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ABSTRACT

Machine learning (ML) and deep neural networks (DNNs) have achieved great success

in a variety of application domains, however, despite significant effort to make these

networks robust, they remain vulnerable to adversarial attacks in which input that

is perceptually indistinguishable from natural data can be erroneously classified with

high prediction confidence. Works on defending against adversarial examples can be

broadly classified as correcting or detecting, which aim, respectively at negating the

effects of the attack and correctly classifying the input, or detecting and rejecting

the input as adversarial. In this work, a new approach for detecting adversarial

examples is proposed. The approach takes advantage of the robustness of natural

images to noise. As noise is added to a natural image, the prediction probability

of its true class drops, but the drop is not sudden or precipitous. The same seems

to not hold for adversarial examples. In other word, the stress response profile for

natural images seems different from that of adversarial examples, which could be

detected by their stress response profile. An evaluation of this approach for detecting

adversarial examples is performed on the MNIST, CIFAR-10 and ImageNet datasets.

Experimental data shows that this approach is effective at detecting some adversarial

examples on small scaled simple content images and with little sacrifice on benign

accuracy.
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Chapter 1

INTRODUCTION

Deep Neural Networks (DNNs) have proved to be very effective in a variety of ma-

chine learning tasks, including security-sensitive applications like autonomous driving

[1], face identification [23] and malware detection [25]. The work in this thesis is con-

cerned with Neural Networks that are used for image classification. Such networks are

typically trained on a fixed number of classes in order to classify new examples from

these classes. For a given input image, the network calculates a confidence vector,

with one entry per class, which aims at capturing the probability that the input image

is in a given class. An input image is classified to be from the class for which the

network has the highest confidence value. Recent studies shows that Neural Networks

are susceptible to adversarial attacks [28, 8, 17, 5, 16, 3]. An attacker can take an

input image which is correctly classified as being from class c1 and slightly modify

it by adding human-imperceptible perturbations so that it is classified to be from

another class c2. The research work in adversarial machine learning has witnessed a

cat and mouse race between researchers developing more effective attacks and those

attempting to develop defenses to thwart these attacks.

In this thesis, a new approach for defending DNNs against adversarial attacks is

investigated. Before giving an outline of the approach and the results, an overview of

existing attacks and some of the more effective defenses are introduced. Szegedy et al.

first introduced adversarial examples against DNNs in 2013 [28]. They define an opti-

mization problem for finding adversarial examples, and generate small perturbations

by approximating a box-constrained optimization problem of maximizing loss func-

tion under small perturbation magnitudes with a box-constraind L-BFGS problem.
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Later Goodfellow et al. [8] proposed a faster but effective method called Fast Gradient

Sign Method for generating adversarial examples that requires less computation. It

only aggregates one step gradient update along the direction of the sign of gradient at

pixel level to input images. Kurakin et al. in [13] extended FGSM to targeted FGSM

by not maximizing loss of original class but minimizing the loss of specified class

when calculating the gradient. They call attacks that target specific classes Targeted

Attacks. Kurakin el al. in [13] extended FGSM by running finer updates for multiple

iterations and clip input during each iteration to force a magnitude constrain on per-

turbation. They name this finer grained attack Iterative Fast Gradient Sign Method.

In order to speed up the generating process, [5] proposed Momentum FGSM attack

by utilizing gradient momentum in each iterative steps. The momentum in a given

iteration is derived from the momentum of the previous iteration and the gradient

of the current iteration. This process greatly reduced the running time for iterative

FGSM. Previous attacks treat every input feature evenly and generate perturbations

without considering the significance of features to model’s output. Papernot et al.

proposed Jacobian-based Saliency Attack that utilize the features’ different impacts

in changing output and successfully fooled the network by attacking a small portion

of input. Moosavi-Dezfooli et al. [17] defined a prediction polyhedron for input x to

retain its original class. During each iteration, a vector that reaches the polyhedron

boundary is computed and an estimate is updated. They managed to generate suc-

cessful adversarial examples with very small perturbations. Leveraging their study in

deep fool attack, they developed a universal attack that generates minimum attack for

a small part of the dataset and keep updating the universal perturbation until most of

the input images are successfully fooled. Their work was well generalized across state

of art DNN architectures. Carlini and Wagner in [3] redefined objective functions

for generating perturbations and proposed several attacks using multiple objective
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functions. They extended their work to different norm distance measurements too.

Among defenses, Adversarial (Re)training [8] is the most extensively investigated

defense against adversarial attacks. It injects perturbed data into the training data

at every step of training to train a robust model. Adversarial training also increases

the performance of neural networks on benign input from small datasets. Papernot

et al. [22] used network distillation to extract knowledge from an original DNN

and succeeded in reducing the attacks’ ability to create adversarial examples to less

than 5%. But this distillation defense was later bypassed by L0 Carlini and Wagner

attacks with little modifications [2]. Many researchers tried to train binary classifiers

as detector to classify benign and adversarial inputs. [15] made use of the ReLu layers

output as the features for detection. [9] added one novelty class in class sets so the

model can detect adversarial examples by classifying the input as outliers. [6] claims

that adversarial inputs do not constitute meaningful changes to the inputs thus it must

push samples off from the data manifold. They use density estimation to measure

how far the last hidden layer activation are from the submanifold of predicted class

generated from training data. [26] trained a PixelCNN and found that the distribution

of adversarial examples is different from benign data. They reject input by calculating

p-value of prediction outputs. Some researchers apply regularization or smooth labels

to make models less sensitive to input perturbation [10, 18]. The methods aiming to

achieve output invariance to input perturbations are called gradient masking. Some

researchers preprocess the input with certain transformation to remove perturbation.

[10] used denoising auto-encoder as a defense. [19] applies filters in preprocessing

stage. But Gu et al. in [10] mentioned that the model with image transformation

can be even easier to attack if one considers the transformation layer together with

the base model as one system to attack. Das et al. preprocess image with JPEG

compression to defeat adversarial perturbations. [29] proposed that the feature input
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spaces are unnecessarily large, and this input space provides the opportunities for

adversarial examples. They proposed feature squeezing to compress feature space for

defending through quantizing pixel values, perform non-differentiable local or non-

local filtering. Prakash et al. [24] proposed another non-differentiable transformation

by switching pixels that are less possible to capture objects of image to neighboring

pixels and perform discrete wavelet transformation and filter with adaptive threshold

filtering in frequency domain to recover the image classification.

Researchers have pointed out that classifiers can tolerate some natural noise [10].

Given an input image, the classifier would still be able to classify it correctly if the

image if subjected to limited amount of noise. This tolerance has been exploited

by some existing defenses [10, 29, 24]. What existing works did not consider is how

the confidence in the original classification drops with higher levels of noise, levels at

which the classification of the image cannot be expected, in general, to stay the same.

By applying increasing levels of noise to an image, and measuring the degradation in

the confidence of the original class (classified without noise), a vector of confidences,

which we define as the Behavior Vector, is obtained. In this thesis, a study of the

feasibility of using the behavior vector as a novel method to distinguish between

benign and adversarial input is performed.

An initial part of the study consisted of studying the effects of adversarial attacks

on benign images. The goal was to get an insight into adversarial perturbation that

could help in devising effective patterns of noise to use in generating behavior vectors.

The best scenario for a defense is when adversarial perturbations are distributed

over the entire image. As the classification of benign images are mostly activated

by objects in the area of interest, adversarial perturbations added pixel-wise over

the image are potentially more sensitive to partial transformations. We generate

adversarial examples on images from MNIST [14], CIFAT-10 [12] and ImageNet [4],

4



the results of the study showed that in general, adversarial perturbations tend to

concentrate on salient parts of the images as well, which meant that no particular

patterns in the attacks could be exploited in generating behavior vectors. Then an

extensive study is done by analyzing the probability change of originally predicted

class while increasing the transformation levels which is latter defined as Stress Test.

Our study has shown that there is a behavior pattern difference between adversarial

examples and benign input. Leveraging this difference in behavior vectors we trained

novelty detectors using One-Class SVM and autoencoders to identify irregular inputs

generated by adversarial perturbed images that deviated from normal distribution.

In the end we performed a comprehensive comparison between our stress test defense

and two existing defense mechanisms: Feature Squeezing [29] and Pixel Deflection

[24]. Our defense is shown to have comparable results to state of the art methods

on MNIST, and consistent performance for different attacking methods on CIFAR-10

and ImageNet.

The rest of this thesis is organized as follows. Chapter 2 introduces gives an

overview of related works on adversarial attacks and defenses. Chapter 3 we presents

analysis on perturbation distribution for different attacks. In chapter 4, describes

the behavior-vector based defense and compares, on average, the behavior vectors

for benign images differs from those for adversarial input for a variety of attacks and

noise levels. Chapter 5 compares the behavior-vector based defense to two state-of-art

defenses. Chapter 6 concludes with a discussion and directions for future.
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Chapter 2

RELATED WORKS

In this chapter, we provide the background knowledge and related works about ad-

versarial attacks and defenses. For a given classifier f(x) : x ∈ X −→ y ∈ Y , for

an image x and output label y, we define adversarial perturbation as the minimum r

that is sufficient to misclassify the network. There are two categories of adversarial

attacks: untargeted and targeted. For untargeted attacks, the perturbation is mini-

mized subject to f(x+r) 6= y. For targeted attacks, perturbation is generated subject

to f(x+ r) = y∗ where y∗ 6= y. We only consider untargeted attacks in this thesis.

2.1 Adversarial Examples

2.1.1 L-BFGS Attack

Szegedy et al. first introduced adversarial examples against deep neural networks

in 2013 [28]. They define the problem as a constrained optimization problem.

Minimize ‖r‖2 subject to :

1.f(x+ r) = l

2.x+ r ∈ [0, 1]m

(2.1)

Where ‖r‖2 represents the L2 distance between benign input and adversarial example,

and f represents the classification function. The exact computation of this problem

is hard, so they approximate the problem by solving the following equation using a

line search for finding minimum c > 0 :

Minimize c|r|+ lossf (x+ r, l) subject to x+ r ∈ [0, 1]m (2.2)

6



Figure 2.1: L-BFGS Adversarial Examples on AlexNet
Adopted from [28]. Left columns are original benign inputs, right columns are adversarial
examples, center columns are amplified perturbations.

They applied L-BFGS attack on MNIST, QuocNet, AlexNet. For simple networks

trained on MNIST, the average minimum distortion to reach 0% accuracy ranges from

0.062 to 0.14.

Aside from L-BFGS attack, they found that adversarial examples are transferable.

A relatively large fraction of their adversarial examples can generalize across networks

trained from scratch with different hyper-parameters. Even when the networks are

trained from different datasets, a large fraction of adversarial examples for one model

can fool other models.

2.1.2 Fast Gradient Method

Goodfellow et al. proposed one L-infinity norm attack called Fast Gradient

Method to generate perturbations through one step gradient update [8]. They aggre-

gate the sign of gradient with a fixed magnitude upon each pixel from input image

through one iteration, so this FGM under L∞ constrain is also called Fast Gradient

Sign Method.

η = εsign(∇xJ(θ,x, y)) (2.3)
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Figure 2.2: One FGSM Example Applied to GoogLeNet on ImageNet
Adopted from [8].

The same approach was then extended to other norms, equation 2.4 defines the

L2 norm version of FGM.

η = ε
∇xJ(θ,x, y)

‖∇xJ(θ,x, y)‖2
(2.4)

Where ε denotes the maximum perturbation on pixels, θ denotes the model param-

eter, x denotes the input image and y denotes the label of input x. The FGM attack

updates the input pixels along the direction of increasing loss between model output

and input label by a fixed amount. Their simple one-step perturbation causes a shal-

low softmax classifier to have an error rate of 99.9% with average confidence of 79.3%

using ε = 0.25 on MNIST dataset. Their attacks induce an error rate of 87.15% and

average probability of misclassified class is 96.6% with ε = 0.1 on CIFAR-10 dataset.

Values are normalized to [0, 1] range.

2.1.3 Iterative Fast Gradient Method

Kurakin et al.[13] introduced a straightforward way to extend FGM by generate

the attack through multiple iterations with small step size and clip pixel values of

intermediate results after each iteration. This l∞ clip ensures the attacks are in

8



ε− neighbourhood of original images.

X0
adv = X, XN+1

adv = ClipX,ε{XN
adv + αsign(∇XJ(XN

adv, ytrue))} (2.5)

Previous works assumes adversarial examples can be directly fed into the network,

but many times the image input are generated directly through devices like cameras

and sensors. Surprisingly Kurakin et al. [13] discovered that even in physical work

when adversarial images are printed out and recaptured by cameras, they can still

fool the network with high success rate.

2.1.4 Projected Gradient Descent

Madry et al. [16] proposed a modified iterative gradient based approach called

Projected Gradient Descent. Unlike the Basic Iterative Fast Gradient Method, Pro-

jected Gradient Descent starts the perturbation by a uniformly randomly chosen data

inside the Lp norm ball near benign data. After each iteration it projects the pertur-

bation outside the norm ball to the closet data point inside the norm ball then start

the next iteration of gradient update. This method iteratively applied this update

k times with step-size ≥ ε/k where ε refers to the L-p constrain for perturbation

magnitude. Iteratively generated perturbations induce higher error rate compared to

single-step perturbation, but transfer at lower rates according to [16].

2.1.5 Momentum Attack

In order to stabilize update directions and escape from poor local maxima during

iterative methods, Dong et al. [5] proposed a momentum variant fast gradient sign

method by using the momentum in the update function. The momentum is updated

by aggregating velocity vector in the gradient direction in every iteration.

gt+1 = µ · gt +
∇xJ(xt

∗, y)

‖∇xJ(xt∗, y)‖1
(2.6)
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Then the input is updated as equation 2.6

xt+1
∗ = xt

∗ + α · sign(gt+1) (2.7)

This method accelerates iterative gradient descent by accumulating a velocity vector

in the gradient direction of the loss function across iterations. The ”memory” of

previous iterations can help the gradient update to escape from local minima or

maxima thus making adversarial examples more transferable across models.

2.1.6 Jacobian-based Saliency Map Attack (JSMA)

Papernot et al. proposed an efficient saliency adversarial map called Jacobian-

based Saliency Map Attack (JSMA) [21]. F denotes the N dimention output of logits

layer, X denotes the M dimention input. Then the salience map is defined as equation

2.7

∇F (X) =
∂F (X)

∂X
=

[
∂Fj(X)

∂xi

]
i∈1..M,j∈1..N

(2.8)

By calculating the saliency map they found the input features that can generate most

significant variation in output. A small perturbation is added on most significant

features in each iteration thus they can successfully fool the network by modifying

a small portion of input features. This method is slow due to the calculation of a

saliency map in each iteration.

2.1.7 Deepfool Attack

Moosavi-Dezfooli et al. [17] proposed DeepFool attack by finding the closest dis-

tance from input to decision boundary. For a linear affine classifier the minimum

perturbation needed for misclassification is the distance between input and decision

10



boundary.

r∗(x0) := argmin‖r‖2

subject to sign(f(x0 + r)) 6= sign(f(x0))

=− f(x0)

‖w‖2
2

(2.9)

For a multi-class linear classifier, the input should reach at lease one boundary of

complement of the convex polyhedron P,

P =
c⋂

k=1

{x : fk̂(x0)
(x) ≥ fk(x)}, (2.10)

k̂(x0) is the classification of original input. The polyhedron P is the boundary of

original classification to other classes, and the minimum perturbation is the vector

that projects x0 on the faces of P.

For general non-linear classifiers, the boundary is no longer a polyhedron, but

they approximate the boundary set (Figure 2.3) by a modified polyhedron P̃i

P̃i =
c⋂

k=1

{x : fk(xi)− fk̂(x0)
(xi) +∇fk(xi)Tx−∇fk̂(x0)

(xi)
Tx ≤ 0} (2.11)

At each iteration, the perturbation vector that reaches the polyhedron boundary

is computed, and the current state of the input is updated. Adversarial examples

generated by the DeepFool attack have less perturbation magnitudes compared to

those generated by other attacks. Unlike the JSMA attack, where the number of pixels

being modified is minimized, DeepFool minimize the total intensity of perturbations.

2.1.8 Carlini & Wagner Attack

Carlini and Wagner proposed a targeted attack that can defeat distillation de-

fense [22] and most of the existing other defenses according to [3]. They defined the
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Figure 2.3: Decision Boundary for Multi-class Classifiers
Adopted from [17]. Left is the linear classifier polyhedron, right is a demonstration of general
non-linear classifier decision boundary. The dotted line is the polyhedron approximation of
decision boundary.

optimization problem of finding the minimum perturbation as follows

minimize D(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ [0, 1]n

(2.12)

But the above formulation is difficult solve because C(x+ δ) = t is highly nonlinear.

So they modify the objective functions such that C(x+δ) = t if and only if f(x+δ) ≤ 0

and listed multiple choices for defining f . An alternative formulation for optimization

problem is

minimize ‖δ‖p + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n
(2.13)

In terms of constant c, they use modified binary search to choose c value. During

the optimization they still need to ensure the modification is in valid range where

0 ≤ xi + δi ≤ 1. They introduced a new approach to solve this box-constrained

problem by define perturbation δ as
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Figure 2.4: Carlini & Wagner Attack on MNIST and CIFAR-10
Adopted from [3]. For adversarial images the left columns are L2 examples, middle columns
are L∞, right columns are L0 examples. All images originally classified as class l and the
adversarial instances are classified as class l + 1

δi =
1

2
(tanh(wi) + 1)− xi (2.14)

Since −1 ≤ tanh(wi) ≤ 1, it follows that 0 ≤ xi+δi ≤ 1. So the optimization solution

would be automatically valid. They extend their work to different L-p distance as

shown in Figure 2.4.
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2.2 Defenses

2.2.1 Adversarial (Re)training

Adding adversarial examples in training is different from data augmentation where

the translated images are expected to appear in the testing data set. Szegedy et al.

showed that by training a mixture of benign input and adversarial input the network

could be regularized somewhat. But due to the computation difficulty of L-BFGS

the procedure was not demonstrated. Goodfellow et al. in [8] reformulate objective

functions by including adversarial examples in the training process.

J̃(θ,x, y) = αJ(θ,x, y) + (1− α)J(θ, x+ σsign(∇xJ(θ,x, y)) (2.15)

This approach was then applied on ImageNet in their latter work, from their results

adversarial training can increase the robustness of one-step attacks but not iteratively

generated attacks. Because adversarial examples generation needs extra computation,

it’s computational inefficient to include hard attacks in training set, and practical

adversarial training on ImageNet dataset often adopts FGSM only. Madtry et al. in

2018 proposed Projected Gradient Descent which is used as the universal ”first-order

adversary”, i.e., the strongest attack utilizing the local first order information about

the network. But using PGD in adversarial training imposed a significant overhead

on training time. For k-step PGD adversary, it requires additional k forward and

k backward passes through the network for each batch of data. This increases the

running time by a factor of (k + 1).

2.2.2 Gradient Masking

Gu and Rigazio [10] first proposed preprocessing as one approach to recover ad-

versarial examples. They first tried additive Gaussian noise at input layer and hidden
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layers, then they tried gaussian blur at input layers. By applying Gaussian blur ker-

nels of size 11 they managed to recover more then 50% of the adversarial examples

with 3% sacrifice in benign accuracy. They also trained three-hidden-layer auto-

encoder to map adversarial input to its original input. The autoencoders are able

to recover 90% of the adversarial errors, regardless of the model from which it origi-

nates. They also tried standard denoising autoencoder (DAE) without the knowledge

of adversarial examples. A denoiser with gaussian ε = 0.1 could denoise adversarial

examples almost as well as an autoencoder trained on adversarial examples. But one

key observation from their experiments that for any pre-processing, it is always pos-

sible to backpropagate the error signal through additional layers and generate new

adversarial examples consider preprocessing layers and base model as a whole. Con-

tractive autoencoder (CAE) is a variant of autoencoder that minimize Jacobian of

hidden layers with respect to input data, so the network output can achieve ”flatness”

around the data points. The objective function for contractive autoencoder is shown

in equation 2.15.

JCAE(θ) =
m∑
i=1

(L(x(i), y(i)) + λ‖∂h
(i)

∂x(i)
‖
2
) (2.16)

where ‖∂h(i)

∂x(i)‖2 is the norm of jacobian matrix of hidden layers with respect to input.

For deep contractive networks, the loss function is modified as equation 2.16.

JDCN(θ) =
m∑
i=1

(L(t(i), y(i)) +
H+1∑
j=1

λj‖
∂hj

(i)

∂hj−1
(i)
‖
2

) (2.17)

They increased the minimum distortion needed of successful adversarial examples and

act as practical regularizers.

2.2.3 Principle Component Analysis Detection

Hendrycks et al. reveals that adversarial images place abnormal emphasis on the

lower-ranked priciple components from PCA [11]. They first center the training data
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at zero, compute the covariance matrix C of the centered data and find the SVD

of C which is C = U
∑
V T . Adversarial examples’ coefficients of latter eigenvectors

are consistently larger than benign input. This discover is especially remarkable for

MNIST dataset where 100% of the FGSM images have coefficient’s variance beyond

10 billion standard deviations from the mean coefficient variance of clean images.

2.2.4 Kernel Density Estimation

Feinman et al. proposed a defense method using density estimation in subspace of

deep features learned by the model and Bayesian uncertainty estimates. The intuition

is that since adversarial examples are not natural input, they must push samples off

the data manifold. They measure how far input x is from the manifold of deep layers

for training data as equation 2.17.

f̂(x) =
1

|Xt|
∑
xi∈Xt

k(xi, x) (2.18)

Where k(·, ·) is the Gaussian kernel with bandwidth σ. This is for measuring the

distance of input x to training submanifold of class t. While this strategy works for

data far from manifolds, but may not work on data closer to manifolds. Then they

added Bayesian neural network uncertainty because DNNs trained with dropout are

equivalent to an approximation of the Gaussian process [7]. They sample the data T

times for a neural network with dropout layer after the last pooling layer and measure

the uncertainty by equation 2.18.

U(x∗) =
1

T

T∑
i−1

ŷ∗
T
ŷi∗ −

(
1

T

T∑
i−1

ŷ∗

)T (
1

T

T∑
i−1

ŷ∗

)
(2.19)

They proved that the uncertainty of an adversarial sample is typically larger than

benign or noisy input.
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Figure 2.5: Feature Squeezing Framework for Detecting Adversarial Examples
Adopted from [29]

2.2.5 Feature Squeezing

Xu et al. claims that the input feature space are often unnecessarily large, and

this vast input state provides extensive opportunities for adversarial attacks. So they

proposed two feature ”squeezing” approaches: reduce color bit depth and spatial

smoothing.

For bit depth reduction they reduce 8-bit color representation into i-th bits with

integer-rounding operations. Spatial smoothing is divided into local smoothing and

non-local smoothing. Local smoothing can be designed as median smoothing, mean

smoothing or Gaussian smoothing. For non-local smoothing they replace the center

path with similar patch found in a larger area. By comparing the squeezed clas-

sification and original classification, the detector can detect 98.2% of the MNIST

adversarial examples, 84.5% of the CIFAR-10 examples and 85.9% of the ImageNet

examples.

2.2.6 Distillation

Papernot el al. utilized network distillation to defense DNNs from adversarial ex-

amples [22]. The probability of the original model was used as the input to train the

distilled network. The probability of the first model includes additional knowledge
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Figure 2.6: Color Bit Depth Reduction
Adopted from [29]. From leftmost to rightmost columns the color bit decrease from 8 to 1
respectively.

Figure 2.7: Distillation Framework
Adopted from [22]. The left network is original network the right network is the distilled
network.

compared class labels, and the transformed smaller network which maintain the accu-

racy compared to those larger networks can be beneficial to generalization capability

for input outside training data set. Softmax layer is the last layer to normalize logits

into probabilities, the probability of first classifier output is presented in equation

2.19

qi =
exp(zi/T )∑
j exp(zj/T )

(2.20)

T is a parameter named distillation temperature and shared across the softmax layer.

All probabilities in equation 2.19 converges to 1/N if T → ∞. The higher the

temperature the more ambiguous the probability will be and lower the temperature
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value the more discrete (closer to one hot vector) the probability vector will be.

They proved that using higher temperature can reduce network sensitivity towards

adversarial examples.

2.2.7 Pixel Deflection

We know from [10] that defense mechanisms using differentiable transformations

before classification can be easily circumvented by perturbations generated through

model and transformation layers together. Prakash et al. in [24] proposed Pixel

Deflection by introducing a form of artificial non-differentiable noise. The noise is

generated by randomly selecting pixels from input to replace with pixels within a

small square neighborhood. This deflection on pixels does not alter the classification

of clean images but enables the correct classification of large portion of adversarial

examples.They conducted an analysis on the average localization of perturbations on

images, and found that most attacks search the entire image for perturbation with

less or no constrain on the number of pixels been attacked. So when they choose the

pixels for deflection the probability of pixel been selected is inversely proportional to

its likelihood of containing object. In attempt to soften the impact of pixel deflection,

they applied discrete wavelet transform, apply soft threshold for softening and apply

the inverse wavelet transform.
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Chapter 3

PERTURBATION DISTRIBUTION

3.1 Experiment Setup

3.1.1 Datasets

We perform the analysis on three benchmark image datasets. MNIST is the

handwritten dataset with 60000 training and 10000 testing images for handwritten

digits from 0 to 9. The images are 28x28 black and white images. CIFAR-10 contains

50000 training images and 10000 testing images, all the images are 32x32 three channel

colored images from 10 classes. The 10 different classes represent airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships, and trucks. ImageNet is a large visual

dataset designed for visual object recognition. More than 14 million images have

been hand-annotated by the project to indicate what objects are pictured and in at

least one million of the images, bounding boxes are also provided for some classes.

Each year there is an ImageNet challenge with 1000 classes, in this thesis we utilize

a 1000 images subset of ImageNet 2012 challenge validation dataset by utilizing the

first image from each class.

3.1.2 Neural Network Model

We perform adversarial attacks on three example models, each trained on one

of the datasets mentioned above. For CIFAR-10 we adopt the VGG-16 networks

pre-trained on ImageNet as a base, and extract the first three blocks of weights and

add dense layers on top for transfer learning. For ImageNet we utilize pre-trained

model Inception V3 provided by Tensorflow. Models are trained on NVIDIA GeForce
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Figure 3.1: Image Relationships

Dataset Network Architect Top-1 Testing Acc

MNIST 2xConv2D+2xDense 99.17%

CIFAR-10 VGG-16 86.4%

ILSVRC2012 Inception V3 78.8%

Table 3.1: Target Models

GTX 1060, and tested for adversarial examples generation on AWS EC2 c5.9xlarge

instance. Table 3.1 lists the Top-1 accuracy of example models.

3.1.3 Adversarial Examples Generation

Multiple L∞ and L2 attacks are included in our attack generation. For L∞ attacks

we include FGSM, I-FGSM, PGD, Momentum Attack and DeepFool attacks, and for

L2 attacks we include FGM, I-FGM, PGD, Momentum Attack, DeepFool attack and

Carlini&Wagner attack. By the definition of adversarial attacks, misclassified images

are by default successful adversarial input. This is not useful for measuring the ef-

fectiveness of adversarial attacks, so we exclude misclassified images from our attack

targets. So for each dataset, a subset of 100 correctly classified images randomly se-

lected from testing data are used as seed images for generating these attacks. Attacks

are implemented using Cleverhans library [20] except DeepFool L∞ attacks, which is
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Dataset L-p Norm Attack Success Rate Confidence L∞ L2

MNIST

L∞

FGSM 91% 68.01% 0.3 -

I-FGSM 97% 97.27% 0.18 -

PGD 98% 96.75% 0.18 -

Momentum 94% 90.58% 0.18 -

DeepFool 100% 51.07% 0.16 -

L2

FGM 51% 78.94% - 4

I-FGM 79% 97.61% - 3

PGD 93% 99.87% - 3

Momentum 98% 91.54% - 3

DeepFool 100% 51.46% - 1.88

Carlini&Wagner 97% 48.98% - 2.12

CIFAR-10

L∞

FGSM 97% 78.50% 0.04 -

I-FGSM 95% 92.14% 0.02 -

PGD 94% 92.30% 0.02 -

Momentum 90% 92.58% 0.02 -

DeepFool 100% 54.54% 0.01 -

L2

FGM 96% 69.54% - 1.5

I-FGM 100% 95.86% - 1

PGD 100% 94.16% - 1

Momentum 92% 61.89% - 1

DeepFool 100% 54.06% - 0.41

Carlini&Wagner 100% 51.15 - 0.36

ImageNet

L∞

FGSM 76% 48% 0.03 -

I-FGSM 100% 98.68% 0.015 -

PGD 100% 98.69% 0.015 -

Momentum 100% 97.87% 0.015 -

DeepFool 100% 36.17% 0.0014 -

L2

FGM 65% 51.79% - 1.5

I-FGM 93% 88.12% - 1

PGD 93% 84.91% - 1

Momentum 87% 82.11% - 1

DeepFool 100% 36.75% - 0.36

Carlini&Wagner 91% 57.23% - 0.8

Table 3.2: Attacks Evaluation

generated by a slightly modified version of DeepFool algorithm from Cleverhans ac-

cording to [17] description. Table 3.2 reports the results we get on eleven attacks for

the three datasets.

For I-FGSM, PGD, Momentum attacks, epsilon per iteration is chosen by slightly

greater than ε/k where k represents the maximum number of iterations allowed, which

in our experiment is set to 100 for all iteratively generated attacks listed. For DeepFool

and Carlini&Wagner attacks, the Lp distances are calculated after generation.
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3.2 Perturbation distribution

We apply adversarial perturbations based on two norm distances: L2 norm dis-

tance (equation 3.1) and L∞ distance (equation 3.2), on correctly classified images

(Figure 3.1). Each time when generating the perturbation, we either minimize the

euclidean distance magnitude between benign input and adversarial examples, or

minimize the maximum absolute difference on pixel levels between benign input and

adversarial examples.

‖x− xadv‖2 =

√√√√ n∑
i=1

(xi − xadvi )
2

(3.1)

‖x− xadv‖∞ = max
1≤i≤n

|xi − xadvi | (3.2)

In order to maintain the same performance between perturbation methods, we gradu-

ally increase the magnitude of perturbations and try to achieve over 90% success rate

while still maintain the imperceptable nature of adversarial perturbations. We found

that for MNIST dataset the L2 perturbations generated to achieve reasonable success

rates are no-longer quasi-imperceptible, so we exclude them from defense evaluations.

Figure 3.2 shows an example of applying L∞ FGSM, I-FGSM, PGD, Momentum

attack and DeepFool attack on 1000 examples with success rate near 90%. The

average L∞ distances are 0.3, 0.18, 0.18 and 0.18 respectively. As we expected,

perturbations for DeepFool have better performance due to its generating mechanism

while single step FGSM are no longer human-imperceptable when trying to achieve

high success rate. Figure 3.3 shows the average L1 distance between adversarial image

and its benign input. Different from our expectations, the average perturbation are

all concentrated in the central part of images, including gradient based adversarial
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examples where perturbations are equally added to pixels based on the gradients

directions. We noticed that a large portion of pixels for MNIST images have zero

gradients towards output loss, and this might lead to the imbalance of perturbations

added on images.

Figure 3.2: Example of L∞ Perturbation on MNIST

Figure 3.3: L∞ Perturbation Distribution on MNIST

Similar to L∞ attacks, we perform L2 attacks FGM, I-FGM, PGD, Momentum

attack, DeepFool and Carlini & Wagner L2 attacks on MNIST dataset. Figure 3.4

shows an example of L2 attacks when trying to reach over 90% success rate for all

attacks. Figure 3.5 shows the distribution of perturbations by averaging the pertur-

bations on each location of images. Pixel intensities are within [0, 1] range. Using

L2 attacks are minimizing the overall magnitude of image distances, so it is possible

that the perturbations are obvious on some pixels while still maintain low euclidean

distance. As shown from Figure 3.4 we can recognize the predicted class of this L2 ad-

versarial example is ”9” for iterative gradient attacks. Distribution of L2 perturbation
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for MNIST are also concentrated in the central part of image.

Figure 3.4: Example of L2 Perturbation on MNIST

Figure 3.5: L2 Perturbation Distribution on MNIST

We perform the same attacks on CIFAR-10 datasets. Perturbation magnitude

are significantly less compared to MNIST images when achieving high success rate.

The assumptions are CIFAR-10 images are 3 channel color images with slightly larger

image size compare to MNIST black and white images, which provides larger space for

perturbation. Figure 3.6 shows the examples of L∞ perturbation of FGSM, I-FGSM,

Momentum attack and DeepFool attack, with L∞ norm equals to 0.04, 0.02, 0.02,

0.02 respectively. All images are originally predicted as ”cat” and perturbed into

”dog”. Figure 3.7 shows the average perturbation distribution, where for gradient

based attacks, adversarial perturbation are scattered over the entire image.

L∞ attacks for CIFAR-10 datasets with high success rate are almost imperceptable

except FGSM, where some color spots can be seen by human eyes. Figure 3.8 shows an

example of L2 attacks with just enough perturbation to achieve over 90% accuracy.
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Figure 3.6: Example of L∞ Perturbation on CIFAR-10

Figure 3.7: L∞ Perturbation Distribution on CIFAR-10

Figure 3.8 is the L2 attack example for a ”ship” image, all perturbed images are

recognized as ”airplane”. Different from L∞ attacks, L2 attacks are focusing on

central area of images.

Figure 3.8: Example of L2 Perturbation on CIFAR-10

Same experiments are performed on ImageNet subset, where adversarial examples

are generated to achieve over 90% success rate while maintain small perturbation

magnitudes. Figure 3.10, 3.11 shows an example of different L∞ attacks and average

perturbation magnitudes across images.

From the hot map we see for one-step gradient update L∞ attacks or iteratively
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Figure 3.9: L2 Perturbation Distribution on CIFAR-10

Figure 3.10: Example of L∞ Attack On ImageNet

generated gradient L∞ attacks on natural images from ImageNet, the perturbation

tend to distribute across the entire image. For L2 attacks where constrain in distance

between adversarial and benign input is set using euclidean distance for entire image,

tend to concentrate in the central part of image. Figure 3.13 displays an example of

how perturbations distribute on images.
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Figure 3.11: L∞ Perturbation Distribution on ImageNet

Figure 3.12: Example of L2 Perturbation on ImageNet

Figure 3.13: L2 Perturbation Distribution on ImageNet

28



Chapter 4

STRESS TEST DEFENSE

With our assumption on difference between benign input and adversarial input to-

wards adversarial examples, we introduce a defense mechanism to reduce vulnera-

bilities exposing DNNs to adversarial examples. We notice that benign images are

robust to natural transformations while adversarial examples rely more on per pixel

perturbation across entire image, thus adversarial examples are expected to be more

sensitive to spatially partial noise applied on the image. Previous works envoling

transformation as defense mainly concentrate on removing the perturbation through

transformation image-wise, this leaves the potential for attackers to generate new

perturbations considering stacked transformation layers and base network together.

We instead are not trying to recover the adversarial input directly but add randomly

distributed partial transformation on the input. By leveraging the robustness of be-

nign input towards adversarial examples, we manage to train a detector to detect

adversarial inputs using their probabilities generated for each transformation itera-

tion.

4.1 Random Transformation

4.1.1 Gaussian Blur

Gaussian blur is a type of image blur filter that uses Gaussian function for calcu-

lating the transformation on pixels. 2D Gaussian blur can be represented as

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4.1)
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Figure 4.1: Increasing Gaussian Blur Intensity on MNIST Data

Figure 4.2: Increasing Gaussian Blur Intensity on CIFAR-10 Data

As defined in equation 4.1, increasing standard deviation for blur kernels will increase

the intensity of Gaussian blur as kernel weights are more averaged. We choose kernel

sizes with respect to different sigma values to include only non-zero weights in kernels.

Figure 4.1 shows an example of increasing Gaussian blur sigma from 0.5 to 1.5 on

MNIST. Figure 4.2 shows an example of increasing blur intensity from sigma equals

to 0.5 to 1.5 on CIFAR-10.
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4.1.2 Aggregated Random Transformation

Since we want to use the behavior difference of benign input and adversarial

input for perturbation detection, we increase the random transformation percentage

for every input through multiple iterations. Patch is the minimum transformation

unit we use, w refers to the patch width, so the atomic transformation area on an

image is w ∗ w. If we use IMG WIDTH and IMG HEIGHT to denote the input

image width and height, the total number of patches within an image is defined as

num patches =
IMG WIDTH ∗ IMAGE HEIGHT

w ∗ w
(4.2)

A pattern is a shuffled array of integers from 0 to num patched−1, with each number

represents the location index of one patch on the image. A group of patches are se-

lected in each iteration to be replaced by a fully transformed image which is generated

before the process. Our goal is to transform the images patches by patches until 100%

of the original image is replace by the corresponding fully transform image. Figure

4.3 represents a demonstration of applying 5% transformation using patches. We use

p to represent a pattern from increasing transformation percentage from 0% to 100%,

P represent the pattern set. We denote F (x) to be the network output vector of

original network for input image x, F k(x) refers to the probability of kth class. Then

we Behavior Vector vx,p of input image x as equation 4.3.

c = argmax(F (x))

v(x, p) =



F c(xp
s∗0)

F c(xp
s∗1)

...

F c(xp
s∗n)


(4.3)

Where c denotes the original prediction of an input image. For correctly classified

benign images it represents its true label, for successful adversarial image is represents
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Figure 4.3: Example of Using Patches as Minimum Unit for Random Transformation

the false output from model. s denotes the transformation percentage step size, which

means each time we transform s of the total image area while retain the existing

transformation untouched. xp refers to the transformed image using pattern p, xp
s∗i

is the image with s ∗ i percent been transformed. Figure 4.4 shows the system of

generating behavior vectors and leveraging behavior vectors for anomaly detection.

For MNIST, CIFAR-10 and ImageNet subset, we use the randomly generated

patterns to increase transformation percentages and record the probability of origi-

nal predicted class for benign and adversarial inputs. Figure 4.5 shows examples of

increasing transformation percentages on MNIST, CIFAR-10 and ImageNet.

4.2 Adversarial Detection

Once we have the partially aggregated transformed images, behavior vectors are

generated for different perturbations. Utilizing the behavior vectors towards randomly

added transformation we can distinguish adversarial examples from natural benign
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Figure 4.4: System Framework

Figure 4.5: Examples of increasing transformation percentages
Area inside red grids are replaced by corresponding fully transformed images. Images are
from MNIST, CIFAR-10 and ImageNet from top to bottom.
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Figure 4.6: Average Probability of Original Predicted Class for L∞ Attacks on
MNIST

images.

4.2.1 Behavior Vector

As shown in figure 4.4, each image (benign or adversarial) is fed into the original

neural network classifier and an original predicted class is gathered. Here we only

consider correctly classified benign input and successful adversarial examples. All at-

tacks are considered to be in White-Box scenario when model parameters are exposed

to attackers. Each iteration partially transformed images using randomly generated

patterns are fed into the classifier, and a behavior vector is collected from probability

of images’ original prediction. Figure 4.6, 4.7 shows the normalized average behavior

vectors of MNIST benign images and adversarial images. Evaluation of adversarial

images been used is listed in Table 3.2. As we expected, benign inputs have higher

confidence in its original prediction as transformation area are aggregated compared

to adversarial images of all generation. Comparing L∞ attacks and L2 attacks, when

using the same Gaussian blur intensity and under same transformation percentage,
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Figure 4.7: Average Probability of Original Predicted Class for L2 Attacks on
MNIST

L2 attacks are more resistant to these natural transformation.

Different from MNIST, for CIFAR-10 we have less distinguishable difference in

predicted probabilities while increasing transformation percentages. Noticed that for

CIFAR-10 the averaged behavior vectors for benign inputs degrade faster while in-

creasing transformation percentages compared to MNIST. Our assumption is MNIST

are small-scaled black and white images, so the information of digits reserve after

transformation.

We perform the same transformation on subset of ImageNet with 100 randomly

selected images as seed images, each image is ensured to be from a unique class.

All images are transformed using 20 randomly generated patterns, and each pattern

includes the transformation percentages from 0% to 100%, aggregating 5% at each

iteration, so the average probability are calculated using 2000 behavior vectors for

benign input and 2000 behavior vectors for each adversarial generation mechanism.

For adversarial examples we only consider successfully attacked input. The proba-

bility of original classification for benign input stays at relatively high value after
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Figure 4.8: Average Probability of Original Predicted Class for L∞ Attacks on
CIFAR-10

Figure 4.9: Average Probability of Original Predicted Class for L2 Attacks on
CIFAR-10
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Figure 4.10: Average Probability of Original Predicted Class for L∞ Attacks on
ImageNet

Figure 4.11: Average Probability of Original Predicted Class for L2 Attacks on
ImageNet
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normalization. But we see a change in ”smoothness” for averaged behavior vectors.

Probability of originally classified classes are not guaranteed to drop consistently as

we increase the transformation.

4.2.2 One-Class SVM Anomaly Detection

Due to the diversity of adversarial examples, it has been challenging for supervised

learning algorithms to identify abnormal examples, since future anomalies may differ

largely from the ones that existed. We consider the defense as an one vs all situation,

where the detector should reject inputs when the behavior vectors are deviated. So in

this experiment we only use benign inputs to train a detector for anomaly detection.

Schölkopf et al. [27] proposed using One-Class SVM for novelty detection, it separates

training data (normal data points) from the origin in feature space by a hyperplane,

maximizes the distance from this hyperplane to the origin. The function returns +1

for data inside regions and output -1 for anomalies outside the regions. Equation 4.4

describes the optimization problem of One-Class SVM detector

min
w,ξi,ρ

1

2
‖w‖2 +

1

νn

n∑
i=1

ξi − ρ

s.t.

(w · φ(xi)) ≥ ρ− ξi for all i=1,...,n

ξi ≥ 0 for all i = 1,...,n

(4.4)

ξ is the slack variable to allow some points stay in margin. Parameter ν sets the

upper bound of error rate for training and the lower bound of training examples used

as support vectors. Using Lagrange and kernel function for dot product calculation,

the decision function is defined in equation 4.5
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TNR TPR

L∞ L2

Blur Sigma FGSM BIM PGD MOMENTUM DEEPFOOL DEEPFOOL CW Legitimate

std = 0.75 OCSVM 85.32% 62.95% 64.79% 63.40% 100% 100% 100% 95%

std = 1 OCSVM 79.83% 59.24% 62.21% 56.06% 100% 100% 100% 96.33%

std = 1.25 OCSVM 75.71% 45.80% 50.52% 47.02% 99.6% 99.35% 99.36% 94.5%

std=1.5 OCSVM 70.49% 33.33% 37.52% 31.86% 37.39% 98.2% 97.25% 97.07%

std = 0.5 AE 93.02% 56.29% 59.21% 63.51% 100% 100% 100% 96%

std = 0.75 AE 94.06% 71.61% 75.15% 69.84% 100% 100% 100% 95%

std = 1 AE 86.70% 70.69% 73.31% 68.61% 100% 100% 100% 94%

std = 1.25 AE 21.70% 41.07% 43.94% 26.49% 29% 33.60% 48.40% 96%

std=1.5 AE 42.52% 36.82% 41.21% 31.86% 66.75% 67.30% 73% 95%

Table 4.1: Stress Test on MNIST

f(x) =sgn((w · φ(xi))− ρ)

=sgn(
n∑
i=1

αiK(x, xi)− ρ)
(4.5)

This algorithm creates a hyperplane, normal input within hyperplane will be clas-

sified as +1 and anomaly input outside the hyperplane as -1. We evaluate the detec-

tion for One-Class SVM on MNIST using behavior vectors from correctly classified

benign images and successful adversarial examples. As shown in Table 4.1, while

maintaining 95% TPR (True Positive Rate) for legitimate data, the best performance

we get on MNIST is when blur sigma is set to 0.75. We perform the same evaluation

on CIFAR-10, results indicates that while we identify most of the DeepFool and Car-

lini & Wagner attacks, detection rate of gradient based attacks are low compared to

MNIST results.

For ImageNet data we achieve lower than 50% TNR (True Negative Rate) for

most of the attacks. Our assumption is that as the variety of image content increases,

the pattern in behavior vectors tends to change according to image content. When

increasing the coverage of blur patches, the prediction confidence of original predicted
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TNR TPR

L∞ L2

Blur Sigma FGSM BIM PGD MOMENTUM DEEPFOOL FGSM BIM PGD MOMENTUM DEEPFOOL CW Legitimate

std=1.25 OCSVM 34.28% 23.80% 22.42% 22.63% 76.6% 38.88% 35.32% 32.42% 21.9% 76.9% 74.65% 96%

std=1.5 OCSVM 38.35% 27.03% 26.14% 26.57% 79.9% 45.05% 35.25% 34.36% 23.87% 81.2% 78.5% 95%

std=1.5 AE 12.68% 22.71% 23.21% 22.31% 28.45% 19.12% 13.27% 14.22% 12.20% 29.00% 32% 96%

std=1.75 AE 35.97% 30.72% 33.42% 31.42% 83.65% 42.96% 11.50% 13.57% 11.77% 85.35% 83.80% 88.67%

Table 4.2: Stress Test on CIFAR-10

TNR TPR

L∞ L2

Blur Sigma FGSM BIM PGD MOMENTUM DEEPFOOL FGSM BIM PGD MOMENTUM DEEPFOOL CW Legitimate

std=1 OCSVM 19.40% 61% 57% 63% 46% 24.61% 45.26% 49.46% 33% 45% 40.21% 96%

std=1.25 OCSVM 19.40% 55% 48% 45% 32% 10.77% 33.68% 32.61% 20.69% 33% 28.26% 93%

std=1.5 OCSVM 17.91% 56% 58% 57% 32% 75% 35.06% 31.17% 21.50% 32% 28.26% 93%

std=1.75 OCSVM 5.97% 54% 49% 46% 20% 12.31% 22.07% 29.35% 15.27% 20% 8.69% 93%

Table 4.3: Stress Test on ImageNet

class are not monotonically decreasing. This raise the difficulty of learning an anomaly

detector.

4.2.3 Autoencoder Anomaly Detection

An autoencoder is a type of neural network used to learn efficient data codings in a

unsupervised manner. Autoencoders consist of two parts: an encode stage that maps

the input to a bottleneck internal coded representation, and an decode stage to maps

the compressed data to a reconstruction of the input. Autoencoders are often applied

to data denoising, dimentionality reduction. We utilized a simple autoencoder to map

the behavior vectors from benign images and setting proper threshold for identifying

adversarial examples to maintain over 95% TPR. We use square root of mean squared

error between input vector and reconstructed vector as the metric to evaluate whether

the output is a good representation of input.

Figure 4.12 shows how autoencoder works for identifying abnormal behavior vec-

tors. The autoencoder is trained on benign input only and classify input as irregular

when reconstruction error is under threshold. Figure 4.13 is the ROC curve for 3-layer
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Figure 4.12: Autoencoder for Anomaly Detection

autoencoder trained on benign input from MNIST. Looking deep into the training

data, Gaussian blur tend to have consistent impact on image classification when im-

ages are from small search spaces like MNIST. The same does not hold for complex

input like ImageNet. When the variance of individual data from averaged behavior

vectors is small, it is easy for autoencoders to learn the compress and reconstruction

pattern.
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Figure 4.13: ROC Curve for 3-layer Autoencoder Anomaly Detection on MNIST
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Chapter 5

COMPARISON OF RESULTS

Due to the fact that many attacks and defenses primarily work on datasets with

smaller size images, such as MNIST and CIFAR-10, only few of them report results

on large-scaled images like ImageNet. Researchers in the field report their results

based on different Lp norms, different attack mechanisms, different constraints on

perturbation magnitude and different models been attacked and defended. In an

attempt to perform a fair comparison, we reproduced two defense methods [29, 24]

that recover the classification of adversarial examples. We evaluate the defenses

using the same models and attacks we used in the experiments on MNIST, CIFAR-10

and ImageNet images. Because our defense is a detection defense, we modified their

defenses to output detection results instead of recovering the images. For Feature

Squeezing we output anomaly alarms when L1 distance of predictions from squeezed

and non-squeezed input exceeds threshold value learned. For Pixel Deflection we

output adversarial alarms when base model’s classification differs from that of pixel

deflected images. We define the proportion of successfully perturbed images that

detected by defense approaches the Detection Rate.

Table 5.1 compares our results with feature squeezing defense on MNIST. For

feature squeezing we utilize color-bit reduction, median smoothing and non-local mean

filtering and the best joint defense mentioned in the original paper as our squeezing

methods. Detail of this defense is introduced in Section 2.2.5. We set the threshold

of L1 distance before and after squeezing to ensure less than 5% error rate on benign

input. Notice that feature squeezing works extremely well on small-scaled black

and white images due to the simplicity of searching spaces. Perturbations added to
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Figure 5.1: Example of 1-bit Color Depth Reduction on MNIST

each pixel will either suppressed to 0 or increased to 255 by 1-bit color reduction.

Figure 5.1 shows an example of using 1-bit color depth reduction on MNIST. For the

stress test defense, the best results achieved is by using an autoencoder for detecting

adversarial examples under transformation σ = 0.75, which best distinguishes the

anomaly behavior vectors from benign behavior vectors. For the MNIST dataset, the

best results are achieved by Joint defense using 1-bit color reduction and local median

smoothing from feature squeezing, it achieves near 100%detection rate on different

attacks, while our stress test defense achieves similar defense rate on L2 DeepFool

and Carlini Wagner attacks and L∞ attack.

We performed the same defenses on CIFAR-10 dataset. For feature squeezing we

applied color bit reduction, local median filtering and non-local filtering. The best

joint defense from feature squeezing is using 5-bit color reduction joint with 2x2 local

median filtering, and 13-3-2 non-local filtering. Here 2x2 for local filtering refers to

using 2x2 sliding window for filtering, and 13-3-2 refers to non-local filtering using

13x13 searching window, with a 3x3 patch size and 2 filtering strength. We include

pixel deflection on CIFAR-10 dataset and it achieves lower detection rate compared to

feature squeezing. Stress Defense tends to have consistent results on different attacks

since it rejects behavior vectors as long as it differs from the normal distribution,

independently from the perturbation generation mechanisms. Joint defense from
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L-infinity L-2

Defense Parameters FGSM BIM PGD MOMENTUM DEEPFOOL DEEPFOOL CW Legitimate

Feature Squeezing

1-bit color depth 96.70% 97.93% 96.52% 97.94% 100% 100% 100% 96%

2-bit color depth 93.41% 28.50% 43.33% 56.70% 100% 100% 100% 95%

2x2 median filter 86.81% 63.44% 61.25% 64.89% 100% 100% 100% 96%

3x3 median filter 93.40% 40.86% 41.40% 48.93% 98% 100% 98.93% 96%

Best Joint (1-bit + 2x2 median) 96.70% 100% 100% 100% 100% 100% 100% 94%

Stress Test

std = 0.75 OCSVM 85.32% 62.95% 64.79% 63.40% 100% 100% 100% 95%

std = 1 OCSVM 79.83% 59.24% 62.21% 56.06% 100% 100% 100% 96.33%

std = 1.25 OCSVM 75.71% 45.80% 50.52% 47.02% 99.6% 99.35% 99.36% 94.5%

std=1.5 OCSVM 70.49% 33.33% 37.52% 31.86% 37.39% 98.2% 97.25% 97.07%

std = 0.5 AE 93.02% 56.29% 59.21% 63.51% 100% 100% 100% 96%

std = 0.75 AE 94.06% 71.61% 75.15% 69.84% 100% 100% 100% 95%

std = 1 AE 86.70% 70.69% 73.31% 68.61% 100% 100% 100% 94%

std = 1.25 AE 21.70% 41.07% 43.94% 26.49% 29% 33.60% 48.40% 96%

std=1.5 AE 42.52% 36.82% 41.21% 31.86% 66.75% 67.30% 73% 95%

Table 5.1: Comparison Between Different Defense Methods on MNIST

feature squeezing has the best results overall compared with the other two defenses.

For natural images from ImageNet, color bit reduction have inconsistent results

over different attacks when used independently. It achieves high detection rates on

some attacks and have near zero detection rates on other attacks. The assumptions

are quantizing color intensity values by certain threshold can’t detect adversarial input

under diverse perturbation magnitudes. Pixel deflection achieves highest detection

rate on one step FGSM attack, and some iteratively generated attacks. Similar to

CIFAR-10 results, Stress Test defense has consistent results over different attacks.

On ImageNet dataset, the best joint defense from feature squeezing has the highest

detection rates.

From this comparison, we can see that our stress test using behavior vectors gener-

ated from spatial random transformation is suitable to identify adversarial inputs on

small scaled black and white images. On MNIST our stress test defense is comparable
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L-infinity L-2

Defense Parameters FGSM I-FGSM PGD MOMENTUM DEEPFOOL FGM I-FGM PGD MOMENTUM DEEPFOOL CW Legitimate

Feature Squeezing

4-bit color depth 23.71% 22.34% 25.53% 17.77% 82% 19.15% 10% 11% 10.10% 61% 75% 94%

5-bit color depth 7.22% 12.77% 11.70% 4% 55% 13.83% 7% 8% 4% 52% 56.94% 92%

2x2 median filter 58.76% 63.83% 64.89% 63.33% 81% 64.89% 60% 65% 60.60% 79% 77% 95%

3x3 median filter 65.98% 67.02% 69.14% 65.55% 89% 64.89% 68% 72% 64.64% 88% 88.89% 93%

11X3X2

non-local mean
28.86% 38.30% 37.23% 34.44% 97% 24.47% 13% 17% 12.12% 79% 79.16% 88%

13X3X2

non-local mean
28.86% 38.30% 38.30% 34.44% 97% 24.47% 14% 18% 13.13% 79% 79.16% 87%

Best Joint

(5-bit,

2x2 median,

13-3-2 non-local)

81.44% 94.68% 93.61% 92.22% 86% 84.04% 99% 100% 95.96% 85% 76.38% 95%

Pixel Deflection

PD+wavelet 11.34% 20.21% 19.15% 14.44% 85% 15.96% 6% 9% 12.12% 85% 80% 97%

Stress Test

std=1.25 OCSVM 34.28% 23.80% 22.42% 22.63% 76.6% 38.88% 35.32% 32.42% 21.9% 76.9% 74.65% 96%

std=1.5 OCSVM 38.35% 27.03% 26.14% 26.57% 79.9% 45.05% 35.25% 34.36% 23.87% 81.2% 78.5% 95%

std=1.5 AE 12.68% 22.71% 23.21% 22.31% 28.45% 19.12% 13.27% 14.22% 12.20% 29.00% 32% 96%

std=1.75 AE 35.97% 30.72% 33.42% 31.42% 83.65% 42.96% 11.50% 13.57% 11.77% 85.35% 83.80% 88.67%

Table 5.2: Comparison Between Different Defense Methods on CIFAR-10

L-infinity L-2

Defense Parameters FGSM I-FGSM PGD MOMENTUM DEEPFOOL FGM I-FGM PGD MOMENTUM DEEPFOOL CW Legitimate

Feature Squeezing

2-bit color depth 4.47% 67% 68% 65% 3% 4.61% 66% 63.44% 57.47% 2% 12% 94%

5-bit color depth 10.44% 2% 1.00% 2% 94% 35.38% 26.88% 31.18% 24.13% 95% 91.30% 95%

2x2 median filter 4% 47% 53% 33.00% 3% 7.69% 54.84% 60.21% 41.37% 2% 22.82% 96%

3x3 median filter 3% 46% 53% 33% 3% 2% 64.51% 69.89% 55.17% 4% 22.83% 95%

11X3X2 non-local mean 10.93% 6.06% 5% 5.00% 92% 38% 25.33% 26.88% 31.5 84% 68% 95%

13X3X2 non-local mean 13.28% 6.06% 5% 5.00% 92% 45.90% 26.67% 27.96% 32.88% 83% 71% 95%

Best Joint

(5-Bit,

2x2 Median,

11-3-2 Non-local)

15.42% 47% 53% 73% 96% 56.80% 72.42% 74.30% 75.45% 97% 97% 96%

Pixel Deflection

PD+DWT 38.28% 39.39% 39.24% 31.00% 91% 65.57% 65% 64% 54.79% 91% 88% 92%

Stress Test

std=1 OCSVM 19.40% 61% 57% 63% 46% 24.61% 45.26% 49.46% 33% 45% 40.21% 96%

std=1.25 OCSVM 19.40% 55% 48% 45% 32% 10.77% 33.68% 32.61% 20.69% 33% 28.26% 93%

std=1.5 OCSVM 17.91% 56% 58% 57% 32% 75% 35.06% 31.17% 21.50% 32% 28.26% 93%

std=1.75 OCSVM 5.97% 54% 49% 46% 20% 12.31% 22.07% 29.35% 15.27% 20% 8.69% 93%

Best Joint

std=1.25, std=1.5
16.41% 69% 68% 64% 36% 16.92% 44.08% 43.01% 33.33% 36% 27.17% 93%

Table 5.3: Comparison Between Different Defense Methods on ImageNet
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to state-of-art defenses. While on three channel colored image dataset CIFAR-10 our

defense is not competitive compared to other defense approaches. The assumptions

are the differences between adversarial behavior vectors and benign behavior vectors

are minor (Figure 4.8, Figure 4.9), this increases the difficulty for anomaly detection.

On the ImageNet dataset the behavior vectors are not necessarily monotonically de-

creasing while increasing transformation percentages (Figure 4.10, Figure 4.11), this

reduces the utility of using behavior vectors to detect adversarial examples.
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Chapter 6

CONCLUSIONS AND FUTURE WORKS

In this thesis we analyze the adversarial perturbations distribution on L2 and L∞

attacks. We propose a defense against adversarial examples by leveraging the ro-

bustness of benign input to spatial transformations. From our study we found the

aggregated transformation can achieve consistent impact on benign inputs, by learn-

ing this behavior of benign inputs during natural transformation, our defense mecha-

nism achieves similar results compared to state-of-art defenses on small scaled simple

content images like MNIST. Using behavior vectors as a defense can detect anomaly

adversarial inputs on complex colored images in some circumstances, but the detec-

tion rate is not competitive compared to state-of-art defenses.

Due to the significant computation required for generating adversarial examples,

calculating behavior vectors and reproduce defenses, our experiments were limited to

small subsets of database using seed images (100 randomly selected seed images for

each attack). One can argue that by carefully changing the parameters of generating

adversarial examples and exploring a larger dataset, it is possible to generate an

adversarial example that follows the same pattern as averaged benign vectors when

raising transformation intensity. We haven’t validated the performance of our defense

on L0 attacks when the portion of pixels being attacked are limited to smaller ranges.

Because our defense is dependent on random partial transformation, L0 attacks which

only perturb small portion of the images without considering perturbation magnitudes

can potentially increase the variety of adversarial behavior vectors, and lower the

detection rates of our defense. In terms of attack scenarios, our vanilla white-box

attacks haven’t considered potential attacks when attackers are also aware of the
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defenses and trying to bypass the defenses by using an approximation of partial blur,

but such an attack seems hard to formulate. It is possible that an attacker can

bypass the stress test defense by using a differentiable approximation of partial blur

and modification of loss functions to include the anomaly detector model’s loss in the

adversarial generation. In the future, a more comprehensive evaluation would need

to consider such attacks.
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No bot expects the deepcaptcha! introducing immutable adversarial examples,
with applications to captcha generation. IEEE Transactions on Information
Forensics and Security, 12(11):2640–2653, 2017.

[20] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin,
C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Ham-
bardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato,
W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber, and R. Long. Tech-
nical report on the cleverhans v2.1.0 adversarial examples library. arXiv preprint
arXiv:1610.00768, 2018.

[21] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 372–387. IEEE, 2016.

[22] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 582–597. IEEE, 2016.

[23] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition. In bmvc,
volume 1, page 6, 2015.

[24] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer. Deflecting adversarial
attacks with pixel deflection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8571–8580, 2018.

[25] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi. Microsoft
malware classification challenge. arXiv preprint arXiv:1802.10135, 2018.

[26] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving
the pixelcnn with discretized logistic mixture likelihood and other modifications.
arXiv preprint arXiv:1701.05517, 2017.

51



[27] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt.
Support vector method for novelty detection. In Advances in neural information
processing systems, pages 582–588, 2000.

[28] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[29] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial examples
in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

52



APPENDIX A

RAW DATA

53



A.1 Attacks Evaluation

L-p norm Attack L-infinity Success Rate Prediction Confidence

L infinity

FGSM

0.1 12% 82.43%
0.2 51% 77.16%
0.3 91% 68.01%
0.4 100% 70.74%
0.5 99% 79.43%

I-FGSM

0.1 31% 87.35%
0.12 52% 89.47%
0.14 69% 93.91%
0.16 89% 94.08%
0.18 97% 97.27%

PGD

0.1 31% 88.24%
0.12 48% 91.51%
0.14 71% 92.77%
0.16 89% 93.72%
0.18 98% 96.75%

Momentum

0.1 27% 88.10%
0.12 46% 85.37%
0.14 64% 89.87%
0.16 79% 91.54%
0.18 94% 90.58%

DeepFool 0.16 100% 51.07%
Table A.1: Evaluation of L-infinity Attacks on MNIST
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L-p norm Attack L-2 Success Rate Prediction Confidence

L 2

FGM

1 7% 78.2%
2 32% 82.96%
3 47% 78.61%
4 51% 78.94%
5 52% 79.18%

I-FGM

0.5 4% 59.88%
1 19% 90.68%
2 73% 96.52%
3 79% 97.61%
4 79% 98.02%

PGD

0.5 2% 88.24%
1 18% 91.51%
2 77% 96.98%
3 93% 99.87%
4 98% 99.95%

Momentum

0.5 2% 88.10%
1 46% 85.37%
2 76% 89.87%
3 98% 91.54%
4 99% 90.58%

DeepFool 1.88 100% 51.46%
C&W 2.12 97% 48.98%

Table A.2: Evaluation of L-2 Attacks on MNIST
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L-p norm Attack L-infinity Success Rate Prediction Confidence

L infinity

FGM

0.01 47% 71.03%
0.02 77% 76.03%
0.03 89% 79.69%
0.04 97% 78.50%
0.05 100% 78.12%

I-FGM

0.005 30% 61.58%
0.01 59% 80.72%
0.02 95% 92.14%
0.03 100% 96.10%
0.04 100% 96.92%

PGD

0.005 30% 61.72%
0.01 59% 80.70%
0.02 94% 92.30%
0.03 100% 95.98%
0.04 100% 95.36%

Momentum

0.005 29% 62.27%
0.01 58% 80.64%
0.02 90% 92.58%
0.03 100% 93.39%
0.04 100% 95.11%

DeepFool 0.01 100% 54.54%
Table A.3: Evaluation of L-infinity Attacks on CIFAR-10

L-p norm Attack L-2 Success Rate Prediction Confidence

L 2

FGM

0.5 75% 63.29%
1 92% 69.49%

1.5 96% 69.54%
2 96% 69.61%

I-FGM

0.5 78% 85.59%
1 100% 95.86%

1.5 100% 98.29%

PGD

0.5 78% 84.98%
1 100% 94.16%

1.5 100% 97.29%

Momentum

0.5 90% 71.35%
1 92% 61.89%

1.5 92% 52.55%
DeepFool 0.41 100% 54.06%

C&W 0.36 100% 51.15%
Table A.4: Evaluation of L-2 Attacks on CIFAR-10
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L-p norm Attack L-infinity Success Rate Prediction Confidence

L infinity

FGM

0.03 67% 47.54%
0.04 66% 46.00%
0.05 64% 44.70%

I-FGM

0.005 99% 95.40%
0.01 100% 97.61%
0.015 100% 98.68%

PGD

0.005 99% 95.73%
0.01 100% 97.62%
0.015 100% 98.69%

Momentum

0.005 100% 94.11%
0.01 100% 96.45%
0.015 100% 97.87%

DeepFool 0.0014 100% 36.17%
Table A.5: Evaluation of L-infinity Attacks on ImageNet

L-p norm Attack L-2 Success Rate Prediction Confidence

L 2

FGM

0.5 50% 49.82%
1 61% 50.89%

1.5 65% 51.79%

I-FGM

0.5 77% 94.29%
1 93% 88.12%

1.5 95% 87.31%

PGD

0.5 77% 92.12%
1 93% 84.91%

1.5 92% 88.63%

Momentum

0.5 72% 88.92%
1 87% 82.11%

1.5 93% 79.18%
DeepFool 0.36 100% 36.75%

C&W 0.8 91% 57.23%
Table A.6: Evaluation of L-2 Attacks on ImageNet
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