unmatched parents up satisfies the following inequality:

πp
(

up∑
x u

c(x) +
∑

qm(x, q)

)
≤ k

β
∑
M(x,q̄)

∑
Es[P(x, q)]m̂(x, q̄)f(s)

(1.12)

with equality if up is strictly positive. For distributions uc(x) and m(x, q) to be time

invariant, the mass destruction and mass creation must exactly balance (see equations

in appendix A).

30



1.5.3 Definition of Equilibrium

Definition 1.5.1. A foster care equilibrium consists of the tuple

(M, dc, dp, ac, ap, in, C,Pu,P , φ) such that the following properties are satisfied:

(1) Value Functions. (a) Given (M, dc, dp, ac, ap, φ), the value function C(x, q0)

is specified by (1.6) and the value function C(x, q) is specified by (1.7). (b) Given

(M, dc, dp, ac, ap, in, φ), value function Pu is specified by (1.9) and value func-

tion P(x, q) is specified by (1.11).

(2) Strategies. (a) Given (M, dp, ap, C, φ), ac(x, q) is one if and only if

bca(x,q)
1−β > max{Ĉ(x, q0), Ĉ(x, q)} and dc(x, q) is one if and only if

Ĉ(x, q0) > max{ b
c
a(x,q)
1−β , Ĉ(x, q)}. (b) Given (M, dc, ac,Pu,P , φ), in is one if and

only if (1.10) holds, ap(x, q) is one if and only if bpa(x,q)
1−β > max{Pu,P(x, q)},

and dp(x, q) is one if and only if Pu > max{ b
p
a(x,q)
1−β ,P(x, q)}. (c) Given

(dc, dp, ac, ap, C,Pu,P , φ), s ∈ M(x, q̄) if and only if Es[C(x, q)] ≥ C(x, q̄) and

Es[P(x, q)] ≥ Pu.

(3) Aggregate state of the economy. (3a) Given

(M, dc, dp, ac, ap, in,Pu,P , uc,m), up satisfies equation (1.12).

(3b) Given (M, dc, dp, ac, ap), for each x, uc(x) and {m(x, qi)}Ni=1 solve the

system of equations given by (A.1) and (A.2).

1.6 Equilibrium Analysis

In this section, I derive equilibrium properties that I will use later on to ensure

that the stylized facts estimated in section 1.3 arise in equilibrium and carry out

model predictions. The analysis focuses on foster care equilibria with a positive mass

of parents in the market i.e up > 0 which implies that Pu = 0 [from equations (1.9)

and (1.12)]. Moreover, I assume that for each child, there is at least one signal such

31



that parents receive a positive expected foster payoff. Formally:

Assumption 3. For each x, there exists ŝ such that Eŝ[bp(x, q)] ≥ 0.

I start by describing the destruction strategies of children and parents. Lemma

1.6.1(i) states that, in any foster care equilibrium, child x does not destroy an f-

match of quality q if bc(x, q) is non-negative. In terms of the model, if the payoff of

being f-matched is equal or higher than the unmatched payoff (normalized to zero),

then a child prefers to continue searching while f-matched than continue searching

unmatched. This result follows from the assumption that the meeting probability is

the same for unmatched and f-matched children.

Lemma 1.6.1 (Destruction Strategies of Children and Parents). Assume parents’

payoffs satisfy assumption 2(a). Then, in any foster care equilibrium:

(i) for each (x, q), dc(x, q) = 0 if bc(x, q) ≥ 0.

(ii) for each (x, q), dp(x, q) = 1 if and only if bp(x, q) < 0.

Proof. See appendix B.1.

Lemma 1.6.1(ii) shows that a parent destroys an f-match of quality q with child x

if and only if bp(x, q) is negative. The fact that f-matches with negative net payoffs

destroy is intuitive. In words, if providing care for a child is not as rewarding as being

out of the market (receive the normalize payoff zero), then a parent prefers to request

the removal of the child and search for another child. Now, since parents can not

search while f-matched, an interesting question is why they never destroy f-matches

with non-negative net payoff. Intuitively, parents might have incentives to destroy

these f-matches in exchange for an opportunity of finding a ‘better’ child. A key

assumption driving the result is the unbounded mass of parents outside the market

who can freely enter. In equilibrium, this feature of the model equalizes the value of
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searching for a child in the market with the value of being out of the market. If the

child welfare agencies were to impose strong restrictions on entry (as politicians have

proposed it), the result could break down due to a potential small mass of parents in

the market. That is, parents might have incentives to destroy f-matches even if the

net f-match payoff is non-negative.

Proposition 1.6.1 (Destruction: Effect of Disability and Match Quality). Assume

children’ payoffs satisfy assumption 1(a), and parents’ payoffs satisfy assumptions

2(a) to (c). Then, in any foster care equilibrium:

(i) for all j ∈ {c, p} and q, if dj(x2, q) = 1 then dj(x1, q) = 1. Hence, d(x1, q) ≥

d(x2, q) for all q.

(ii) for all j ∈ {c, p} and x, if dj(x, q) = 1 then dj(x, q′) = 1 whenever q′ < q.

Hence, d(x, q′) ≥ d(x, q) whenever q′ < q for all x.

Proof. See appendix B.2.

Proposition 1.6.1 exhibits how the destruction of f-matches varies with disability

and match quality. First, I show that f-matches involving children with a disability

destroy more than f-matches involving children without a disability. Formally, if the

f-match (x2, q) is destroyed then the f-match (x1, q) is also destroyed. Recall that,

an f-match can be destroyed by either the child or the parent, d(x, q) = dc(x, q) +

(1−dc(x, q)) dp(x, q). By assumption 1(a) and lemma 1.6.1(i), it follows that children

never destroy an f-match. Thus, in equilibrium, the destruction is driven by parents,

which is consistent with the anecdotal evidence suggesting that when a child moves

from foster home to institutional care is generally due to the request of the foster

parent. Now, by assumption 2(b) and lemma 1.6.1(ii), it follows that if dp(x2, q) = 1

then dp(x1, q) = 1 for all q. In words, if the utility gain received by parents when

providing care for a child without a disability respect to a child with a disability
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[ϕ(x2, q) − ϕ(x1, q) ≥ 0] is equal or higher than the transfer gain of providing care

for a child with a disability over a child without a disability [τ(x1)− τ(x2) ≥ 0], then

parents f-matched to children with a disability destroy at least as much as parents

f-matched to children without a disability. Loosely speaking, if the transfer is not

enough to compensate for the preferences of parents, f-matches involving children with

a disability will destroy more than f-matches involving children without a disability.

Proposition 1.6.1(ii) states that if the f-match (x, q) is destroyed, then all f-matches

(x, q′) such that q′ < q are also destroyed. In words, if a parent f-matched to child x

when the quality is q is not willing to continue providing care, then a parent f-matched

to child x when the quality is lower than q is also not willing to continue providing

care. This follows from assumption 2(c) and lemma 1.6.1(ii).

Lemma 1.6.2 (F-match Formation Strategies of Unmatched Children). For each

(x, s), in any foster care equilibrium, s ∈ F c(x, q0) if Es[bc(x, q)] ≥ 0 .

Proof. See appendix B.3.

Lemma 1.6.2 shows that an unmatched child x announces foster, after observing

signal s, if Es[bc(x, q)] is non-negative. That is, if the conditional expected payoff

of being f-matched is equal or higher than the unmatched payoff, children prefer to

become f-matched than remain unmatched. The result follows from the reversibility

of the f-matches. Intuitively, since children can always destroy, they are willing to

experiment and form an f-match if they believe it is at least as good as staying in

institutional care. Now, note that children might be willing to announce foster even

if the conditional expected f-match payoff is negative. This is due to the continuation

value: even if the conditional expected f-match payoff Es[bc(x, q)] is negative, the

conditional expected value of being f-matched Es[C(x, q)] might still be non-negative.

Yet, given assumption 1(a), this situation will not arise in this environment.
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Assumption 4. For each (s, x), if Es[bp(x, q)] < 0 then the following condition on

primitives holds:

∑
q

bp(x, q) g(q|s) + β (1− δx)
∑
q

max

{
bpa(x, q)

1− β
, 0 ,

bp(x, q)

1− β (1− δx)

}
g(q|s) < 0

To establish the stylized facts later on, I ensure that parents’ strategies satisfy the

following: (1) if a parent is willing to form an f-match with child x1 after observing

signal s, then he is also willing to form an f-match with child x2 after observing signal

s; and (2) if a parent is willing to adopt child x1 when the quality is q, then he is

also willing to adopt child x2 when the quality is q. Since (1) might contradict (2),

I impose assumption 4 which allows me to characterize parents’ f-match formation

strategies using the per-period payoffs. This assumption ensures that, if the condi-

tional expected payoff received by a parent f-matched to child (x, q) is negative then

the conditional expected value of being f-matched to child (x, q) is also negative.

Lemma 1.6.3 (F-match Formation Strategies of Parents). Assume parents’ payoffs

satisfy assumption 4. For each (x, s), in any foster care equilibrium, s ∈ F p(x) if and

only if Es[bp(x, q)] ≥ 0.

Proof. See appendix B.4.

Lemma 1.6.3 shows that an unmatched parent announces foster, after observing

signal s, if and only if the conditional expected payoff of being f-matched is non-

negative. An unmatched parent announces foster if the conditional expected payoff

of being f-matched is non-negative due to the reversibility of f-matches. Specifically,

given that parents can destroy an f-match freely, if Es[bp(x, q)] is non-negative it

follows that Es[P(x, q)] is also non-negative.

Proposition 1.6.2 (F-match Formation Involving Unmatched Children: Effect of

Disability and Match Quality). Assume children’ payoffs satisfy assumption 1(a),
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parents’ payoffs satisfy assumptions 2(b)(c), 3 and 4. Then, in any foster care equi-

librium:

(i) F c(x1, q0) = F c(x2, q0) = S and if s ∈ F p(x1) then s ∈ F p(x2). Moreover,

M(x, q0) is non-empty for all x, and M(x1, q0) ⊆M(x2, q0).

(ii) for all x, if s ∈ F p(x) then s′ ∈ F p(x) whenever s′ > s. Hence, if s ∈M(x, q0)

then s′ ∈M(x, q0) whenever s′ > s for all x.

Proof. See appendix B.5.

Proposition 1.6.2 exhibits how the formation of f-matches involving unmatched

children varies with disability and match quality. Recall that f-matches must be

mutually agreed upon, that is, s ∈M(x, q0) if and only if s ∈ F p(x) and s ∈ F c(x, q0).

By assumption 1(a) and lemma 1.6.2, it follows that children always announce foster

after observing signal s. Intuitively, as the law requires, children are placed in foster

family homes whenever possible. Thus, the formation of an f-match depends on the

parent’s decision. First I show that conditional on observing signal s, if a parent

is willing to foster a child with a disability, then he must also be willing to foster

a child without a disability [if s ∈ F p(x1) then s ∈ F p(x2)]. This follows from

assumption 2(b) and lemma 1.6.3. In words, if the utility gain received by parents

when providing care for a child without a disability respect to a child with a disability

[ϕ(x2, q) − ϕ(x1, q) ≥ 0] is not compensated by the transfer gain of providing care

for a child with a disability over a child without a disability [τ(x1) − τ(x2) ≥ 0],

then in equilibrium children with a disability are less likely to find a parent willing

to foster them. Second, I show that if a parent announces foster after meeting child

x and observing signal s, then he also announces foster after observing signal s′ such

that s′ > s [if s ∈ F p(x) then s′ ∈ F p(x) whenever s′ > s]. The result follows from

assumption 2(c) and lemma 1.6.3. Since G(q|s) first-order stochastically dominates
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G(q|s′), it follows that the conditional expected value received by a parent when

fostering a child is increasing in the signal.

Lemma 1.6.4 (Adoption Strategies of Parents). Assume parents’ payoffs satisfy as-

sumptions 2(a)(b) and 2(d)(e). Then, the adoption strategies of parents exhibit the

following properties.

(i) for each (x, q), if bpa(x, q) > 0 and bpa(x,q)
bp(x,q)

> 1−β
1−β(1−δx)

then ap(x, q) = 1.

(ii) for all q, if
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s) then the best-response of parents

satisfies the following: if ap(x1, q) = 1 then ap(x2, q) = 1.

(iii) for all x, if
∑
M(x,q′) f(s) ≥

∑
M(x1,q)

f(s) and bpa(x, q
′) > 0 whenever q′ < q

then the best-response of parents satisfies the following: if ap(x, q) = 1 then

ap(x, q′) = 1.

Proof. See appendix B.6.

Lemma 1.6.4 presents some properties of the adoption strategies of parents. In

item (i), for each (x, q), if the a-match payoff is positive and the exogenous probability

that the child leaves the f-match is sufficiently high δx > bp(x,q)−bpa(x,q)
bpa(x,q)

· 1−β
β

, then

a parent always announces adoption. The intuition is as follows. When deciding

whether to adopt, the parent faces the following trade-off: forgo part of the per-period

payoff in exchange to eliminate the likelihood that the child is removed from his care.

Thus, if the probability of being adopted by a relative is sufficiently high, then the

parent is willing to transit to adoption and receive a smaller payoff. If policymakers

were to increase the barriers for relatives to adopt (as it has been discussed), the

result suggests that it might be counterproductive on the incentives of foster parents

to adopt.

The adoption strategies of parents strongly depend on the probability that chil-

dren leave the f-match. Fix some match quality q. Item (ii) states that, if f-matches
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(x1, q) dissolve more than f-matches (x2, q), then parents have greater incentives to

adopt children without a disability than children with a disability. The result fol-

lows from assumption 2(d). Parents are more willing to adopt children without a

disability because they forgo a smaller share of payoff in exchange to eliminate a

bigger dissolution probability. Note that assumption 2(d) might still hold even if the

penalty on the financial transfer is smaller for children with a disability τa(x1)
τ(x1)

> τa(x2)
τ(x2)

.

Lastly, item (iii) shows that parents might have more incentives to choose adoption

when the match quality is low than when it is high. The driving forces of this result

are the dissolution rates of high versus low-quality matches and the assumption that

the adoption penalty is increasing in the match quality [assumption 2(e)]. In words,

if children in high-quality matches have fewer incentives to dissolve, then the best

response of parents is to adopt them less.

Proposition 1.6.3 (Dissolution: Effect of Disability and Match Quality). Sup-

pose Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs satisfy assumptions

1(a)(c)(d), and parents’ payoffs satisfy assumptions 2(a)(b)(c), 3 and 4. Then, in

any foster care equilibrium:

(i)
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s) for all q.

(ii)
∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0 for all x.

Proof. See appendix B.7.

Proposition 1.6.3 exhibits how dissolution outcomes vary with disability and match

quality. Item (i) states that children without a disability are more likely to dissolve

an f-match than children with a disability. The result is driven by the parents’ deci-

sion: children without a disability are more demanded by foster parents [Proposition

1.6.2(i)]. Item (ii) shows that low-quality matches dissolve more than high-quality

matches. The result is driven by the children’ decision. By assumption 1(d), children
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value more quality than the adoption status, thus they have no incentives to dissolve

high-quality matches.

Assumption 5. Suppose Q = {q1, q2} and S = {s1, s2}, children’ payoffs satisfy the

following:

(a)
δx1
δx2

> bca(x2,q2)−bca(x2,q1)
bca(x1,q2)−bca(x1,q1)

;

(b)
{bc(x1,q2)−bca(x1,q1)}(1−β(1−δx1 ))−{bca(x1,q2)−bc(x1,q2)}β(1−δx1 )

1−β(1−δx1 )
> bc(x2, q2)− bca(x2, q1);

(c)
{bc(x1,q2)−bca(x1,q1)}βδx1−{b

c
a(x1,q2)−bc(x1,q2)}(1−β)

g(q2|s1)
> bc(x2, q2)(1−β)+bca(x2, q2)β−bca(x2, q1).

Due to proposition 1.6.3(i), children with a disability are more willing to announce

adoption after observing a low-quality match because their search opportunities are

lower. However, the intuition suggests that social workers might be pickier when

searching for an adoptive parent for a child with a disability since these children

benefit more from higher quality matches. Thus, to ensure that this intuition arises

in equilibrium, I impose stronger conditions specify in assumptions 5(a) to (c). These

conditions will help to ensure that if children with a disability are willing to give up

the opportunity of continue searching for a high-quality match, then children without

a disability will also be willing to give up this opportunity.

Proposition 1.6.4 (Adoption: Effect of Disability and Match Quality). Suppose

Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs satisfy assumptions 1(a) to

(g) and 5(a) to (c), parents’ payoffs satisfy assumptions 2(a) to (e), 3 and 4. Then,

in any foster care equilibrium:

(i) a(x2, q) ≥ a(x1, q) for all q.

(ii) for each x,, if bpa(x, q1) > 0 and bpa(x,q2)
bp(x,q2)

≤ 1−β
1−β(1−δx)

then a(x, q1) ≥ a(x, q2) = 0.

Proof. See appendix B.8.
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Proposition 1.6.4 exhibits how adoption outcomes vary with disability and match

quality. Item (i) states that children with a disability transit to adoption less than

children without a disability. Both parents’ and children’s decisions drive the result.

Item (ii) shows that if the probability that the child leaves the f-match is sufficiently

low, then high-quality matches do not transit to adoption due to the parents’ decision.

Thus, high-quality matches transit to adoption less than low-quality matches.

1.7 Stylized Facts and Model Predictions

In this section, I identify the driving forces behind the empirical results esti-

mated in section 1.3 and establish sufficient conditions on primitives for these facts to

emerge in equilibrium. Also, I analyze the impact of match quality on the probability

of becoming adoption matched, the probability of foster match disruption, and the

probability of becoming unmatched.

1.7.1 Probability of Becoming Adoption Matched

The probability that child x becomes adoption matched depends on whether she

is unmatched or f-matched when the quality is quality q. First, consider child x who

is unmatched at the beginning of a period. Let A(x, q0) denote the probability that

unmatched child x becomes a-matched next period, defined as:

A(x, q0) = δx +
(
1− δx

)
πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s) a(x, q′)

The probability that child (x, q0) is adopted endogenously depends on two events.

First, the child forms an f-match during the search and f-matching stage. Second,

both agents announce adoption after observing some quality q.

Consider child x who is, at the beginning of a period (after the exogenous adoption

is realized), f-matched when the quality is q. Let A(x, q) denote the probability that

child x f-matched when the quality is q becomes a-matched next period,
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defined as:

A(x, q) = a(x, q) + d(x, q)
[
δx +

(
1− δx

)
πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s) a(x, q′)
]

︸ ︷︷ ︸
A(x,q0)

+
(
1− a(x, q)− d(x, q)

) [
δx +

(
1− δx

)
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s) a(x, q′)
]

The probability that child (x, q) is adopted endogenously can be decomposed in

three events. First, the f-match (x, q) transits to adoption. Second, the f-match

(x, q) destroys, and the unmatched child transits to an a-match with another parent.

Third, the f-match (x, q) remains, but the child dissolves the f-match and transits to

an a-match with another parent.

The effect of disability on the probability of becoming adoption matched estimated

in section 1.3 (coefficient γ) is an average across match status and match qualities.

Thus, using the unmatched distribution of children and the endogenous distribution

over f-matches, the probability that child x becomes a-matched is:

γ1(x) = A(x, q0) · uc(x)

uc(x) +
∑

qm(x, q)
+
∑
q

A(x, q) · m(x, q)

uc(x) +
∑

qm(x, q)

Stylized fact 1 holds if and only if γ1(x2) ≥ γ1(x1). In words, children with dis-

ability, relative to children without disability, are less likely to become a-matched.

Corollary 1.7.1 presents the sufficient conditions for stylized fact 1 to arise in equilib-

rium. The result makes use of propositions 1.6.1(i), 1.6.2(i), 1.6.3(i), and 1.6.4(i).

Corollary 1.7.1 (Stylized Fact 1: Disability Decreases the Probability of Becoming

Adoption Matched). Suppose Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs

satisfy assumptions 1(a) to (g) and 5(a) to (c), parents’ payoffs satisfy assumptions

2(a) to (e), 3 and 4. Then, in any foster care equilibrium, γ1(x2) ≥ γ1(x1) if
δx2−δx1
1−δx1

>

π.

Proof. See Appendix C.1.
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I show that A(x2, q0) ≥ A(x1, q0) and A(x2, q) ≥ A(x1, q) for all q. The first

inequality follows from propositions 1.6.2(i) and 1.6.4(i). In words, unmatched chil-

dren with a disability are less likely to form an f-matched, and if they do, they are

less likely to transit to adoption. For the second inequality, the propositions men-

tioned above are not sufficient. Consider the case where children with a disability

have their f-match destroyed and children without a disability remain f-matched.

Fix some match quality q, then A(x1, q) = A(x1, q0) and A(x2, q) = δx2 +
(
1 −

δx2
)
πc(θ)

∑
M(x2,q)

f(s)
∑

q′ g(q′|s) a(x2, q
′). To establish that the second equation is

greater than the first, I impose an upper bound on the meeting probability.

Corollary 1.7.2 (Probability of Becoming Adopted is Decreasing in the Match Qual-

ity). Suppose Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs satisfy as-

sumptions 1(a) to (g) and 5(a) to (c), parents’ payoffs satisfy assumptions 2(a) to

(e), 3 and 4. For each child x, in any foster care equilibrium, A(x, q1) ≥ A(x, q2) if

bpa(x, q1) > 0 and bpa(x,q2)
bp(x,q2)

≤ 1−β
1−β(1−δx)

.

Proof. See Appendix C.2.

To have a better understanding of the mechanics behind the adoption of children,

corollary 1.7.2 presents the impact of match quality on the probability of becom-

ing adoption matched. The result make use of propositions 1.6.1(ii), 1.6.3(ii), and

1.6.4(ii). In the presence of the adoption penalty, when the exhibited conditions are

satisfied, high-quality matches are less likely to transit to an a-match than low-quality

matches. Intuitively, if the disruption of high-quality matches is low enough, then

parents have no incentives to choose adoption. Note that this result strongly depends

on the presence of the adoption penalty, that is, in the absence of the adoption penalty

it breaks down.
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1.7.2 Probability of Foster Match Disruption

Consider child x who is, at the beginning of a period, f-matched when the quality

is q. Let D(x, q) denote the probability that f-match (x, q) disrupts within a

period, defined as follows:

D(x, q) = (1− δx)(1− a(x, q))
[
d(x, q)︸ ︷︷ ︸
destruction

+
(
1− d(x, q)

)
πc(θ)

∑
M(x,q)

f(s)︸ ︷︷ ︸
dissolution

]

The probability that an f-match (x, q) disrupts is discomposed in two events. First,

if the f-match (x, q) destroys during the destruction and a-matching stage. Second, if

the f-match (x, q) remains but, during the search and f-matching stage, child x forms

a new f-match with some parent after observing signal s. Intuitively, an f-match

disrupts because it is ‘bad’ (f-match destroys) or due to the search of the child to find

a ‘better’ parent (f-match dissolves).

Using the endogenous distribution over f-matches, the probability that an f-

match involving child x disrupts is:

γ2(x) =
∑
q

D(x, q) · m(x, q)∑
qm(x, q)

Stylized fact 2 holds if and only if γ2(x1) ≥ γ2(x2). In words, children with

a disability, relative to children without a disability, are more likely to have an f-

match disrupted. This depends on two forces working on opposite directions, and the

empirical result sheds light on which of the driving forces prevails in equilibrium. On

the one hand, proposition 1.6.1(i) shows that children with a disability are more likely

to have an f-matched destroyed, which by itself makes them more likely to disrupt. On

the contrary, proposition 1.6.3(i) shows that children with a disability are less likely to

dissolve an f-match, which by itself makes them less likely to disrupt. In other words,

foster disruptions involving children with a disability are mainly driven by destruction
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due to the uncertainty on the quality of the match, while foster disruptions affecting

children without a disability are driven mostly by dissolution to improve the match

quality.

Corollary 1.7.3 presents sufficient conditions for stylized fact 2 to arise in equilib-

rium. The result makes use of propositions 1.6.1(i), 1.6.3, and 1.6.4(i).

Corollary 1.7.3 (Stylized Fact 2: Disability Increases the Probability of Foster

Match Disruption). Suppose Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs

satisfy assumptions 1(a) to (g) and 5(a) to (c), parents’ payoffs satisfy assumptions

2(a) to (e), 3 and 4. Then, in any foster care equilibrium, γ2(x1) ≥ γ2(x2) if
δx2−δx1
1−δx1

≥

f(s1).

Proof. See Appendix C.3.

For each match quality q, I show that D(x1, q) ≥ D(x2, q). Fix some quality

q, suppose that f-matches (x1, q) destroy and f-matches (x2, q) do not destroy, then

d(x1, q) ≥ πc(θ)
∑
M(x2,q)

f(s). In words, due to the search friction, the destruc-

tion rate of children with a disability is higher than the dissolution rate of children

without a disability. The interesting case is when both f-matches are not destroyed,

then
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s) [by proposition 1.6.3(i)]. Hence, to ensure that

D(x1, q) ≥ D(x2, q), I assume
δx2−δx1
1−δx1

≥ f(s1). This condition imposes a maximum

bound on the rate at which f-matches (x2, q) dissolve respect to the exogenous adop-

tion rate. Loosely speaking, children without a disability are less likely to have an

f-match disrupted because their dissolution rate is bounded above by the rate at

which they exit the market exogenously (adjusted by the exit rate of children with a

disability).

Corollary 1.7.4 (Probability of Foster Match Disruption is Decreasing in the Match

Quality). Suppose Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs satisfy
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assumptions 1(a)(c)(d), parents’ payoffs satisfy assumptions 2(a)(c), 3 and 4. For

each childx, in any foster care equilibrium, if a(x, q1) = 0 and a(x, q2) = 0 then

D(x, q1) ≥ D(x, q2).

Proof. See Appendix C.4.

Corollary 1.7.4 exhibits the impact of the match quality in the probability of

f-match disruption. The result follows from propositions 1.6.1(ii) and 1.6.3(ii). Re-

stricting attention to the case where f-matches do not exit through adoption, I show

that f-matches of high-quality are less likely to disrupt than f-matches of low-quality

because the driving forces of destruction and dissolution are aligned. Specifically, as

long as agents’ payoffs are increasing in the match quality (along with other condi-

tions), the probability of destruction and the probability of dissolution are decreasing

in the match quality. I focus on the case where f-matches do not exit through adop-

tion since it is crucial to understand what happens to children if they remain in the

market.

1.7.3 Probability of Becoming Foster Matched

Consider child x who is unmatched at the beginning of a period. Let γ3(x) denote

the probability that child x becomes f-matched next period, defined as follows:

γ3(x) = πc(θ)
∑
M(x,q0)

f(s)
∑
q

g(q|s)
(
1− d(x, q)

)
Stylized fact 3 holds if and only if γ3(x2) ≥ γ3(x1). Corollary 1.7.5 describes the

sufficient conditions for stylized fact 3 to arise in equilibrium. The result follows from

propositions 1.6.1(i) and 1.6.2(i). First children with a disability are less likely to

form an f-match. Second, if they form an f-match, children with a disability are more

likely to have it destroyed.
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Corollary 1.7.5 (Stylized Fact 3: Disability Decreases the Probability of Becoming

Foster Matched). Assume children’ payoffs satisfy assumption 1(a), parents’ payoffs

satisfy assumptions 2(a)(b), 3 and 4. Then, in any foster care equilibrium, γ3(x2) ≥

γ3(x1).

Proof. See Appendix C.5.

1.7.4 Probability of Becoming Unmatched

Consider child x who is, at the beginning of a period, f-matched when the quality is

q. Let U(x, q) denote the probability that child x f-matched when the quality

is q becomes unmatched next period, defined as follows:

U(x, q) = (1− δx)
(
1− a(x, q)

){
d(x, q)︸ ︷︷ ︸
destruction

[
1− πc(θ)

∑
M(x,q0)

f(s)
∑
q′

g(q′|s)
(
1− d(x, q′)

)]
︸ ︷︷ ︸

1−γ3(x)

+
(
1− d(x, q)

)
πc(θ)

∑
M(x,q)

f(s)︸ ︷︷ ︸
dissolution

∑
q′

g(q′|s) d(x, q′)

}

A child x f-matched when the quality is q becomes unmatched in two cases. First,

if the f-match (x, q) is destroyed and she remains unmatched after the search and

f-matching stage. Second, if the f-match (x, q) dissolves and the new f-match is later

on destroyed.

Using the endogenous distribution over f-matches, the probability that child x

becomes unmatched is:

γ4(x) =
∑
q

U(x, q) · m(x, q)∑
qm(x, q)

Stylized fact 4 holds if and only if γ4(x1) ≥ γ4(x2). In words, children with a dis-

ability, relative to children without a disability, are more likely to become unmatched.
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There are potentially two driving forces working on opposite directions in this case.

On the one hand, by proposition 1.6.1(i) and corollary 1.7.5, children with a disability

are more likely to destroy an f-match and more likely to remain unmatched, which

makes them more likely to become unmatched. On the other hand, by propositions

1.6.3(i) and 1.6.1(i), children with a disability are less likely to dissolve an f-match

but are more likely to destroy the new f-match later on, thus is not clear who is more

likely to become unmatched.

Corollary 1.7.6 presents sufficient conditions for stylized fact 4 to arise in equilib-

rium. The result makes use of propositions 1.6.1(i), 1.6.2(i), 1.6.3, and 1.6.4(i).

Corollary 1.7.6 (Stylized Fact 4: Disability Increases the Probability of Becoming

Unmatched). Suppose Q = {q1, q2} and S = {s1, s2}. Assume children’ payoffs satisfy

assumptions 1(a) to (g) and 5(a) to (c), parents’ payoffs satisfy assumptions 2(a) to

(e), 3 and 4. Then, in any foster care equilibrium, γ4(x1) ≥ γ4(x2) if
δx2−δx1
1−δx1

≥ f(s1)

and
1−δx1

2−δx1−δx2
> π.

Proof. See Appendix C.6.

For each match quality q, I show that U(x1, q) ≥ U(x2, q). As for stylized fact

2, when both f-matches are not destroyed, it follows that πc(θ)
∑
M(x2,q)

f(s) ≥

πc(θ)
∑
M(x1,q)

f(s) [by proposition 1.6.3(i)]. Hence, to ensure that U(x1, q) ≥ U(x2, q)

holds, I also impose condition
δx2−δx1
1−δx1

≥ f(s1). In addition, in this stylized fact a

new interesting situation arises when children with a disability have their f-match de-

stroyed and children without a disability remain f-matched. Thus, fixing a match qual-

ity q, U(x2, q) = (1 − δx2) (πc(θ)
∑
M(x2,q)

f(s)
∑

q′ g(q′|s) d(x2, q
′)) and U(x1, q) =

(1− δx1) (1− γ3(x1)). To establish that the second equation is bigger than the first

I impose an upper bound on the meeting probability. This creates a lower bound on

the probability that a child with a disability remains unmatched, and an upper bound
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on the probability that a child without a disability dissolves an f-match (taking the

risk that it is destroyed later on).

Corollary 1.7.7 (Model Prediction: Probability of Becoming Unmatched is De-

creasing in the Match Quality). Suppose Q = {q1, q2} and S = {s1, s2}. Assume

children’ payoffs satisfy assumptions 1(a)(c)(d), parents’ payoffs satisfy assumptions

2(a)(c), 3 and 4. For each childx, in any foster care equilibrium, U(x, q1) ≥ U(x, q2)

if a(x, q1) = 0 and a(x, q2) = 0.

Proof. See Appendix C.7.

Corollary 1.7.7 exhibits the impact of match quality on the probability of becoming

unmatched. The result follows from propositions 1.6.1(ii) and 1.6.3(ii). I show that

children in high-quality matches are less likely to become unmatched than children in

low-quality matches because both the probability of destruction and the probability

of dissolution are decreasing in the quality.

1.8 Concluding Remarks

This paper provides an extensive analysis of the match transitions and exit through

adoption of children relinquished for adoption in the US foster care system. For

policymakers, the primary concerns regarding foster care are to decrease foster match

disruptions and to increase permanency via adoption. Yet, I find that foster match

disrupts play a crucial role in adoption by influencing the incentives of foster parents

to adopt. Due to the presence of the financial penalty on adoption, parents face

the following trade-off when deciding to adopt: accept the penalty in exchange for

eliminating the likelihood that the child disrupts the foster match in the future.

Moreover, I show that foster disruptions allow agents to avoid ‘bad matches’, and

more importantly, enables children to search for ‘better matches’ while in a foster

environment.
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Concerning the child’s observable characteristics, I show that foster disruptions

involving children with a disability are mainly driven by the uncertainty on the quality

of the match, while foster disruptions involving children without a disability are driven

to improve the match quality. Also, I find that high-quality matches are less likely to

be disrupted. For adoption, I show that the adoption penalty not only exacerbates the

intrinsic disadvantage faced by children with a disability, but it also creates incentives

for high-quality matches to not transit to adoption.
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Chapter 2

THE EFFECT OF PAYING PARENTS TO ADOPT: EVIDENCE FROM THE

MINNESOTA’S FOSTER CARE SYSTEM

2.1 Introduction

The foster-care system in the United States is intended to provide a safety net

for abused and neglected children in the form of residential placements outside of the

parental home. In 2018, there were almost half a million children in foster care and this

number has increased in each year since 2012 (U.S. Department of Health and Human

Services (2018)). These children are disproportionately at risk for negative outcomes;

foster children are more likely to receive treatment for mental health issues (including

post-traumatic stress disorder), more likely to spend time incarcerated, more likely to

bear children during their teenage years, more likely to live in poverty, and less likely

to complete education at all levels (Casey Family Foundation (2005)). In addition,

American taxpayers contributed approximately twenty-eight billion dollars in 2014

in the form of child welfare services, for both foster-care program administration

and adoption incentives.1 Historically, the vast majority of the foster-care budget

has been focused on maintaining children in foster care. More recently, government

policies have shifted funds toward providing financial incentives for the adoption of

1This excludes spending on other programs focused on child welfare more generally. For example,

Temporary Assistance to Needy Families or TANF (with an annual budget of over seventeen billion

dollars in 2014) contributes to the protection of foster children. At the extensive margin, TANF

keeps children from entering the system; household income is the most important predictor for child

maltreatment (Paxon and Waldfogel (1999)) and entry into foster care (Lindsey (1991)). TANF also

contributes inframarginally; almost one-third of the children in child-only TANF cases are under the

guardianship of a non-parental relative (Child Welfare League of America (2013).
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children out of foster care and into permanent family outcomes,2 as adoption has been

found to significantly improve the outcomes of foster children (Triseliotis (2002)).

This study analyzes the effects of a major 2015 policy in the State of Minnesota,

the Northstar Care Program, which was targeted at increasing the number of older

children who are adopted out of foster care. It is a costly program that incentivizes the

adoption of foster children aged six and older through the continuation of large finan-

cial transfers to parents post-adoption. Prior to the implementation of the Northstar

Care Program, monthly payments from the state to parents fell by 62% following

adoption for children under the age of six, 57% for children between the ages of six

and eleven, 59% for children between the ages of twelve and fourteen, and by 51%

for children over the age of fifteen. This reduction in payments following adoption

is typically referred to as the “adoption penalty.” After the implementation of the

program, a fifty-percent adoption penalty was continued for children under the age of

six but was completely eliminated for children over the age of six (adoptive parents

received the same financial transfer as did foster parents).

At the same time, Minnesota sought to increase the number of children placed

with relatives through the Kinship Assistance portion of the Northstar Care Pro-

gram by increasing the monthly payments to kin in the foster-care system. Prior to

the implementation of the policy, kin would receive only a fraction of the payments

paid to non-kin foster parents and these payments were means-tested for kin (unlike

the monthly payments to non-kin foster parents). Under the 2015 program, foster

payments to kin were set to parity with non-kin foster parents. Thus, post January

2015, monthly payments to kin increased by over 130% on average as a result of the

2The Family First Prevention Services Act, which was signed into law in 2018 but has not yet

been implemented, increases overall funds to adoption services, yet decreases its budget share. In

its budget, an increased share of program funds go to keeping biological families together.
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program.3 In all years, kin faced no adoption penalty. Thus, the Kinship Assistance

portion of the program would incentivize kin to foster (and possibly adopt) at higher

rates, but it would also impact the decisions of non-kin parents by introducing a

competitive channel; as kin were given preference in placement decisions, the risk of

“losing” a foster child to their kin was dramatically increased post-implementation.4

We implement a difference-in-differences estimation strategy that takes advantage

of this large policy change in which direct financial transfers to parents were increased

substantially. Our focus is to see how the financial incentives for adoptive parents

impacted a child’s probability of adoption. To do this, we employ a rich panel dataset

describing the universe of children in foster care in the United States during the

calendar years 2011 though 2016. These data come from the Adoption and Foster

Care Analysis and Reporting System (AFCARS) and follow each child until they exit

the system through either adoption, parental reunification, emancipation, or aging-

out at age eighteen. We focus our analysis on children under the age of sixteen

whose parental rights have already been terminated; for these children, adoption is

the only route to exiting the system in our panel. We use this data to isolate the

age-specific impacts of the January 2015 policy while controlling for a rich set of child

characteristics, including gender, race and ethnicity, disability status, and time spent

in foster care, along with location and time-period fixed effects.

We find that the majority of the targeted older children, for whom monthly trans-

fers more than doubled, saw large and statistically-significant increases in the their

probability of adoption out of foster care. Specifically, children aged six through

eleven saw their probability of adoption increase by 8 percentage points (24% at the

3This average is taken over each age-of-child figure, weighted evenly.
4In addition to this risk, non-kin parents who seek to provide permanency through adoption

could be given preference in placement decisions over non-kin parents who do not plan to adopt.

This channel would provide a similar competitive threat.
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mean) in the two years post-implementation. These children experienced the largest

absolute increase in the total value of transfers, as they faced the longest horizon

among children over the age of six. We did not find a significant impact on the

adoption rate of the oldest children, between the ages of twelve and fifteen, or on the

youngest children, under the age of six, from the implementation of the Northstar

Care Program.5 For the youngest children this is not surprising as there was little

contemporaneous change in the financial incentives to adopt; if anything, one might

expect parents to delay adoption until the child’s future sixth birthday. Likewise,

the change in payments for the oldest children would have the shortest time horizon,

limiting the effect of the change in financial incentives.

It is important to note that this policy change was not unexpected; parents in

the system were told about the impending changes at the end of 2013. Allowing

for the announcement of the policy to serve as a separate treatment, we do find

significant but temporary effects of the announcement. Specifically, we find that

children under the age of six experienced a 9-percentage-point increase (23% at the

mean) in their probability of adoption in the year prior to the Northstar Care Pro-

gram’s implementation. This is consistent with parents reacting to the increased

risk of competition; both kin and non-kin adoptive parents (who would be facing in-

creased financial transfers in the following calendar year) would be given precedence

in placement decisions. Additionally, we find that the oldest children of age fifteen

experienced a statistically-significant 9-percentage-point decrease (65% at the mean)

in their probability of adoption. While this is consistent with forward-looking parents

who are waiting for benefit increases, we do not find evidence of increased adoptions

among this age group post-implementation.

5The effects were small and statistically insignificant for children under the age of six, age twelve,

and ages thirteen to fourteen. We find a moderately-sized effect (a 3.65-percentage-point decrease)

for children age fifteen, although this is not statistically significant. See Table 3 for details.
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By studying this large-scale policy change with multiple incentives for adoptive

parents, this paper speaks to a number of literatures. First, it speaks directly to

the ability of financial transfers to improve the wellbeing of foster children who are

some of the most vulnerable members of our society and where much of the existing

literature has been inconclusive. Much of the existing literature on the effect of

financial transfers within the foster-care system has been focused on the effect of

financial incentives on the decision to become a foster parent, versus the decision to

adopt a child out of the system. Early studies found inconclusive results of the effect

of financial transfers on the number of foster parents registered in the system (Simon

(1975)) and insignificant results on the the effect of transfers on the number of children

within each foster home (Campbell and Downs (1987)). Later studies, however, found

a significant effect of financial transfers. Doyle and Peters (2007) found that the

overall supply of adults willing to serve as foster parents is positively impacted by the

levels of financial payments in their state. Duncan and Argys (2007) reported that

more generous payments for foster families increase the probability that foster children

live in a foster home (versus an institutional setting) and decrease the probability

that the child will be removed from that setting in a future period. Finally, Doyle

(2007) found that less-generous payments to non-parental family members reduces

the probability that they will serve as foster parents. A smaller, but even more recent

literature has sought to describe the impacts of subsidies on adoption out of foster

care. This, too, has provided mixed conclusions. In cross-state analyses that exploit

differences in the age of eligibility for federally-funded adoption subsidies, Argys and

Duncan (2012) and Buckles (2013) found that subsidy-eligibility increases a child’s

probability of adoption out of foster care. Likewise, Brehm (forthcoming) finds that

the federal adoption tax credits increase adoption from foster care. Conversely, in a

difference-in-difference analysis of a major, age-based national policy reform, Brehm
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(2018) found that the transfer of federal funds to individual states has effectively no

impact on the adoption rates of the targeted, older children (aged nine and above).6

Second, this analysis adds to the larger literature related to the impact of financial

transfers on family-size decisions. This literature finds a limited impact of direct gov-

ernment payments (through pro-natalist policies) on family-size decisions. Perhaps

the largest government transfer in the United States that directly affects fertility de-

cisions is the federal income-tax subsidy for children. Using data from 1913 to 2005,

Crump et al. (2011) did not find evidence that these United States subsidies affect

the level of fertility. Baughman and Dickert-Conlin (2003) found that the fertility

effects of the Earned Income Tax Credit (EITC) program are both small and concen-

trated on first-birth decisions among non-white, income-eligible women. These results

mirror those of the earlier literature on government transfers and fertility, reviewed

in Hoynes (1997) and Moffitt (1998), which mainly found small and/or insignificant

impacts in the United States. Studies on direct government transfers in other nations

have produced similarly inconclusive results for pro-natalist policies. For example,

Milligan (2005) found that Canadian tax subsidies have a positive impact on fertility

while Parent and Wang (2007) found that Canadian subsidies only affect the timing of

fertility decisions. Gonzalez (2013) found that Spanish tax subsidies increased overall

fertility while Cohen et al. (2003) found that the positive fertility impacts of Israeli

tax subsidies are concentrated among low-income mothers specifically. In contrast,

our results suggest that adoptive parents are relatively sensitive to financial transfers

in their family-composition decisions although we are unable to rule out long-run

intertemporal substitution patterns the data or to control for the income of adoptive

families.

6In this case, it was unclear how much, if any, of the $4, 000 or $8, 000, one-time transfers were

passed on to adoptive parents from the states, as the use of funds was not stipulated in the federal

policy.
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Finally, our paper is related to the policy-evaluation literature used to inform

policy-makers about the effectiveness of costly government programs. Using our es-

timates, this program induced 189 additional adoptions on net. As this includes

adoptions that occurred in 2014 and were likely reflective of long-run intertemporal

substitution patterns, we focus on the 49 additional adoptions that occurred on net

in the year 2015 and the 74 additional adoptions on net in the year 2016. We as-

sume that these 123 adoptions would not have occurred otherwise. Aggregating the

age-specific costs for these children, along with the age-specific transfers to the 1,579

adopted children who would have been adopted even in the absence of this policy dur-

ing 2015 and 2016, we estimate the financial burden of the Northstar Care Program

to be $40.2 million in transfers to adoptive parents alone. This implies an average

cost per policy-induced adoption (among children less than sixteen years old) in 2015

and 2016 of $325,373 or an average cost per policy-induced year spent adopted (versus

not adopted) of $31,483.

This paper proceeds as follows: Section 2 describes the Northstar Care Program,

Section 3 describes our panel dataset, Section 4 presents our estimation approach,

Section 5 discusses our results and policy implications, and Section 6 concludes.

2.2 The Northstar Care Program

The number of foster children in the United States had been both large and

growing. In 2012, after thirteen years of continued decline in both the overall foster-

care population and in the share of children in foster care, the trend reversed with

relatively more children entering the system in each year 2012-2017. This increase

was mainly driven by the opioid epidemic, specifically children being removed from

their home due to parental drug use or parental neglect which was thought to be

the result of drug use (Department of Health and Human Services (2017), National
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Council for Adoption (2018)).

The goal for these children is typically described as permanency. Foster children

who attain permanent living situations have been found to fare better in a variety

of outcomes than children who do not (Triseliotis (2002)). At any given time, birth

parents’ rights are legally intact for approximately three-quarters of foster children.

The preferred permanent outcome for these children is reunification with the birth

parents. For the remaining one-quarter of foster children, birth parents’ rights have

been legally terminated by the state and reunification is not an option. Thus, for the

foster children in the most dire situation where parental rights have been terminated,

adoption (by kin or other foster parents) is the preferred permanent outcome.7

To directly address these concerns, the State of Minnesota passed into law the

Northstar Care Program in May of 2013. This program was directly communicated

to foster families in late 2013 and took effect on January 1, 2015. By changing

key financial incentives associated with age-based monthly payments, this program

sought to increase permanency through adoption for foster children in Minnesota.

The payments for the 2014 and 2015 calendar years are shown for each age group in

Table 1. Note that post-2015 payments are adjusted annually based on changes to

the USDA’s Estimates of the Cost of Raising a Child index.

First, the Northstar Program eliminated the financial penalty associated with

the adoption of children aged six and older by equalizing the monthly payments of

fostering and adopting for non-relative foster parents. For example, the difference in

total payments associated with adopting a six year old child in 2014 (shown in Column

I of Table 1), relative to fostering until the child’s eighteenth birthday (shown in

7The alternative, less attractive, permanent outcome is transferral of legal custody to an agency

(Gueinzius and Hillel (2014)).
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Table 2.1: Monthly Payments to Foster and Adoptive Families in Minnesota

Pre-Northstar Post-Northstar

I II III IV V VI VII VIII

Foster Foster Adopt Adopt Foster Foster Adopt Adopt

Age (non-kin) (kin) (<6) (≥6) (non-kin) (kin) (<6) (≥6)

0-5 $650 $247 $247 - $565 $565 $283 -

6-11 $650 $277 $277 $277 $670 $670 $335 $670

12 $750 $307 $307 $307 $670 $670 $335 $670

13-14 $750 $307 $307 $307 $790 $790 $395 $790

15-18 $775 $377 $377 $377 $790 $790 $395 $790

Column IV of Table 1) is $61,908. The same relative difference post-implementation

(using the payments described in Columns V and VIII) is $0. Notably, it may be

seen by comparing Columns V and VII of Table 1 that the adoption penalty remained

post-implementation for the adoption of younger children; by adopting a newborn in

2015, a foster family would be foregoing $76,884 in transfers from the state which is

only slightly lower than the pre-program adoption penalty of $90,924. Thus, older

children would be relatively more attractive to adopt post policy (when compared with

older child pre-policy or younger children post-policy). Younger children would be

relatively more attractive to adopt post-policy when compared with younger children

pre-policy, but relatively less attractive to adopt post-policy when compared with

older children post-policy.

Second, the program changed payments to kin (relative) foster parents through

Kinship Assistance. This may be seen by comparing Columns II and VI. Pre-
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Northstar, kin caregivers received at most the post-adoption rate given to non-kin, as

it was means tested. This meant that in the pre-period, kin did not face an adoption

penalty. Post-Northstar, payments to kin more than doubled for all age groups, these

payments were not means tested, and parents still did not face an adoption penalty.

The effects of this would likely be seen through increased competition for children, as

kin are given preference in placement decisions.

Finally, the program modified the overall level of payments to non-kin foster par-

ents. This may be seen by comparing Columns I and V. Specifically, the monthly

payments given to families with new foster placements was increased for children

older than six years old (with the exception of children aged twelve, for whom the

subsidy dropped by approximately 12%) and decreased for placements involving chil-

dren below age six by 13.1%.8 The effects of this would likely be seen in the decision to

become foster parents on the extensive margin, making older children more attractive

relative to younger ones.

In terms of policy-relevance, Minnesota is a larger-than-average state with a 2015

population of approximately 5.5 million people (Minnesota State Demographic Center

(2016)). It is also a relatively-representative U.S. state in terms of demographics,

as the makeup of Minnesota’s population described by percentage of the population

under age eighteen (23 percent versus 24 percent), percentage of the population living

in an urban area (73 percent versus 80 percent), and percentage of the population

that reports as non-white (19 percent versus 28 percent) roughly matches the United

States as a whole.9

8The subsidy was increased by 3.1% for placements involving children aged six to eleven, 5.3%

for children aged thirteen to fourteen, and 1.9% for children aged fifteen to eighteen.
9These are 2010 statistics taken from the U.S. Census Bureau.
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2.3 Data

The data employed in this study cover the period of January 2011 through Decem-

ber 2016 and come from the Adoption and Foster Care Analysis Reporting System

(AFCARS).10 This time period corresponds to four years prior to the implementa-

tion of the Northstar Care Program through two years after and includes the most

recently-available, full-calendar-year AFCARS data.

The federal government requires all states and territories to collect and submit

data describing the children and families in the state’s foster-care system, including

the reason for a child’s exit of the system. We access AFCARS administrative records

as and unbalanced panel of children in the foster care system, containing unique ids.11

The data include a rich set of covariates describing the children in the foster-

care system, including month of birth, gender, race and ethnicity, and disability

status.12 We additionally observe whether the child is eligible for additional federal

funds through Title IV-E of the Social Security Act. These children, who are deemed

to require a greater deal of care, are eligible for additional medical-assistance funds

in the State of Minnesota (Minnesota Department of Human Services (2014)).13 We

10These data were accessed through the National Data Archive on Child Abuse and Neglect at

Cornell University.
11Unfortunately, the same cannot be done for foster parents in our data due to lack of identifiable

covariates. For the parents, we see only race and ethnicity, marital status, and age. We do not

control for these in our analysis, as parents with a current foster child represent only a subset of the

potential pool of adoptive parents.
12Note that we do not observe the presence of siblings, which could be an important factor in

adoption decisions.
13The State of Minnesota also has an internal assessed level of required care that entitles parents

to additional funds called Minnesota Assessment of Parenting for Children and Youth, or MAPCY.

We do not observe MAPCY scores in our data. Thus, our indicator for Title IV-E status may

additionally proxy for MAPCY.
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limit our sample to those children living within the Continental United States and

focus on the subset of children who are eligible for adoption, i.e., those children for

whom parental rights had already been terminated. In addition, we exclude children

aged 16 and above from our analysis as these children often exit the system through

legal emancipation, as opposed to the younger children for whom adoption is the

only contemporaneous route out of the foster-care system. This leaves us with a

final sample of 368,731 children across the Continental US and 6,100 in Minnesota

specifically. Our preferred control group in estimation is the set of 12,956 foster

children residing in the four adjacent states (AS) to Minnesota of Iowa, North Dakota,

South Dakota, and Wisconsin. Summary statistics for our estimation samples are

provided in Table 2. In the Appendix, Table A1 shows summary statistics for the full

sample of children with and without parental rights terminated.

As may be seen in this table, foster children in Minnesota are less likely to be

adopted and more likely to be disabled relative to both control groups and less likely to

be Hispanic relative to the Continental United States control group. The underlying

differences in disability status likely reflects the same underlying differences observed

in Title IV-E eligibility.

For our empirical implementation, we create a set of age bins that correspond to

the age groups defined by State of Minnesota’s Department of Human Services that

faced the same treatment (age 0-5, age 6-11, age 12, age 13-14, and age 15, as shown

in Table 1), using age defined on the last day of the year. The number of children in

each age bin over time in Minnesota is shown in Figure (1). There, it may be seen

that the numbers of children with parental rights terminated in the youngest two age

bins are relatively large when compared with the numbers of children in the oldest

three age bins. In addition, the growth rates in these older bins were significantly

lower than for the younger age bins.
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Figure 2.1: Number of Minnesota Children by Age Bin, 2011 to 2016

2.4 Empirical Strategy

To recover the effects of the Northstar Care Program in Minnesota, we use a

difference-in-differences estimation approach where we take advantage of the fact that

the financial incentive associated with adoption changed in January of 2015. As this

policy was passed in May of 2013 by the Minnesota state legislation and was formally

announced to parents at the end of 2013, we allow for two separate treatment effects:

one for the announcement which we define starting in January of 2014 and one for

the enactment in January of 2015.
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This differences-in-differences empirical strategy relies on the identifying assump-

tion of common trends in the probability adoption (prior to our first treatment of the

policy’s announcement of 2014) between Minnesota and the control group. We show

these pre-trends relative to the set of states adjacent to Minnesota (Panel (a)) and

relative to the non-Minnesota Continental US (Panel (b)) in Figure 2.

As may be seen in Figure 2, the differential adoption rate prior to 2014 is not sig-

nificantly different in Minnesota relative to either control group. There is, however,

a noticeable effect of both the policy’s announcement in 2014 and the policy’s imple-

mentation in 2015. To explore these effects, we run the following linear-probability

regression:

adoptedi,j,t = α+βXi+γZi,t+δj+ζt+ηMinni,t+λ1(announcet·Minni,t·zero fivei,t)

+ λ2(announcet ·Minni,t · six eleveni,t) + λ3(announcet ·Minni,t · twelvei,t)

+λ4(announcet ·Minni,t · thirteen fourteeni,t) +λ5(announcet ·Minni,t · fifteeni,t)

+ φ1(postt ·Minni,t · zero fivei,t) + φ2(postt ·Minni,t · six eleveni,t)

+ φ3(postt ·Minni,t · twelvei,t) + φ4(postt ·Minni,t · thirteen fourteeni,t)

+ φ5(postt ·Minni,t · fifteeni,t) + εi,j,t (2.1)

where we allow the effects of these treatments to differ over five different age bins,

corresponding to the age-range specific treatments laid out by the Northstar Care

Program. The dependent variable, adoptedi,j,t, is an indicator that takes the value of

1 if child i, living in state j, is adopted during year t. Xi is a vector of time-invariant

characteristics of the child comprised of gender, race, ethnicity, a dummy for whether

the child has ever been diagnosed with a disability, and a dummy for whether the child

is eligible for additional federal funding (all are measured at the end of the panel).14

Zi,t is a vector of time-varying characteristics of the child comprised of dummies for

14Title IV-E blah blah. explain this more. Is this the policy change that Brehm looks at???
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each age in years, time since they entered foster care, and time since parental rights

were terminated (all measured at year’s end). δj is a vector of state-level fixed effects,

which controls non-parametrically for any cross-state differences in adoption rates,

and ηt is a vector of year effects, which controls non-parametrically for any trends

in adoption rates over time. The variable announcet is an indicator that takes the

value of 1 if year t is 2014 while postt is an indicator that takes the value of 1 if year

t is 2015 or later. The variable Minni,t is an indicator that takes the value of 1 if

child i is living in Minnesota in year t. Finally, we have the age-bin dummy variables:

zero fivei,t is an indicator that takes the value of 1 if child i is aged zero to five years

old in year t, six eleveni,t is an indicator that takes the value of 1 if child i is aged

six to eleven in year t, twelvei,t is an indicator that takes the value of 1 if child i is

aged twelve in year t, thirteen fourteeni,t is an indicator that takes the value of 1 if

child i is aged thirteen to fourteen in year t, and fifteeni,t is an indicator that takes

the value of 1 if child i is aged fifteen in year t.

We use as our control group the children available for adoption in the four adjacent

states of Iowa, North Dakota, South Dakota, and Wisconsin.15 As a robustness check,

we additionally estimate specifications with the entire Continental US as the control

group.

To the best of our knowledge, there were no major policy changes in the control

groups that would influence our results. As additional robustness checks, we run

specifications that include the year-specific total number of children available for

15One potential concern with any control group might be the possibility of interstate adoptions

out of the Minnesota foster-care system. In these cases, however, financial payments to families

would not continue post-adoption, as the home agency’s responsibilities end when the child is legally

adopted according to the Interstate Compact on the Placement of Children (Minnesota Department

of Human Services). This compact covers all interstate placements of foster children between all

fifty states, Washington D.C., and the U.S. Virgin Islands.
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adoption in the each state’s foster-care system, specifications that omit the year-

effect dummies, and specifications that break-out the age bins into individual integer

ages.

2.5 Results

The results from the estimation of equation (1) are shown in Table 2. Column 1

presents the results of a base specification that does not control for individual year

effects, but rather includes only a dummy for the post period of 2015-2016. Results

are remarkably similar to those from our preferred specification shown in Column 2.

This specification includes individual year effects for each year of the sample. The

control group for both specifications is the set of children residing in the states that

are geographically adjacent to Minnesota: Iowa, North Dakota, South Dakota, and

Wisconsin.

For the effect of the announcement, we find that for the children in the first age bin

(age 0-5), the probability of adoption increases by 9.14 percentage points or 23% of

the mean adoption rate in the year prior to the program’s implementation. Intertem-

porally substituting post-implementation adoptions to the pre-implementation period

is at odd with parents’ financial incentives; if anything, waiting until the child reaches

the age of six would be optimal from a financial standpoint. It is, however, consistent

with parents reacting to the outside threat of either kin foster parents or non-kin

adoptive parents competing for children in their care. The announcement period had

small and/or statistically insignificant effects for children in the second age bin (age

6-11), the third age bin (age 12), and the fourth age bin (age 13-14). Interestingly,

there is a relatively-large, statistically-significant effect for the oldest age bin (age

15). For these children, the probability of adoption fell by 3.65 percentage points or

22% of the mean adoption rate. This is consistent with forward-looking parents who
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plan to wait for the increased payments associated with program implementation.

Surprisingly, we do not see these negative effects for the other age bins.

In terms of the effect of program implementation, we find small and statistically

insignificant positive results for children in the first age bin (age 0-5), the third age

bin (age 12), and the fourth age bin (age 13-14). We find a relatively-large and

statistically-significant effects for the children in the second age bin (age 6-11) whose

probability of adoption increased by 7.88 percentage points or 24% of the mean adop-

tion rate following the implementation of the policy. This is consistent with the

stated goals of the program to increase adoption rates for older children using finan-

cial incentives. For the children in the oldest age bin (age 15), the implementation

had a negative, although statistically-insignificant impact. This impact is not consis-

tent with the parents’ strategic delay that is implied by the impact of the program’s

announcement for this oldest age group.

A potential concern might be the omission of a time-varying control for the number

of children in each state, in light of the increasing burdens on states foster systems

over this time period. Therefore, the results shown in Column III come from a

specification where we include the state-specific number of children with parental

rights terminated in each year. The control group here is the set of adjacent states

to Minnesota. Results are relatively robust to this inclusion.

2.6 Conclusion

This analysis takes advantage of the recent state law governing the adoption of

children out of foster care in the State of Minnesota that was implemented on January

1, 2015. The policy, the Northstar Care Program, sought to create “a uniform set

of benefits and processes for children age 6 and older in foster care.”16 In addition

16Minnesota Department of Human Services, DHS Program Resources, 2018.

http://www.dhs.state.mn.us/.
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to streamlining the adoption process by combining three major programs (Family

Foster Care, Kinship Assistance, and Adoption Assistance), the Northstar Care Pro-

gram changed the value of monthly payments for foster families, changed the value

of monthly payments to placements with relatives (kin), and changed the value of

monthly payments to all adoptive families, eliminating the adoption penalty for all

children over age 6. These changes greatly altered parents’ incentives to adopt from

the foster care system.

Employing a difference-in-differences estimation strategy that takes into account

both the announcement and the implementation of the Northstar Care Program, we

find that parents reacted to a myriad of new incentives. First, we find that the

program was a success in its stated goals; the adoption rates of older children aged

6 to 11 increased by 24%. For these children, the financial penalty associated with

adoption was removed. We do not find a post-implementation effect for children

under age 6 for whom the adoption penalty was not removed. Second, we find that

parents of the youngest children aged 0 to 5 were induced to adopt in the pre period;

the adoption rates of these children temporarily spiked in the announcement period

by 23%. This is consistent with the risk of other parents offering permanency in the

post period and a desire to maintain physical custody of a child. We do not find

evidence of parents strategically delaying adoption until a child’s sixth birthday.

These results have important policy implications for government policy dictating

family composition decisions. To date, the literature has been inconclusive with

regards to family-size responses to financial incentives. This paper provides one more

example parents’ sensitivity.

67



Figure 2.2: Pre-Trends in the Probability of Adoption for Children in Foster Care,

2011 to 2016

(a) Pre-Trends Relative to States Adjacent to Minnesota

(b) Pre-Trends Relative to the Continental United States
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Table 2.2: Descriptive Statistics, All Samples

Sample A Sample B Sample C

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Share ending in adoption 0.28 0.45 - - - -

Share foster-matched 0.93 0.25 0.00 0.00 1.00 0.00

Share becomes foster-matched - - 0.24 0.42 - -

Share becomes unmatched - - - - 0.02 0.14

Share disrupts foster-match - - - - 0.19 0.39

Age in years 6.80 4.43 12.17 2.80 6.81 4.36

Share Disability 0.41 0.49 0.68 0.47 0.43 0.50

Share Male 0.53 0.50 0.63 0.48 0.52 0.50

Share White 0.43 0.50 0.44 0.50 0.42 0.49

Share Black 0.24 0.43 0.27 0.44 0.26 0.44

Share Hispanic 0.22 0.41 0.20 0.40 0.22 0.42

Share Receiving Title IV-E 0.48 0.50 0.47 0.50 0.51 0.50

Months in foster care 34.87 24.38 53.10 36.72 34.86 24.86

Months since termination of
parental rights 17.09 22.62 41.99 36.86 16.23 22.15

Child-period observations
ending in adoption 12.46 11.85 - - - -

Months in current placement 16.06 15.72 10.85 13.99 17.31 16.32

Child-period observations
foster-matched

16.44 15.78 - - - -

Number of child-month
observations

1,165,818 65,970 659,253

Number of children 451,967 24,783 312,028

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS).

Means and standard deviations are calculated for child-period observations. Sample A is the

full sample containing all children younger than age 16 whose parental rights have been termi-

nated and who are either foster-matched or unmatched. Sample B and Sample C are subsam-

ples of A. Sample B (sample C) keeps only those child-period observations such that the child

is unmatched (foster-matched) at the beginning of the period and still in foster care at the end

of the period.
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Table 2.3: Stylized Facts from Foster Care: Effect of Disability

Disability (γ)

Mean of dependent
variable

Number of child-period
observations

Adopted

(1)

-0.059???
(0.005)

0.279

1,165,818

Foster
matched

(2)

-0.043???
(0.002)

0.934

1,165,818

Becomes
Foster

(3)

-0.045???
(0.006)

0.236

65,970

Becomes
Unmatched

(4)

0.011???
(0.001)

0.021

659,253

Disrupts
Foster

(5)

0.023???
(0.002)

0.185

659,253

Notes: Data are from Adoption and Foster Care Analysis and Reporting System (AFCARS).

All specifications control for child’s demographics, states indicators and period indicators. First

and second column consider sample A; third column uses sample B; forth and fifth column use

sample C. Standard errors are cluster at state-period level and shown in parentheses. ***P <

0.01; **P < 0.05; *P < 0.10.



Table A1: Descriptive Statistics by Disability, All Samples

Disability

Share ending in adoption

Share foster-matched

Share becomes foster-matched

Share becomes unmatched

Share disrupts foster-match

Age in years

Share Male

Share White

Share Black

Share Hispanic

Share Receiving Title IV-E

Months in foster care

Months since termination of
parental rights
Child-period observations
ending in adoption

Months in the current placement

Child-period observations
foster-matched

Sample A

Yes

0.22
(0.41)
0.89

(0.31)

-

-

-

7.96
(4.45)
0.57

(0.50)
0.43

(0.49)
0.25

(0.43)
0.22

(0.41)
0.49

(0.50)
41.20

(28.66)
21.71

(26.53)
14.62

(14.30)

16.67
(17.32)
17.38

(17.50)

No

0.32
(0.47)
0.96

(0.19)

-

-

-

6.01
(4.23)
0.50

(0.50)
0.44

(0.50)
0.23

(0.42)
0.22

(0.41)
0.47

(0.50)
30.53

(19.80)
13.91

(18.83)
11.44

(10.35)

15.64
(14.51)
15.85

(14.54)

Sample B

Yes

-

0.00
(0.00)
0.22

(0.41)

-

-

12.34
(2.56)
0.65

(0.48)
0.45

(0.50)
0.26

(0.44)
0.19

(0.39)
0.45

(0.50)
55.94

(37.34)
44.14

(37.02)

-

11.03
(14.67)

-

No

-

0.00
(0.00)
0.28

(0.45)

-

-

11.81
(3.22)
0.58

(0.49)
0.42

(0.49)
0.29

(0.45)
0.21

(0.41)
0.50

(0.50)
46.99

(34.54)
37.34

(36.09)

-

10.47
(12.38)

-

Sample C

Yes

-

1.00
(0.00)

-

0.03
(0.18)
0.19

(0.40)
7.79

(4.35)
0.60

(0.50)
0.41

(0.49)
0.27

(0.44)
0.22

(0.41)
0.53

(0.50)
40.91

(28.62)
20.09

(25.27)

-

18.18
(18.16)

-

No

-

1.00
(0.00)

-

0.01
(0.11)
0.18

(0.38)
6.07

(4.22)
0.50

(0.50)
0.42

(0.50)
0.24

(0.43)
0.23

(0.42)
0.50

(0.50)
30.23

(20.37)
13.29

(18.92)

-

16.64
(14.72)

-

Number of child-month
observations

474,824 690,994 45,073 20,897 285,519 373,734
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Table A2: Regression Outputs

Age in years

Disability

Male

White

Black

Hispanic

Receiving Title IV-E

Months in foster care

Months since termination
of parental rights

Months in the
current placement
Pre-adoptive home

Relative home

Institution

Mean of dependent
variable

Number of child-period
observations

R-square

Adopted

(1)

-0.002???
(0.000)

-0.059???
(0.005)

-0.011???
(0.001)

0.022???
(0.002)

-0.025???
(0.003)

0.007???
(0.003)

-0.079???
(0.005)

0.002???
(0.000)

-0.001???
(0.000)

-

-

-

-

0.279

1,165,818

0.073

Foster
matched

(2)

-0.001???
(0.000)

-0.043???
(0.002)

-0.017???
(0.001)

-0.004???
(0.001)

0.001
(0.002)

0.003???
(0.001)

-0.009???
(0.003)

0.000???
(0.000)

-0.002???
(0.000)

-

-

-

-

0.934

1,165,818

0.152

Becomes
Foster

(3)

-0.002???
(0.000)

-0.045???
(0.006)

-0.030???
(0.004)

-0.002
(0.007)

-0.009
(0.007)

-0.007
(0.009)

0.013???
(0.004)

-0.000???
(0.000)

-0.001???
(0.000)

-0.001???
(0.000)

-

-

-0.020???
(0.005)

0.236

65,970

0.053

Becomes
Unmatched

(4)

0.000???
(0.000)

0.011???
(0.001)

0.003???
(0.000)

0.001
(0.001)

0.000
(0.001)

-0.001
(0.001)

-0.000
(0.001)

0.000???
(0.000)

0.000???
(0.000)

-0.001???
(0.000)

-0.017???
(0.008)

-0.011???
(0.001)

-

0.021

659,253

0.046

Disrupts
Foster

(5)

0.001???
(0.000)

0.023???
(0.002)

-0.003???
(0.001)

-0.006??
(0.002)

0.005
(0.003)

-0.004
(0.002)

-0.002
(0.002)

-0.000???
(0.000)

0.000???
(0.000)

-0.002???
(0.000)

-0.154???
(0.008)

-0.070???
(0.004)

-

0.185

659,253

0.113
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Table A3: Foster Children Sample Statistics, 2011-2016

US MN AS

obs = 629, 653 obs = 10, 568 obs = 20, 895

Mean sd Mean sd Mean sd

Adopted 0.43 0.50 0.37 0.48 0.50 0.50

Disabled 0.36 0.48 0.53 0.50 0.37 0.48

Female 0.48 0.50 0.49 0.50 0.48 0.50

White 0.46 0.50 0.44 0.50 0.52 0.50

Black 0.23 0.42 0.17 0.38 0.19 0.40

Hispanic 0.22 0.42 0.11 0.31 0.11 0.31

Age 0-5 0.49 0.50 0.50 0.50 0.52 0.50

Age 6-11 0.34 0.47 0.33 0.47 0.34 0.48

Age 12 0.04 0.21 0.04 0.21 0.04 0.19

Age 13-14 0.08 0.28 0.08 0.27 0.07 0.25

Age 15 0.04 0.20 0.05 0.21 0.03 0.18

Title IV-E Eligible 0.42 0.50 0.50 0.50 0.39 0.49

Years since PRT 1.31 1.67 1.24 1.52 1.07 1.45
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Table A4: Impacts on the Annual Probability of Adoption Relative to Adjacent States

I II III
Coefficient Coefficient Coefficient

Independent Variable (s.e.) (s.e.) (s.e.)

announcet ·Minni,t · zero fivei,t 0.1116* 0.0914* 0.1039*
(0.0161) (0.0225) (0.0229)

announcet ·Minni,t · six eleveni,t -0.0044 -0.0071 0.0061
(0.0117) (0.0154) (0.0210)

announcet ·Minni,t · twelvei,t 0.0240 -0.0897 -0.0757
(0.0337) (0.0510) (0.0530)

announcet ·Minni,t · thirteen fourteeni,t 0.0064 -0.0074 0.0062
(0.0151) (0.0411) (0.0453)

announcet ·Minni,t · fifteeni,t -0.0245* -0.0947* -0.0796*
(0.0103) (0.0369) (0.0394)

postt ·Minni,t · zero fivei,t 0.0622 0.0051 0.0366
(0.0325) (0.0194) (0.0345)

postt ·Minni,t · six eleveni,t 0.1289* 0.0788* 0.1102*
(0.0333) (0.0263) (0.0382)

postt ·Minni,t · twelvei,t 0.0913 0.0152 0.0469
(0.0506) (0.0518) (0.0575)

postt ·Minni,t · thirteen fourteeni,t 0.0662 0.0137 0.0452
(0.0509) (0.0434) (0.0477)

postt ·Minni,t · fifteeni,t 0.0348 -0.0365 -0.0031
(0.0487) (0.0406) (0.0535)

includes state fixed effects X X X

includes year effects X X

includes state-level supply of children X

Table A5: Foster Children Sample Statistics, 2011-2016

US US MN MN AS AS

rights intact rights term. rights intact rights term. rights intact rights term.

n = 2, 178, 222 n = 629, 653 n = 37, 028 n = 10, 568 n = 86, 445 n = 20, 895

Mean sd Mean sd Mean sd Mean sd Mean sd Mean sd

Adopted 0.43 0.50 0.37 0.48 . 0.50 0.50

Age 7.05 4.70 6.95 4.31 7.72 5.00 6.81 4.44 7.48 4.80 6.59 4.10

Disabled 0.24 0.42 0.36 0.48 0.28 0.45 0.53 0.50 0.19 0.40 0.37 0.48

Female 0.48 0.50 0.48 .50 0.47 0.50 0.49 0.50 0.47 0.50 0.48 0.50

White 0.45 0.50 0.46 0.50 0.39 0.49 0.44 0.50 0.53 0.50 0.52 0.50

Black 0.24 0.43 0.23 0.42 0.15 0.36 0.17 0.38 0.19 0.40 0.19 0.40

Hispanic 0.21 0.41 0.22 0.42 0.10 0.30 0.11 0.31 0.10 0.30 0.11 0.31

Title IV-E 0.33 0.47 0.42 0.50 0.25 0.43 0.50 0.50 0.26 0.44 0.39 0.49

Mth in FCS 15.19 17.71 35.17 23.25 9.98 13.33 26.14 18.37 14.14 16.80 32.86 21.53

Mth since PRT 15.67 20.01 14.89 18.18 12.89 17.45
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For each x, uc(x) satisfies the following equality:

uc(x)

{
πc(θ)

∑
M(x,q0)

f(s)
∑
q

[
δx +

(
1− δx

)(
1− d(x, q)

)
g(q|s)

]
+
(

1− πc(θ)
∑
M(x,q0)

f(s)
)
δx

}
︸ ︷︷ ︸

mass destruction

=

∑
q

m(x, q)
(
1− δx

){
πc(θ)

∑
M(x,q)

f(s)
∑
q′

g(q′|s) d(x, q′) +
(

1− πc(θ)
∑
M(x,q)

f(s)
)
d(x, q)

}
+ ρ l(x)

︸ ︷︷ ︸
mass creation

(A.1)

For each (x, q), m(x, q) satisfies the following equality:

m(x, q)

{
πc(θ)

∑
M(x,q)

f(s) +
(

1− πc(θt)
∑
M(x,q)

f(s)
) [

δx +
(
1− δx

)
d(x, q) a(x, q)

]}
︸ ︷︷ ︸

mass destruction

=

uc(x) πc(θ)
∑
M(x,q0)

f(s)g(q|s)
(
1− δx

)(
1− d(x, q)

) (
1− a(x, q)

)
+
∑
q′

m(x, q′) πc(θ)
∑
M(x,q′)

f(s)g(q|s)
(
1− δx

)(
1− d(x, q)

) (
1− a(x, q)

)
︸ ︷︷ ︸

mass creation

(A.2)
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B.1 PROOF LEMMA1.6.1

(i) Fix (x, q) and assume that bc(x, q) is non-negative. By contradiction, suppose

dc(x, q) = 1 then, by the equilibrium definition, it follows that Ĉ(x, q0) > Ĉ(x, q).
Equivalently, the following inequality must hold:(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) >

(
1− πc(θ)

∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s) (B.1)

By assumption Ĉ(x, q0) > Ĉ(x, q), the value function for child x f-matched when
the quality is q is equal to:

C(x, q) = bc(x, q) + β δx
bca(x, qN)

1− β
+

β(1− δx)
[(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

Since bc(x, q) is non-negative, it follows that:

C(x, q) = bc(x, q) + β δx
bca(x, qN )

1− β

+ β(1− δx)
[(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

≥ β δx
bca(x, qN )

1− β
+

β(1− δx)
[(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s)
]

= C(x, q0)

Before continuing, let me do the following remark. In equilibrium, s ∈M(x, q̄)
if and only if Es[C(x, q)] ≥ C(x, q̄) and Es[P(x, q)] ≥ Pu. Thus, if C(x, q) ≥
C(x, q0) then M(x, q) ⊆ M(x, q0). Now, I show that C(x, q) ≥ C(x, q0) contra-

dicts Ĉ(x, q0) > Ĉ(x, q). For this, I analyze two cases: C(x, q) = C(x, q0) and
C(x, q) > C(x, q0).

I Case 1: If C(x, q) = C(x, q0) then M(x, q) = M(x, q0). Thus Ĉ(x, q) =

Ĉ(x, q0) which implies that dc(x, q) = 0. A contradiction.

I Case 2: If C(x, q) > C(x, q0) then M(x, q) ⊂ M(x, q0). Here I define the set
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M̂(x, q) = {s ∈ S|s ∈M(x, q0) \M(x, q)}. Thus, the following holds:

Ĉ(x, q) =
(

1− πc(θ)
∑
M(x,q)

f(s)
)
C(x, q) + πc(θ)

∑
M(x,q)

Es[C(x, q)]f(s)

=
(

1− πc(θ)
)
C(x, q) + πc(θ)

∑
s/∈M(x,q)

f(s) C(x, q) + πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

=
(

1− πc(θ)
)
C(x, q) + πc(θ)

∑
s/∈M(x,q0)

f(s) C(x, q) + πc(θ)
∑

s∈M̂(x,q)

f(s) C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

>
(

1− πc(θ)
)
C(x, q0) + πc(θ)

∑
s/∈M(x,q0)

f(s) C(x, q0) + πc(θ)
∑

s∈M̂(x,q)

f(s) C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

By definition, if s ∈ M̂(x, q) then C(x, q) > Es[C(x, q)] > C(x, q0). Thus, the
following holds:

Ĉ(x, q) >
(

1− πc(θ)
)
C(x, q0) + πc(θ)

∑
s/∈M(x,q0)

f(s) C(x, q0) + πc(θ)
∑

s∈M̂(x,q)

f(s) C(x, q)

+ πc(θ)
∑
M(x,q)

Es[C(x, q)]f(s)

>
(

1− πc(θ)
∑
M(x,q0)

f(s)
)
C(x, q0) + πc(θ)

∑
M(x,q0)

Es[C(x, q)]f(s) = Ĉ(x, q0)

which contradicts equation B.1. Hence, if bc(x, q) ≥ 0 then dc(x, q) = 0.

(ii) (⇒) Fix (x, q). Assume dp(x, q) = 1 then the following inequality must hold:

0 > max

(1− πc(θ)
∑
M(x,q)

f(s)
)
· bp(x, q)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) ,
bpa(x, q)

1− β


By contradiction, suppose bp(x, q) is non-negative. Since 1−πc(θ)

∑
M(x,q) f(s) ≥

0 and 1−β(1−δx)
(
1−πc(θ)

∑
M(x,q) f(s)

)
≥ 0, there is a contradiction. Hence,

dp(x, q) = 1 only if bp(x, q) is negative.

(⇐) Fix (x, q) and assume that bp(x, q) is negative. By contradiction, suppose
dp(x, q) = 0. There are two possible cases: ap(x, q) = 1 or ap(x, q) = 0.

I Case 1: If ap(x, q) = 1 then bpa(x,q)
1−β > 0 must hold. Since bp(x, q) is negative

then, by assumption 2(a), bpa(x, q) is also negative. Hence, there is a contradic-
tion.

I Case 2: If ap(x, q) = 0 and dp(x, q) = 0, then the following inequality must
hold:(

1− πc(θ)
∑
M(x,q)

f(s)
)
· bp(x, q)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) ≥ max

{
0 ,

bpa(x, q)

1− β

}
Since bp(x, q) is negative then, by assumption 2(a), bpa(x, q) is also negative.

Thus, it must be that dp(x, q) = 1.
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B.2 PROOF OF PROPOSITION 1.6.1

By assumption 1(a) and lemma 1.6.1(i), it follows that dc(x, q) = 0 for all (x, q).
This implies that the total probability of destruction of an f-match (x, q) is d(x, q) =
dp(x, q). In words, the destruction of f-matches depends on the destruction strategies
of parents.

(i) Fix some quality q. Suppose a parent f-matched to child x2 when the quality
is q chooses dp(x2, q) = 1. Then, by lemma 1.6.1(ii), bp(x2, q) is negative. By
assumption 2(b), bp(x1, q) is also negative. Thus, by lemma 1.6.1(ii), dp(x1, q) =
1. Hence, d(x1, q) ≥ d(x2, q).

(ii) Fix some child x. Suppose a parent f-matched to child x when the quality is
q chooses dp(x, q) = 1. Then, by lemma 1.6.1(ii), bp(x, q) is negative. Now,
consider some q′ such that q′ < q. By assumption 2(c), bp(x, q′) is also negative.
Thus, by lemma 1.6.1(ii), dp(x, q′) = 1. Hence, d(x, q′) ≥ d(x, q) whenever
q′ < q.

B.3 PROOF OF LEMMA 1.6.2

Fix x. In any foster care equilibrium, s ∈ F c(x, q0) if and only if Es[C(x, q)] ≥
C(x, q0). Now, I show that if Es[bc(x, q)] ≥ 0 then Es[C(x, q)] ≥ C(x, q0), for all s ∈ S.
Fix s and consider the conditional expected value Es[C(x, q)] given by:

Es[C(x, q)] =
∑
q

bc(x, q)g(q|s) + β δx
bca(x, qN )

1− β
+ β(1− δx)

∑
q

[
dp(x, q)Ĉ(x, q0)+

ap(x, q) max

{
bpa(x, q)

1− β
, Ĉ(x, q0) , Ĉ(x, q)

}
+
(

1−dp(x, q)−ap(x, q)
)

max

{
Ĉ(x, q0) , Ĉ(x, q)

}]
g(q|s)

Since the destruction of f-matches is unilateral, the conditional expected value

Es[C(x, q)] is bounded bellow by
∑

y b
c(x, q)g(q|s) + β δx

bca(x,qN )
1−β + β(1− δx) Ĉ(x, q0).

Given that
∑

q b
c(x, q)g(q|s) is non-negative, the following inequality holds:

Es[C(x, q)] ≥
∑
y

bc(x, q)g(q|s) + β δx
bca(x, qN)

1− β
+ β(1− δx) Ĉ(x, q0)

≥ β δx
bca(x, qN)

1− β
+ β(1− δx) Ĉ(x, q0) = C(x, q0)

Hence, if Es[bc(x, q)] ≥ 0 then Es[C(x, q)] ≥ C(x, q0).

B.4 PROOF OF LEMMA 1.6.3

(⇒) Fix x. In any foster care equilibrium, s ∈ F p(x) if and only if Es[P(x, q)] ≥ 0.
I show that if Es[bp(x, q)] ≥ 0 then Es[P(x, q)] ≥ 0. Fix s and consider the conditional
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expected value Es[P(x, q)] given by:

Es[P(x, q)] =
∑
q

bp(x, q)g(q|s)

+ β(1− δx)
∑
q

[
ac(x, q) max

{
bpa(x, q)

1− β
, 0 ,

(
1− πc(θ)

∑
M(x,q) f(s)

)
bp(x, q)

1− β (1− δx)
(

1− πc(θ)
∑
M(x,q) f(s)

)}

+
(

1− dp(x, q)− ap(x, q)
)

max

{
0 ,

(
1− πc(θ)

∑
M(x,q) f(s)

)
bp(x, q)

1− β (1− δx)
(

1− πc(θ)
∑
M(x,q) f(s)

)}]g(q|s)

Since f-match destruction is unilateral, the conditional expected value Es[P(x, q)] is
bounded bellow by

∑
q b

p(x, q)g(y|s). Hence, if Es[bp(x, q)] ≥ 0 then Es[P(x, q)] ≥ 0 .

(⇐) Fix (x, s). I show that, if Es[bp(x, q)] is negative then Es[P(x, q)] is also negative.
First, note that

∑
q P(x, q)g(q|s) is bounded above by the following expression:

∑
q

P(x, q)g(q|s) =
∑
q

bp(x, q)g(q|s)+β(1−δx)
∑
q

[
max

{
bpa(x, q)

1− β
, 0 ,

bp(x, q)

1− β (1− δx)

}]
g(q|s)

Since
∑

q b
p(x, q)g(q|s) is negative, by assumption 4,

∑
q P(x, q)g(q|s) is also negative.

B.5 PROOF OF PROPOSITION 1.6.2

Fix child x. By definition, f-matches must be mutually agreed upon s ∈M(x, q0) if
and only if s ∈ F c(x, q0) and s ∈ F p(x). First, I analyze f-match formation strategies
of children. By assumption 1(a), it follows that Es[bc(x, q)] ≥ 0 for all s ∈ S. Hence,
by lemma 1.6.2, F c(x, q0) = S.

(i) Fix signal s, I show that if s ∈ F p(x1) then s ∈ F p(x2). Suppose s ∈ F p(x1)
then, by lemma 1.6.3, it follows that Es[bp(x1, q)] must be non-negative. Since
bp(x2, q) ≥ bp(x1, q) for all q ∈ Q [assumption 2(b)], then Es[bp(x2, q)] is also
non-negative. Thus, by lemma 1.6.3, s ∈ F p(x2). By assumption 3, it follows
that F p(x1) and F p(x2) are non-empty. Hence, M(x, q0) is non-empty for all
x, and M(x1, q0) ⊆M(x2, q0).

(ii) Fix child x. Consider signals s and s′ such that s′ > s. I show that, if s ∈
F p(x) then s′ ∈ F p(x). Suppose s ∈ F p(x) then, by lemma 1.6.3, it follows
that Es[bp(x, q)] is non-negative. Given that G(q|s′) ≤ G(q|s) and bp(x, q) is
increasing in q [assumption 2(c)], it follows that Es′ [bp(x, q)] is also non-negative.
Hence, by lemma 1.6.3, s′ ∈ F p(x). Hence, if s ∈M(x, q0) then s′ ∈M(x, q0).

B.6 PROOF OF LEMMA 1.6.4

Assume 2(a). A parent f-matched to child x when the quality is q announces
adoption if and only if the following inequalities hold:

bpa(x, q)

1− β
> 0 (B.2)
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bpa(x, q)

1− β
>
(
1− πc(θ)

∑
M(x,q)

f(s)
)
· bp(x, q)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) (B.3)

(i) Fix (x, q). Assume bpa(x, q) is positive then ap(x, q) = 1 if and only if in-
equality B.3 holds. The right-hand side of this inequality is decreasing in
πc(θ)

∑
M(x,q) f(s). Thus, for ap(x, q) to take value one independent of the

endogenous objects πc(θ) and M(x, q), the following inequality must hold:

bpa(x, q)

b(x, q)
>

1− β
1− β(1− δx)

Or, equivalently δx >
bp(x,q)−bpa(x,q)

bpa(x,q)
1−β
β

.

(ii) Consider a parent f-matched to child x1 when the quality is q. Assume ap(x1, q) =
1, then inequalities B.2 and B.3 hold for x = x1. By assumption 2(b), it follows
that bpa(x2, q) > 0. Hence, ap(x1, q) = 1 implies ap(x2, q) = 1 if the following
inequalities holds:

bpa(x2,q)
bp(x2,q)

> bpa(x1,q)
bp(x1,q)

and

(1−β)
(

1−πc(θ)
∑
M(x1,q)

f(s)
)

1−β(1−δx1 )
(

1−πc(θ)
∑
M(x1,q)

f(s)
) ≥ (1−β)

(
1−πc(θ)

∑
M(x2,q)

f(s)
)

1−β(1−δx2 )
(

1−πc(θ)
∑
M(x2,q)

f(s)
)

By assumption 2(d), the first inequality holds. Since δx2 ≥ δx1 and
∑
M(x2,q)

f(s) ≥∑
M(x1,q)

f(s), then the second inequality holds.

(iii) Consider a parent f-matched to child x when the quality is q. Assume ap(x, q) =
1, then inequalities B.2 and B.3 hold. Also, consider a parent f-matched to child
x when the quality is q′ such that q′ < q. Since bp(x, q′) ≥ 0, then ap(x, q) = 1
implies ap(x, q′) = 1 if the following inequalities holds:

bpa(x,q
′)

bp(x,q′) >
bpa(x,q)
bp(x,q) and

(1−β)
(
1−πc(θ)

∑
M(x,q) f(s)

)
1−β(1−δx)

(
1−πc(θ)

∑
M(x,q) f(s)

) ≥ (1−β)
(
1−πc(θ)

∑
M(x,q′) f(s)

)
1−β(1−δx)

(
1−πc(θ)

∑
M(x,q′) f(s)

)
By assumption 2(e), the first inequality always holds. The second inequality
holds since

∑
M(x,q′) f(s) ≥

∑
M(x,q) f(s) by assumption.

B.7 PROOF OF PROPOSITION 1.6.3

First I show that, as a best-response, children with and without a disability choose
the same dissolution strategy, and both are more willing to dissolve an f-match of low-
quality q1 than a high-quality match q2. Formally:

Lemma B.7.1 (Dissolution Strategies of Children). Suppose Q = {q1, q2} and S =
{s1, s2}. Assume children’ payoffs satisfy assumptions 1(a)(c)(d). If d(x, q1) ≥
d(x, q2) for all x, then the dissolution strategies of children are F c(x1, q1) = F c(x2, q1) =
{s1, s2} and F c(x1, q2) = F c(x2, q2) = {∅}.
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Proof. Assume Q = {q1, q2} and S = {s1, s2}. For each x, F c(x, q2) ∩ F c(x, q1) =
{s1, s2} or F c(x, q2) ∩ F c(x, q1) = {∅}. The reason is the following. For each signal
s, s ∈ F c(x, q2) if and only if Es[C(x, q)] = C(x, q1)g(q1|s) + C(x, q2)g(q2|s) ≥ C(x, q2).
Then, it must be that C(x, q1) ≥ C(x, q2) independent of the distributions. Now, if
C(x, q1) > C(x, q2) then s /∈ F c(x, q1), and if C(x, q1) = C(x, q2) then s ∈ F c(x, q1).
Hence, there are three possible cases: (1) F c(x, q2) = F c(x, q1) = {s1, s2}, (2)
F c(x, q2) = {s1, s2} and F c(x, q1) = {∅}, and (3) F c(x, q2) = {∅} and F c(x, q1) =
{s1, s2}.
Fix x. I show that C(x, q2) > C(x, q1) holds, thus only the third case is feasible. Since
d(x, q1) ≥ d(x, q2), the following cases might arise:

I Case a: Suppose a(x, q1) = 1 then C(x, q1) = bc(x, q1)+β δx
bca(x,q2)

1−β +β(1−δx) b
c
a(x,q1)
1−β

(a1) if a(x, q2) = 1 then C(x, q2)−C(x, q1) = bc(x, q2)− bc(x, q1) +β(1− δx)
[
bca(x,q2)

1−β −
bca(x,q1)

1−β

]
(a2) if a(x, q2) = 0 and d(x, q2) = 0 then C(x, q2) − C(x, q1) = bc(x, q2) − bc(x, q1) +

β(1− δx)
[
Ĉ(x, q2)− bca(x,q1)

1−β

]
I Case b: Suppose d(x, q1) = 1 then C(x, q1) = bc(x, q1)+β δx

bca(x,q2)
1−β +β(1−δx)Ĉ(x, q0)

(b1) if d(x, q2) = 1 then C(x, q2)− C(x, q1) = bc(x, q2)− bc(x, q1)

(b2) if a(x, q2) = 1 then C(x, q2)−C(x, q1) = bc(x, q2)− bc(x, q1) +β(1− δx)
[
bca(x,q2)

1−β −

Ĉ(x, q0)
]

(b3) if a(x, q2) = 0 and d(x, q2) = 0 then C(x, q2) − C(x, q1) = bc(x, q2) − bc(x, q1) +

β(1− δx)
[
Ĉ(x, q2)− Ĉ(x, q0)

]
I Case c: Suppose a(x, q1) = 0 and d(x, q1) = 0 then C(x, q1) = bc(x, q1)+β δx

bca(x,q2)
1−β +

β(1− δx)Ĉ(x, q1)

(c1) if a(x, q2) = 1 then C(x, q2)−C(x, q1) = bc(x, q2)− bc(x, q1) +β(1− δx)
[
bca(x,q2)

1−β −

Ĉ(x, q1)
]

(c2) if a(x, q2) = 0 and d(x, q2) = 0 then C(x, q2) − C(x, q1) = bc(x, q2) − bc(x, q1) +

β(1− δx)
[
Ĉ(x, q2)− Ĉ(x, q1)

]
Assume 1(a)(c), then C(x, q2) − C(x, q1) > 0 in cases (a1), and (b1). For case (b3),

if d(x, q2) = 0 then it must be that Ĉ(x, q2) ≥ Ĉ(x, q0). Thus, by assumption 1(a)(c)
it follows that C(x, q2) − C(x, q1) > 0 in case (b3). By assumption 1(d) it follows

that bca(x,q2)
1−β ≥ Ĉ(x, q̄) for all q. Hence, by assumptions 1(a)(c)(d) it follows that

C(x, q2)− C(x, q1) > 0 for all the other cases.

Therefore, F c(x1, q2) = F c(x2, q2) = {∅} and F c(x1, q1) = F c(x2, q1) = {s1, s2}.
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Now, I show Proposition 1.6.3. Suppose Q = {q1, q2} and S = {s1, s2}. First,
by assumptions 1(a) and 2(a)(c), it follows that proposition 1.6.1(ii) holds. Thus,
for children the result in lemma B.7.1 holds, that is, F c(x, q2) = {∅} and F c(x, q1) =
{s1, s2} for all x. For parents, by assumptions 2(b), 3 and 4, it follows that proposition
1.6.2(i) holds, that is, F p(x) is non-empty for all x, and F p(x1) ⊆ F p(x2). Moreover,
by adding assumption 2(c), proposition 1.6.2(ii) holds. That is, if s1 ∈ F p(x) then
s2 ∈ F p(x) for all x.

Given that s ∈ M(x, q) if and only if s ∈ F c(x, q) and s ∈ F p(x), it follows that
(a) M(x, q1) is non-empty for all x, (b) M(x, q2) = {∅} for all x, (c) M(x1, q1) ⊆
M(x2, q1), and (d) s1 ∈M(x, q1) implies s2 ∈M(x, q1) for all x.

SinceM(x, q2) = {∅} for all x, then
∑
M(x,q2) f(s) = 0 for all x. Hence,

∑
M(x,q1) f(s) ≥∑

M(x,q2) f(s). Now, sinceM(x1, q1) ⊆M(x2, q1) then
∑
M(x2,q)

f(s) ≥
∑
M(x1,q)

f(s)
for all q.

B.8 PROOF OF PROPOSITION 1.6.4

First I show the following lemma:

Lemma B.8.1 (Adoption Strategies of Children). Suppose Q = {q1, q2} and S =
{s1, s2}. Assume children’ payoffs satisfy assumptions 1(a) to (g), and 5(a) to (c).
Moreover, suppose the following (a) d(x, q2) = 0 for all x, (b) M(x, q1) is non-
empty for all x, (c) M(x, q2) is empty for all x, (d) M(x1, q1) ⊆ M(x2, q1), (e)
s1 ∈ M(x, q1) implies s2 ∈ M(x, q1) for all x, and (f)ap(x2, q) ≥ ap(x1, q) for all
q. Then, the adoption strategies of children are ac(x2, q) ≥ ac(x1, q) for all q, and
1 = ac(x, q2) ≥ ac(x, q1) for all x.

Proof. Suppose Q = {q1, q2} and S = {s1, s2}. Consider child x f-matched when
the quality is q. Since dc(x, q) = 0 [by assumption 1(a) and lemma 1.6.1], then she
announce adoption if and only if:

bca(x, q)

1− β
>

(
bc(x, q) + βδx

bca(x,q2)
1−β

)(
1− πc(θ)

∑
M(x,q) f(s)

)
+ πc(θ)

∑
M(x,q) Es[C(x, q)]f(s)

1− β(1− δx)
(
1− πc(θ)

∑
M(x,q) f(s)

) (B.4)

Since M(x, q2) = {∅}, inequality B.4 is equal to:

bca(x, q2)

1− β
>
bc(x, q2) + βδx

bca(x,q2)
1−β

1− β (1− δx)
By assumption 1(a), this inequality holds. Hence, ac(x, q2) = 1 for all x.

Assume M(x, q1) is non-empty for all x, M(x1, q1) ⊆ M(x2, q1), s1 ∈ M(x, q1)
implies s2 ∈ M(x, q1) for all x. Thus, there are three possible dissolution outcomes
(1) M(x1, q1) = {s1, s2} and M(x2, q1) = {s1, s2}, and (2) M(x1, q1) = {s2} and
M(x2, q1) = {s2}, and (3) M(x1, q1) = {s2} and M(x2, q1) = {s1, s2}.
I Case 1: Suppose M(x1, q1) = {s1, s2} and M(x2, q1) = {s1, s2}. Fixing (x, q1),
inequality B.4 is equal to:

bca(x, q1)
{(

1− πc(θ)
)(

1− β
)

+ βδx
(
1− πc(θ)

)
+ πc(θ)

(
g(q2|s1)f(s1) + g(q2|s2)f(s2)

)}
>(

bc(x, q1)+βδx
bca(x, q2)

1− β

)(
1−πc(θ)

)(
1−β

)
+C(x, q2) πc(θ)

(
g(q2|s1)f(s1)+g(q2|s2)f(s2)

)(
1−β

)
(B.5)
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Since d(x, q2) = 0 and given the strategies of parents, the value function C(x, q2) can

take two values C(x, q2) = bc(x, q2) + β b
c
a(x,q2)
1−β or C(x, q2) =

bc(x,q2)+βδx
bca(x,q2)

1−β
1−β(1−δx)

. Now,

since ap(x2, q) ≥ ap(x1, q) for all q, I analyze the following sub-cases:

- Case 1a: Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. Child x announces adoption
if and only if the following inequality holds:{

bca(x, q1)− bc(x, q1)
}(

1− πc(θ)
)(

1− β
)
>
{
bca(x, q2)− bca(x, q1)

}
βδx
(
1− πc(θ)

)
+{

bc(x, q2)(1− β) + bca(x, q2)β − bca(x, q1)
}(
g(q2|s1)f(s1) + g(q2|s2)f(s2)

)
πc(θ) (B.6)

where:

bca(x, q1)− bc(x, q1) > 0 by assumption 1(a)
bca(x, q2)− bca(x, q1) > 0 by assumption 1(c)

bc(x, q2)(1− β) + bca(x, q2)β − bca(x, q1) > 0 by assumptions 1(c)(d)

Now, I show that if equation B.6 holds for child x1 then it also holds for child
x2. By assumption 1(e), the following inequality holds:{
bca(x2, q1)−bc(x2, q1)

}(
1−πc(θ)

)(
1−β

)
≥
{
bca(x1, q1)−bc(x1, q1)

}(
1−πc(θ)

)(
1−β

)
(B.7)

By assumptions 1(f) and 5(a), the following inequality holds:{
bca(x1, q2)− bca(x1, q1)

}
βδx1

(
1− πc(θ)

)
≥
{
bca(x2, q2)− bca(x2, q1)

}
βδx2

(
1− πc(θ)

)
(B.8)

By assumptions 1(f)(g), the following inequality holds:{
bc(x1, q2)(1− β) + bca(x1, q2)β − bca(x1, q1)

}(
g(q2|s1)f(s1) + g(q2|s2)f(s2)

)
πc(θ) ≥{

bc(x2, q2)(1− β) + bca(x2, q2)β − bca(x2, q1)
}(
g(q2|s1)f(s1) + g(q2|s2)f(s2)

)
πc(θ) (B.9)

Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

- Case 1b: Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. Child x announces adoption
if and only if the following inequality holds:{

bca(x, q1)− bc(x, q1)
}(

1− πc(θ)
)(

1− β
)
>
{
bca(x, q2)− bca(x, q1)

}
βδx
(
1− πc(θ)

)
+{bc(x, q2)(1− β)

1− β(1− δx)
+
bca(x, q2)β δx

1− β(1− δx)
− bca(x, q1)

}(
g(q2|s1)f(s1) + g(q2|s2)f(s2)

)
πc(θ) (B.10)

Now, I show that if equation B.10 holds for child x1 then it also holds for
child x2. Since equations B.7 and B.8 hold, then I check whether the following
inequality is satisfied:[

bc(x1, q2)(1−β)+bca(x1, q2)β−bca(x1, q1)−{bc(x1, q2)−bc(x1, q1)}β(1−δx1)
](

1−β+βδx2

)
≥[

bc(x2, q2)(1−β)+bca(x2, q2)β−bca(x2, q1)−{bc(x2, q2)−bc(x2, q1)}β(1−δx2)
](

1−β+βδx1

)
(B.11)

After some algebra, this inequality holds given assumptions 1(f)(g) and 5(a).
Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.
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- Case 1c: Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. I show that if equation B.10
holds for child x1 then equation B.6 holds for child x2. Since equations B.7 and
B.8 hold, I check whether the following inequality is satisfied:

bc(x1, q2)(1− β) + bca(x1, q2)β − bca(x1, q1)− β(1− δx1
)
[
bca(x1, q2)− bca(x1, q1)

]
≥

bc(x2, q2)(1−β)+bca(x2, q2)β−bca(x2, q1)−β(1−δx1
)
[
bc(x2, q2)(1−β)+bca(x2, q2)β−bca(x2, q1)

]
(B.12)

After some algebra, this inequality holds given assumptions 1(b)(f)(g) and 5(b).
Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

I Case 2: SupposeM(x1, q1) = {s2} andM(x2, q1) = {s2}. Fixing (x, q1), inequality
B.4 is equal to:

bca(x, q1)
{(

1− πc(θ)f(s2)
)(

1− β
)

+ βδx
(
1− πc(θ)f(s2)

)
+ πc(θ)g(q2|s2)f(s2)

}
>
(
bc(x, q1) + βδx

bca(x, q2)

1− β

)(
1− πc(θ)f(s2)

)(
1− β

)
+ C(x, q2) πc(θ)g(q2|s2)f(s2)

(
1− β

)
(B.13)

As in the previous case, I analyze the following sub-cases:

- Case 2a: Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. Child x announces adoption
if and only if the following inequality holds:{

bca(x, q1)−bc(x, q1)
}(

1−πc(θ)f(s2)
)(

1−β
)
>
{
bca(x, q2)−bca(x, q1)

}
βδx
(
1−πc(θ)f(s2)

)
+{

bc(x, q2)(1− β) + bca(x, q2)β − bca(x, q1)
}
g(q2|s2)f(s2)πc(θ) (B.14)

By equations B.7, B.8 and B.9, it follows that if equation B.14 holds for child
x1 then it also holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

- Case 2b: Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. Child x announces adoption
if and only if the following inequality holds:{

bca(x, q1)−bc(x, q1)
}(

1−πc(θ)f(s2)
)(

1−β
)
>
{
bca(x, q2)−bca(x, q1)

}
βδx
(
1−πc(θ)f(s2)

)
+{bc(x, q2)(1− β)

1− β(1− δx)
+
bca(x, q2)β δx

1− β(1− δx)
− bca(x, q1)

}
g(q2|s2)f(s2)

)
πc(θ) (B.15)

By equations B.7, B.8 and B.11, it follows that if equation B.15 holds for child
x1 then it also holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

• Case 2c: Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. By equations B.7, B.8 and
B.12, it follows that if equation B.15 holds for child x1 then equation B.14 holds
for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

I Case 3: Suppose M(x1, q1) = {s2} and M(x2, q1) = {s1, s2}.

• Case 3a: Suppose ap(x1, q2) = 1 and ap(x2, q2) = 1. I show that if equation B.14
holds for child x1 then equation B.6 holds for child x2. After some algebra,
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since equations B.7, B.8 and B.9 hold, it suffices to check whether the following
inequality holds:{

bca(x1, q2)− bca(x1, q1)
}
βδx1

≥
{
bca(x1, q2)− bc(x1, q1)

}(
1− β

)
+{

bc(x2, q2)(1− β) + bca(x2, q2)β − bca(x2, q1)
}
g(q2|s1) (B.16)

This inequality is satisfied by assumption 5(c). Hence, if ac(x1, q1) = 1 then
ac(x2, q1) = 1.

• Case 3b: Suppose ap(x1, q2) = 0 and ap(x2, q2) = 0. I show that if equation B.15
holds for child x1 then equation B.10 holds for child x2. After some algebra,
since equations B.7, B.8 and B.9 hold, it suffices to check whether the following
inequality holds:{

bca(x1, q2)− bca(x1, q1)
}
βδx1

≥
{
bca(x1, q2)− bc(x1, q1)

}(
1− β

)
+{bc(x2, q2)(1− β)

1− β(1− δx2)
+
bca(x2, q2)βδx2

1− β(1− δx2)
− bca(x2, q1)

}
g(q2|s1) (B.17)

This inequality is satisfied by assumption 5(c). Hence, if ac(x1, q1) = 1 then
ac(x2, q1) = 1.

• Case 3c: Suppose ap(x1, q2) = 0 and ap(x2, q2) = 1. Since equations B.7, B.8,
B.12 and B.16 hold, it follows that if equation B.15 holds for child x1 then
equation B.6 holds for child x2. Hence, if ac(x1, q1) = 1 then ac(x2, q1) = 1.

Now, I show Proposition 1.6.4. Suppose Q = {q1, q2} and S = {s1, s2}. I start
by showing that statements (a) to (f) hold. By proposition, 1(a), 2(a)(c) and 3, it
follows that d(x, q2) = 0 for all q. Further, then results in proposition 1.6.3 hold by
assumptions 1(a)(c)(d), 2(a)(b)(c), 3 and 4.

Now, fixing q, I show that if ap(x1, q) = 1 then ap(x2, q) = 1. Assume that
ap(x1, q) = 1, then it must be that bp(x1, q) > 0. By assumption 2(b), it follows that

bp(x2, q) > 0. Suppose bpa(x1,q)
bp(x1,q)

> 1−β
1−β(1−δx1 )

, then a(x1, q) = 1 [lemma 1.6.4(i)]. Since

δx2 ≥ δx1 and assumption 2(d) holds, then bpa(x2,q)
bp(x2,q)

≥ bpa(x1,q)
bp(x1,q)

> 1−β
1−β(1−δx1 )

≥ 1−β
1−β(1−δx2 )

.

Thus, by lemma 1.6.4(i), ap(x2, q) = 1. Now, since proposition 1.6.3(i) holds, the
result in lemma lemma 1.6.4(ii) follows. Hence, ap(x2, q) ≥ ap(x1, q) for all q.

Given the above, results in lemma B.8.1 hold. That is, ac(x2, q) ≥ ac(x1, q) for all
q, and 1 = ac(x, q2) ≥ ac(x, q1) for all x.

(i) Fix q, by definition, a(x, q) = 1 if and only if ac(x, q) = 1 and ap(x, q) = 1.
Since ac(x2, q) ≥ ac(x1, q) and ap(x2, q) ≥ ap(x1, q), then a(x2, q) ≥ a(x1, q).

(ii) Fix x. Suppose bpa(x, q1) > 0, then bpa(x, q2) > 0 [by assumption 2(c)]. Since
bpa(x,q2)
bp(x,q2)

≤ 1−β
1−β(1−δx)

andM(x, q2) is empty, then ap(x, q2) = 0. Thus, ap(x, q1) ≥
ap(x, q2) = 0. Since ac(x, q2) ≥ ac(x, q1), it follows that a(x, q1) ≥ a(x, q2) = 0.
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C.1 PROOF OF COROLLARY 1.7.1

Assume Q = {q1, q2} and S = {s1, s2}. Given the definition of γ1(x) it suffices to
show that A(x2, q0)− A(x1, q0) ≥ 0 and A(x2, q)− A(x1, q) ≥ 0 for all q.
Consider unmatched children, the result follows from propositions 1.6.2(i) and 1.6.4(i).
That is, M(x1, q0) ⊆ M(x2, q0) and a(x2, q) ≥ a(x1, q) for all q. Consider the set

M̂(x2, q0) defined as M̂(x2, q0) = {s ∈ S|s ∈M(x2, q0) \M(x1, q0)}, then the fol-
lowing inequality holds:

A(x2, q0) = δx2 + (1− δx2) πc(θ)
∑

M(x2,q0)

f(s)
∑
q

g(q|s) a(x2, q)

≥ δx2 + (1− δx2) πc(θ)
∑

M(x2,q0)

f(s)
∑
q

g(q|s) a(x1, q)

≥ δx2 + (1− δx2) πc(θ)

[ ∑
M̂(x2,q0)

f(s)
∑
q

g(q|s) a(x1, q)) +
∑

M(x1,q0)

f(s)
∑
q

g(q|s) a(x1, q)

]
≥ δx2

+ (1− δx2
) πc(θ)

∑
M(x1,q0)

f(s)
∑
q

g(q|s) a(x1, q)

≥ δx1
+ (1− δx1

) πc(θ)
∑

M(x1,q0)

f(s)
∑
q

g(q|s) a(x1, q) = A(x1, q0)

Now, consider f-matched children and fix a match quality q. By propositions 1.6.1(i)
and 1.6.4(i), there are three cases to analyze:

I Case 1: Suppose a(x1, q) = a(x2, q) = 1 then A(x2, q)− A(x1, q) = 0

I Case 2: Suppose d(x1, q) = 1.

- Case 2a: Suppose a(x2, q) = 1 then A(x2, q)− A(x1, q) = 1− A(x1, q0) ≥ 0.

- Case 2b: Suppose d(x2, q) = 1 then A(x2, q)−A(x1, q) = A(x2, q0)−A(x1, q0) ≥
0

- Case 2c: Suppose a(x2, q) = d(x2, q) = 0 then:

A(x2, q)−A(x1, q) = δx2
+ (1− δx2

) πc(θ)
∑
M(x2,q)

f(s)
∑
q

g(q|s) a(x2, q)−A(x1, q0)

It suffices to show that the following inequality holds δx2 > δx1 +(1−δx1) πc(θ).
Since

δx2−δx1
(1−δx1 )

> π it is satisfied.

I Case 3: Suppose a(x1, q) = 0 and d(x1, q) = 0.

- Case 3a: Suppose a(x2, q) = 1 then:

A(x2, q)−A(x1, q) = 1−
(
δx1 = (1− δx1) πc(θ)

∑
M(x1,q)

f(s)
∑
q

g(q|s) a(x1, q)
)

︸ ︷︷ ︸
≤1

≥ 0

- Case 3b: Suppose a(x2, q) = d(x2, q) = 0 then:

A(x2, q)−A(x1, q) = δx2
+ (1− δx2

) πc(θ)
∑
M(x2,q)

f(s)
∑
q

g(q|s) a(x2, q)−

δx1
− (1− δx1

) πc(θ)
∑
M(x1,q)

f(s)
∑
q

g(q|s) a(x1, q)
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By proposition 1.6.3(i) and 1.6.4(i), the following inequality holds:∑
M(x2,q)

f(s)
∑
q

g(q|s) a(x2, q) ≥
∑
M(x1,q)

f(s)
∑
q

g(q|s) a(x1, q) (C.1)

Hence A(x2, q)− A(x1, q) ≥ 0.

C.2 PROOF OF COROLLARY 1.7.2

Assume Q = {q1, q2} and S = {s1, s2}. Fix child x, by proposition 1.6.3(ii) and
1.6.4(ii) follows that A(x, q2) = δx. For match quality q1, by proposition 1.6.1(ii),
there are three cases to analyze:

I Case 1: Suppose a(x, q1) = 1 then A(x, q1) = 1. Thus, A(x, q1) ≥ A(x, q2).

I Case 2: Suppose d(x, q1) = 1 then A(x, q1) = δx+(1−δx) A(x, q0). Thus, A(x, q1) ≥
A(x, q2).

I Case 3: Suppose a(x, q1) = d(x, q1) = 0 then:

A(x, q1) = δx +
(

1− δx
)
πc(θ)

∑
M(x,q1)

f(s)
∑
q′

g(q′|s)a(x, q′)

Thus, A(x, q1) ≥ A(x, q2).

C.3 PROOF OF COROLLARY 1.7.3

Assume Q = {q1, q2} and S = {s1, s2}. Given the definition of γ2(x) it suffices to
show that D(x1, q)−D(x2, q) ≥ 0 for all q.

Fix a match quality q. By propositions 1.6.1(i) and 1.6.4(i), there are three cases to
analyze:

I Case 1: Suppose a(x1, q) = a(x2, q) = 1 then D(x1, q)−D(x2, q) = 0

I Case 2: Suppose d(x1, q) = 1 then:

D(x1, q)−D(x2, q) = (1−δx1
)−(1−δx2

)(1−a(x2, q))
[
d(x2, q)+

(
1−d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]

Since δx2 ≥ δx1 and 1 ≥ (1−a(x2, q))
[
d(x2, q)+

(
1−d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]
≥ 0

it follows that D(x1, q)−D(x2, q) ≥ 0.

I Case 3: Suppose d(x1, q) = a(x1, q) = 0 then:

D(x1, q)−D(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)

− (1− δx2
)(1− a(x2, q))

[
d(x2, q) +

(
1− d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
]

- Case 3a: Suppose a(x2, q) = 1 thenD(x1, q)−D(x2, q) = (1−δx1)πc(θ)
∑
M(x1,q)

f(s) ≥
0.

- Case 3b: Suppose a(x2, q) = d(x2, q) = 0 then:

D(x1, q)−D(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)− (1− δx2)πc(θ)
∑
M(x2,q)

f(s)
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For match quality q2, the proof of proposition 1.6.3 shows thatM(x, q2) = {∅}
for all x. Hence, D(x1, q2)−D(x2, q2) = 0.
For match quality q1, since 1 ≥

∑
M(x2,q1) f(s), it suffices to check that the

following inequality holds:

(1− δx1)πc(θ)
∑

M(x1,q1)

f(s)− (1− δx2)πc(θ) ≥ 0

The proof of proposition 1.6.3 shows thatM(x1, q1) is non-empty, andM(x1, q1) =
{s1, s2} orM(x1, q1) = {s2}. In the first case, D(x1, q1)−D(x2, q1) = (1−δx1)−
(1− δx2) ≥ 0. In the second case, D(x1, q1)−D(x2, q1) = (1− δx1)πc(θ)f(s2)−
(1− δx2)πc(θ) which is positive if and only if f(s2) ≥ (1−δx2 )

(1−δx1 )
.

C.4 PROOF OF COROLLARY 1.7.4

Assume Q = {q1, q2} and S = {s1, s2}. Fix child x, and suppose that a(x, q1) =
a(x, q2) = 0. By propositions 1.6.1(ii) and 1.6.3(ii) it follows that for all x, d(x, q1) ≥
d(x, q2) and

∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0 respectively. Hence, the following

inequality holds:

D(x, q1) = (1− δx)
[
d(x, q1) +

(
1− d(x, q1)

)
πc(θ)

∑
M(x,q1)

f(s)
]

≥ (1− δx)
[
d(x, q2) +

(
1− d(x, q2)

)
πc(θ)

∑
M(x,q1)

f(s)
]

≥ (1− δx)
[
d(x, q2) +

(
1− d(x, q2)

)
πc(θ)

∑
M(x,q2)

f(s)
]

= D(x, q2)

C.5 PROOF OF COROLLARY 1.7.5

The result follows from propositions 1.6.1(i) and 1.6.2(i). That is, d(x1, q) ≥
d(x2, q) for all q, and M(x1, q0) ⊆M(x2, q0). Let

M̂(x2, q0) = {s ∈ S|s ∈M(x2, q0) \M(x1, q0)}, then the following inequality holds:

γ3(x2) = πc(θ)
∑

M(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x2, q)

)
≥ πc(θ)

∑
M(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
≥ πc(θ)

[ ∑
M̂(x2,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
+

∑
M(x1,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)]
≥ πc(θ)

∑
M(x1,q0)

f(s)
∑
q

g(q|s)
(
1− d(x1, q)

)
= γ3(x1)

Hence, γ3(x2) ≥ γ3(x1).

C.6 PROOF OF COROLLARY 1.7.6

Assume Q = {q1, q2} and S = {s1, s2}. Given the definition of γ4(x) it suffices to
show that U(x1, q)− U(x2, q) ≥ 0 for all q.
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Fix a match quality q. By propositions 1.6.1(i) and 1.6.4(i), there are three cases to
analyze:

I Case 1: Suppose a(x1, q) = a(x2, q) = 1 then U(x1, q)− U(x2, q) = 0

I Case 2: Suppose d(x1, q) = 1 then:

U(x1, q)− U(x2, q) = (1− δx1
)
(

1− γ3(x1)
)

−(1−δx2
)
(
1−a(x2, q)

){
d(x2, q)

(
1−γ3(x2)

)
+
(
1−d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

}

- Case 2a: Suppose a(x2, q) = 1 then U(x1, q)−U(x2, q) = (1−δx1)(1−γ3(x1)) ≥
0.

- Case 2b: Suppose d(x2, q) = 1 then U(x1, q)−U(x2, q) = (1− δx1)(1−γ3(x1))−
(1− δx2)(1− γ3(x2)). By corollary 1.7.5 it follows that U(x1, q)− U(x2, q) ≥ 0.

- Case 2c: Suppose a(x2, q) = d(x2, q) = 0 then:

U(x1, q)− U(x2, q) = (1− δx1
)(1− γ3(x1))− (1− δx2

)πc(θ)
∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

For match quality q2, the proof of proposition 1.6.3 shows thatM(x, q2) = {∅}
for all x. Hence, U(x1, q2)− U(x2, q2) = (1− δx1)(1− γ3(x1)) ≥ 0.
For match quality q1, since (1− πc(θ)) ≥ (1− γ3(x1)) and
1 ≥

∑
M(x2,q1) f(s)

∑
q′ g(q′|s) d(x2, q

′), it suffices to check that the following
inequality holds:

(1− δx1)(1− πc(θ))− (1− δx2)πc(θ) ≥ 0

which holds if and only if
1−δx1

2−δx1−δx2
≥ π.

I Case 3: Suppose a(x1, q) = 0 and d(x1, q) = 0 then:

U(x1, q)− U(x2, q) = (1− δx1)πc(θ)
∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′)

−(1−δx2)
(
1−a(x2, q)

){
d(x2, q)

(
1−γ3(x2)

)
+
(
1−d(x2, q)

)
πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)

}

- Case 3a: Suppose a(x2, q) = 1 then:

U(x1, q)− U(x2, q) = (1− δx1
)πc(θ)

∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′) ≥ 0

- Case 3b: Suppose a(x2, q) = d(x2, q) = 0 then:

U(x1, q)− U(x2, q) = (1− δx1
)πc(θ)

∑
M(x1,q)

f(s)
∑
q′

g(q′|s) d(x1, q
′)

− (1− δx2
)πc(θ)

∑
M(x2,q)

f(s)
∑
q′

g(q′|s) d(x2, q
′)
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For match quality q2, proposition 1.6.3 states that M(x, q2) = {∅} for all x.
Hence, U(x1, q)− U(x2, q) = 0.
For match quality q1, since 1 ≥

∑
M(x2,q1) f(s), it suffices to check that the

following inequality holds:

(1− δx1)πc(θ)
∑

M(x1,q1)

f(s)− (1− δx2)πc(θ) ≥ 0

The proof of proposition 1.6.3 shows thatM(x1, q1) is non-empty, andM(x1, q1) =
{s1, s2} orM(x1, q1) = {s2}. In the first case, D(x1, q1)−D(x2, q1) = (1−δx1)−
(1− δx2) ≥ 0. In the second case, D(x1, q1)−D(x2, q1) = (1− δx1)πc(θ)f(s2)−
(1− δx2)πc(θ) which is positive if and only if f(s2) ≥ (1−δx2 )

(1−δx1 )
.

C.7 PROOF OF COROLLARY 1.7.7

Assume Q = {q1, q2} and S = {s1, s2}. Fix child x, and suppose that a(x, q1) = 0,
a(x, q2) = 0. By propositions 1.6.1(ii) and 1.6.3(ii) it follows that d(x, q1) ≥ d(x, q2)
and

∑
M(x,q1) f(s) ≥

∑
M(x,q2) f(s) = 0 respectively. Hence, the following inequality

holds:

U(x, q1) = (1− δx)

{
d(x, q1)

(
1− γ3(x)

)
+
(
1− d(x, q1)

)
πc(θ)

∑
M(x,q1)

f(s)
∑
q′

g(q′|s) d(x, q′)

}

≥ (1− δx)

{
d(x, q1)

(
1− γ3(x)

)
+
(
1− d(x, q1)

)
πc(θ)

∑
M(x,q2)

f(s)
∑
q′

g(q′|s) d(x, q′)

︸ ︷︷ ︸
=0

}

≥ (1− δx) d(x, q2)
(
1− γ3(x)

)
= U(x, q2)
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