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ABSTRACT

One of the premier technologies for studying human brain functions is the event-

related functional magnetic resonance imaging (fMRI). The main design issue for

such experiments is to find the optimal sequence for mental stimuli. This optimal

design sequence allows for collecting informative data to make precise statistical in-

ferences about the inner workings of the brain. Unfortunately, this is not an easy

task, especially when the error correlation of the response is unknown at the design

stage. In the literature, the maximin approach was proposed to tackle this prob-

lem. However, this is an expensive and time-consuming method, especially when

the correlated noise follows high-order autoregressive models. The main focus of

this dissertation is to develop an efficient approach to reduce the amount of the

computational resources needed to obtain A-optimal designs for event-related fMRI

experiments. One proposed idea is to combine the Kriging approximation method,

which is widely used in spatial statistics and computer experiments with a knowledge-

based genetic algorithm. Through case studies, a demonstration is made to show that

the new search method achieves similar design efficiencies as those attained by the

traditional method, but the new method gives a significant reduction in computing

time. Another useful strategy is also proposed to find such designs by considering

only the boundary points of the parameter space of the correlation parameters. The

usefulness of this strategy is also demonstrated via case studies. The first part of this

dissertation focuses on finding optimal event-related designs for fMRI with simple

trials when each stimulus consists of only one component (e.g., a picture). The study

is then extended to the case of compound trials when stimuli of multiple components

(e.g., a cue followed by a picture) are considered.
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Chapter 1

INTRODUCTION

Studying human brain functions has been an interest to many scientists in differ-

ent research areas such as psychology, neuroscience, education, and medical studies.

One of the most widely used technique in neuroimaging is the functional magnetic

resonance imaging (fMRI). This technique identifies what parts of the brain are being

used when doing a task or making a decision, and helps to study some characteristics

of brain activity. The safety of this non-invasive technology makes it a useful tool to

study the inner workings of the human brain to provide insights into some mental

disorders such as schizophrenia and Alzheimer’s diseases.

The use of event-related fMRI designs has become very common in practice (e.g.,

Amaro et al., 1999; Buckner, 1998; Buračas & Boynton, 2002; Dale, 1999; D’Esposito,

Zarahn, & Aguirre, 1999; Friston et al., 1998; Friston, Zarahn, Josephs, Henson, &

Dale, 1999; Josephs, Turner, & Friston, 1997; Kao, Mandal, & Stufken, 2008). This

type of advanced fMRI designs is flexible, and allows stimuli of short duration (several

milliseconds to a few seconds) to be used instead of traditional designs which require

longer presentation time (usually more than 1 minute). Several advantages of using

event-related designs for fMRI studies are discussed with some examples such as

in Buckner (1998), Henson (2003), Wager and Nichols (2003), Huettel (2012), and

Kashou (2014). In this dissertation, the interest is in experiments with event-related

fMRI designs.

Before conducting an event-related fMRI experiment, the experimenter prepares

a long sequence of mental stimuli that determines the onset times and orders of the

stimuli of one or more types. In many cases, these mental stimuli presented to the
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experimental subject could be simple, having only one component (e.g., a photo), or

compound, consisting of two or more components (e.g., a cue followed by a photo).

The primary focus of this research is to find designs that help to obtain informative

data about brain functions in response to simple mental stimuli as well as compound

mental stimuli.

When analyzing event-related fMRI experiments, two statistical objectives are

commonly considered, which are the detection of specific brain regions associated

with experimental stimuli, and the estimation of the hemodynamic response function

(HRF). The HRF is a function of time describing the noise-free change of the strength

of the magnetic field following a stimulus onset. The investigator often studies this

function to gain knowledge of the effects of the stimulus to the brain. Several studies

in the literature have shown that an fMRI design that is good for one study objective

might perform poorly for another objective (Liu & Frank, 2004). When attempting

to overcome this issue, a useful tool based on the genetic algorithm technique was

developed by Kao, Mandal, Lazar, and Stufken (2009) for obtaining good multi-

objective designs. This tool helps researchers to efficiently search over the enormous

design space of event-related fMRI and has shown to outperform the previous methods

proposed in the literature. It has been applied in obtaining efficient event-related

designs for fMRI experiments (e.g., Eck, Kaas, & Goebel, 2013; Kao, 2014; Kubilius,

Wagemans, & Op de Beeck, 2011), and adapted in tackling several important design

issues (e.g., Kao, Majumdar, Mandal, & Stufken, 2013; Kao & Zhou, 2017; Maus,

Van Breukelen, Goebel, & Berger, 2010; Maus, van Breukelen, Goebel, & Berger,

2012).

In this research, we adapt the genetic algorithm of Kao et al. (2009) to accommo-

date a more complicated situation when the noise is assumed to follow 2nd- or 3rd-

order autoregressive models; note that the focus of most previous fMRI design studies
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is on AR(1) models. The AR(2) process has been recommended to model the tempo-

ral correlation in fMRI data (Lenoski, Baxter, Karam, Maisog, & Debbins, 2008), and

it often provides better results compared to AR(1) and ARMA models (Lindquist,

2008). Other complicated autocorrelation structures such as AR(p), p ≥ 2, were dis-

cussed in (Worsley et al., 2002) and were shown to be useful when analyzing the

correlated noise in fMRI data.

In contrast to some previous studies, where the value of the correlation coefficient

is assumed at the design stage, we target designs that are robust against a misspecifi-

cation of error correlation. In other words, our goal is to find a design that is relatively

efficient for all possible values of the unknown correlation coefficients. In particular,

we consider the maximin approach, which is also discussed in Berger and Tan (2004).

The idea is to work on the worst-case scenario to find a design that maximizes the

minimum relative efficiency (RE). The RE of a design d in this case is defined as its

relative value of the optimality criterion such as A-optimality or D-optimality to be

maximized, to a locally optimal design for a given parameter vector value. The mini-

mum RE is then taken over all the possible values of correlation coefficients, and the

design goal is to identify a design maximizing this minimum RE. Maus et al. (2010)

also considered the maximin approach and assumed the noise to follow the first-order

autoregressive, AR(1), model. However, their method is computationally expensive

and time-consuming. As a consequence, this approach requires much computational

effort when considering higher-order autoregressive models, such as AR(p), p ≥ 2.

Alternatively, we propose to use the Kriging approach with a Gaussian process

model that is widely used in spatial statistics and computer experiments (Santner,

Williams, & Notz, 2003). In computer experiments, the Kriging approach gives a

surrogate model that replaces the more expensive computer simulation models by

using a Gaussian process to approximate the output ’surface’ with a small set of input

3



values of the computer model. In this research, we apply Kriging to approximate the

surface of the RE-values of each design over the parameter space of the correlation

coefficients using a small, finite subset of the parameter space. For obtaining such a

small subset, we consider space-filling designs such as the well-known Sobol sequences

(Sobol’, 1967). We would like to emphasize that the space-filling designs here is a

sampling plan for subsampling the parameter space, and they are employed in our

proposed approach for obtaining a maximin fMRI design that is a sequence of stimuli.

Such a space-filling design spreads points evenly throughout the specified region of

interest (i.e. the parameter space in our case). Another interesting finding is the

usefulness of using a subset of correlation coefficient values located on the boundaries

of the parameter space of AR(p). We noticed this method improves the speed to

search for the desired maximin designs with no need to apply the Kriging model. We

will call this latter approach as the boundary points approach in this dissertation.

The proposed Kriging approach and the boundary points approach are compared to

the expensive method by Maus et al. (2010). In terms of the statistical efficiency

of the achieved designs, the results are quite similar among the three methods. Our

proposed methods require much less CPU time and are very efficient in obtaining good

maximin designs for event-related fMRI experiments with uncertain error correlations.

The remainder of the dissertation is organized as the following order.

In Chapter 2, we provide background information about event-related fMRI studies,

including the commonly used generalized linear models in the analysis of such exper-

iments and the design optimality criteria for estimating the HRF and detecting the

active brain regions. A brief discussion of some standard designs that are known to be

highly efficient when studying fMRI experiments also provided in this chapter. Chap-

ter 2 also includes some relevant discussions on computer experiments, space-filling

designs, such as Latin hypercube designs, uniform designs, and quasi-Monte Carlo
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sampling methods such as Sobol sequences. An overview of the Gaussian process and

the ordinary Kriging model are provided at the end of that chapter.

Chapter 3 presents the issue of misspecification of error correlations at the design

stage. The chapter gives detailed explanation of our proposed Kriging-based genetic

algorithm approach and the use of the boundary points approach. Different case stud-

ies for obtaining event-related fMRI designs with simple trials when the correlated

noise is assumed to follow AR(2) and AR(3) models are presented there. The pre-

viously mentioned approaches for obtaining maximin designs are compared in these

case studies.

Chapter 4 introduces the concept of compound trials in event-related fMRI ex-

periments. The main models and design selection criteria for the case of compound

studies are presented. The results of different case studies are reported at the end

of Chapter 4. Finally, Chapter 5 provides a summary of the main findings and some

possible extensions for future research.
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Chapter 2

RELEVANT BACKGROUND

2.1 Event-Related fMRI Studies

2.1.1 Introduction

To perform an event-related fMRI experiment, as a first step, a design sequence

consisting of mental stimuli of one or more types separated by periods of rest or visual

fixation is prepared. An example of an event-related fMRI design with two stimulus

types can be written as a sequence of finite integers of length N, e.g., d = {1012....0}.

A positive integer (q = 1, 2, ..., Q) indicates the presentation of a qth-type stimulus;

here, Q is the total number of stimulus types. A 0 means there is no stimulus

presentation at the corresponding time point. The nth element in d corresponds to

time (n−1)τISI of the experiment, where τISI is a pre-specified inter-stimulus interval

; e.g., τISI = 4 seconds. We note that time 0 of the experiment can be set to the

time when the first valid fMRI measurement is collected. Each stimulus appears for a

short time (e.g., 1 second). The selected sequence is then presented to an experimental

subject during the experiment. While the subject is cognitively engaging with the

stimuli, the fMRI scanner scans the subject’s brain at a fixed sampling rate of τTR

seconds to obtain the subject’s blood oxygenated level-dependent (BOLD) signals

from each brain voxel (a three-dimensional image unit). Specifically, we observe an

fMRI time series from each brain voxel.

The fluctuations of the collected BOLD signals following a brief stimulus reflects

the change in the concentration of oxygenated cerebral blood due to the neuronal ac-

tivity in response to the mental stimulus. This fluctuation can take about 32 seconds
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(Henson & Friston, 2007) to return to baseline, and it often is described by a function

of time called the hemodynamic response function (HRF). An example of a typical

HRF in response of a brief stimulus as shown in Figure 2.1. The HRF is of utmost im-

Figure 2.1: A Typical HRF Evoked by a Brief Stimulus.

portance to neuroscientists for understanding the inner workings of the human brain.

One of the main assumptions considered when analyzing fMRI data is that for the

same voxel, the mental stimuli of the same type presented at different time points will

have the same HRF (Lindquist, 2008). In addition, the heights of overlapping HRFs

accumulate additively when multiple stimuli are presented in a time interval shorter

than the duration of the HRF as shown in Figure 2.2. We note that this additivity

assumption may not be valid in the case of very short intervals between stimuli (i.e.,

τISI < 2 seconds) (e.g., Dale, 1999; Dale & Buckner, 1997). Typically, the fMRI time

series obtained from a voxel can be expressed as a combination of overlapping HRFs,

a possible systematic drift and noise.
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Figure 2.2: The Accumulated HRF (Red Curve) Formed by Three HRFs (Blue
Curves) Evoked by the Same Stimulus Type Presented at Different Time Points.

When analyzing event-related fMRI data, the most common statistical objectives,

which are considered in this study, include identifying the brain regions that are ac-

tivated by a mental task and estimating the HRF evoked by each stimulus type. To

obtain good designs to help efficiently achieve these objectives, one may also need to

consider some unwanted psychological confounds (e.g., anticipation and habituation)

that could have a significant impact on the analysis results. Moreover, additional

practical constraints that an experimenter might have (e.g., a given stimulus fre-

quency in the design) may also need to be considered at the design stage. To account

for all these aspects, a good multi-objective design that strikes the right balance

among the competing objectives is needed. An excellent tool based on the genetic

algorithm technique was developed by Wager and Nichols (2003) to search for such

optimal multiple-objective designs. They formulated the multi-objective criterion as
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a weighted sum of the design criteria for common objectives of interest. This genetic

algorithm approach is then improved by Kao et al. (2009).

For experiments involving simple trials (i.e. each stimulus involves only one mental

task), some popular fMRI designs were introduced in the literature for different study

objectives. For instance, m-sequences or systematically computed maximum length

sequences (Buračas & Boynton, 2002) are usually recommended for the estimation

purposes, due to the low autocorrelation property of these designs. An m-sequence

design is known to exists only when Q + 1 (Q represents the number of stimulus

types) is a prime or prime power, and the design length is N = (Q + 1)r for some

positive integer r. Moreover, random designs were discussed in Buxton et al. (2000) for

being suitable to use when the interest is in estimating the HRF. But, the statistical

efficiency achieved by some random designs might not be as high as that of the m-

sequence. On the other hand, block designs, where stimuli of the same type are

grouped together in the same block, yield high detection power (Friston et al., 1999),

and these designs can attain good statistical efficiencies for detecting activated brain

regions (when ignoring the possible psychological confounders, including anticipation

and habituation). But, block designs perform very poorly for estimating the HRF

(Dale, 1999). Clustered m-sequences, permuted block designs, and mixed designs,

which are combinations of block designs and random designs (or m-sequences) can be

considered in cases when both estimation and detection are of interest (Liu & Frank,

2004). However, there are other efficient designs based on algorithmic approaches that

have shown to outperform these traditional designs for different study objectives; see,

e.g., Wager and Nichols (2003), Kao et al. (2009), and Saleh, Kao, and Pan (2017).
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2.1.2 General Linear Models for Event-Related fMRI Studies

One of the commonly used approaches when analyzing event-related fMRI time

series is the voxel-wise general linear model approach (Dale, 1999). In this case,

the collected time series from different brain voxels are analyzed separately. For the

objective of estimating the HRF, we need first to define the set of HRF parameters

associated with the heights of the HRF. This can be done by using the discretization

interval τ∆T , where τ∆T is the greatest time making both mτISI = τISI/τ∆T and

mτTR = τTR/τ∆T integers. τ∆T may or may not be an integer. We note that the

heights of the HRF that contribute to the observed event-related fMRI signals occur

at zero seconds and every τ∆T seconds following stimulus onset.

The general linear model (GLM) that is commonly used for the estimation of the

HRF is:

y =

Q∑
q=1

Xqhq + Sγ + ε, (2.1)

where y = ((yt))t=1,...,T is a T × 1 vector represents the BOLD time series from a

brain voxel, hq = (hq1, ..., hqk)
′ is the HRF parameter vector for the qth-type stimulus,

where hqj, j = 1, 2, ..., k corresponds to the jth height of the HRF evaluated (j−1)τ∆T

seconds after the onset of the stimulus. We define k as 1 + bH/τ∆T c, where bac is the

greatest integer less than or equal to a, and H represents the duration of the HRF

(e.g., 32 seconds), counting from the onset of the stimulus and ending at the return

of the HRF to baseline. Xq is the T × k, 0-1 design matrix for the qth-type stimulus,

where the (t, j)th element of Xq is 1 when hqj contributes to yt and 0 otherwise. Sγ

describes the trend or drift of the time series with S being a pre-specified matrix and

γ an unknown parameter vector. ε is a T × 1 vector that represents the correlated

noise and assumed to be normally distributed with mean 0 and covariance matrix Σ

corresponding to the stationary AR(p) structure with unknown correlation coefficients

10



parameters φ. A known whitening matrix V is assumed such that V ΣV ′ = IT , IT

is T ×T identity matrix. Note that, the error variance σ2 is set to equal 1 throughout

this dissertation since it does not affect the selection of the optimal design d.

For illustrative purposes, we provide two examples to demonstrate the construc-

tion of the design matrix Xq when τISI = τTR and τISI 6= τTR.

Example 2.1: Assume τISI = τTR = 2 seconds, hence τ∆T = 2 seconds, and

mISI = mTR = 1) . Let the design be d = {12012...0} with Q = 2, and X = [X1,X2]

is the T × Qk, 0-1 design matrix where each column of X corresponds to a param-

eter vector in h = (h′1,h
′
2)′, and each row in X corresponds to an fMRI scan. If

the duration of the HRF is 32 seconds, then k = 1 + b32/2c = 17. We then gen-

erate two indicator vectors δ1 and δ2 that have the same length as the design d,

where δ1 = (10010...0)′ represents the locations of the first stimulus type in d and

δ2 = (01001...0)′ for the locations of the second stimulus type as occurred in d. Then

we can write the first column of X1 as δ1 and the first column of X2 is the same as

δ2. To obtain the following columns, we shift the previous column one position down

and then add zeros at the top. The design matrices for the two stimulus types can

be written as follows:

X1 =



1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

1 0 0 1 0 · · ·

0 1 0 0 1 · · ·
...

...
...

... · · ·


;X2 =



0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

1 0 0 1 0 · · ·
...

...
...

... · · ·


.
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A value of 1 at the first row of X1 for instance, represents the first height of the

first stimulus type that contributes to the first fMRI scan. The 1’s at the fourth

row of X1 and X2 can be interpreted as the first and fourth heights of the HRF of

the first stimulus type and the third height of the HRF of the second stimulus type

that contribute to the fourth fMRI scan. We note that, the design matrix X can be

written as the concatenation of the design matrices for each stimulus type.

Example 2.2: Assume τISI = 3 seconds, τTR = 2 seconds, thus τ∆T = 1, mτISI = 3,

mτTR = 2 and k = 1 + b32/1c = 33. Assume the design with one stimulus type is

d = {1011...0}. We obtain the design matrix X by following these steps:

1. Construct d∗ by adding (mτISI − 1) 0’s between any two consecutive elements

in design d. For this example, mτISI − 1 = 2 and d∗ = {100000100100...0}.

2. Use d∗ to construct the expanded design matrix X∗. The number of rows in

X∗ is the same as the length of d∗ and the number of columns is k. Therefore,

the first column in X∗ is d∗ and the following columns are obtained by shifting

the previous column one position down then a zero at the top. Note that X∗

is constructed as if τISI
∗ = τ∆T = 1 second.

3. The design matrix X is then obtained from the expanded matrix X∗ by taking

the rows that correspond to the scanning time, which are the row numbers

(j − 1)τTR/τ∆T + 1, j = 1, ..., T .

The expanded design matrix X∗ and the final form for the design matrix X can be

written as follows:
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X∗ =



1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

1 0 0 1 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·
...

...
...

... · · ·



;X =



1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

1 0 0 1 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·
...

...
...

... · · ·



.

Following Kao et al. (2008), the formula to construct the design matrix Xq for

this case is:

Xq = [IT ⊗ (1,0′mτTR−1)][wq,Bwq, ...,B
k−1wq], (2.2)

where ⊗ is the Kronecker product, 0b is the b × 1 zero vector, wq is defined as

wq = δq ⊗ [1,0′mτISI−1]′, δq as mentioned previously is the indicator vector represents

the location of type q stimulus in a d. The matrix B is defined as:

B =

0′T−1 0

IT−1 0T−1

 .
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For the objective of identifying the activated regions in the brain in response to

mental stimuli, a commonly considered model has the form of:

y =

Q∑
q=1

Xqh
∗θq + Sγ + η, (2.3)

where h∗ = (h∗1, ..., h
∗
k)
′ is a k × 1 vector representing the assumed shape of the

HRF, and θq represents the unknown response amplitude of the HRF for the qth-type

stimulus. In this model, the HRF is expressed as the product of a reference waveform

(basis function) and an unknown HRF amplitude (Kao & Mittelmann, 2014). We

note that a large θ value indicates a voxel that is greatly activated. Here, The term

Xqh
∗ represents the discretized convolution of the stimuli with the assumed basis h∗

of the HRF and η represents the error that follows AR(p) structure as ε in model

(2.1). The remaining terms in (2.2) are as in (2.1).

The basis h∗ is commonly set to the canonical HRF of the widely used software

package SPM for fMRI data analysis. The canonical HRF is defined as the following

double gamma function:

g(t) =
t5e−t

5!
− 1

6

t15e−t

15!
. (2.4)

Specifically, g(t) is a combination of two gamma probability density functions. To con-

struct h∗, g(t) is first normalized to have a maximum value of 1; i.e., g(t)/maxsg(s).

The elements of h∗ are then the values of the normalized g(t) at spaced time points,

starting from t = 0. Here, we assume the same h∗ for all the Q stimulus types. It is

also possible to allow different shapes of HRF for different stimulus types.
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2.1.3 Design Selection Criteria

In almost all experiments, the quality of the collected data depends on the selected

design. In this dissertation, a design said to be an optimal design when it allows the

most precise least square estimates of the parametric functions of interest. For the

estimation objective, let h = (h′1, ...,h
′
Q)′ represent the unknown parameter vector of

interest; it contains the Q HRF parameter vectors defined in (2.1). Following Kiefer

(1959), the efficiency of a design d in estimating h is evaluated by some functions of

the following information matrix of h:

M(d;φ) = X ′[Σ(φ)−1 − Σ(φ)−1S(S′Σ(φ)−1S)−1S′Σ(φ)−1]X. (2.5)

where Σ(φ) = cov(ε) and φ represents the correlation coefficients in Σ. Similarly,

for the objective of detecting the activated brain voxels, we set θ = (θ1, ..., θQ)′ to

represent the unknown amplitudes for the Q HRFs, and Σ(φ) = cov(η). The quality

of a design d in estimating θ is evaluated by some functions of the information matrix

of the form:

M(d;φ) =

(IQ ⊗ h∗)′X ′[Σ(φ)−1 − Σ(φ)−1S(S′Σ(φ)−1S)−1S′Σ(φ)−1]X(IQ ⊗ h∗), (2.6)

M (d;φ) in models (2.5) and (2.6) depends on the design d through the design matrix

X, so we aim to find a design d that in some sense, maximizes M (d;φ) to precisely

estimate the desired parametric functions. Additionally, the interest might be on

estimating some linear combinations of the HRF heights such as Chh, or some linear

combinations of the response amplitudes Cθθ.

Two popular criteria proposed in the literature of event-related fMRI studies to

measure the design efficiency, are A-optimality (e.g., Buračas & Boynton, 2002; Dale,

1999; Friston et al., 1999; Liu & Frank, 2004) and D-optimality (e.g., Kao et al.,
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2009; Maus et al., 2010). A-optimal designs aim at minimizing the average variance

of estimators of parametric functions, while D-optimal designs minimize the volume

of the (asymptotic) ellipsoidal confidence region of linearly independent parametric

functions. The A- and D- optimality criteria can respectively be written as:

Fi(d;φ) =


m/trace(M−1(d;φ)), forA− optimality

det(M (d;φ))1/m, forD − optimality

where m denotes the size of M (d;φ), Fi(d;φ) = Fe(d;φ) denotes the value of

the design criterion for estimating the HRF; this value is referred to as estimation

efficiency, and Fi(d;φ) = Fd(d;φ) denotes the value of the design criterion for the

objective of detection; this value is referred to as detection power. The values of

Fe(d;φ) and Fd(d;φ) are set to zero when the designs do not allow the parameters of

interest to be estimable. These optimality criteria are defined as the larger-the-better

criteria.

2.2 Some Designs for the Kriging Approach

The Kriging approach will be applied to facilitate the search of good event-related

fMRI designs. A key step to the success of this approach is by selecting a good design

(sampling plan). In the following subsections, we discuss some possible designs. We

then briefly introduce the Gaussian process to be considered in our approach.

2.2.1 Space-Filling Designs in Computer Experiments

To develop an efficient surrogate model that helps to predict the outcomes over a

region of interest, it is useful to select a good design that determines the locations in

the region of interest for making observations. The design discuss in this subsection

is a sampling plan used to select a finite sub-set of the region of interest to explore
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the output surface. An important application of these designs is in computer exper-

iments (Santner et al., 2003). The key issue in the design and analysis of computer

experiments is how to choose a small number of input values for generating a set of

informative computer outputs. These computer outputs may then be used to predict

the outputs of the untried input values via some statistical models (e.g., Gaussian

processes). One possible solution is to consider designs that have a space-filling prop-

erty where the selected inputs cover the input space as uniformly as possible. We

note that a space-filling design without replication is often considered in computer

experiments, especially when the same input values will produce identical output. We

briefly discuss some common space-filling designs in the literature.

One of the most commonly used space-filling designs in computer experiments is

the Latin hypercube design (LHD) which was first introduced by McKay, Beckman,

and Conover (1979). Fang, Li, and Sudjianto (2006) represent a LHD with n runs and

s variables as a matrix of size n × s where each column is a random permutation of

1, 2, ..., n. Possibly after some transformations, each row in this matrix is then used

to determine the coordinates of a selected point in the s-dimensional cube. Since

there are a large number of column permutations, the number of possible LHDs is

large too, and a random selection of LHD does not guarantee to get a design that fills

the space uniformly. As an example, an LHD can have all sampled points aligned on

the diagonal part of the design space as shown in Figure 2.3(b). Another example of

a LHD with 10 runs (design points) and 2 factors x1, x2 in the unit square [0, 1]2 is

presented in Figure 2.3(a). We may generate LHDs by optimizing some criteria. For

instance, the maximin distance criterion, which was proposed by Morris and Mitchell

(1995) helps to ensure a good space-filling property of the resulting LHD and avoid

the problem of getting a bad design as the one in Figure 2.3 (b).
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(a) Space-Filling LHD (b) Non Space-Filling LHD

Figure 2.3: Examples of LHDs With 10 Runs and 2 factors

Uniform designs (Fang 1980; Fang, Lin, Winker, and Zhang 2000) are another

common type of space-filling designs where the uniformity of a design is measured by

comparison against uniform distribution using discrepancy measures (e.g., the star

discrepancy L∞ or the centered L2 discrepancy). The lower the discrepancy the better

uniformity the set of points has. An example of a uniform design Un(ns) with n = 100

runs and s = 2 factors measured by centered L2 discrepancy is presented in Figure

2.4(b); for more details see Chapter 3 of Fang et al. (2006).

Additionally, distance-based designs such as maximin and minimax distance de-

signs are known for their space-filling property (Johnson, Moore, & Ylvisaker, 1990).

Maximin distance designs are more popular in practice than Minimax designs partly

because the latter designs are hard to compute (Santner et al., 2003). Constrained

maximin designs were proposed in several studies (e.g., Stinstra, den Hertog, Ste-

houwer, & Vestjens, 2003; Trosset, 1999) for the case of non-rectangular regions.

2.2.2 Quasi-Monte Carlo Sampling Methods

Another way to obtain space-filling designs is to consider the quasi-Monte Carlo

sampling methods. The quasi-Monte Carlo (QMC) simulation uses deterministic se-
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quences, i.e., low discrepancy sequences, instead of pseudorandom numbers that are

used in the traditional Monte Carlo (MC) simulation. There are many advantages of

using the QMC sampling methods in computer experiments; one of them is that quasi-

random numbers fill the design space better than pseudorandom numbers because of

the consideration of the previously sampled points which leads to better coverage of

the space by avoiding the form of clusters or gaps. Sobol sequences (Sobol’, 1967) are

among the most popular and easy to implement quasi-random sequences. Figure 2.4

shows how space-filling designs generated by Sobol sequences covered the unit square

space as uniformly as possible compared to Latin hypercube and uniform designs.

(a) LHD (b) Uniform Design

(c) Sobol Sequences

Figure 2.4: Examples of 2 Factors and 100 Runs Space-Filling Designs for LHD,
Uniform, and Sobol Sequences.
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Sobol sequences are generated by using primitive polynomials over the Galois field

(GF )2 = {0, 1}. Following Bratley and Fox (1988), and Chi and Mascagni (2004),

we provide a brief explanation of how to generate such sequences. Suppose we would

like to generate a sequence of n points x1, x2, ..., xn in the s-dimensional space [0, 1]s.

Then for each point xi, i = 1, 2, ..., n, we can write xi = (xi1, xi2, ..., xis), where

xij, j = 1, ..., s, represents the ith component in the jth dimension, which can be

generated by the following recursive equation:

xij = b1v1j ⊕ b2v2j ⊕ b3v3j ⊕ ...., (2.7)

where ⊕ is the bitwise exclusive-OR operator ( the output is 1 only when inputs differ

and 0 otherwise), and bk is the kth digit from the right in the binary representation of

a non-negative integer n (i.e., n = (...b3b2b1)2). vkj is the kth direction number in the

jth dimension, which can be defined as a binary fraction in the form vkj = mkj/2
k,

where mk is an odd integer and mk < 2k. In order to generate these direction

numbers we need first to select a primitive polynomial of degree q in GF2 which can

be expressed as:

xq + a1x
q−1 + a2x

q−2 + ...+ aq−1x+ 1. (2.8)

Here, the coefficients ai are either 0 or 1 and can be used to obtain the direction

numbers vkj using the following recurrence relation:

vkj = a1v(k−1)j ⊕ a2v(k−2)j ⊕ ....⊕ aq−1v(k−q+1)j ⊕ v(k−q)j ⊕ v(k−q)j/2
q, i > q, (2.9)

To ease the implementation of vkj, we can re-write the previous recurrence relation

in terms of mkj as follows:

mkj = 2a1m(k−1)j⊕22a2m(k−2)j⊕....⊕2q−1aq−1m(k−q+1)j⊕2qm(k−q)j⊕m(k−q)j. (2.10)
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After choosing the primitive polynomial of degree q, we can choose the initial values

of m1,m2, ...,mq to be any odd integers that satisfy mi < 2i, then we can obtain the

values of mq+1,mq+2, ... by using model (2.10).

Another common method in constructing Sobol sequences is the Gray code by

Antonov and Saleev (1979), where the binary coefficients ....b3b2b1 in the recursive

equation (2.7) are replaced by the Gray code representation of the nonegative integer

n. The updated recursive equation in this case is:

xij = g1v1j ⊕ g2v2j ⊕ g3v3j ⊕ ...., (2.11)

where ....g3g2g1 = (....b3b2b1)2⊕ (...b4b3b2)2. Since the gray code for n and n+ 1 differ

in only one position, then we can generate Sobol points recursively by the following

recursive equation:

x(i+1)j = xij ⊕ vcj, (2.12)

where c is the index of the first zero-bit from the right in binary representation of

n = (...b3b2b1)2. This is a faster and more efficient way to generate Sobol sequences.

More examples are discussed in (Joe & Kuo, 2008).

In Kucherenko, Albrecht, and Saltelli (2015) a comparison was made between

QMC approach based on Sobol sequences and other sampling methods, such as

LHD and regular Monte Carlo methods. They concluded that Sobol sequences sat-

isfied the uniformity properties (Properties A and A’), that were first introduced by

Sobol (1976), in low and high dimensional problems up to 20 dimensions better than

other sampling methods that performed only well in low dimensions. In addition,

Kucherenko et al. (2015) have also shown that Sobol sequences are in many aspects

superior to the other sampling schemes, particularly when prediction is of primary

interest. In this study, we consider the stationary AR(p), parameter space which

usually presents a non-rectangular shape under the constraints on the parameter val-
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ues. We will explore the use of the previously introduced designs to subsample the

correlation parameter values from such a parameter space.

2.2.3 The Gaussian Process

In the past decade, there has been an explosive growth in the field of computer ex-

periments to design products for modern industry. Several reasons for using computer

experiments as a replacement to the traditional physical experiments were discussed

in the literature. A major one is that physical experiments are usually too costly and

for some cases they are infeasible to implement (Fang et al., 2006; Jones & Johnson,

2009).

The idea of computer experiments is to use a computer model (a simulator) to

generate the data in order to study the input-output relationship. Typically, these

are deterministic simulators, which means no matter how many times we run the sim-

ulation we will get the same output under the same set of input conditions. However,

these computer experiments are based on some complicated mathematical models

that sometimes require hours or even days to finish a single run.

A surrogate model that approximates the real one with limited numbers of runs to

produce an output is needed (Santner et al., 2003). One of the well-known surrogate

models (i.e., metamodels) that are widely used in the spatial statistics literature is

the Kriging model. The idea of Kriging was first proposed by geologist D.G. Krige

in the 1950s and was then developed by other geologists to predict the location of

valuable minerals over a large area of interest given a small set of sites from that

area (Matheron, 1963). Sacks, Welch, Mitchell, and Wynn (1989) have introduced

Kriging into computer experiments. This method has then gained much popularity

in approximating deterministic computer models and optimization purposes for its

ability to interpolate the observed data points (Martin & Simpson, 2005). Briefly
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speaking, Kriging is a method to build an approximation of a target function from

a given finite set of evaluations of the function. The technique is also known as

Gaussian process regression.

A Kriging model can be defined as a generalized linear regression model that

accounts for the correlation in the residuals between the regression model and the

observations (Goldberger, 1962). The mathematical form of the Kriging model can

be written as:

w(φ) =
∑p

k=1
fk(φ)βk + Z(φ), (2.13)

where w(φ) represents the output from the simulator for the given input φ ∈ Rn;φ =

(φ1, ..., φn). f1(.), f2(.), ...., fp(.) are regression functions, β1, ..., βp are regression pa-

rameters, and Z(.) corresponds to a stationary Gaussian process with mean zero and

covariance Cov(Z(φi), Z(φj)) = σ2R(φi,φj), where σ2 is the variance and R(φi,φj)

is the spatial correlation function between the n-dimensional inputs φi and φj. One of

the most popular spatial correlation functions and is given by the following formula:

R(φi,φj) = exp{−α|φi − φj|2}. (2.14)

The correlation function parameter α controls the smoothness of the surface, where

α = 0 means the correlation is 1 and the surface is flat while a large α value corre-

sponds to a low correlation and yields a rather rough surface (Jones & Johnson, 2009).

Several methods were discussed in Santner et al. (2003) to estimate the correlation

parameter α in R such as the maximum likelihood, restricted maximum likelihood

and cross validation methods. According to Martin and Simpson (2005), the maxi-

mum likelihood method provides good estimations of the Kriging model parameters

in some cases.

Suppose that the training set of data is obtained at given input sites φ1, ...φs, and

the resulting outputs are W = (w(φ1), ...,w(φs))
′. Given these sampled outputs, a
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linear predictor of the output at another location φ0 can be expressed as:

ŵ(φ0) =
s∑
i=1

λiw(φi) = λ′W , (2.15)

where λ can be selected by minimizing the mean square error (MSE) for prediction,

MSE[ŵ(φ0)] = E[ŵ(φ0)−w(φ0)]2, (2.16)

under the unbiasedness constraint,

E[ŵ(φ0)−w(φ0)] = 0. (2.17)

If λ solves the minimization problem of Eq. (2.16) subject to the unbiasedness con-

straint of Eq. (2.17), then λ′W is called the best linear unbiased predictor (BLUP)

of w(φ0). By solving for λ and substituting into Eq. (2.15), the BLUP of w(φ0) is

given by

ŵ(φ0) = f ′(φ0)β̂ + r′(φ0)R−1(W − F β̂), (2.18)

where f ′(φ0) = [f1(φ0), f2(φ0), ..., fp(φ0)]′, F is the expanded s × p matrix of re-

gressors having the (i,k)th element as fk(φi) for 1 ≤ i ≤ s, 1 ≤ k ≤ p, r′(φ0) is the

s×1 vector of correlations between the sample points and an untried point φ0, which

is defined as r′(φ0) = {R(φ0,φ1), ...., R(φ0,φs)}. R is the s × s correlation matrix

of W , which is composed of spatial correlation functions evaluated at each possible

combination of the known points. β̂ is the generalized least-squares estimator of

β = (β1, ..., βp) which can be written as

β̂ = (F ′R−1F )−1F ′R−1W . (2.19)

The Gaussian model in (2.18) can interpolates the training data points. To show

this, we set φ0 = φi for some fixed i, 1 ≤ i ≤ s, then f ′(φ0) = f ′(φi) and r′(φi) =
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{R(φi,φ1), ...., R(φi,φs)} which corresponds to the ith row of R. Hence the product

of r′(φi) and R−1 is the unit vector e′i = (0, ..., 0, 1, 0, ..., 0). This leads to:

ŵ(φi) = f ′(φi)β̂ + e′i(W − F β̂) = f ′(φi)β̂ +W (φi)− f ′(φi)β̂ = w(φi). (2.20)

One of the most commonly used forms of Kriging is the ordinary Kriging model

that has shown to provide satisfactory results in many previous studies. An ordinary

Kriging model is a special case of model (2.13) by taking p = 1 and f1(φ) = 1.

Consequently, the mathematical form of the ordinary Kriging model is:

w(φ) = β + Z(φ), (2.21)

and for this case the BLUP of w(φ0) is given by

ŵ(φ0) = β̂ + r′(φ0)R−1(W − jsβ̂),

β̂ = (j ′sR
−1js)

−1j ′sR
−1W .

(2.22)

where js is a vector of ones of length s, and the remaining terms are as defined earlier

in (2.18). We will use the ordinary Kriging model to facilitate the search for maximin

event-related fMRI designs.
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Chapter 3

SIMPLE TRIALS EVENT-RELATED FMRI EXPERIMENTS

3.1 Misspecification of Error Correlation Problem

Generally, data acquired from the same experimental subject in an event-related

fMRI experiments are known to be correlated. In the voxel-wise analysis, models

such as (2.1) and (2.2) allow the BOLD responses obtained from the same voxel to

be temporally dependent. The correlated noise is assumed to follow some parametric

correlation models, such as the autoregressive models of orders 1, 2, and p ≥ 2 (e.g.,

Lenoski et al., 2008; Lindquist, 2008; Worsley et al., 2002) and ARMA models (e.g.,

Locascio, Jennings, Moore, & Corkin, 1997; Purdon, Solo, Weisskoff, & Brown, 2001).

When obtaining optimal designs, it is important to take the correlation of the BOLD

responses into account.

Some studies in the literature assumed that the correlation among the measure-

ments in an event-related fMRI time series could be specified at the design stage.

For instance, in Kao et al. (2009), the first-order autoregressive process AR(1) is

considered to address the temporal correlation and the correlation coefficient fixed

to φ = 0.3. This assumption is not always valid in practice. Maus et al. (2010)

claimed that the correlation coefficient can vary between experiments and also from

voxel to voxel. Consequently, a design that is good for a given correlation of a voxel

might be inefficient for another voxel. Therefore, obtaining a good design that works

relatively well for all possible error correlation values is crucially important. To this

end, Maus et al. (2010) used the maximin approach (Berger & Tan, 2004) to work

on the worst-case scenario and found robust designs against misspecification of the
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error correlations. However, their method has shown to be very expensive and quickly

becomes infeasible when considering a more complicated such as AR(p), p ≥ 2. As

the use of AR(p) for some p ≥ 2 is not uncommon in practice, an efficient approach is

needed to allow experimenters to efficiently obtain a maximin design that can perform

relative well across the parameter space of the p autocorrelation parameters.

In the following sections, we explain in details the maximin design approach con-

sidered by Maus et al. (2010) and compare it to our proposed method. As to be

explained later, we borrow a useful statistical method from the analysis of computer

experiments to develop our proposed method to efficiently obtain maximin designs.

3.2 The Maximin Criterion

In this dissertation, we assume that the error correlations in models (2.1) and

(2.2) follow AR(p), p = 2, 3, which are not uncommon for the fMRI settings that we

consider. Following Maus et al. (2010), we would like to obtain robust designs that

have high overall efficiencies over a set of possible values of the correlation coefficients;

that is to obtain a maximin design d∗Mm that maximizes the following criterion:

min
φ∈Ω

RE(d;d∗φ) = min
φ∈Ω

Fi(d;φ)

Fi(d∗φ;φ)
(3.1)

where Ω represents the parameter space that consists of all possible values of the

autocorrelation parameters φ. Fi(.) is the optimality criterion (e.g., A-optimality)

where i = e for estimation or i = d for detection (see also, Subsection 2.1), d denotes

the candidate design being evaluated and d∗φ represents the locally optimal design

which is the best design for the given φ value. To obtain d∗Mm, we may consider the

following steps:

• Step 1: Find d∗φ that maximizes Fi(d;φ) for a large set of values of φ ∈ Ω.
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• Step 2: For each candidate design d, use these d∗φ to calculate its RE(d;d∗φ) =

Fi(d;φ)/Fi(d
∗
φ;φ) values, then find the minimal value of the obtained REs over

the set of the φ-values in Step 1.

• Step 3: Find a design d∗Mm that yields the maximal value of minREφ∈Ω(d;d∗φ).

Note that, when the minimum RE-value of a design is very close to 1, this design

performs well for the different values of φ. In addition, Step 2 in the previously

described method will need to be repeated for every candidate design and for all

possible values of the correlation coefficients. Maus et al. (2010) considered a similar

procedure to obtain a maximin design by assuming the AR(1) model with Ω = [0, 0.5].

In particular, they consider a regular grid on Ω, and obtain a locally optimal design

for each of the 51 grid points. They then evaluated the minREφ∈[0,0.5] of the 51

locally optimal designs, and among these locally optimal designs they then selected

the design with the greatest minRE value as d∗Mm. In our experience, this method

requires much computational effort especially for the case with an autoregressive of

order p ≥ 2, where the parameter space Ω will be large and finding a design that

works well for all possible φ ∈ Ω will be difficult. In the next section, we propose an

efficient method to reduce the time needed for finding the desired optimal designs.

3.3 The Proposed Approach

Our idea is on utilizing the Kriging model to reduce the time needed for obtaining

maximin event-related fMRI designs that are robust against a misspecification of error

correlations. Our proposed method is described below:

• Step 1: Select a small set of φ-values from Ω, which are denoted by φ1,φ2, ...,φs

where φj = (φ1,j, φ2,j, ..., φp,j); j = 1, ..., s, for the general AR(p) model. More

details on the selection of these φ-values will be provided in the next subsection.
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• Step 2: Find d∗φ that maximizes Fi(d;φ) for the selected values of φ.

• Step 3: For each candidate event-related fMRI design d, use d∗φ to calculate the

RE(d;d∗φ) values.

• Step 4: For given d, use the BLUP in (2.22) to approximate w(φ) = RE(d;d∗φ)

for each φ on a fine grid of Ω. The minREφ∈Ω(d;d∗φ) is then approximated

from these w(φ)’s.

• Step 5: Find a design d∗Mm that maximizes the approximated min-RE in Step

4.

To obtain the locally optimal designs in Step 2, and d∗Mm in Step 5, we consider to

adapt the genetic algorithm by Kao et al. (2009) (for more details, see the Appendix).

Our approach is thus a combination of a Kriging method that helps to approximate

the objective function, and the genetic algorithm, that helps to efficiently search over

the enormous design space for the needed locally optimal designs d∗φ, and a maximin

design d∗Mm optimizing the approximated objective function.

3.3.1 Sampling Methods Over the Parameter Space of the Correlation Coefficients

We first explain how we define the parameter space when the correlation coeffi-

cients are assumed to follow AR(2) and AR(3) models, respectively. First, for AR(2),

the inverse of the variance-covariance matrix (Σ−1 = ((Σ−1
ij ))i,j=1,...,T ) has the follow-

ing form:

Σ−1
i,i =



1, i = 1, T ;

1 + φ2
1, i = 2, T − 1;

1 + φ2
1 + φ2

2, 2 < i < T − 1;
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Σ−1
i,j =



−φ1, |i− j| = 1 and i+ j = 3, 2T − 1;

−φ1(1− φ2), |i− j| = 1 and 3 < i+ j < 2T − 1;

−φ2, |i− j| = 2;

0, |i− j| > 2.

For demonstration purposes, we set both ρ1 = φ1/(1−φ2) and ρ2 = φ2
1/(1−φ2)+φ2

to be within the range of [0, 0.5]; this interval includes the most commonly observed

values of correlation for fMRI data (Maus et al., 2010). Note that, ρi stands for the

i -th autocorrelation coefficient of the AR(2) process, which describes the correlation

between errors at time t and t+i, where t=1,2,...,T-i. To satisfy the conditions of

stationarity, we have

φ1 ∈


[0, 0.5(1− φ2)], if φ2 ∈ [0, 1

3
];

[0,
√

0.5(1− 2φ2)(1− φ2)], if φ2 ∈ (1
3
, 1

2
].

This leads to an irregularly shaped parameter space Ω of AR(2), and is the blue

shaded area in Figure 3.1.

Figure 3.1: The Parameter Space Ω of the Stationary AR(2) Model.
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For the case when the error correlation is assumed to follow an AR(3) model, the

elements of the inverse variance-covariance matrix are defined as:

Σ−1
i,i =



1, i = 1, T ;

1 + φ2
1, i = 2, T − 1;

1 + φ2
1 + φ2

2, i = 3, T − 2;

1 + φ2
1 + φ2

2 + φ2
3, 3 < i < T − 2;

Σ−1
i,j =



−φ1, |i− j| = 1 and i+ j = 3, 2T − 1;

−φ1(1− φ2), |i− j| = 1 and i+ j = 5, 2T − 3;

−φ1 + φ1φ2 + φ2φ3, |i− j| = 1 and 6 < i+ j < 2T − 4;

−φ2, |i− j| = 2 and i+ j = 4, 2T − 2;

−φ2 + φ1φ3, |i− j| = 2 and 5 < i+ j < 2T − 3;

−φ3, |i− j| = 3;

0, |i− j| > 3.

Following Yule-Walker equations, we then have:

ρ1 =
φ1

(1− φ2)
+

φ3φ1(φ1 + φ3) + φ3φ2(1− φ2)

(1− φ2)2 − φ3(φ1 + φ3)(1− φ2)
,

ρ2 =
φ1(φ1 + φ3) + φ2(1− φ2)

(1− φ2)− φ3(φ1 + φ3)
,

ρ3 = φ1ρ2 + φ2ρ1 + φ3.
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Here, we consider the case where ρ1, ρ2, ρ3 are set to be within the range of [0, 0.5].

The parameter space for φ = (φ1, φ2, φ3) is then a 3-dimensional irregular space

shown in Figure 3.2.

Figure 3.2: The Parameter Space Ω of the Stationary AR(3) Model.

In contrast to the expensive method by Maus et al. (2010), we propose to ap-

proximate the unknown surface of the relative efficiencies RE(d;d∗φ) over Ω. This is

achieved by using a good sampling plan to subsample Ω to allow us to explore this

surface at different regions of Ω. When choosing a sampling plan we need to take

into account its projection (collapsing) properties and the space-filling properties over

irregular regions. Sampling plans, such as a regular grid design or the commonly used

Latin hypercube designs in computer experiments may lack one of these properties.

For instance, points sampled by a regular grid design suffer from the collapsing prop-

erty even when applied on regular regions, which means when projecting the grid

points from d-dimensional space to a lower dimensional space, we will have points

that share the same coordinate values, hence, the model will be evaluated repeatedly

over the same values. On the other hand, Latin hypercube designs (LHD)s have

shown to avoid the collapsing property when used to sample over regular regions. It

is guaranteed that there will be only one point at each location whenever we project
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the LHD points onto a one- dimensional space. Nevertheless, a major drawback for

LHDs is they sometime fail to maintain the space-filling properties and provide bad

coverage of the region of interest as shown before in Figure 2.3(b). For irregular

regions, LHDs do not guarantee these properties. For example, we might have some

big gaps between the selected points after projecting an LHD to a one-dimensional

space. Therefore, LHDs are often not recommended for irregular regions. For this

reason, we consider the well-known Sobol sequences (Niederreiter, 1988, 1992; Sobol’,

1967), to obtain a small set of φ-values as mentioned in Step 1 in Section 3.3. Sobol

sequences tend to have good projection and space-filling properties even when the

space is irregular. This is because they are constructed so that the selected points

that are scattered uniformly over the subregions of different sizes without having a

pattern or producing clusters in certain areas.

We follow a rule of thumb to sample 10 observations per dimension. Specifically,

we sample 20 points from the specified 2-dimensional space of AR(2) and 30 points

from the 3-dimensional space of AR(3) using the Sobol technique. The implemen-

tation of such designs is done by using the statistics toolbox function ‘Sobolset’ in

MATLAB to generate a Sobol point set. To do that, an initial point set sequence

consisting of 27 points is generated from the regular design space of AR(2); i.e.,

[0, 0.5]× [0, 0.5]. Then, we eliminate the points outside the region of interest Ω, and

keep the remaining 20 Sobol points inside Ω. For the case when the error correlation

follows AR(3) model, an initial point set sequence consisting of 65 points is generated

from the regular design space [0, 0.5]3 of AR(3), then we eliminate the points outside

Ω. These sampled points will be used as inputs in the surrogate model (2.22) to

generate a proper approximation of the surface of the RE(d;d∗φ)-values over Ω for

each candidate event-related fMRI design d.
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For the expensive method by Maus et al. (2010) where a large set of φ-values is

required, we consider the traditional grid sampling plan where points are distributed

equidistantly over the region of interest. We set the grid size over the parameter space

of AR(2) to 0.01×0.01, and this gives a set of 1797 values of φ = (φ1, φ2). For AR(3)

model, we set the grid size to 0.033, which results in a subset of 1957 points of the

corresponding Ω. Those points will then be used to calculate the RE(d;d∗φ)-values

for each design d following the steps in Section 3.2. Figure 3.3 represents the selected

Sobol points (red dots) and the grid points (blue dots) over the parameter space of

AR(2) and AR(3) respectively.

(a) Ω for AR(2) Model. (b) Ω for AR(3) Model.

Figure 3.3: Sampled Points by Sobol Sequences Over the Parameter Space Ω.

3.3.2 Boundary Points Method

When evaluating the RE-values of the locally optimal designs (LODs) over the

parameter space Ω of AR(2) and AR(3) models, there seems to have a tendency

that by moving away form the location where a design is locally optimal, the value

of its RE decreases until it reaches its minimum at the boundary of the space. As

an example, for the case with an AR(2) model, the locally optimal design for φ =

(0, 0) is evaluated over the fine grid of 1797 points of φ = (φ1, φ2), and its min-
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RE occurs at points φ = (0.31, 0.35) and (0.33, 0.33) with 66% and 88% maximin

efficiencies for detection and estimation, respectively. Both points are located on the

boundaries of Ω far from the origin. Another example when evaluating LODs that

are located at the center of the parameter space Ω i.e.,φ = (0.25, 0.25), the minimal

value among all its RE-values obtained form the fine grid occurs at (0, 0) with 79%

maximin efficiency for detection case and at (0, 0.5) with 94% maximin efficiency for

estimation, which are also boundary points. In a similar manner, when the error

correlation follows an AR(3) model, we evaluate the locally optimal designs for φ =

(0, 0, 0) and (0.25, 0.25, 0.25) over the fine grid of 1957 points of φ = (φ1, φ2, φ3). We

noticed that the min-REs occur at points (0, 0.38, 0.38) and (0, 0, 0) for detection

case, and at (0.35, 0.32, 0) and (0, 0.5, 0) for estimation case, which are also located

at the boundaries of Ω of AR(3) process. It also is interesting to note that the

maximin efficiencies of LODs located at the center of the parameter space of interest

are expected to be higher than the maximin efficiencies for LODs located at the

boundaries of the space. For instance, the LOD at the origin of AR(3) parameter

space has 66% and 88% maximin efficiencies for detection and estimation purposes,

and the LOD located at (0.25, 0.25, 0.25) which is at the center of AR(3) parameter

space has 78% and 92% maximin efficiencies for detection and estimation purposes.

However, in our experience, the LODs obtained at the center points do not guarantee

a maximin design, and a search of such a maximin design is needed in many cases.

The previously mentioned phenomenon on the locations where the min-RE occurs

is also observed in many other event-related fMRI designs that we studied. We thus

treat the boundaries of Ω as our ‘region of interest’ for finding maximin designs.

Therefore, we consider only to use a small set of φ-values located at the boundaries

of Ω to approximate the minRE(d;d∗φ) of each candidate design d. Specifically, this

is only done by finding the min-RE over the selected boundary points without the
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use of the previously described Kriging approach. A maximin design maximizing

this approximated min-RE is then obtained via the genetic algorithm of Kao et al.

(2009). We consistently observe that the use of the boundary points requires much

less CPU time than all the previously described methods in Sections 2.2 and 2.3,

without significantly sacrificing the achieved designs efficiencies. Figure 3.4 shows

the set of boundary points (red dots) that we consider for the parameter space Ω

(blue dots) of AR(2) and AR(3) models.

(a) Ω for AR(2) Model. (b) Ω for AR(3) Model.

Figure 3.4: The Selected Boundary Points Over the Parameter Space Ω.

3.4 Case Studies for Simple Trials Event-Related fMRI Experiments

Through simulations, we compare the performance of our proposed approaches

with the expensive method of Maus et al. (2010) to find maximin designs for event-

related fMRI experiments. We consider designs with Q = 1, 2, and 3 stimulus types

with their respective design lengths of N = 255, 242, and 255. The inter-stimulus

interval τISI and the time to repetition τTR are both set to 2 seconds. In this case,

τ∆T is also 2 seconds ( the greatest time making both τISI/τ∆T and τTR/τ∆T integers).

For all simulations, the duration of the HRF is set to 32 seconds, the nuisance term Sγ

in models (2.1) and (2.2), is assumed to allow for a second-order polynomial drift in
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the fMRI time series. The A-optimality criterion is used for both statistical objectives,

namely estimation and detection. We focus on the case where the individual stimulus

effects is of interest. We show first the results for the case where the noise is assumed

to follow a stationary AR(2) model with uncertain autocorrelation coefficients.

The algorithmic parameters of the genetic algorithm used in the simulations to

search for optimal event-related fMRI designs are: G (size of generation) = 20, q

(percentage of mutation) = 1%, and N (number of immigrants per generation) = 4.

The algorithm is run until a stopping rule is met; i.e., no significant improvement is

made. The algorithm keeps track of the best event-related MRI design obtained in

each GA generation. We modify the MATLAB program provided by Kao (2009), and

combine it with the software package DACE for Kriging approximations (Lophaven,

Nielsen, & Søndergaard, 2002). We implement our simulations by using MATLAB

on a desktop computer of a 3.7GHz Intel Core i7-8700k 6-core processor with 32GB

RAM.

3.4.1 Case I: Estimation

In the first set of case studies, we focus on the study objective of estimating the

HRF with model (2.1) where the number of the HRF parameters contained in hq is

17 = (1 + b32/2c). We compare the following methods:

• Method A (Kriging+Sobol Method): We apply our proposed method as de-

scribed in Section 3.3 to obtain optimal maximin designs d∗Mm. We implement

the genetic algorithm of Kao et al. (2009) to generate the locally optimal designs

d∗s,φ that maximize Fe(d;φ) = m/trace(M−1(d;φ)) for the 20 selected points

in a Sobol sequence from the pre-specified parameter space Ω of AR(2). We note

that, M (d;φ) here is defined as in (2.5) and its size is m = 17Q;Q = 1, 2, 3. For

each candidate design, we then can calculate its RE-values using the 20 locally
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optimal designs d∗s,φ. By using the Kriging approximation as in (2.22), these

20 RE-values then help to approximate the surface of the relative efficiencies

over the parameter space Ω. This latter approximation is done by using the

DACE software package. The default settings of the DACE package are con-

sidered. The model has the form of (2.21) and involves a constant mean plus a

Gaussian correlation function. The α correlation function parameters in (2.14)

are estimated using the maximum likelihood method. The steps described in

Section 3.3 are then adopted to search for a maximin design that maximizes the

approximated minREφ∈Ω(d;d∗φ).

• Method B (Grid method): Here, we consider the approach of Maus et al. (2010)

to achieve maximin designs d∗Mm, by considering the φ-values on a fine grid

over Ω. For this case, we obtain a locally optimal design d∗φ for each of the

1797 grid points of φ = (φ1, φ2) by implementing the GA of Kao et al. (2009).

These locally optimal designs allow to provide an approximated min-RE for

each candidate design. We then adapt the GA of Kao et al. (2009) to search

for a design d∗Mm that maximizes the minimum RE.

• Method C (Boundary points method): We use the locally optimal designs d∗φ

that are optimal for the selected boundary points over the parameter space Ω

of AR(2) as shown in Figure 3.4 (a) to approximate the minRE(d;d∗φ) for each

candidate design. Then, we adapt the GA of Kao et al. (2009) to search for a

design that maximizes the minimum RE.

Table 3.1 represents the time spent to generate the set of the locally optimal

designs maximizing Fe(d;φ) needed for the three methods. When comparing the

maximin designs obtained by Method A and Method C to those obtained by Method

B, we evaluate the maximin designs d∗Mm obtained by Method A, and Method C
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using the 1797 locally optimal designs d∗φ on the fine grid. Table 3.2 provides the

minREφ∈Ω(d∗Mm;d∗φ) values of the designs obtained by the three methods for Q=1,

2 and 3.

Table 3.1: CPU Time Spent by the Genetic Algorithm on Maximizing Fe for Q =
1, 2, 3 Over the Parameter Space Ω of AR(2) Model.

Method number of LODs
Total time spent (min.):

Q=1 Q=2 Q=3

A 20 1.7 3.9 9

B 1797 126 336 786

C 6 0.4 1 1.6

Table 3.2: The Performances of Method A, Method B, and Method C for Estimating
the HRF Over the Parameter Space Ω and the Corresponding (φ1, φ2)-Values That
Yield the Maximin Designs d∗Mm for AR(2) Model.

Q 1 2 3

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.9538 0.9546 0.9447

time spent (min.) 1.34 2.2 8.2

(φ1, φ2) (0,0.5) (0.5,0) (0,0.47)

Method B :

minREφ∈Ω(d∗Mm;d∗φ) 0.9588 0.9593 0.9532

time spent (min.) 156 315 798

(φ1, φ2) (0.5,0) (0,0.47) (0.5,0)

Method C :

minREφ∈Ω(d∗Mm;d∗φ) 0.9584 0.9552 0.9552

time spent (min.) 0.3 0.5 1.4

(φ1, φ2) (0,0.5) (0,0.47) (0,0.47)

We note that, the reported time in Table 3.2 does not include the time needed for

generating the locally optimal designs d∗φ, which can be found in Table 3.1. We observe

that the values of minREφ∈Ω(d∗Mm;d∗φ) for the three methods are quite similar and

the obtained designs are very efficient (at least 95% maximin efficiency). From Table
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3.2, we also observe a huge reduction in the time needed for generating a maximin

design when Method A and Method C are used. In particular, for all cases (Q =

1, 2, 3) our proposed methods reduces the CPU time by at least 99%. The proposed

methods saved much of the computational resources without sacrificing the efficiency

of the obtained designs, hence, they are more efficient than the grid method (Method

B). Figure 3.5 represents the maximin designs d∗Mm obtained by the three methods

for estimating the HRF when Q = 1 and 2. Here, different colors represent different

event types with dark blue indicating the null or control event.

(a) (Q,N)=(1,255) (b) (Q,N)=(2,242)

Figure 3.5: Maximin designs obtained by Method A, Method B, and Method C for
estimating the HRF of AR(2) model.

In addition, deigns obtained by Method A and Method C are compared with

some well-known designs in the literature of event-related fMRI studies that have

high efficiencies for estimating the HRF under linear models, such as m-sequence and

random designs. We generate m-sequence designs following Liu and Frank (2004), and

10 different random designs. The minREφ∈Ω(.;d∗φ) for these deigns are presented in

Table 3.3 for each of the following scenarios (Q,N) = (1, 255), (2, 242) and (3, 255).

We notice that the maximin designs obtained by Method A (Kriging+Sobol) and the

Method C (boundary points method) outperform these traditional designs.
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Table 3.3: minREφ∈Ω(.;d∗φ) of d∗Mm From Methods A and C Versus Some Traditional
fMRI Designs for Estimation Purposes of AR(2) Model.

Q=1 Q=2 Q=3

d∗Mm,MethodA 0.9538 0.9546 0.9447

d∗Mm,MethodC 0.9584 0.9552 0.9552

m-sequence-based design 0.8838 0.8241 0.8405

10 random designs 0.6669-0.8711 0.6690-0.7762 0.6785-0.7607

The boxplots in Figure 3.6 display the distribution of the REφ∈Ω(.;d∗φ) values over

Ω for the maximin designs d∗Mm obtained by Method A, Method C, an m-sequence

design and a random design. Each box gives the 25%, 50%, and 75% percentiles

Figure 3.6: Boxplots of RE-Values Over Ω of AR(2) Model for Designs Obtained
by Method A, Method C, an m-Sequence, and a Random Design for Estimating the
HRF.

of the 1797 RE-values for each design, and the whiskers represent the highest and

lowest values for the relative efficiencies. For instance, the RE-values for d∗Mm,MethodA

and d∗Mm,MethodC are ranging from 0.95 to 1 indicating high relative efficiencies for

all correlation coefficients. On the other hand, more variation in RE-values occurred
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for m-sequence and random designs, with very low RE-values at the worst cases. To

conclude, maximin designs are robust against a misspecified correlation coefficient

while the traditional designs vary greatly over the parameter space of AR(2) model.

3.4.2 Case II: Detection

In a similar manner as we did for the estimation case, we obtain maximin designs

for detecting brain activations by using our proposed methods and compare them to

the expensive approach by Maus et al. (2010).

The time spent to generate the locally optimal designs d∗φ that maximize Fd(d,φ) =

m/trace(M−1(d,φ)) where M (d;φ) as in (2.6) and its size m = Q; for Q = 1, 2, 3, is

shown in Table 3.4 for Methods A, B and C. Table 3.5, presents a comparison among

Table 3.4: CPU Time Spent by the Genetic Algorithm on Maximizing Fd for AR(2)
Model With Q = 1, 2, 3.

Method number of LODs
Total time spent (min.):

Q=1 Q=2 Q=3

A 20 0.3 1 2.3

B 1797 28.8 87 189

C 6 0.1 0.3 0.5

the obtained maximin designs dMm,MethodA, dMm,MethodB, and dMm,MethodC .

We observe that the value of minREφ∈Ω(d∗Mm;d∗φ) for maximin designs obtained

by Method A and Method C are quite similar to the grid method (Method B) with

88%−90% maximin efficiencies. We also observe at least 99% reduction in time when

Method A and Method C are used. As mentioned before the reported time in table

3.5 does not include the time needed for generating the locally optimal designs which

is represented in Table 3.4. Figure 3.7 represents the maximin designs d∗Mm achieved

by the three methods, which are in the form of block designs with different block sizes

(e.g., d∗Mm designs obtained by Method A have blocks of sizes 6 and 7).
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Table 3.5: The Performances of Method A, Method B, and Method C for Detecting
Activated Brain Regions Over the Parameter Space Ω and the Corresponding (φ1, φ2)-
Values That Yield the Maximin Designs d∗Mm for AR(2) Model.

Q 1 2 3

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.9030 0.8878 0.8910

time spent (min.) 0.3 0.9 0.8

(φ1, φ2) (0.31,0.35) (0,0) (0.31,0.35)

Method B :

minREφ∈Ω(d∗Mm;d∗φ) 0.9067 0.8956 0.8921

time spent (min.) 26 79 111

(φ1, φ2) (0.31,0.35) (0,0) (0,0)

Method C :

minREφ∈Ω(d∗Mm;d∗φ) 0.9090 0.8917 0.8786

time spent (min.) 0.1 0.34 0.3

(φ1, φ2) (0.31,0.35) (0.31,0.35) (0.31,0.35)

(a) (Q,N)=(1,255) (b) (Q,N)=(2,242)

Figure 3.7: Maximin Designs Obtained by Method A, Method B, and Method C for
Detection Case of AR(2) Model.

Similarly to the estimation case, we now compare the achieved maximin designs by

Method A and Method C with the block designs that are widely used for detecting

brain activation; note that the block designs are shown to possess high detection

43



power when the uncertainty in the autocorrelation is ignored. For demonstration

purposes, we generate two block designs with blocks of sizes 8 and 16, for each of the

following scenarios (Q,N) = (1, 255), (2, 242) and (3, 255). The minREφ∈Ω(.;d∗φ) for

these deigns are reported in Table 3.6. We notice that the maximin designs obtained

by our approaches provide high detection power when compared to the two block

designs. In Figure 3.8 we compare the RE-values over Ω of the maximin designs d∗Mm

Table 3.6: minREφ∈Ω(.;d∗φ) of d∗Mm From Methods A and C Versus Some Traditional
Designs for Detection Case of AR(2) Model.

Q=1 Q=2 Q=3

d∗Mm,MethodA 0.9030 0.8878 0.8910

d∗Mm,MethodC 0.9090 0.8917 0.8786

block size8 0.7206 0.6052 0.5630

block size 16 0.4424 0.4013 0.3919

obtained by Method A and Method C, and the block designs. Each box represents the

distribution of the 1797 REφ∈Ω(.;d∗φ) values for each design where it can be seen that

block designs, which are highly recommended for detecting activated brain regions

under linear models, the vary greatly over Ω comparing to our maximin designs where

the variation in RE-values is small. We also notice that block designs provide very

low relative efficiencies at the worst cases, such as for block design of size 16 the

minRE-values are as low as 40% for all scenarios.

From the above-mentioned results, we notice the importance of selecting a good

sampling plan of φ = (φ1, φ2) that helps to approximate the surface of RE-values

over the parameter space Ω of AR(2) and obtain highly efficient maximin designs.

Not all sampling plans give good results. To demonstrate this, we consider three

rather extreme sampling plans: (i) the sampled points are aligned on ‘diagonal’ of Ω,

(ii) the sampled points are clustered at the center of Ω, and (iii) the sampled points
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Figure 3.8: Boxplots of RE-Values Over Ω of AR(2) Model for Designs Obtained
by Method A, Method C, and Block Designs of Sizes 8 and 16 for Detection Case of
AR(2) Model.

are clustered around the origin (0, 0). These sampling plans are shown in Figure

3.9. Following Method A and Method C, we would like to obtain maximin designs

dMm where we consider the extreme sampling plans and compare their performances

to the results obtained by Sobol sampled points and the set of boundary point as

shown in Table 3.7 where d∗Mm,cluster1 and d∗Mm,cluster2 denote the maximin designs

when sampled points are clustered at the center of Ω and around (0, 0), respectively.

We observe that maximin designs obtained by the extreme sampling plans for both

Method A and Method C perform very poorly when compared to the results of Method

A and Method C when Sobol sampled points and boundary points are considered,

respectively as represented in Table 3.7.

We note that, for Method A we facilitate the Kriging model to approximate the

minRE-value when comparing the results obtained by Sobol sampled points to those

obtained by the extreme sampling plans, whereas for Method C we no longer need to
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(a) Diagonal Points. (b) Clustered Points at the Center.

(c) Clustered Points Around (0, 0).

Figure 3.9: Examples of Some Extreme Sampling Plans Over the Parameter Space
Ω of AR(2).

Table 3.7: minREφ∈Ω(.;d∗φ) of Maximin Designs From Method A and Method C
for Some Extreme Sampling Plans Versus Sobol Points and Boundary Points for
Detection Case.

Method A Method C

Maximin design Q=1 Q=2 Q=3 Q=1 Q=2 Q=3

d∗Mm 0.9030 0.8878 0.8910 0.9090 0.8917 0.8786

d∗Mm,diagonal 0.8190 0.8260 0.7888 0.8146 0.8268 0.8113

d∗Mm,cluster1 0.8515 0.8401 0.7913 0.8360 0.8375 0.8130

d∗Mm,cluster2 0.7212 0.6084 0.5773 0.7212 0.6095 0.5769

use Krigin approximation to compare the results obtained by the selected boundary

points to those obtained by the bad samples. In conclusion, the results obtained by
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the sampling plans that lack the space-filling property provide low efficiencies of the

obtained maximin designs in comparison to our proposed methods.

3.4.3 Third Order Autoregressive Model for the Correlation Coefficients

The results from the previous subsections suggest our proposed efficient ‘shortcut’

methods are useful for obtaining maximin event-related fMRI designs. In particular,

a small set of boundary points with only 6 points selected from the parameter space

Ω of AR(2), and the Kriging-based genetic algorithm method can efficiently generate

satisfactory maximin designs with a significantly reduced computing time. These

shortcut methods are expected to make the search more efficient and faster when the

noise is assumed to follow a higher order autoregressive models, such as the AR(3)

model. For this case, we assume the same simulation settings as for the AR(2)

model except that the error correlation here follows AR(3) model. We aim to find

A-optimal maximin event-related designs for estimating the HRF and detecting the

activated brain regions. For this case, the sampled points by Sobol sequences are as

shown in Figure 3.3(b) with a total number of 30 points, and the selected 7 boundary

points are as in Figure 3.4(b). We consider designs with Q = 1 and 2 stimulus types

corresponding to design lengths of N = 255 and 242 events respectively, where the

stimulus plus the control are included in the design sequence. We note that, for

Q = 3, Method B (grid method), which requires a huge number of LODs, quickly

becomes infeasible for AR(3) model.

We discuss now the results for the first case study: the estimation of the HRF. We

follow the same steps that was explained in Subsection 3.4.1. to apply Methods A, B,

and C. Table 3.8 represents the time spent to generate the LODs maximizing Fe(d;φ)

for the selected points by Sobol sequences and boundary points from the parameter

space Ω of AR(3), and the time needed for generating the LODs for the grid points.
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When comparing the maximin designs obtained by Method A and Method C to those

obtained by Method B, we evaluate the min-RE of the obtained maximin designs d∗Mm

designs by considering the 1957 locally optimal designs d∗φ for all φ = (φ1, φ2, φ3) ∈ Ω

in the finer grid. The results of the comparison between the three methods are

provided in Table 3.9.

Table 3.8: CPU Time Spent by the Genetic Algorithm on Maximizing Fe for Q = 1, 2
Over the Parameter Space Ω of AR(3) Model.

Method number of LODs
Total time spent (min.):

Q=1 Q=2

A 30 2.5 6

B 1957 167 432

C 7 0.5 1.5

Table 3.9: The Performances of Method A, Method B, and Method C for Estimat-
ing the HRF Over the Parameter Space Ω of AR(3) Model and the Corresponding
(φ1, φ2, φ3)-Values That Yield the Maximin Designs d∗Mm.

Q 1 2

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.9309 0.9315

time spent (min.) 3 6

(φ1, φ2, φ3) (0,0,0.5) (0,0,0.5)

Method B:

minREφ∈Ω(d∗Mm;d∗φ) 0.9400 0.9417

time spent (min.) 136 391

(φ1, φ2, φ3) (0,0.38,0.38) (0,0,0.5)

Method C:

minREφ∈Ω(d∗Mm;d∗φ) 0.9389 0.9421

time spent (min.) 0.3 0.7

(φ1, φ2, φ3) (0.5,0,0) (0,0,0.5)

We note that, the reported time in Table 3.9 is omitting the time needed for gener-

ating the locally optimal designs. We observe that the values of minREφ∈Ω(d∗Mm;d∗φ)
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for the three methods are quite similar and the obtained designs are very efficient (at

least 93% maximin efficiency). We also observe a huge reduction in CPU time needed

for generating maximin designs using boundary points method and Method A by 99%

compared to the time spent by Method B. In conclusion, our proposed methods save

much of the computational resources without sacrificing the efficiency of the obtained

designs.

Figure 3.10 represents the maximin designs d∗Mm obtained by the three methods

for the case of estimating the HRF, when (Q = 1, 2). Bars in dark blue indicate

the null or control event and yellow bars represent the event type. In the same

(a) (Q,N)=(1,255) (b) (Q,N)=(2,242)

Figure 3.10: Maximin Designs Obtained by Methods A, B, and C for Estimating the
HRF When Q = 1, 2 and the Error Correlation Follows AR(3) Model.

manner as in subsection 3.4.1, we compare the performance of the maximin deigns

obtained by the method of boundary points and Method A to some traditional de-

signs of event-related fMRI studies that are known to have high estimation efficiency,

such as m-sequence and random designs. As was mentioned before, we generate m-

sequence designs following Liu and Frank (2004), and 10 different random designs.

The minREφ∈Ω(.;d∗φ) for these deigns are presented in Table 3.10.
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Table 3.10: Comparison Between Maximin Designs d∗Mm Obtained by Method A,
Method C, and Some Traditional fMRI Designs for Estimation Purposes for AR(3).

Q=1 Q=2

d∗Mm,MethodA 0.9309 0.9315

d∗Mm,MethodC 0.9389 0.9421

m-sequence-based design 0.8837 0.8176

10 random designs 0.6664-0.8462 0.6702-0.7766

We notice that the maximin designs obtained by Method A (Kriging+Sobol) and

the boundary points method outperform those traditional designs. The boxplots

in Figure 3.11 display the distribution of the REφ∈Ω(.;d∗φ) values for the maximin

designs d∗Mm obtained by Method A, boundary points method, an m-sequence design

and a random design. Each box in Figure 3.11 gives the median and 25% and 75%

Figure 3.11: Boxplots of Relative Efficiencies for Designs Obtained by Sobol Points,
Boundary Points, and Traditional Designs for Estimating the HRF When the Error
Correlation Follows AR(3) Model.

percentiles of the 1957 RE-values for each design, and the whiskers represent the

highest and lowest values for the relative efficiencies. For instance, the RE-values
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for d∗Mm,Sobol and d∗Mm,boundary are ranging from 0.93 to 1 indicating high relative

efficiencies for all correlation coefficients. On the other hand, more variation in RE-

values occurred for m-sequence and random designs. It can also be seen that the

selected random design performs poorly when compared to other designs as it provides

the lowest relative efficiency values.

Now we discuss the obtained results for detection case of AR(3) model. The sam-

ple points consisting of correlation parameters at the boundaries of the parameter

space Ω and Method A provide efficient results compared to Method B as shown in

Table 3.11. We notice that the minimum relative efficiencies are high for all maximin

Table 3.11: The Performances of Methods A and C Compared to Method B for
Detection Case When the Error Correlation Follows AR(3) Model.

Q 1 2

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.9030 0.8757

time spent (min.) 0.3 1

(φ1, φ2, φ3) (0,0,0) (0.09,0.34,0.31)

Method B :

minREφ∈Ω(d∗Mm;d∗φ) 0.9030 0.8805

time spent (min.) 24 84

(φ1, φ2, φ3) (0,0,0) (0.09,0.34,0.31)

Method C :

minREφ∈Ω(d∗Mm;d∗φ) 0.9022 0.8649

time spent (min.) 0.1 0.2

(φ1, φ2, φ3) (0,0,0) (0,0,0)

designs obtained by the three methods. The value of minREφ∈Ω(d∗Mm;d∗φ) for max-

imin design obtained by the two proposed methods are quite similar to the results of

the grid method (Method B) with 86%− 90% maximin efficiencies. We also observe

a 99% reduction in time using the shortcut methods. Again, the reported time in
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table 3.11 does not include the time needed for generating the locally optimal designs

which is represented in Table 3.12. The maximin designs d∗Mm for the detection case

which are in the form of block designs are presented in Figure 3.12.

Table 3.12: CPU Time Spent by the Genetic Algorithm on Maximizing Fd When
Q = 1, 2 for AR(3) Model.

Method number of LODs
Total time spent (min.):

Q=1 Q=2

A 30 0.5 1.5

B 1957 36 98

C 7 0.1 0.3

(a) (Q,N)=(1,255) (b) (Q,N)=(2,242)

Figure 3.12: Maximin Designs Obtained by Methods A, B, and C for Detection Case
When Q = 1, 2 and the Error Correlation Follows AR(3) Model.

To compare the performance of the achieved maximin designs to some known high

detection power designs, we use the same block designs of sizes 8 and 16 that were

used for detection comparison in Subsection 3.4.2. The minREφ∈Ω(.;d∗φ) for these

deigns are reported in Table 3.13. We notice that the maximin designs obtained by

our proposed approaches outperform the efficiencies of the traditional fMRI designs.

The boxplots of RE-values for maximin designs d∗Mm obtained by boundary points

method and Method A versus traditional block designs are displayed in Figure 3.13,
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Table 3.13: minREφ∈Ω(.;d∗φ) of d∗Mm From Methods A and C Versus Some Traditional
Designs for Detection Case of AR(3) Model.

Q=1 Q=2

d∗Mm,MethodA 0.9030 0.8757

d∗Mm,MethodC 0.9022 0.8649

block design of size8 0.6629 0.5223

block design of size 16 0.3261 0.2768

where each box represents the distribution of the 1957 REφ∈Ω(.;d∗φ) values for each

of the above-mentioned designs when only one stimulus type is presented during the

event-related fMRI experiment.

Figure 3.13: Boxplots of RE-Values Over Ω of AR(3) Model for Designs Obtained
by Method A, Method C, and Block Designs of Sizes 8 and 16 for Detection Case.

We notice that the lowest RE-values for d∗Mm,MethodA and d∗Mm,MethodC is at 90%

and 88% for Q = 1 and 2, respectively which indicates high relative efficiencies for

all correlation coefficients. On the contrary, the RE-values for the block designs vary

greatly over the parameter space as the size of the blocks increases.
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3.5 Discussion

In this chapter, we proposed two efficient approaches to find maximin designs for

event-related fMRI experiments with uncertain error correlation. The first approach

is a combination of a Kriging approximation and a knowledge- based genetic algo-

rithm where Sobol sequences are used to sample over the parameter space of the

correlation coefficients. The second approach was inspired by the performance of the

points that are located on the boundaries of the specified parameter space. Moreover,

to give an idea of how could the sampling method affects the efficiencies of the ob-

tained maximin designs, we provided some examples of bad sampling schemes where

the correlation coefficients are clustered at the center or at the corner of the assumed

parameter space then compared the results to the ones obtained by the sampling

methods that have a space-filling property. For all simulations in this chapter, we

considered experiments with simple trials where stimuli of one component (e.g., a

picture) are presented to the experimental subject and assume the noise to follow

higher orders of autoregressive models such as AR(2) and AR(3) models. The perfor-

mances of our proposed approaches were compared to the grid method by Maus et al.

(2010) for the objectives of estimating the HRF and detecting active brain regions.

From case studies, we concluded that maximin designs obtained by our methods are

as efficient as those obtained by the grid method, but the computing time required

by our methods is very short.
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Chapter 4

COMPOUND TRIALS EVENT-RELATED FMRI EXPERIMENTS

4.1 Introduction

For neuroimaging studies, the use of compound stimuli (trials) that consist of two

or more mental tasks is not uncommon in practice (e.g., Müller, Bartelt, Donner,

Villringer, & Brandt, 2003; Müller & Kleinschmidt, 2003, 2004; Pochon et al., 2001;

Ress, Backus, & Heeger, 2000; Serences, 2004; Silver, Ress, & Heeger, 2007). In this

chapter, we extend our work to the case where each stimulus consists of more than one

component. For simplicity, we assume that each stimulus involves two components

although this assumption is not essential, and our method can be easily extended to

cases where a stimulus is formed by three or more components or different numbers

of tasks are considered for different stimulus types. As an example, each stimulus

may consist of a brief cue and a mental task for the subject to complete after some

specific time interval following the cue. In this case, an event-related fMRI design can

be written in the same way as designs for simple stimuli such as a design with two

stimulus types d = {11022....0}, but 1 here represents the event that a cue is followed

by a stimulus of the first type, 2 denotes the second type of stimulus following a cue,

and 0 means no stimulus presentation at the corresponding time point. We note that,

the time between onsets of consecutive events (i.e. elements in d) is assumed to be a

pre-specified constant denoted by τICI ; τICI is thus the counterpart of τISI . The time

between consecutive fMRI scans is denoted by τTR as mentioned in Subsection 2.1.1.

The time interval between components of each trial (i.e., the time from the cue to the

mental task) is denoted by τCTSI . For this time interval, we consider two cases. For
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Case (1), we assume that the time between the different components of a compound

trial remains fixed for all trials. In this case, the primary interest lies in finding designs

suitable for detecting active brain voxels only. With this assumption, the objective of

estimating the HRF evoked by the individual component is not possible because we

normally have nonidentifiable HRF parameters between the two components. Thus

the HRF is not estimable. For Case (2), we allow some variation in τCTSI across the

events. For this case, we aim to obtain efficient maximin designs for both detection

and estimation purposes.

As an example for Case (1), we consider the above-mentioned design d, and assume

τICI = 8 seconds and τCTSI = 4 seconds is fixed throughout the experiments. The

first component of type-1 trial will be presented at 0 s, 8 s, and so on. The second

component of type-1 trial will be presented at 4 seconds, 12 seconds, and so on.

Furthermore, the first component of type-2 trial will be presented at 24 seconds, 32

seconds and so on, while the second component of type-2 trial will be presented at

28 and 36 seconds. As another example for Case (2) when τCTSI varies, we assume

τCTSI = {43022...0} which is a sequence that has the same length as the design d to

indicate the τCTSI time that corresponds to each stimulus in d. We also consider the

same τICI(= 8 seconds) as for the previous example. To explain this, the experimental

subject will receive the second component of type-1 trial at 4 and 11 seconds following

the presentation of the cue (at 0s and 8s, respectively). We simply set τCTSI to 0

when dn = 0. The second component of type-2 trial will be shown to the subject at

26 and 34 seconds. In a similar manner as the simple trials case, we assume that at

an activated brain voxel, each component evokes a change in the event-elated fMRI

signal, which is described by the hemodynamic response function HRF. Additionally,

components of the same type evoke the same HRF throughout the experiment, and

the heights of overlapping HRFs sum linearly. To satisfy the assumption of additive
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HRFs, specifically for varying τCTSI case, the possible values that τCTSI could take are

restricted to the following condition: 2 ≤ τCTSI ≤ τICI−2; otherwise, the assumption

will likely to be violated.

For experiments involving compound trials, the interest might be on examining

how the subject’s brain reacts to the mental tasks rather than the joint response to

both the cue and the task. We put our focus on this type of studies, but note that,

for cases where the interest is in the joint response, one may consider to treat each

compound stimulus as a simple one, and adapt/adopt the design for simple stimulus

cases. Our main goal is to find high-quality experimental designs by taking into

account the uncertainty of the correlation coefficients at the design stage. However,

this is a very challenging task because of the increased number of components in

each trial type which leads to an expansion in the design space of all possible event-

related fMRI. Clearly, an exhaustive search over this space is impossible. Therefore,

an efficient approach is needed for obtaining designs with high efficiencies to allow

valid and precise statistical inferences.

4.2 Statistical Models for Event-Related fMRI with Compound Trials

In Chapter 2, we discussed the commonly used general linear models for estimation

and detection objectives as in (2.1) and (2.2), respectively, for experiments involving

simple trials. We generalize those models to accommodate the compound trials case.

In particular, the general linear model for estimating the HRF can be written as:

y =

Q∑
q=1

(Xq,1hq,1 +Xq,2hq,2) + Sγ + ε, (4.1)

where y = ((yt))t=1,...,T is a T × 1 vector representing the BOLD time series from a

brain voxel, Q represents the total number of trial types, and hq,1 = (hq,1,1, ..., hq,1,k1)
′

is the HRF parameter vector evoked by the first component of the qth trial type.
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Here, each hq,1,j, j = 1, ..., k1, corresponds to the jth height of the HRF for the first

component of the qth trial type at time ((j−1)τ∆T ) and k1 is defined as 1+bH/τ∆T c;

H represents the duration of the HRF evoked by the first component (32 seconds).

hq,2 = (hq,2,1, ..., hq,2,k2)
′ is the HRF parameter vector evoked by the second component

of the qth trial type, where each hq,2,j, j = 1, ..., k2, corresponds to the jth height of

the HRF for the second component of the qth trial type at time ((j − 1)τ∆T + ξ)

where ξ = τCTSI − cτ∆T and 0 ≤ ξ < τ∆T , and c = bτCTSI/τ∆T c. k2 is defined

as 1 + b(H − ξ)/τ∆T c. We assume that both HRFs have a duration of 32 seconds.

But, the lengths of the HRF parameters for these two components might not be the

same as the onset times of the second component might not be synchronized with

the scanning times (i.e. when ξ 6= 0). τ∆T is the discretization interval, which is the

greatest time making both mτICI = τICI/τ∆T and mτTR = τTR/τ∆T integers. We

note that τ∆T may or may not be an integer. Xq,i is the T ×ki, where i = 1, 2, design

matrix for the ith component of the qth trial type, where the (t, j)th element of Xq,i

is 1 when hq,i,j contributes to yt, and 0 otherwise. The remaining terms are as in

(2.1). For demonstration purposes, the noise is assumed to follow a stationary AR(2)

process with unknown correlation coefficients parameters.

The design matrix Xq,1 is constructed in a similar way as for the simple trials

case as described in Subsection 2.1.2 by using τICI to replace τISI and each column of

Xq,1 corresponds to a parameter in hq,1. The design matrix for the second component

Xq,2 can be constructed in a similar fashion as the construction of Xq,1; but, now

the value of ξ needs to be taken into account. Each column of Xq,2 corresponds to

a parameter in hq,2. For Case (1), Xq,2 is sometimes a shift of Xq,1 as seen in the

following example.

Example 4.1: Let the design d = {11010....0} , Q = 1, and assume τICI = 4 seconds,

τTR = 2 seconds and τ∆T = 2 seconds. The time between components of each trial
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is set to τCTSI = 2 seconds which is fixed throughout the experiment. We can write

X1,1 and X1,2 as:

X1,1 =



1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

1 0 1 0 0 · · ·

0 1 0 1 0 · · ·

0 0 1 0 1 · · ·

0 0 0 1 0 · · ·

1 0 0 0 1 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·
...

...
...

...
... · · ·



;X1,2 =



0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

1 0 1 0 0 · · ·

0 1 0 1 0 · · ·

0 0 1 0 1 · · ·

0 0 0 1 0 · · ·

1 0 0 0 1 · · ·

0 1 0 0 0 · · ·
...

...
...

...
... · · ·



.

Here, X1,2 is a shifted version of X1,1. We note that the first row of X1,2 is a row

of zeros as the second component does not contribute to the fMRI signal acquired at

the first scan.

The general form of writing the design matrix X for the compound trials case

is: X = [X1,1,X2,1, ...,XQ,1,X1,2,X2,2, ...,XQ,2]. Considering the design d in Ex-

ample 4.1, we only have one trial type, so the design matrix X can be written as

the concatenation of the two matrices X1,1 and X1,2. For the case of more than

one trial type, the construction of the design matrix should also be straightforward.

For Case (2), the construction of the design matrix Xq,2 can alternatively be done

with the steps explained below. Specifically, we further set ξr = τCTSIr − crτ∆T ,

where cr = bτCTSIr/τ∆T c and 0 ≤ ξr < τ∆T , and r = 1, 2, ...N ; N represents the

number of different τCTSI under the condition 2 ≤ τCTSIr ≤ τICI − 2 to allow ad-
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ditivity of overlapping HRFs. To construct Xq,2, we may first construct the T × j,

0-1 design matrices Xq,2,1,Xq,2,2...,Xq,2,N for the N τCTSIr ’s, respectively. Each col-

umn of Xq,2,r still corresponds to a parameter in hq,2 and each row of these design

matrices corresponds to the scanning time τTR; its element is 1 if, under the given

τCTISr , the corresponding HRF height contributes to the fMRI signal. Xq,2 is then

Xq,2,1 + · · ·+Xq,2,N .

Example 4.2: For simplicity, we consider a design with one trial type d = {1010...0}

and assume τICI = 6 seconds, τTR = 2 seconds and τ∆T = 2 seconds. The varying

time interval between the two components τCTSI can be written as a sequence that

has the same length as d, and this sequence is assumed to be {4020...0}. Here, we also

say that τCTSI can either be 2 seconds or 4 seconds. In the current setting, ξr = 0 for

all r, and h1,2 contains the HRF heights of the second components evaluated every 2

seconds from the onset of the second component to the complete return of the HRF.

In this example, the design matrix for the cues is:

X1,1 =



1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 1 0 · · ·

0 0 0 0 1 · · ·

0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 1 0 · · ·
...

...
...

...
... · · ·



.
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The individual design matrices for the second components X1,2,1 and X1,2,2 are:

X1,2,1 =



0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·
...

...
...

...
... · · ·



;X1,2,2 =



0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 1 0 · · ·

0 0 0 0 1 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·
...

...
...

...
... · · ·



.

Specifically, X1,2,1 is for τCTSI = 2 seconds, and X1,2,2 is for τCTSI = 4 seconds. Then

the design matrix X1,2 = X1,2,1 +X1,2,2:
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X1,2 =



0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 1 0 · · ·

0 0 0 0 1 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·
...

...
...

...
... · · ·



.

As mentioned earlier, by concatenating the two matrices X1,1 and X1,2 we obtain the

final form for the design matrix X.

The general linear model for the objective of detecting the activated regions in

the brain for experiments with compound trials is in the following form:

y =

Q∑
q=1

(Xq,1h
∗
1θq,1 +Xq,2h

∗
2θq,2) + Sγ + η, (4.2)

where Xq,i, q = 1, .., Q and i = 1, 2 is the design matrix of 0-1 with 1 corresponding

to the heights of the HRF (h∗i θq,i) that contribute to the response yt. h
∗
i is defined

as h∗i = (h∗i,1, ..., h
∗
i,ki

)′ is a ki × 1 vector representing the assumed shape of the HRF

for the ith-component, which is commonly set to the double gamma function of the

SPM software package as defined in (2.4), with h∗1,j = g((j − 1)τ∆T )/maxsg(s), 1 ≤

j ≤ bH/τ∆T c, and h∗2,j = g((j − 1)τ∆T + ξ)/maxsg(s), 1 ≤ j ≤ b(H − ξ)/τ∆T c, where

0 ≤ ξ < τ∆T . θq,i represents the unknown response amplitude of the HRF for the ith

component of the qth trial type. The remaining terms in (4.2) are defined as in (2.2).
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For simplicity, we only explain the model formulation for Case (1), but this can easily

be extended to Case (2). Both models could also be expanded easily for the case

when more than two components are considered. We also note that models (4.1) and

(4.2) are for cases where different cues are used for different types of stimuli. When

the same cue is used, we may assume that the same HRF is evoked by the cue, and

the corresponding design matrix for it is the sum of the Xq,1’s.

4.2.1 Design Selection Criteria for Compound Trials

For simple trials studies in Chapter 2, we discussed the importance of finding

designs that yield the most precise parameter estimates by some functions of the

variance-covariance matrix (or the information matrix). For the compound trials

studies, to estimate the HRF parameter vector h = (h′1,1, ...,h
′
Q,1,h

′
1,2, ...,h

′
Q,2)′, we

aim to find a design d that maximizes the following information matrix:

M(d;φ) = X ′[Σ(φ)−1 − Σ(φ)−1S(S′Σ(φ)−1S)−1S′Σ(φ)−1]X. (4.3)

Here, the design matrix X is defined as a concatenation of the matrices of the cues

and the matrices of the mental stimuli following the cues as described in the previous

Section. The remaining terms are defined as in (2.5).

For the objective of detecting the activated brain voxels, we extend (2.6) to accom-

modate the compound case by setting θ = (θ1,1, ..., θQ,1, θ1,2, ..., θQ,2)′ to represent the

vector of unknown HRFs amplitudes. The aim is to find a design d that maximizes

the following information matrix to precisely estimate θ:

M (d;φ) = H ′X ′[Σ(φ)−1 − Σ(φ)−1S(S′Σ(φ)−1S)−1S′Σ(φ)−1]XH , (4.4)

where H = (IQ⊗h∗1)⊕ (IQ⊗h∗2) = diag((IQ⊗h∗1), (IQ⊗h∗2)). The remaining terms

are as in (2.6).
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In order to evaluate the efficiencies of competing designs for the estimation pur-

poses for compound trials experiments, both A- and D- optimality criteria could be

applied and defined as:

Fe(d;φ) =


mh/trace(ChM

−1(d;φ)C ′h), forA− optimality

det(ChM (d;φ)C ′h)
1/mh , forD − optimality

where mh is the number of rows of Ch which is the matrix of linear combinations of

the HRF heights and can be defined as Ch = [OQk, IQk] for the case when the interest

is on examining the effects of the second component of each trial type, OQk is the Qk

by Qk matrix of zeros, IQk is the Qk by Qk identity matrix, Q represents the total

number of compound trial types, and k is the total number of HRF heights.

For detection power, the design selection criteria are defined as:

Fd(d;φ) =


mθ/trace(CθM

−1(d;φ)C ′θ), forA− optimality

det(CθM(d;φ)C ′θ)
1/mθ , forD − optimality

where mθ is the number of rows of Cθ which is the matrix of linear combinations

of the response amplitudes of the second component of the compound trial and can

be defined as Cθ = [OQ, IQ] where OQ and IQ are zeros and identity matrices of

dimension Q. Both Fe(d;φ) and Fd(d;φ) are considered as the higher the better

criteria.

4.3 Case Studies for Compound Trials Event-Related fMRI Experiments

For all simulations, we assume that a compound trial consists of a brief cue fol-

lowed by a mental task after some specific time interval τCTSI . The interest is on

examining how the experimental subject reacts to the second component of the com-

pound trial. For evaluating the goodness of the competing designs for both estimation
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and detection, we consider the A-optimality criterion as defined in the previous Sub-

section and focusing on the case where the individual stimulus effects is of interest.

The duration of the HRF is set to 32 seconds, the nuisance term Sγ in models (4.1)

and (4.2), is assumed to allow for a second-order polynomial drift in the fMRI time

series. The noise is assumed to follow a stationary AR(2) process with unknown

correlation coefficients parameters. We consider the same settings for the algorithmic

parameters of the genetic algorithm as in Section 3.4 for simple trials experiments.

To search for optimal event-related fMRI designs with compound trials, we modify

the MATLAB program provided by Kao (2009), and combine it with the software

package DACE for Kriging approximations.

For all case studies, we consider designs with Q = 1 and 2 trial types with their

respective design lengths of N = 255, and 242. The time interval between cues

τICI is set to 8 seconds and the time to repetition τTR is 2 seconds, thus, τ∆T is

also 2 seconds ( the greatest time making both τICI/τ∆T and τTR/τ∆T integers). We

assume different cues for each trial type. For Case (1), the time interval between

components of the same trial is fixed, and is set to be τCTSI = 4 seconds. For

Case (2) when a varying time interval is allowed between components of the same

trial, each individual τCTSIν is allowed to be 2, 4, or 6 seconds. All simulations are

implemented on the same desktop computer as described in Section 3.4. We study the

performance of our proposed approach of combining the maximin criterion and the

Kriging approximation model considering a sampled correlation parameters by Sobol

sequences (Method A) and the boundary points approach (Method C) as described in

Chapter 3. For comparison purposes, we also apply the expensive method of Maus et

al. (2010) (Method B) to find maximin designs for compound trials experiments. We

note that, for Method A, we use the same set of 20 φ = (φ1, φ2) points sampled from

the parameter space Ω of AR(2) model and the same set of 1797 φ-values on the fine

65



grid over Ω for Method B as shown in Figure 3.3(a). For Method C, we consider the

same set of boundary points sampled from the parameter space Ω of AR(2) as shown

in Figure 3.4 (a). We aim to find optimal or near optimal designs for the objective

of detecting activated brain regions for Case (1), and for detection and estimation

purposes for Case (2).

4.3.1 Case (1): Fixed Time Between Components of the Compound Trials.

Our aim is to find maximin event-related fMRI designs for detecting brain acti-

vations for compound trials experiment when the time interval between components

of the compound trials is assumed to be fixed. As mentioned earlier, the HRF pa-

rameters are not estimable in Case (1). Following the same steps in Subsection 3.4.1,

we compare the performance of Method A, Method B and Method C in obtaining

maximin designs with some modifications to accommodate the case of the compound

trials. Specifically, when generating the LODs d∗φ for the selected correlation param-

eters, which then can be used to calculate the min
φ∈Ω

RE(d;d∗φ) values as defined in

(3.1), we consider the A-optimality criteria for detection purposes Fd(d;φ) as defined

in Subsection 4.2.1.

Table 4.1 represents the time spent in hours to generate the LODs d∗φ for Methods

A, B and C, that maximize Fd(d,φ) = mθ/trace(CθM
−1(d,φ)C ′θ) where M (d;φ)

as in (4.4).

Table 4.1: CPU Time Spent by the Genetic Algorithm on Maximizing Fd(d,φ) of
AR(2) Model With Q = 1and 2 for Experiments With Fixed Time Between Compo-
nents of Compound Trials.

Method number of LODs
Total time spent (hrs.):

Q=1 Q=2

A 20 0.03 0.1

B 1797 2.5 9

C 6 0.01 0.03
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The efficiencies of the maximin designs obtained by our proposed methods com-

pared to Method B (Grid method) for Case (1) are reported in Table 4.2 with the

correlation parameters values where the minRE-value has occurred. For experiments

Table 4.2: The Performances of Method A, Method B, and Method C for Detecting
Activated Brain Regions Over the Parameter Space Ω of AR(2) Model and the Cor-
responding (φ1, φ2)-Values That Yield the Maximin Designs d∗Mm for Experiments
With Fixed Time Between Components of Compound Trials.

Q= 1 Q= 2

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.9667 0.9900

time spent (hrs.) 0.1 0.1

(φ1, φ2) (0.23,0.41) (0.18,0.43)

Method B :

minREφ∈Ω(d∗Mm;d∗φ) 0.9681 0.9929

time spent (hrs.) 2 6

(φ1, φ2) (0.11,0.01) (0.18,0.43)

Method C :

minREφ∈Ω(d∗Mm;d∗φ) 0.9647 0.9912

time spent (hrs.) 0.02 0.01

(φ1, φ2) (0.23,0.41) (0.04,0.01)

with one trial type the efficiencies of the obtained designs by all three methods are at

least 96% and 99% for both scenarios. The proposed approaches have done a good job

in finding maximin designs that are as efficient as the one obtained by the expensive

method (Method B) with a huge reduction in the CPU time by at least 99.9%. The

reported time in table 4.2 does not include the time needed for generating the locally

optimal designs which is in Table 4.1.

In addition, the performances of designs obtained by Methods A and C are com-

pared to a set of different traditional designs. As a result, our proposed approaches

outperformed the traditional ones for all cases. To demonstrate that, we consider
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experiments with one and two trial types and generate two block designs with blocks

of size 4 for both scenarios. We also include m-sequence based designs for each of

the considered scenarios. We generate three mixed designs which are combinations

of the previously generated block and m-sequence designs. The first mixed design

has 25% block design and 75% m-sequence, the second mixed design has 50% block

design and 50% m-sequence, and the third mixed design has 75% block design and

25% m-sequence. A total of 20 randomly generated designs for both scenarios were

also included to the set. The minREφ∈Ω(.;d∗φ) for these deigns are reported in Table

4.3.

Table 4.3: minREφ∈Ω(.;d∗φ) of d∗Mm From Methods A and C Versus a Block Design,
an m-Sequence Design, 3 Mixed Design and 10 Random Designs for Detection Pur-
poses of AR(2) Model for Experiments With Fixed Time Between Components of
Compound Trials.

Q=1 Q=2

d∗Mm,MethodA 0.9648 0.9906

d∗Mm,MethodC 0.9667 0.9882

block design 0.4971 0.6862

m-sequence design 0.6839 0.7856

mixed 1 design 0.6491 0.7640

mixed 2 design 0.5922 0.7398

mixed 3 design 0.5383 0.7138

10 random designs 0.5054-0.6854 0.7572-0.8258

We observe that block designs are the worst for detection purposes whereas m-

sequence and random designs outperform the block design for compound trial experi-

ments, which is in contrast to simple trial experiments where block designs are highly

recommended for detection and both m-sequence and random designs known for poor

detection power. For mixed designs, we notice that the efficiencies improve as the

fraction of the design is made from an m-sequence designs increases (or as the frac-
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tion of the design made from a block design decreases). Overall the maximin designs

obtained by our proposed approaches provide high detection power when compared

to the other designs.

Figure 4.1 represents a comparison between the distribution of the RE-values over

Ω of AR(2) model for maximin designs d∗Mm obtained by Method A and Method C

versus the other traditional designs. Each box represents the distribution of the

1797 REφ∈Ω(.;d∗φ) values for each of the competing designs. We observe there are

more variation in RE- values occurred for traditional designs when compared to the

distribution of the RE-values for Methods A and C. The performance of the block

designs was the worst among all designs with the largest variation in RE-values over

the parameter space of AR(2) model. In conclusion, maximin designs obtained by

Methods A and C show high relative efficiencies for all correlation coefficients.

Figure 4.1: Boxplots of RE-Values Over Ω of AR(2) Model for Designs Obtained by
Method A, Method C, an m-Sequence, a Random Design, 3 Mixed Designs, and a
Block Design for Detection Purposes for Experiments With the Fixed Time Between
Components of Compound Trials.
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4.3.2 Case (2): Varying Time Between Components of the Compound Trials.

As mentioned earlier for this particular case, both estimation and detection are

allowed here. We start by discussing the results of the estimation purposes. We aim

to precisely estimate the HRF parameters considering model (4.1). Since the focus is

on the effect of the second component rather than the joint response from both the

cue and the task, the number of the HRF parameters to be estimated for the second

component when Q = 1 is 17 and that with Q = 2 is 34, assuming that the HRF

duration is 32 seconds. We follow the same steps in Subsection 3.4.1 to study the

performances of Methods A, B and C in obtaining the desired maximin designs. Here,

we consider the A-optimality criteria for estimation purposes Fe(d;φ) as defined in

Subsection 4.2.1 to generate the LODs d∗φ for the selected correlation parameters,

which then can be used to calculate the minRE-value for each candidate design.

Note that, for Case (2), in additional to the presentation times of the compound

stimuli, the search algorithm also selects the τCTSI for each stimulus to yield an

optimal design. Table 4.4 represents the time spent to generate the set of the LODs

maximizing Fe(d;φ) = mh/trace(ChM
−1(d;φ)C ′h) where M(d;φ) as in (4.3).

Table 4.4: CPU Time Spent by the Genetic Algorithm on Maximizing Fe(d;φ) for
Q = 1 and 2 Over the Parameter Space Ω of AR(2) Model for Experiments With
Varying Time Between Components of Compound Trials.

Method number of LODs
Total time spent (hrs.):

Q=1 Q=2

A 20 0.3 0.6

B 1797 23 63

C 6 0.1 0.2

When comparing the maximin designs obtained by Method A and Method C

to those obtained by Method B, we evaluate the maximin designs d∗Mm obtained by
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Method A, and Method C using the 1797 LODs d∗φ on the fine grid. Table 4.5 provides

the minREφ∈Ω(d∗Mm;d∗φ) values of the designs obtained by the three methods for

Q = 1 and 2.

Table 4.5: The Performances of Method A, Method B, and Method C for Estimat-
ing the HRF Over the Parameter Space Ω of AR(2) Model and the Corresponding
(φ1, φ2)-Values That Yield the Maximin Designs d∗Mm for Experiments With Varying
Time Between Components of Compound Trials.

Q 1 2

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.8935 0.9210

time spent (hrs.) 0.2 0.3

(φ1, φ2) (0.01,0.07) (0.01,0.04)

Method B :

minREφ∈Ω(d∗Mm;d∗φ) 0.8856 0.9280

time spent (hrs.) 19 48

(φ1, φ2) (0.19,0.42) (0.01,0.04)

Method C :

minREφ∈Ω(d∗Mm;d∗φ) 0.8866 0.9276

time spent (hrs.) 0.1 0.1

(φ1, φ2) (0.19,0.24) (0.33,0.25)

We note that, the reported time in Table 4.5 does not include the time needed for

generating the locally optimal designs d∗φ, which can be found in Table 4.4. We observe

that the values of minREφ∈Ω(d∗Mm;d∗φ) for the three methods are quite similar with

a huge reduction in the time needed for generating a maximin design when Method

A and Method C are used. In particular, for all scenarios (Q = 1, 2) our proposed

methods reduce the CPU time by at least 99.9%. Figure 4.2 represents the maximin

designs d∗Mm obtained by the three methods for estimating the HRF when Q =

1. Here, the control event is represented by the dark blue color while each of the

remaining 3 colors represents the first trial type with the time interval τCTSI is either

2, 4 or 6 seconds.
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Figure 4.2: Maximin Designs Obtained by Method A, Method B and Method C for
Estimating the HRF of AR(2) Model for Experiments With Varying Time Between
Components of Compound Trials When (Q,N) = (1, 255).

We compare the efficiencies of the deigns obtained by our proposed methods to

some well-known designs in the literature that are recommended for estimating the

HRF under linear models for simple trials experiments. We generate m-sequence and

10 random designs for each of the following scenarios (Q,N) = (1, 255), (2, 242). The

m-sequence designs are generated following Liu and Frank (2004) with some modifica-

tions to accommodate the compound trials case. The minRE-values for these deigns

are reported in Table 4.6. We notice that the maximin designs obtained by Methods

A and C outperform other designs. The boxplots in Figure 4.3 display the distri-

bution of the RE-values over Ω for the maximin designs d∗Mm obtained by Method

A, Method C, an m-sequence design and a random design. We notice that the RE-

values for d∗Mm,MethodA and d∗Mm,MethodC are ranging from 0.9 to 1 which implies high

relative efficiencies for most of the correlation coefficients. However, the RE-values

for m-sequence and random designs are very low at the worst cases.
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Table 4.6: minREφ∈Ω(.;d∗φ) of d∗Mm From Methods A and C Versus Some Traditional
fMRI Designs for Estimation Purpose of AR(2) Model for Experiments With Varying
Time Between Components of Compound Trials.

Q=1 Q=2

d∗Mm,MethodA 0.8935 0.9210

d∗Mm,MethodC 0.8866 0.9276

m-sequence-based design 0.5828 0.6426

10 random designs 0.5178-0.6681 0.5416-0.6429

Figure 4.3: Boxplots of RE-Values Over Ω of AR(2) Model for Designs Obtained
by Method A, Method C, an m-Sequence Design, and a Random Design for Esti-
mating the HRF in Compound Trial Experiments With Varying Time Between the
Components.

In a similar manner as we did for the estimation case, we obtain maximin designs

for detecting brain activations by using our proposed methods and compare them

to the grid method by Maus et al. (2010). Once again, τCTSI is allowed to equal

2, 4, or 6 seconds for the simulations for detection purposes in Case (2). Table 4.7

represents the time spent in hours to generate the LODs d∗φ for Methods A, B and

C, that maximize Fd(d,φ) = mθ/trace(CθM
−1(d,φ)C ′θ) where M (d;φ) as in (4.4).

73



The efficiencies of the maximin designs obtained by our proposed methods compared

to Method B for Case (2) are reported in Table 4.8 with the correlation parameters

values where the minRE-value has occurred.

Table 4.7: CPU Time Spent by the Genetic Algorithm on Maximizing Fd(d,φ) for
AR(2) Model With Q = 1and 2 for Experiments With Varying Time Between Com-
ponents of Compound Trials.

Method number of LODs
Total time spent (hrs.):

Q=1 Q=2

A 20 0.1 0.3

B 1797 7 23

C 6 0.03 0.1

Table 4.8: The Performances of Method A, Method B, and Method C for Detecting
Activated Brain Regions Over the Parameter Space Ω of AR(2) Model and the Cor-
responding (φ1, φ2)-Values That Yield the Maximin Designs d∗Mm for Experiments
With Varying Time Between Components of Compound Trials.

Q= 1 Q= 2

Method A:

minREφ∈Ω(d∗Mm;d∗φ) 0.9450 0.9497

time spent (hrs.) 0.03 0.1

(φ1, φ2) (0.01,0) (0.07,0.04)

Method B :

minREφ∈Ω(d∗Mm;d∗φ) 0.9691 0.9745

time spent (hrs.) 5 4.5

(φ1, φ2) (0.2,0.42) (0.07,0.04)

Method C :

minREφ∈Ω(d∗Mm;d∗φ) 0.9608 0.9509

time spent (hrs.) 0.02 0.03

(φ1, φ2) (0.01,0) (0.07,0.04)

For both scenarios, the efficiencies of the obtained designs by all three methods

are at least 95%. The proposed approaches have done a good job in finding maximin

designs that are as efficient as the one obtained by the expensive method (Method B)
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with a huge reduction in the CPU time by at least 99.9%. Once again, the reported

time in table 4.8 does not include the time needed for generating the locally optimal

designs which is in Table 4.7. The obtained maximin designs d∗Mm for Case (1)

and Case (2) are presented in Figure 4.4 for experiment with a single trial type and

Method A applied. We notice that for both cases, the obtained designs are not in

the form of block designs which is in contrast to the case of simple trials as shown

previously in Figure 3.7. As mentioned before, the control event is represented by

the dark blue bars while the other colors represent the compound trials with different

τCTSI intervals between the two components. For instance, the yellow bars in the

design of Case (1) represents the trial type where the mental task is presented after

4 seconds following the cue. The maximin design for Case (2) has less rest (control)

events than Case (1) design. We compare the detection power of the maximin designs

Figure 4.4: Maximin Designs for Detection Purposes Obtained by Method A for
Cases When τCTSI = 4 Seconds and τCTSI = {2, 4, 6} Seconds of AR(2) Model for
Compound Trials Experiments When (Q,N) = (1, 255).

obtained by the three method for both cases by evaluating them over the parameter

space Ω of AR(2). We observe that Case (2) designs have higher detection power

than those for Case (1) as shown in Figure 4.5.
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Figure 4.5: Detection Power of the Maximin Designs Obtained by Method A for
Cases When τCTSI = 4 Seconds and τCTSI = {2, 4, 6} Seconds of AR(2) Model for
Compound Trials Experiments When (Q,N) = (1, 255).

Furthermore, the performances of designs obtained by Methods A and C are com-

pared to a set of different traditional designs. We note that, each of the traditional

design is generated by taking into account that the time between components of a

compound trial is varying. We generated two block designs with blocks of size 4 for

Q = 1 and of size 6 for Q = 2. We also included m-sequence based designs, three

mixed designs considering the same combinations as described in Subsection 4.3.1

and a total of 20 randomly generated designs for each of the considered scenarios.

The minREφ∈Ω(.;d∗φ) for these deigns are reported in Table 4.9. We observe that

block designs are the worst for detection purposes when experiments include com-

pound trials whereas m-sequence and random designs are notably outperformed the

block design here. Once again, the efficiencies of the mixed designs are improving as

the fraction of the design is made from an m-sequence designs increases (or as the

fraction of the design made from a block design decreases). Overall the maximin de-

signs obtained by our proposed approaches outperform the other designs for detection

purposes.

76



Table 4.9: minREφ∈Ω(.;d∗φ) of d∗Mm From Methods A and C Versus a Block Design, an
m-Sequence Design, 3 Mixed Designs and 10 Random Designs for Detection Purposes
When (Q,N) = (1, 255) and (2, 242) of AR(2) Model for Experiments With Varying
Time Between Components of Compound Trials.

Q=1 Q=2

d∗Mm,MethodA 0.9450 0.9497

d∗Mm,MethodC 0.9608 0.9509

block design 0.5461 0.5516

m-sequence design 0.7176 0.7635

mixed 1 design 0.6501 0.7109

mixed 2 design 0.6264 0.6631

mixed 3 design 0.5768 0.5915

10 random designs 0.6752-0.7525 0.7248-0.7679

Figure 4.6 represents a comparison between the distribution of the RE-values over

Ω of AR(2) model for maximin designs d∗Mm obtained by Method A and Method C

versus the other traditional designs. Each box in Figure 4.6 represents the distribution

Figure 4.6: Boxplots of RE-Values Over Ω of AR(2) Model for Designs Obtained by
Method A, Method C, a Block Designs, an m-Sequence Design, a Mixed Design and
a Random Design for Detection Case for Experiments With Varying Time Between
Components of Compound Trials.
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of the 1797 REφ∈Ω(.;d∗φ) values for each of the competing designs. We observe that

more variation in RE- values occurred for traditional designs when compared to the

distribution of REs for Methods A and C. The block designs provide the lowest RE-

values at the worst cases. In conclusion, maximin designs obtained by Methods A

and C show high relative efficiencies for all correlation coefficients.

4.4 Discussion

In this chapter, we considered more complicated structure of event-related fMRI

experiments, where each trial consists of multiple components rather than one as

was discussed in Chapter 3. When dealing with such experiments, there are two

cases that should be taking into account, namely (1) the case with a fixed time

between components of the compound trial and (2) the case with varying time between

components. The construction of the design matrix for both cases was explained by

using examples.

We aim to find optimal designs that are robust against the misspecification of

the error correlation when compound trials are in use. To do this, we applied our

proposed approaches that were first introduced in Section 3.3 and Subsection 3.3.2.

The results were obtained for the objective of estimating the HRF and detecting

activated brain regions. Our methods has shown to be the ones with the highest

efficiencies when compared to other designs. However, after running the code multiple

times for estimation purposes with varying τCTSI (i.e., Case (2)), we noticed the

efficiencies of the obtained maximin designs were slightly fluctuated after each run,

especially for when Q = 2 as shown in Table 4.10. This has only occurred when

compound trials are involved for Case (2) in the experiment. We have not observed

similar behavior for simple trial experiments. This could be due to the complexity

and the size of the problem when compound trials are used in the experiments.
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Table 4.10: The Results of Multiple Runs for Estimating the HRF When the Time
Interval Is Allowed to Vary Between Components of Compound Trials.

Method A Method B Method C

0.9180 0.9280 0.9276

0.8866 0.9315 0.9484

0.9331 0.8980 0.9641

To overcome this issue, we tried to maximize the size of the first generation in

the genetic algorithm from 20 to 40 designs. In addition, we considered the first

stopping rule provided in Kao (2009), where the algorithm will be terminated after

10, 000 iterations. Both settings did not make a significant change in the obtained

results; besides that, the computing time needed to achieve these results is almost

double the time spent when a smaller population size and the second stopping rule

are considered.
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Chapter 5

SUMMARY AND CONCLUSION

In this dissertation, we propose two efficient approaches in order to reduce the

computational resource needed for obtaining maximin event-related fMRI designs

with uncertain autocorrelation coefficients. In the first approach, we combine the

Kriging approximation method with a knowledge-based genetic algorithm. This ap-

proach helps to approximate the surface of the RE-values of each design over the

parameter space of the correlation coefficients by using a small subset of the parame-

ter space. We consider a sampling plan that has a space-filling property, such as the

well-known Sobol sequences, to sample the small set of correlation parameters from

the specified region of interest.

Two common statistical objectives in the analysis of event-related fMRI experi-

ments were discussed in this dissertation, which are the estimation of the HRF and

the detection of activated brain regions. For these two common objectives, our pro-

posed method can obtain maximin designs that perform similarly to designs obtained

by the grid method considered by Maus et al. (2010) with a significant reduction in

time considering our method. When approximating the objective function to be opti-

mized, we considered the ordinary Kriging model. This selection leads to results that

are quite satisfactory for both estimation and detection purposes. There might be

other approximation methods that can be applied to the current situation and may

provide slightly better results. For our simulations, we adopted the standard settings

for Kriging model that were used in the literature which provided good results for our

cases. A possible extension is to consider other settings and explore their performance

in obtaining maximin designs. Our proposed method has been applied to the case of
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ultra-fast fMRI experiments that allow a relatively high temporal resolution where

the sampling rate τTR is considered to be as small as tens or hundreds of milliseconds

(Alghamdi, Alrumayh, & Kao, 2019). Our method has shown to be very effective in

achieving high efficient maximin designs for this pioneering brain mapping technique.

Another efficient shortcut method is proposed in this dissertation, where points

located at the boundaries of the parameter space of interest are used without the use

of the Kriging model. This method helps to achieve high-quality maximin designs

in a very short time. A future research of interest is to consider to work on higher

order AR(p), p > 3, models to test the usefulness of the boundary points method

in obtaining good maximin event-related fMRI designs. The two proposed methods

seem to be useful for fast fMRI studies.

In the first part of this study, we consider simple trial experiments of 8 to 9 minutes

for Q = 1, 2 and 3. Our proposed methods provide superior results in comparison to

some traditional designs that are recommended for estimation or detection purposes.

For this case the noise is assumed to follow high order autoregressive models such as

AR(2) and AR(3).

In the second part of this dissertation, experiments with compound trials were

introduced. Our proposed methods are applied to this case to find high-quality max-

imin event-related designs. In our case studies, we consider experiments of 32 to 34

minutes for compound trials with one stimulus type and two stimulus types, respec-

tively. For estimation, the HRF parameters can all be identifiable only when the

time interval between the components of the compound trial is allowed to vary. To

satisfy the assumption of additive HRFs, the time interval between the two compo-

nents should not be less than 2 seconds and not more than τICI − 2 seconds. This is

to ensure that components of compound trials are not too close to each other. For

detection, both fixed and varied time intervals are allowed. We observe that maximin
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designs obtained for Case (1) have lower detection power than Case (2) designs. Our

recommendation is to consider varying time interval between components of the com-

pound trails for the purpose of detecting the activated brain regions. Furthermore,

the performances of our proposed approaches for these complicated type of experi-

ments outperform those for other designs that are known in the literature. Here, the

noise is assumed to follow AR(2) model. Some recommendations for future research

are (1) to consider another search algorithm that overcomes the randomness issue of

the genetic algorithm and provides more consistent results, especially for the objec-

tive of estimating the HRF, and (2) another possibility is to relax the assumption of

the restricted variation on the possible time between the components and allow it to

vary throughout the experiment.
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APPENDIX A

GENETIC ALGORITHM
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Genetic Algorithms are very common to use in solving optimization problems.
They became very popular after the work proposed by Holland (1975). The idea is
to use good solutions (parents) to generate better ones (offsprings). Following the
genetic algorithm of Kao (2009) which makes use of well known event-related fMRI
designs, such as block designs, m-sequence, random designs, and mixed designs, the
outline of the algorithm is as follows:

Step 1: Generate 2G initial designs (e.g., m-sequences, block designs, and mixed
designs) that form the first generation. The fitness of these designs is then
evaluated through the objective function, which can be the selected optimality
criterion.

Step 2: With probability proportional to the fitness, G pairs of distinct designs are
selected with replacement to generate offspring designs via the crossover op-
erator. That is, to select a random cut-point and exchange the corresponding
subsequences of the paired designs.

Step 3: The mutation operator then randomly selects q% of the elements of the 2G
offspring designs, and randomly perturbs these elements. Then, obtain the
fitness of the resulting designs.

Step 4: Add to the population another N immigrant drawn from random and block
designs, and their combinations, and obtain their fitness.

Step 5: Create a pool to include the designs of the current generation, offspring de-
signs, and immigrants. According to their fitness, keep the best 2G designs
in the pool to form the next generation, and discard the others.

Step 6: The process repeats until a stopping rule is met; for example, until no sig-
nificant improvement is made. The algorithm keeps track of the design with
the best fit over all generations.

The Stopping Rule: We consider the second stopping rule provided in Kao
(2009), where the algorithm will be terminated if there is no significant improvement.
For instance, the algorithm performs a check every g generations, then it will compute
the improvement in overall efficiency from generation 1 to generation g, and then for
each set of g generations. We assume g = 200, if the improvement in the value of the
objective function in the last 200 generations is no more than 10−7 of that of the first
200 generations, the search is stopped (Kao & Mittelmann, 2014).
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