

Accelerometer Test Time Reduction with Machine Learning

by

Nicholas Debeurre

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2019 by the
Graduate Supervisory Committee:

Sule Ozev, Co-Chair

Sarma Vrudhula, Co-Chair
Margaret Kniffin

ARIZONA STATE UNIVERSITY

December 2019

 i

ABSTRACT

With the steady advancement of neural network research, new applications are

continuously emerging. As a tool for test time reduction, neural networks provide a

reliable method of identifying and applying correlations in datasets to speed data

processing. By leveraging the power of a deep neural net, it is possible to record the

motion of an accelerometer in response to an electrical stimulus and correlate the

response with a trim code to reduce the total test time for such sensors. This reduction

can be achieved by replacing traditional trimming methods such as physical shaking or

mathematical models with a neural net that is able to process raw sensor data collected

with the help of a microcontroller. With enough data, the neural net can process the raw

responses in real time to predict the correct trim codes without requiring any additional

information. Though not yet a complete replacement, the method shows promise given

more extensive datasets and industry-level testing and has the potential to disrupt the

current state of testing.

 ii

ACKNOWLEDGMENTS

I would like to acknowledge and thank several amazing individuals who helped me along

the way:

• Professors Ozev and Vrudhula and Peggy Kniffin from NXP, my committee for

this thesis

• Ray, Peter, Brandon, and Peggy, my manager and coworkers from NXP, for their

support, guidance, and encouragement

• Audrey, for her continuing love and support through every late night and early

morning

• My family for encouraging me to take on the challenge of a master’s degree

• Patty Pun, my manager at Qualcomm, for cheering me on from San Diego and for

providing me time and resources to complete my thesis remotely

• Arzuhan, my ASU advisor, for helping me organize all aspects of my degree

This degree is an amazing accomplishment for me and would not have been possible

without help from everyone along the way.

 iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION .. 1

2 PROBLEM BACKGROUND .. 3

3 THE CURRENT APPROACH ... 6

4 THE PROPOSED APPROACH ... 9

5 EXPERIMENT ... 12

 Section 1 – Hardware ... 12

 Section 2 – Data Collection and Correlation ... 14

 Section 3 – Neural Network Composition .. 18

6 RESULTS/DISCUSSION .. 21

REFERENCES ... 23

 iv

LIST OF FIGURES

Figure Page

1. Model Flowcharts .. 11

2. High-Level Hardware Setup ... 14

3. 10 Data Captures ... 17

4. 100 Data Captures ... 17

5. 2000 Data Captures ... 17

6. Mahalanobis Distance of Bitstream Data ... 18

7. Trim Code Distribution ... 24

 1

CHAPTER 1

INTRODUCTION

In the world of semiconductors and electronics, testing individual products prior

to delivery is an integral part of the design and manufacturing process. It is particularly

important for safety-critical applications where final test is a crucial part of insuring that

any product brought to market meets the highest standards of quality. While the

importance of testing is evident to many, it is often overlooked or underestimated when

preparing project specifications, which can lead to delays in product development or

release.

The automotive industry specifically, along with most other transportation

industries, is one of the most safety-critical industries due to the consumer nature of the

products being delivered. It requires extensive testing, above and beyond the normal

testing procedures, to ensure components can be as accurate and reliable as possible. One

needs only to look as far back as the Boeing 737 MAX 8 incidents in October 2018 and

March 2019 to highlight the importance of safety and predictability in the consumer

market [1, 2, 3]. A rushed product lead to a worldwide negative spotlight on Boeing that

hurt their business in the short term and will likely have a lasting impact in terms of

consumer confidence in the long run. While the issue was eventually attributed to

software as opposed to failing sensors, the fallout as a result of the incident is

extraordinarily similar to that of any potential issue and highlights the importance of

proper components in safety-critical systems. To this end, it is imperative that companies

 2

dedicate a significant portion of their time to ensuring that any product brought to market

achieves the highest standards of satisfaction.

Though component testing is a valuable and necessary step, it adds a significant

amount of overhead to the design process. In order to reduce this costly overhead,

companies are always looking for new ways to minimize the overall test time, referred to

as test-time reduction (TTR), while maintaining the high standards for the components

required by customers. This thesis seeks to provide a method that could significantly

reduce test-time during the manufacturing and design process by both removing the

dependence on expensive, specialized machinery while simultaneously reducing the

required test time for any given product. This thesis will focus on TTR for an

accelerometer, but the concepts presented can be expanded to other sensors and products.

 3

CHAPTER 2

PROBLEM BACKGROUND

One of the late-stage tests during the manufacturing process used to ensure

correctness of a component before final testing and release is the final trim code

calculation. The trim code is a calibration metric used to ensure that the sensitivity of the

device being produced is accurate to the designed target values. While there are a number

of trim codes associated with any sensor, the final trim code represents the sensor system

as a whole and is generally used to characterize how well any given sensor performs and

correct the system to the original specifications. Trimming is a necessary step to ensure

that the components behave as designed in the real world. The values that are trimmed

throughout the device can refer to many different factors depending on the device, but for

this project they will refer to sensitivity of the accelerometers used to collect the data.

Though a device is designed to match certain theoretical standards, the manufacturing

process introduces several variations due to differences between the theoretical and

physical worlds. These differences are taken into account at every step in the design

process and are represented overall in the final trim of the part. Like astrophysics, the

differences between the system on paper and in the real world are generally abundant.

Though the theoretical description may be a highly detailed representation of the real

world, it cannot be and will never be perfect. Examples of these variations include silicon

composition differences, microscopic cracks in the silicon, thickness of the silicon, and

the curvature in the silicon among many others. These differences often lead to minute

variations in conductivity or sensitivity, for example, which tend to affect the system on

 4

an extraordinarily small scale. It is not uncommon for the differences in measurements to

be in the micro, pico, or even nano ranges. Though small, these differences can have a

major impact on the system’s performance as a whole and must be taken into account

before the product can be deemed satisfactory.

The traditional and current industry-standard method to trim a consumer-rated

part involves at least one physical movement, though that number usually rises to two,

three, or more in most cases. The number of physical motions that are required to ensure

that the part is trimmed correctly correlates entirely to the requirements of the agencies,

whether public, private, or federal, who govern the systems in which the components will

be placed. With regards to airplane components, for example, the parts that are used in

planes that fly in the United States must meet the minimum requirements as described by

the FAA. The physical movement used to test a component could consist of a shake, flip,

or spin among others and depends entirely on the type of sensor being tested. As stated,

this thesis is testing and focusing solely on accelerometers, so physical shakes are the

only method of physical motion being taken into account. In order to perform a proper

shake, an expensive device that is extensively calibrated to shake parts in a very specific

manner must be used to ensure accuracy and consistency. While there are several issues

introduced by these shakers, one of the overarching issues is the cost of each of these test

platforms. Not only are the machines themselves expensive, but the optional add-ons to

configure the machines, recurring service, both routine an emergency, and a lifetime of

calibrations raises the cost of each of these devices substantially to well over one million

dollars. Like most production costs, these high equipment expenses hurt the gross

 5

margins of the companies that are using them. These costs are then propagated forward to

end customers as a way of recuperating these additional expenditures.

 6

CHAPTER 3

THE CURRENT APPROACH

While working to reduce and ultimately eliminate these high costs, engineers at

NXP Semiconductors working on TTR for various sensor projects developed a method to

test devices without requiring an external shake from a tester. While the idea originated

in 2007, a patent for the idea was granted to NXP in December 2015. Described in US

Patents No. 9,834,438 and No. 9,221,627 titled “Compensation and Calibration of

MEMS Devices,” the method makes use of the responsiveness of the

microelectromechanical system (MEMS) in a device to electromagnetic stimulation in

order to calibrate the parts free from the necessity of physical motion [5, 6]. This method,

upon full implementation and certification, would effectively eliminate the reliance on

expensive shakers. Rather than have a device mechanically shake the part, a known

stimulus can be used to produce the same effect. This stimulus does two things to replace

the tester. First, it recreates the motion produced by the physical shake, thus eliminating

the need for a shaker. Second, it provides a constant pattern with which to move the

MEMS device. This response from that movement can then be correlated to the input

pattern which allows for consistent testing as well as a way to correlate trim codes to

responses. While the tester had previously been responsible for running the tests on the

devices being tested, the machine that costs upwards of one million dollars can be

replaced by a cheap microcontroller (MCU) which costs somewhere in the range of thirty

to sixty dollars depending on the components [8, 9, 10]. Even if multiple MCUs are used

in place of the tester, there is still an astronomical reduction in test cost without even

 7

taking into account the reduced costs associated with TTR. In addition to reducing the

initial cost, multiple MCUs could be used in tandem to parallelize the algorithm, further

reducing the overall cost.

As described in the patent, the current test method consists of three parts: data

collection, measurement collection, and the algorithm to produce the final trim code. The

data is collected using a pseudorandom frequency to stimulate the part. The stimulus is

referred to as pseudorandom because it is meant to replicate a random signal passing

through the part while at the same time being known in order to produce the necessary

correlations. The pattern is known outside of the system which contains the device being

tested and was specifically created in order to cover all corners of the test space. The

pattern must be known outside of the test system for three reasons. First, a correlation of

the data would not be possible for any algorithm without knowing the pattern. Second,

the stimulus for the test system must be identical each time; otherwise, there would be no

way to verify that it is indeed the same without manually creating the signal. Lastly,

without a defined pattern it would be impossible to ensure that all the corners of the test

space are covered during testing. As the part is stimulated by the pseudorandom signal,

the motion of the part as reported by the accelerometer is collected. The data can continue

to be collected for as long as necessary, though there exists a trade-off between accuracy

and test time that must be taken into account. By balancing the amount of data collected

from the part as it reacts to the pseudorandom sequence, the result can be more or less

precise to match customer specifications. Should the tolerance interval be wide enough,

for example, in the case of a cheap sensor used for educational purposes, the amount of

 8

data collected can be reduced which would then reduce both the test time and final cost.

Once data collection is complete, several different measurements of the part are taken to

ensure it is operating properly. Both these measurements and the previously collected raw

data are fed into the algorithm and the resulting value is the expected trim code for the

part. Both this new algorithm and the physical shake yield the same results, which

demonstrates that the current method can be replaced with the method requiring no

physical stimulus. Though current government and industry standards require at least a

single shake for consumer-rated, safety-critical devices in tandem with this method, a

single verification is better than multiple verifications throughout the production process

and could even be removed entirely should this method succeed and pass certifications.

Though the idea for this method came about in 2007 and was later patented in

2015, development of the process is still ongoing. From May 2018 to August 2019, I was

employed at NXP Semiconductors as part of the team working to develop and implement

this algorithm. Prior to my time at NXP, extensive work had been done to tune the

algorithm and prepare the hardware for this groundbreaking technique. My contribution

to the project consisted of the software research and development required to make the

algorithm run on an MCU platform. Though this current method works well, this paper

seeks to further improve the speed and accuracy as well as remove the need to develop an

explicit model of the signal chain for each new component.

 9

CHAPTER 4

THE PROPOSED APPROACH

The goal of this thesis is to replace the current, model-based testing procedure for

accelerometers with a mathematical function derived from a neural net. For the remainder

of this paper, the model-based procedure will be referred to as the model method and the

new method proposed by this thesis will be referred to as the neural net method. While

the model method works well and is already an improvement over the physical testing,

passing large amounts of data through any model takes a significant amount of time and

processing power compared to what could be achieved by using a neural net. While the

model training may take longer than passes through the current mathematical model, the

trained model will only need to do forward propagation which will result in a shorter test

time. The amortized cost of the neural net model compared to the mathematical model

would be lower. Thus, to maximize the throughput of the test suite, the process can be

reduced to two steps: one, collect data based on the response to a pseudorandom stimulus

and, two, feed this response data into a neural net which will produce the expected trim

code. This approach, as well as the current method, can be seen below in Figure 1.

In order for a neural net to be able to generate a trim code and replace the model

method, a correlation must be identified in the data that is collected from all the parts.

This correlation, should it exist, would need to occur between the motion of the part and

the stimulus being applied, whether that stimulus be electromagnetic or physical. Given

that the parts are being trimmed based on the response following a physical motion or

electromagnetic stimulus, it stands to reason that there must indeed exist a correlation in

 10

the parts. While the current method uses a mathematical model to correlate new devices,

the benefit of a neural net would be that it eliminates the need for a defined correlation. It

is sufficient to show that a correlation exists and can be recorded so that the neural net

can be tuned to recognize the response. Once the correlation is proven, the response data

can be used to train the neural net according to the trim codes produced by different

responses. The main time-saving feature with this approach compared to the model-based

approach is that the data does not need to pass through a mathematical model to calculate

the trim code based on the correlation. Because the model takes up 80% - 90% of the

computation time, eliminating that portion would reduce the test time by over 90% - 95%

when compared to the current industry standard. Once the response data is correlated to

the trim code that is produced, the neural net can quickly and easily identify the proper

trim code for any given input data and continue to tune itself when needed. Finally, this

application can be extended to multiple platforms and work for a variety of different

devices. If successfully implemented, this test could save millions of dollars and reduce

test time by 50%-75% or more, in turn increasing the gross margin and reducing the final

cost for the manufacturing companies and their consumers.

 11

Mathematical Model Approach

Neural Net Approach

Fig. 1

 12

CHAPTER 5

EXPERIMENT

Section 1 – Hardware

 While the focus of this thesis is on the creation of a powerful neural net for signal

processing, this experiment used several important pieces of hardware in order to

properly collect data to be used to train and test the neural net. While the hardware setup

described in this paper will be the one used to collect the data, some proprietary details

will be omitted. A similar hardware setup can be used to collect the data in the same

manner. The three key pieces of hardware used were the MCU development platform to

drive the data collection, the socket for the accelerometer, and the accelerometer used.

 The MCU development platform used for this project was the NXP FRDM-K66F

[8, 9]. This particular MCU is the most powerful development platform in this package

currently offered by NXP out of the box. It features a 180 MHz high-performance Arm

Cortex-M4F (MK66FN2M0VMD18) with 2 MB of flash memory and 256 KB of SRAM

[10]. This platform was selected for its high-speed processor, high flash and SRAM

memory capacity, excellent I/O capabilities, and wide range of peripherals. While this

MCU development platform is excellent in terms of the hardware offerings, the lack of

extensive documentation and examples make it a tricky platform with which to work. An

excellent plug-and-play alternative is the Teensy 3.6, which features an identical MCU

save for 1 MB of flash memory instead of the 2 MB offered on the FRDM-K66F [11].

For future projects, the Teensy 3.6 would be the best option as it is easier to program and

use due to its compatibility with the Arduino libraries.

 13

 In conjunction with the MCU development platform was the socket used to

connect with the accelerometer. This particular socket is a proprietary design that belongs

to NXP. The socket enables the accelerometer to connect to the MCU via a SPI

connection and allows access to all the functions of the accelerometer. Additionally, it

provides a level base in which to place the part that allowed the data to be collected

without any noise due to the tilt of the sensor. While not explicitly necessary to

communicate with the sensor, the socket used allows for the contacts on the

accelerometer to be routed to test pins for easy connections. Since the socket is

unavailable externally, it is sufficient to solder the sensor contacts to test pins using a

perfboard.

 Arguably the most important component in the hardware setup, an accelerometer

was chosen for this project due to the simplicity of the design which isolates the motion

to a single axis. The system within the accelerometer contains a mass connected to two

capacitors by springs on either side. As the accelerometer experiences accelerations via

motion, the capacitance in each plate changes depending on the distance from the mass

and can be measured. The result recorded from this motion creates the response. The

accelerometer used for the data collection in this thesis was NXP’s MMA68xx Dual-Axis

SPI Inertial Sensor. According to the data sheet, the MMA68xx is a “SPI-based, 2-axis,

medium-g, over-damped lateral accelerometer for use in automotive airbag systems” [7].

This accelerometer was chosen as it was readily available for testing when I was

employed by NXP. Additionally, while it provides access to any pair of the X, Y, or Z

axes, each axis can be stimulated independently to keep the data processing simple. This

 14

particular accelerometer can be replaced with a similar accelerometer provided that it is

able to provide raw response data to a microcontroller via a SPI connection. The high-

level diagram of the setup can be seen below in Figure 2.

Fig. 2

Section 2 – Data Collection and Correlation

 The most important step in this entire process is the data collection and

correlation. Without proper data, the correlation cannot be defined, and the neural net will

not run properly. In order to collect data properly, it is important to know how the data is

prepared by the accelerometer and read by the MCU. The MCU is connected to the

accelerometer with eight wires: a 5V power line, a ground line, a SPI slave-in line (SIN),

a SPI slave-out line (SOUT), a SPI chip-select line (CS), a SPI clock line (SCLK) and

two digital interrupts. The accelerometer contains two internal, 16-bit data buffers. These

buffers are used to collect the raw data from the motion of the accelerometer. Each of the

two buffers is connected to one of the interrupt pins. As the stimulus is applied to the

accelerometer, the raw data stream fills each of the buffers bit by bit, alternating between

the two as they become full. Once the first buffer is full, the accelerometer triggers the

interrupt associated with it, which tells the MCU to collect the data, and begins to fill the

second buffer. The entire buffer is read as a single 16-bit integer instead of bit by bit in

 15

order to ensure that the read is fast enough. As the data is read by the MCU, the other

buffer is filled with data and triggers the interrupt when complete. This pattern repeats

and must be synchronized in order to ensure proper data collection. Any deviation will

cause the data to be jumbled and unreadable. For each part, 2,000 of these 16-bit raw data

points were captured and the total runtime per accelerometer was about 64 milliseconds.

The stimulus used to collect the data for this thesis is an NXP-proprietary stimulus signal.

 Once the data captures are complete, it is imperative to identify the correlation

between the captured data samples. This correlation is what will link a particular pattern

with a trim code. Because each part is being stimulated in the same manner, it stands to

reason that each part should react in a similar manner. In a perfect world, the response for

each part would be identical as would the resulting trim codes, but miniscule changes in

the structure of each part can cause changes to its behavior. For multiple captures, the

correlation is visually identifiable when plotted. Though not exact, each capture shows a

similar behavior in response to the stimulus. As the number of captures graphed together

increases, the correlation becomes easier to discern. The correlation is shown by the

charts in Figures 3, 4, and 5. The correlation in these figures is a result of raw data as

opposed to the bitstream. Please note that these charts represent a subset of 50 data points

from the indices 700 to 750 out of the original 2,000 data points for readability and that

they show 10, 100, and 2,000 data points respectively. This range was chosen at random

to demonstrate the response of the part in the middle of the stimulus pattern.

 Though the raw data is loosely correlated, it may not be a strong enough

correlation to result in a proper trim code output. The issue lies in the method that the raw

 16

data is collected. Because the data is arbitrarily “chopped” when it is placed in the

buffers, each data point does not necessarily or properly represent the data as a whole.

While the goal is to limit the data pre-processing as much as possible, it may be

necessary in order to accurately reflect the data captured in the response. In order to

correctly represent the data set should the raw data not suffice, each data point can be

converted back into the 16-bit representation and connected to each of the others in a

single stream to recreate the original bitstream. In order to ensure that the data is

correlated with no outliers when it is converted back into a bitstream, the mahalanobis

distance can be calculated between each bitstream in the dataset. The mahalanobis

distance is a unitless metric that provides a way to represent the data as a cluster in order

to easily identify outliers [12]. If the data is correlated, the data should cluster when

graphed. The mahalanobis distance for the neural net input data yielded the graph shown

in Figure 6 below. Please note that this graph represents a random sample of 500 of the

bitstreams compared against each other. Sampling was used to reduce the processing time

of the result and the result represents the dataset as a whole. Based on the correlation of

the raw input data as well as the processed bitstreams, it is clear that the data does indeed

show a correlation that can be used by the neural net.

 17

Fig. 3

Fig. 4

Fig. 5

 18

Fig. 6

Section 3 – Neural Network Composition

 There are many different types of neural nets, from a single node with an

activation function to the incredibly complex deep-learning neural nets with millions of

inputs, layers, nodes, and outputs. Though all these different compositions exist, machine

learning is not an exact science and there is certainly no single solution to solve a given

problem. It takes an incredible amount of patience, endurance, knowledge, and even luck

to find the proper composition.

 For this thesis, a fully connected, deep neural net with a regression model was

used to correlate the sensor data to the trim data. A regression model, as opposed to its

counterpart the classification model, is a technique used in machine learning and, more

broadly, data science to correlate an input to a specific value. A classification model, on

the other hand, categorizes inputs into groups. The composition of this neural net consists

of fifteen inner layers, a single input layer with 2,000 or 32,000 inputs depending on the

type of input, and a single output value. Added to the inner layers were dropout layers to

 19

ensure that the training remained randomized and did not “learn” the input data and

overtrain. For each layer, the rectified linear unit (ReLU) function was used as the

activation function and the Adam Optimizer Algorithm was used with mean-squared

error to train the neural net during the backpropagation step. The ReLU function was

chosen as the activation function because it is able to solve the vanishing gradient

problem [14, 16]. The vanishing gradient, an issue that exists in the sigmoid and tanh

activation functions, occurs because the derivative of the functions for large input

becomes very small due to the curve in the graph of both functions. The sigmoid, tanh,

and ReLU functions are defined by the following equations and graphs:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑:	𝐹(𝑥) =
1

1 + e12

𝑇𝑎𝑛ℎ:	𝐹(𝑥) = max	(𝑥, 0)

𝑅𝑒𝐿𝑈:	𝐹(𝑥) = max	(𝑥, 0)

 20

Additionally, the ReLU function is extremely efficient for computation because it is

nothing more than a simple comparison between the input and zero. Similarly, the Adam

Optimizer algorithm was selected for this neural net because it has been shown to be the

most efficient algorithm for neural net training [15].

 Two different neural net input methods will be examined within the same neural

net to identify which method leads to a stronger output. The first method is to correlate

trim codes using the raw data without first converting the stream back into a bitstream.

The drawback to this method is that the arbitrary chunking previously discussed may

weaken or destroy any existing correlation and lead to binning. Binning is when large

chunks of inputs, or bins, lead to the same result. Should the initial method fail, the

second method is to interpolate the raw data back into the bitstream format and correlate

the data to the trim codes using the bitstream. The trade-off between the two methods is

the processing speed versus the accuracy of the correlation. By not converting the raw

values into a bitstream, the first method would result in a greater TTR than the second by

removing some extra pre-processing. The downside is that the preprocessing may be

necessary in order for the neural net to produce an adequate result. For both of these

methods, the output will be the same: the trim code for the sensor being tested.

 21

CHAPTER 6

RESULTS/DISCUSSION

The main reason behind training the neural net using the raw signals from the

accelerometer was to increase the TTR by reducing the data processing time. By training

a neural net to identify the trim code for an accelerometer based on the raw 16-bit

chunks, approximately 1 second is saved for every 500 to 1000 parts that are trimmed.

While that value is not much on an individual basis, this results in an aggregate TTR of

between 17 and 34 seconds per million parts that are trimmed. This TTR does not take

into account the time saved when switching from the model-based method to the machine

learning method. For a production-level device which will see many millions of parts

tested and trimmed, this is a significant savings.

 After extensive testing, a major flaw presented itself in this hypothesis that

prevented the raw data from properly correlating with the trim codes. Several different

neural network compositions were tested in addition to the 15-layer model described

earlier, but each of them behaved in the same manner. As suspected and previously

discussed, the arbitrary chunking of the response data caused the correlation to become

too weak for the neural net. As the buffers fill and are passed to the MCU, the arbitrary

chunking, while correlated, is not able to properly preserve the signal that is outputted by

the accelerometer. In essence, the chunking is blurring the data. Compounding this is the

fact that there is only a finite distribution of trims codes as shown below in Figure 7.

Since the maximum error between each end of the trim code spectrum from the center is

about 5%, the neural net is training to the exact center of the range of trim codes. In the

 22

worst case, the trim for the part is going to have a 5% error associated with it. While this

does improve over the original maximum 10% error from the mathematical model, it

cannot be a viable replacement because the trim codes are arbitrary. Since every part

comes out with the exact same trim code, there is no way to tell if the part is trimmed

correctly or not. It must then be assumed that they are all trimmed incorrectly, which will

require a shake test to confirm in the best case or a re-trim in the worst.

 Because the raw data did not hold the correlation as hoped, the second method

using the bitstreams for each data capture was tested. While this method did show some

promise, it did not demonstrate enough separation in the output to be considered a

success. As discussed, the neural net with raw data centered the output to the middle of

the trim code distribution during training. Similarly, the bitstream data did begin to show

this pattern as well, although it did not train to the exact same center point. Instead, the

bitstream inputs caused the output trim value to shift slightly for every part instead of

producing the same output for every input. The shift was always on a scale of 101@ or

101A. After discovering the shift in values, both neural networks were retrained, and the

spread of the output values was captured in addition to the output values. While the

model with the raw data as input continued to display the same behavior by outputting

values that had a spread of 0, the net with the bitstream data as input displayed a different

behavior. Instead of returning a spread of 0 for the test data, it showed a spread of 0.001.

After several tests, this spread was consistently in the range 0.001 ≤ 𝑥 ≤ 0.005.

As a follow-up exploration, the number of nodes in each layer was steadily

increased. Beginning with an initial layer size of 2,000 nodes, the inner layers were

 23

modified by increasing the node count by 500 for several tests up to 10,000 nodes. As

more nodes were added, the resulting spread increased from 0.001 up to a maximum of 4.

While not remarkably useful, this does indicate that an increase in nodes should result in

a more robust model that can accurately report the trim code for a particular part. The

downside to this is that the training time becomes exponentially more expensive as more

nodes are added. By 10,000 nodes per layer, the total number of trainable nodes in the

model becomes roughly 1.8 billion, increasing the training time to approximately eight

hours. Further tests were not possible due to limitations in computing resources that

caused the training to crash.

The behavior exhibited by the neural provided some useful insights. Given that

this was a black box approach to trimming sensors where a correlation does indeed exist,

a large and complex enough network would theoretically eventually solve this problem.

By inputting a more targeted input with additional parameters that better describe the

accelerometer, the neural net would likely be much smaller than the final model produced

for this thesis.

 If this experiment were to be continued, future tests should attempt to further

separate the neural network output by increasing the number of nodes per layer. A good

starting point would be 32,000 nodes per layer, which would raise the total number of

weighted connections between layers to over 1 billion connections. Additionally, it would

be useful to reduce the number of bitstream data points to pass into the net as well as

identify other parameters that may aid in the training. Giving the model a starting value

may aid in the training by providing an estimate that the model can use to decide the

 24

initial weights instead of blindly guessing and checking. Lastly, an alternative solution

could be to train a separate classification model to recognize different trim codes. Since

the number of possible trim codes is finite, the accelerometer trim codes could be

determined by passing each response through a classification network in parallel. Each

model can provide a percentage estimate of the correlation to the particular trim code to

which the model is tuned. Though training may take some time and computing resources

may come at a cost as well, the TTR should be similar to what could be achieved by

trimming the parts directly with a regression model. In conclusion, though not a total

success, this method of trimming accelerometers shows promise as a new avenue to

explore for production TTR as well as providing yet another application to the growing

list of existing machine learning applications.

Fig. 7

 25

REFERENCES

[1] Ellis, Ralph. “Experts Say There Were Similarities in the Ethiopian Airlines and the
Lion Air Crashes. What Were They?” CNN, Cable News Network, 4 Apr. 2019,
www.cnn.com/2019/03/18/world/boeing-737-crashes-
similarities/index.html&xid=17259,15700002,15700022,15700186,15700190,15700256,
15700259,15700262.

[2] Frankel, Todd C. “Sensor Cited as Potential Factor in Boeing Crashes Draws
Scrutiny.” The Washington Post, WP Company, 17 Mar. 2019,
www.washingtonpost.com/business/economy/sensor-cited-as-potential-factor-in-boeing-
crashes-draws-scrutiny/2019/03/17/5ecf0b0e-4682-11e9-aaf8-
4512a6fe3439_story.html?utm_term=.c5111020f2b6.

[3] Gates, Dominic. “How Much Was Pilot Error a Factor in the Boeing 737 MAX
Crashes?” The Seattle Times, The Seattle Times Company, 15 May 2019,
www.seattletimes.com/business/boeing-aerospace/how-much-was-pilot-error-a-factor-in-
the-boeing-737-max-crashes/.

[4] Dar, Tehmoor M, et al. (2017). US Patent No. 9,834,438.
https://patentimages.storage.googleapis.com/b9/0f/bc/0edb1063256c46/US9834438.pdf.

[5] Dar, Tehmoor M, et al. (2015). US Patent No. 9,221,679.
https://patentimages.storage.googleapis.com/1f/fb/c8/c355647a02cf79/US9221679.pdf.

[6] Chatterjee, Soham. “Good Data and Machine Learning.” Medium, Towards Data
Science, 14 Oct. 2018, https://towardsdatascience.com/data-correlation-can-make-or-
break-your-machine-learning-project-82ee11039cc9.

[7] MMA68xx, Dual-Axis SPI Inertial Sensor. https://www.nxp.com/docs/en/data-
sheet/MMA68xx.pdf.

[8] FRDM-K66F: Freedom Development Platform for Kinetis® K66, K65, and K26
MCUs. https://www.nxp.com/design/development-boards/freedom-development-
boards/mcu-boards/freedom-development-platform-for-kinetis-k66-k65-and-k26-
mcus:FRDM-K66F.

[9] Kinetis K66: 180MHz Cortex-M4F MCU, 2MB Flash, 256KB SRAM, Dual USBs (FS
HS), Ethernet, 144-MAPBGA. https://www.nxp.com/part/MK66FN2M0VMD18

[10] Kinetis K66 Sub-Family 180 MHz ARM® Cortex®-M4F Microcontroller.
https://www.nxp.com/docs/en/data-sheet/K66P144M180SF5V2.pdf

 26

[11] Teensy 3.6 without Headers.
https://www.adafruit.com/product/3266?gclid=EAIaIQobChMI2KPNk7-
N5QIVYh6tBh2Z4g3eEAQYASABEgJ8yPD_BwE

[12] “Mahalanobis Distance.” Wikipedia, Wikimedia Foundation, 20 Aug. 2019,
https://en.wikipedia.org/wiki/Mahalanobis_distance.

[13] Ma'amari, Mohammed. “Deep Neural Networks for Regression Problems.” Medium,
Towards Data Science, 25 Oct. 2018, https://towardsdatascience.com/deep-neural-
networks-for-regression-problems-81321897ca33.

[14] Brownlee, Jason. “A Gentle Introduction to the Rectified Linear Unit
(ReLU).” Machine Learning Mastery, 6 Aug. 2019,
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-
learning-neural-networks/.

[15] Brownlee, Jason. “Gentle Introduction to the Adam Optimization Algorithm for
Deep Learning.” Machine Learning Mastery, 6 Aug. 2019,
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/.

[16] Arora, et al. “Understanding Deep Neural Networks with Rectified Linear
Units.” ArXiv.org, 28 Feb. 2018, https://arxiv.org/abs/1611.01491.

