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ABSTRACT

Social media bot detection has been a signature challenge in recent years in online

social networks. Many scholars agree that the bot detection problem has become an

“arms race” between malicious actors, who seek to create bots to influence opinion on

these networks, and the social media platforms to remove these accounts. Despite this

acknowledged issue, bot presence continues to remain on social media networks. So, it

has now become necessary to monitor different bots over time to identify changes in

their activities or domain. Since monitoring individual accounts is not feasible, because

the bots may get suspended or deleted, bots should be observed in smaller groups,

based on their characteristics, as types. Yet, most of the existing research on social

media bot detection is focused on labeling bot accounts by only distinguishing them

from human accounts and may ignore differences between individual bot accounts.

The consideration of these bots’ types may be the best solution for researchers and

social media companies alike as it is in both of their best interests to study these

types separately. However, up until this point, bot categorization has only been

theorized or done manually. Thus, the goal of this research is to automate this

process of grouping bots by their respective types. To accomplish this goal, the author

experimentally demonstrates that it is possible to use unsupervised machine learning

to categorize bots into types based on the proposed typology by creating an aggregated

dataset, subsequent to determining that the accounts within are bots, and utilizing

an existing typology for bots. Having the ability to differentiate between types of

bots automatically will allow social media experts to analyze bot activity, from a new

perspective, on a more granular level. This way, researchers can identify patterns

related to a given bot type’s behaviors over time and determine if certain detection

methods are more viable for that type.
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Chapter 1

INTRODUCTION

One of the most challenging aspects about social media bot detection is that

bots are evolving and deviating from their previous behaviors to avoid detection by

state-of-the-art detection methods [13]. To add to this field of research, it would

be interesting to examine the types of bots that are present on these social media

networks. Then, an individual type of bot can be singled out and analyzed, and

detection methods will become stronger as a whole given this additional information.

What is a type of bot? These types are defined as groups of automated accounts

that share some common combination of features, behaviors, structure, and networks.

Thus, a type can be as ambiguous or as specific as a researcher wants. Take dormant

bots for instance. Basically any bot on a social media network who has not interacted

with other users for some time may be considered dormant. On the contrary, bots

such as weather bots should only include accounts whose sole purpose is to post about

the weather. Other examples of types of bots from previous proposed frameworks

include spambots, chatbots, social bots, and sockpuppets [15]. Some other researchers

have asserted that bots can be either malicious or benign [22]. For example, chatbots

which are helpful bots that can serve as a company representative to interact with

potential customers, may be labeled as benign. Most typologies provide an overview

of possible types of bots but fail to answer the question of: how many types can

exist within a given domain? Furthermore, do different types of bots require different

detection methods? Is it possible to detect multiple types of bots in existing labeled

datasets without prior knowledge of those bots’ presence?
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Almost all of the existing research on social media bot detection is focused on

removing all bot accounts, regardless of their intent, the unique features of the accounts,

or the domain where these bots are present. Moreover, most approaches focus solely on

detecting bots within a distinct dataset and then training new models to fit successive

datasets. What happens if there are more than one type of bots present in these

datasets or if another dataset does not contain these types? If so, are these bots

connected? If not, why are only certain types of bots prevalent in certain domains?

To start answering these questions, there has been some recent research performed

which cites different types of bots and the topic discussions these bots participate in

[15, 20, 27]. That research suggests categorizing all bots together and removing them

from the social media platform, without the consideration of the type of bot, is not

the best solution. This raises the following questions: Is it possible to group bots by

their different types instead of generalizing them into a single bot category? If so, is

there a way to do this without using manual annotation as has been the case in most

previous research [15, 22, 27]? As most other research is focused on detecting a single

type of bots in a given domain, how can previous works be expanded to encompass

multiple types of bots or bots of the same type but in different domains?

While most existing works focus on only detecting one type of bots within a given

dataset, there could be more than one type of bot present in that domain. It would be

nice to group these bots by type while doing bot detection. However, as there is almost

no research on comparing bot types while doing bot detection to distinguish between

automated accounts and humans, this research will focus solely on bot categorizing

bot accounts separately using a previous typology on bots. Therefore, the aim of this

research is to identify types of bots in a dataset subsequent to determining that the

accounts are bots. As such, the social network chosen for this research was Twitter
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due to the high volume of existing research on the social media platform and the

large availability of data. This research presents a methodology to categorize bots

into types automatically using unsupervised machine learning. Having the ability

to differentiate between types of bots automatically, could not only make existing

bot detection methods more efficient, as it would allow social media companies to

only remove certain types of bots which harm human users, it will also ensure helpful

bots can continue to exist. After bots have been categorized into types, social media

experts will be able to analyze bot activity on a more individual level and identify

patterns related to their behaviors. Additionally, the ability to separate bots into

types will allow future researchers to track changes to specific types of bots over time

and determine if certain detection methods are more viable for any given type.

The rest of this work is organized as follows. Chapter 2 summarizes previously

published works on types of bots and unsupervised machine learning for bot detection.

Then, Chapter 3 describes the datasets used in this study; how they were collected,

what they contain, and the reasons for choosing each dataset. Next, Chapter 4 first

presents a methodology for bot type categorization then introduces the unsupervised

machine learning algorithms used for the experiments and the related metrics necessary

to evaluate the clusters obtained by these algorithms. Following that, Chapter 5

showcases the experimental results and analysis culminating in the discovery of types

of bots based on a previous typology. Finally, Chapter 6 reviews the contributions of

this work and provides a future direction for other researchers interested in this topic.
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Chapter 2

RELATED WORK

This chapter presents the existing work on both types of bots and unsupervised

machine learning for bot detection. Section 2.1 will summarize all of the previous

works that have attempted to categorize bot accounts or create bot typologies. Then,

since limited research has been done on addressing the problem of types of bots using

machine learning, unsupervised machine learning works presented that are not specific

to determining types of bots are addressed in Section 2.2. This unsupervised learning

research is still relevant to consider since the methodology used in this paper is similar

to a multi-class case of bot detection. The important takeaways from Section 2.2 are

the features used by previous unsupervised machine learning methods and the rational

for using this approach for bot detection.

2.1 Types of Bots

Recently, there has been a big increase in the literature on the types of bots that

exist on social media. Of these, Gorwa and Guilbeault [15] present one of the most

cumulative works. Yet, their work is more of an overview of the research area than

new methods to solve these problems. In their work, the authors identify some of

the weaknesses of existing bot categorization efforts and present a new typology of

bots. This typology lists bots within six distinct categories: ‘Web Robots’, Chatbots,

Spambots, Social Bots, Sockpuppets and Trolls, and Cyborgs and Hybrid Accounts.

Additionally, Gorwa and Guilbeault present a framework to categorize bot accounts
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into their typology based on three considerations: structure, functionality, and ethics.

They emphasize that identifying the structure of the bot can be done by observing

how it works and the domain it operates in. Similarly, they examine the functional

capabilities of the bot by checking if it appears to engage in conversation with other

users. The authors determine the bot’s ethics by evaluating the intent or social impact

of the bot. While the Gorwa and Guilbeault framework seems very inclusive, the

real-world application of their work is limited as the authors did not explicitly mention

any data examples of bots in their work.

Another recent work which discusses types of bots is Yang et al. [27]. In their

work, the authors admit that bots can be categorized based on their characteristics,

domain, and features. There, like the Gorwa and Guilbeault typology, bots can

be grouped into types as either simple bots, sophisticated bots, fake followers, or

botnets based on these characteristics. Yang et al. also mention that it is possible to

distinguish between bots based on the domain that they are present in; for example

health, politics, fake news, or terrorism. In addition, the authors include a section

on traditional bot detection as they identify six features that help to discern bots

from human accounts. These features consisted of user metadata, friend metadata,

retweet/mention network structure, content and language, sentiment, and temporal

features. Despite including this categorization of bot types in their work, Yang et al.

do not explicitly label bots by type and only use dataset labels from previous research

to identify bot type. However, since the authors provided a good description of each

type of bots, their work is more reproducible than the work by Gorwa and Guilbeault.

Others that ponder this question of how to categorize bots include Stieglitz et

al. [22] and Lee et al. [17]. In the work by Stieglitz et al., the authors combined two

previous works to form a two-dimensional framework for bot categorization that has
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intent (measured as ternary values: malicious, neutral, or benign) as one dimension

and imitation of human behavior (measured as binary values: low to none or high) as

the other. The main weakness of their categorization is that the authors manually

chose where to place each type of bot in their chart rather than using metrics to

determine the values. Contrarily, the work by Lee et al., which was primarily a dataset

paper, included a section where they used Expectation Maximization to organize bot

accounts into categories of duplicate spammers, duplicate @ Spammers, malicious

promoters, and friend infiltrators [17]. While this was a promising start, Lee et al.

mentioned that there were probably more types of bots within their dataset but did

not elaborate on how to interpret these other types [17].

Furthermore, there have been several works which address “evolving bots”. While

these papers do not explicitly mention about types of bots, it can be conjectured

that the evolved bots have some noticeable differences (since bots have become

increasingly more sophisticated to keep up with improved detection methods) from

their previous counterparts. Thus, some of these works also mention features that

help differentiate between older and newer bots. One such paper that examined

evolving twitter spammers, Yang et al. [26], identified some trends of newer spambots

which avoid detection by: having more followers, posting more tweets, mixing spam

messages with normal tweets, and posting heterogeneous tweets. They propose using

multiple groups of features to detect these evolved bots such as: graph-based features

including betweenness centrality and bidirectional links ratio, neighbor-based features

like average neighbors’ followers or tweets, and automation-based features like API

ratio and API tweet similarity. Another paper focused on evolving bots by Cresci et

al. [10] labels bots as social bots, traditional spambots, and fake follower accounts,

with social bots being the most evolved type of bot. In that study, the authors
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performed experiments to determine if Twitter was capable of removing these evolved

bots, if humans could discern between the newer bot and human accounts, and if

state-of-the-art machine learning techniques could spot these updated bots. Their

results show that the evolved bots are much harder to detect now than in the past.

In closing, there have been many different typologies of bots presented to date.

Each typology has a slightly different idea as to what constitutes a bot belonging

to any one given type. For example, some typologies categorize based on account

features and some group solely based on the intent and behavior of bot accounts. Yet,

most of the typologies agree that there are at least three major types of bots namely:

simple or spam bots, sophisticated or social bots, and some flavor of fake follower or

friend infiltrator bots. The main limitation of the previously proposed frameworks is

that all of the typologies presented have done little besides theorizing these types or

doing some manual annotation to apply these typologies to real-world data. Therefore,

there should be a methodology to automatically categorize bots into types which will

promote further research in this area.

2.2 Unsupervised Learning for Bot Detection

Unsupervised machine learning is used for bot detection because it does not rely

on having “ground-truth data” – a labeled set of bot accounts provided by direct

observation – prior to training. Most bot detection using unsupervised machine

learning works by clustering accounts based on their features (i.e. profile information,

tweet content, etc.). Clustering can be done using many methods, but most algorithms

utilize some sort of distance measure to compare features. Researchers hope that the

clusters obtained from these unsupervised machine learning models are differentiated
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based on the features and make an assumption that the features are capable of

confirming whether an account is a bot or a human. Unsurprisingly, these features,

such as the percentage of retweets over total tweets, are indicative of bot activity [14].

While unsupervised bot detection methods are usually used for detecting large groups

of bots, there is limited research on identifying individual bots using this learning

technique. The biggest issue with using unsupervised learning for bot detection is

determining how to validate the model. Existing bot detection algorithms that use

unsupervised machine learning cannot evaluate the effectiveness of their methods the

same way that traditional supervised methods using ground-truth data can. Therefore,

previous works attempt to show their effectiveness by using these traditional supervised

learning algorithms to detect bots discovered by their models. Since this evaluation

still uses supervision to confirm the results of the unsupervised method, it is still

bound by the limitations of supervised learning.

The following subsections present some unsupervised machine learning methods

that have been previously used in the field of bot detection. For the sake of comparing

bot detection approaches, the approaches are separated into two main methods of

unsupervised bot detection: group-based methods which are discussed in Section

2.2.1 and individual-based methods presented in Section 2.2.2. The main distinction

between the two methods is that group-based methods work by finding groups of

accounts that are likely to have coordinated with one another, as is in the case of

botnets, whereas individual methods compare accounts with one another directly.

Therefore, the proposed methodology of this work is more similar to an individual-

based method since it relies on having a predetermined set of bot accounts and does

not account for coordination, but differs in that all of the methods below are focused

on strictly separating bots and humans accounts rather than categorizing bots.
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2.2.1 Group-based Methods

Group-based unsupervised machine learning bot detection approaches are based on

the assumption that bots are most effective when they are implemented as coordinated

groups working together to achieve a common goal. This coordination imposes some

inherent similarities between the bots in terms of the accounts’ profile information,

posting behaviors, and activity patterns. Using this assumption, Chavoshi et al. [6]

proposed a method to detect bots based on which groups of users have activities that

are abnormally aligned. In their work, the authors estimate the probability that two

or more users in a group of users tweet or retweet in a window of some w seconds

from each other during an hour. They show that for users who have at least 40

tweets in an hour, the probability that two human users share these same activities

is nearly zero. Chavoshi et al. [5] then expanded their work to create a lag-sensitive

hashing method to find groups of bots based on the similarity of their actions over time.

Another group-based unsupervised bot detection approach includes monitoring specific

shortened URLs included in the tweet text to determine if multiple users post the

same links [7]. Likewise, another work groups users by their interactions, hash-tagging,

and URL utilization [1]. Finally, a recent work represents users as DNA-like sequences

of tweeting activity patterns and then observes the Longest Common Subsequence

length in order to group similar accounts together [9]. While all of the group-based

methods show promising results for bot detection tasks, it is unknown how well these

methods perform on bots that are not coordinated.
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2.2.2 Individual-based Methods

Contrary to group-based unsupervised learning methods, individual-based methods

attempt to focus on unknown patterns in the data rather than learning the network

structure or discovering explicit coordination. Thus, there are several methods which

seek to detect individual bots. These methods attempt to learn the difference between

bot and human users on some datasets where researchers already know the labels.

For example, one of the first works on this topic, Zhang and Paxson [28], attempted

to detect bots using differences between observed human and bot tweeting patterns.

Their method involved looking at the minute-of-the-hour and second-of-the-minute

differences of tweeting timestamps and grouped accounts based on the distributions

of each. More recently, Chino et al. [8] proposed a method called VolTime that is a

generative model based on the inter-arrival time and volume of activities. Another

recently proposed method, BotWalk [18], works by generating a representation of each

social media user by four feature categories and then using four unsupervised anomaly

detection algorithms to give each user an overall anomaly score.
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Chapter 3

DATA

Table 1. Statistics of the datasets used in this study
Property / Dataset Caverlee 2011 Morstatter 2016 Cresci 2017

Authors Lee et al. [17] Morstatter et al. [19] Cresci et al. [10]

Tweets 5,613,166 332,475 6,637,615

Retweets 197,850 96,796 836,646

Human Accounts 19,252 2,166 2,167

Bot Accounts 20,601 2,029 9,114

Bots Still Active 14,321 1,952 5,813

Bot Ratio 51.69% 48.37% 81.33%

Labeling Approach Honeypot Honeypot Manual

To analyze the behavior and characteristics of different types of bot accounts,

the first step is to obtain a set of bot accounts. Therefore, this research utilizes

three existing labeled datasets represented in Table 1 to show that the proposed

model is robust with respect to the language, topic, time, and labeling mechanism.

The methodology proposed in this paper attempts to categorize types of bots within

these datasets by first aggregating them. Then unsupervised learning is used to

find commonalities between accounts across each of the datasets, although it may

be feasible to find different types of bots within a single dataset as well. While the

original datasets contained human accounts, these accounts were not used in this

study since the focus is on categorizing types of bots. So, in future work, it should be

sufficient to obtain a set of bot accounts without collecting a parallel set of human

account, which is typical of most bot detection datasets, and still categorize those

bots into types. The following sections describe how each of these raw datasets were

collected and what they contain.
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3.1 Morstatter 2016 Dataset

The first dataset is a honeypot dataset collected by Morstatter et al. [19]. The

dataset contains tweets in both Arabic and English. It was collected using a network

of nine honeypot accounts which tweeted Arabic phrases in addition to randomly

following and retweeting each other. Any user who followed a honeypot account was

considered a bot because the honeypots were designed to exhibit sporadic behaviors

that provided no intelligent information to humans. The original data collection

occurred between February 3rd, 2011, and February 21st, 2013, but the dataset was

re-crawled using the tweet IDs shared by the original authors in August 2018 and

again in October 2019. This dataset is referred to as 2016 because that was when

the work was published. It is interesting to note that of the original 2,029 bots in

the dataset, only 77 of those accounts have been removed from Twitter; with 57

being suspended and the other 20 deleted. Thus, this dataset contains somewhat

inconspicuous bots, since these bots have yet to be removed from the network in over

five years. However, since only some of the tweets in this dataset are in English, the

authors of this work feel that it is necessary to include another dataset such as the

one in the next subsection whose text corpus spanned more of the English language.

3.2 Caverlee 2011 Dataset

The second dataset used was the Social Honeypot Dataset [17], or the “Caverlee

2011” dataset in this work. This dataset was chosen because it is one of the most

commonly cited ground-truth bot datasets across existing bot detection literature [11,

23]. Moreover, this dataset is significantly larger than other labeled bot datasets, so

12



it provides an opportunity to see if the models can adapt to this scale. The original

authors of the dataset, Lee et al., collected it using 60 social honeypot accounts [17].

Their honeypot accounts lured bot accounts by posting four different tweet variations

including tweets with text, web URLs, “@” replies or mentions, and current trending

topics on Twitter [17]. Similarly to the Arabic Honeypot Dataset collection, these

honeypot accounts were intentionally designed to avoid interactions with real human

users so they only mentioned other honeypot accounts in their tweets. The original

authors’ intuitions were that, “given the behavior of the social honeypot accounts,

there is no reason for a user who is not in violation of Twitter’s rules to be tempted

to message or follow them” [17]. The social honeypot system ran from December 30,

2009, to August 2, 2010, after which it had attracted over 20,000 seemingly automated

accounts. All of these 20,000 plus accounts had followed at least one honeypot account

and were active for at least two hours on Twitter [17]. Collecting the 200 most recent

tweets for each user yielded 2,353,473 tweets from these bots. When recrawled in

October 2019, 4,716 of this dataset’s bots had been suspended by Twitter.

Although this dataset is very thorough since it contains the largest single corpus

of bot accounts to date, it is relatively (over 8 years) old now. Moreover, it could be

hypothesized that current-day social bots have since evolved beyond traditional bot

behaviors to more closely mimic human account characteristics and avoid existing bot

detection methods. Therefore, this study includes a more recent dataset in the next

subsection to attempt to combat these bot adaptations.
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3.3 Cresci 2017 Dataset

The third dataset in this study combines multiple small datasets introduced by

Cresci et al. [10] in their previous work on detecting social spambots on Twitter. The

small datasets included in this “Cresci 2017” dataset are labeled as: Fake Followers,

Genuine Accounts, Social Spambots #1, Social Spambots #2, Social Spambots #3,

and Traditional Spambots #1, in the original work [10]. To give further insight

into these datasets, the following is a summary on what type of bots each dataset

contains. Social Spambots #1 contains social bots that were discovered during the

2014 Mayoral election in Rome, Italy, which were used to retweet a candidate within

minutes of his original posting. Social Spambots #2 are social bots that promoted a

hashtag, #TALNTS, which advertised a mobile phone application. Social Spambots #3

includes social bots that advertised products on Amazon.com by deceitfully spamming

URLs which point to the products. Traditional Spambots #1 are 1000 bots that

tweet malicious links and were captured using a honeypot. The Fake Followers small

dataset is bot accounts purchased in April 2013 on fastfollowerz.com, intertwitter.com,

and twittertechnology.com. All of the bot accounts were collected manually by the

original authors. Combined there are 9,114 total bots between those datasets that are

represented in this “Cresci 2017” dataset.

Table 2. Cresci 2017 Dataset breakdown
Sub-Dataset Accounts Bot Description

Fake Followers 3202 Purchased in April 2013 on sites such as fastfollowerz.com

Social Spambots #1 994 Found during the 2014 Rome Mayoral election

Social Spambots #2 3457 Found promoting #TALNTS, a mobile phone appication

Social Spambots #3 464 Found advertising products available on Amazon.com

Traditional Spambots #1 1000 Captured using a honeypot that tweet malicious links

Total bots 9114
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Chapter 4

METHOD

As described in Chapter 3, the first step to categorize bots by type is to obtain a

set of bot accounts to analyze. But, since bot detection is not a contribution of this

research, this process has been omitted in favor of using existing datasets to simulate

this step. To this aim, this research utilizes the previously labeled Twitter bot datasets

mentioned in Chapter 3. It should be noted that in the application of this work in

the future, any state-of-the-art bot detection methods such as Indiana University’s

Botometer [11] can be used to obtain a set of bots prior to categorizing the bots

into types. Because this method requires that some bots be previously labeled or

discovered, it can be considered a weakly-supervised approach. However, the method

can be fully unsupervised if unsupervised bot detection, as described in Section 2.2, is

used instead of a supervised machine learning algorithm to find bots. Once a set of

bot accounts has been obtained, features will need to be selected based on a given bot

typology. Section 4.1 of this work describes such a typology used in previous research.

Then, Section 4.2 specifies how the raw data from Chapter 3 was preprocessed using

content-based feature extraction methods. After the features have been extracted

in accordance with a given typology, an unsupervised clustering algorithm is run

successively. Each run will modify the number of clusters the algorithm uses until it

can be mathematically shown that each clustering contains accounts with different

properties. (Unsupervised algorithms are listed in Section 4.3 and the metrics used

to select this number of clusters are discussed in Section 4.4). Then, each clusters’

properties can be used to identify types of bots according to the original typology.
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However, in cases when it cannot be shown that there are different types of bots in

the clusters, it may be possible that these clusters yield similar types of bots but

show distinct domains that they participate in even within a single dataset. This

explanation will still provide a better insight into the role that these bots play and

where they exist. Thus, this methodology can be considered “automated” since bot

types are assigned algorithmically.

4.1 Bot Typology

This research uses a typology of bots presented by Yang et al. [27] as previously

discussed in Section 2.1. However, the methodology presented in this research can be

applied on top of any typology, assuming that the chosen typology has a framework

which correlates bot features to given bot types. Most likely there may be other types

of bots in a given dataset, but the following types outline a baseline for future work

on bot categorization.

• Simple Bots : As Yang et al. note in their typology, these bot accounts only post

content automatically [27]. Thus, simple bots are the most common example

of bots on social networks, in large part, due to their obvious bot behaviors.

They usually have generic profile information, low numbers of followers and high

numbers of friends, and many tweets which contain URL links. These URLs

link users to external content that the creators of the bot accounts would like to

promote. Sometimes these simple bots will utilize hashtags or mentions to make

their URL links more visible. But the main indication of this type of bot is the

large quantity of posts and the evident bot-like behavior of their posts.
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• Sophisticated Bots : This type of bot exploits retweets, mentions, and hashtags

in an effort to associate with humans. In the Yang et al. typology of bots, the

authors note, “[sophisticated] bots can identify and generate appropriate content

around specific topics to gain trust and attention from people interested in those

topics” [27]. Sophisticated bots may appear to be human, but often push some

unknown agenda through retweets or URLs.

• Fake Follower Bots : These bots seek to inflate the popularity of some tweet or

user in order to lend credibility to that user. This can be done by increasing the

follower count of the target users and by liking the target users’ tweets. These

bots may attempt to evade bot detection methods by random posting content

and often avoid posting many tweets with mentions, URLs, or hashtags.

• Botnets: The final category of bots in the typology proposed by Yang et al.,

botnets are groups of bot accounts that use coordination to interact with each

other. Botnets are often used to amplify certain tweets by human authors

to make them seem more popular. Since detecting botnets usually requires

knowledge about the graph structure of a given network, this type is excluded

from this research in favor of categories that can be found without this knowledge.

4.2 Feature Extraction

Following the assumption that bot accounts are usually created to serve specific

purposes, their tweet content can be a strong indicator to expose such potentially

automated accounts [19]. As such, this work selects certain content-based features that

are indicative of specific types of bots presented by Yang et al. [27]. For example, one

feature included is the percentage of retweets as compared to all tweets. This metric
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would be 0 if none of the tweets were retweets for a given user, a decimal between 0

and 1 depending on the frequency of retweets, and 1 if every tweet in the user’s last

200 were retweets. This feature can be used to identify sophisticated bots since it

allows a bot to easily copy what others have said in order to gain popularity on the

network. Similarly, the percentage of mentions, percentage of URLs, and percentage

of hashtags were all calculated. Furthermore, the utilization of mentions, URLs, and

hashtags were determined by comparing the number of each to the total number of

words tweeted by the user. Mentioning others is another way that sophisticated bots

interact with human users on the network, URLs allow simple bots to promote a

product or service, and hashtags have an amplifying effect to both bots.

Then, as an additional content-based feature, the author used latent Dirichlet

allocation (LDA) [3] to determine if there was any topic significance within the data.

LDA, which treats each document as a distribution over topics and where each topic

is a combination of the vocabulary in the dataset, was previously proven useful for

extracting latent semantics of documents [23]. In this work, each user is considered

one document and the content of that document is the user’s tweets (note due to

Twitter’s API rate limit this is a maximum of the 200 latest tweets per user). Thus,

the LDA model can show the a topic distribution of each user meaning that it can

determine which topics a user is most interested in. The assumption is that, since bots

are naturally more interested in certain topics, denoting each account as a distribution

over different topics may help to better identify these bots’ intent. A separate LDA

model was created for each dataset described in the previous section as well as a

model that combined the three datasets together. This research includes the LDA

topic probability features in order to determine if all the bots in the data operate

within the same domain, or set of topics, on the network.
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Table 3. List of extracted features
Feature Formula Type of Bots

Topic Probabilities Generated using LDA model with 200 topics –

Retweet %
# of tweets that are retweets

total # of tweets
Sophisticated bots

Hashtag %
# of tweets that contain at least 1 hashtag

total # of tweets
Sophisticated bots

Hashtag Utilization
total # of hashtags

total # of words in all tweets
Sophisticated bots

Mention %
# of tweets that contain at least 1 user mention

total # of tweets
Sophisticated bots

Mention Utilization
total # of mentions

total # of words in all tweets
Sophisticated bots

URL %
# of tweets that contain at least 1 URL

total # of tweets
Simple bots

URL Utilization
total # of URLs

total # of words in all tweets
Simple bots

A complete list of the features used in this study is shown in Table 3 along with the

corresponding type of bots that this feature may be indicative of.

Table 4. Comparison of unsupervised clustering algorithms
Algorithm Parameters Distance Measure Use Case

k-Means++ Number of clusters Squared Euclidean

General purpose,

Even cluster size,

Not many clusters

Gaussian Mixture Models
Number of clusters

or distance threshold
Mahalanobis

Good for density

estimation

Ward Hierarchical Clustering Many Euclidean

Many clusters,

possibly connected

clusters

Table 4 compares the unsupervised clustering algorithms described in Section 4.3.
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4.3 Unsupervised Clustering Algorithms

The following unsupervised cluster algorithms were utilized for this study. All of

the algorithms were implemented in Python 3 using the Scikit-Learn package.

• k-Means++ [2]: The traditional k -Means algorithm is widely used for general

purpose clustering tasks. The goal of the algorithm is to choose some k cluster

centers such that the centers minimize the sum of the squared distances between

each point and its closest center [2]. One of the drawbacks on k -Means is that is

converges to a local minimum instead of the global minimum, since the cluster

centers are randomly initialized. k -Means++ attempts to mitigate this risk

by calculating a more precise starting configuration prior to training. This

algorithm will be referred to simply as k -Means moving forward in this study.

• Gaussian Mixture Models [24]: A Gaussian mixture model is a probabilistic

model that assumes all the data points are generated from a mixture of a finite

number of Gaussian distributions with unknown parameters. One can think of

mixture models as generalizing k -Means clustering to incorporate information

about the covariance structure of the data as well as the centers of the latent

Gaussians. This algorithm was chosen because it does not use a Euclidean

distance measure as k -Means does.

• Ward Hierarchical Clustering [25]: This algorithm is a general agglomerative

hierarchical clustering procedure, where the criterion for choosing the pair of

clusters to merge at each step is based on the optimal value of an objective

function. In this work, the objective function sought to minimize the variance

of the clusters being merged. Ward hierarchical clustering may be capable of

detecting more structure within the data than the other algorithms.

20



4.4 Metrics for Unsupervised Cluster Evaluation

In order to solve the problem of determining which types of bots are found within

a given dataset, first, one can determine how many different types of bots exist in

that dataset. An empirical way of determining how many different types of bots exist

within a dataset is by performing unsupervised clustering while modifying the number

of clusters until it can be mathematically shown that each clustering contains accounts

with different properties. Therefore, this study implores two different metrics that

are commonly used to select the optimal number of clusters for a given clustering

algorithm. By using the optimal number of clusters, it is empirically shown the clusters

are separate and distinct, thus each cluster may contain different types of bots.

The first of these metrics is called Silhouette Analysis [21] and it can be used to

study the separation distance between clusters that are provided by some unsupervised

learning algorithm. This measure has a range of [−1, 1]. Silhouette coefficients (as

these values are referred to as) near +1 indicate that the sample is far away from the

neighboring clusters. A value of 0 indicates that the sample is on or very close to the

decision boundary between two neighboring clusters and negative values indicate that

those samples might have been assigned to the wrong cluster. To get the coefficients

for each x ∈ Ci, the Silhouette Score [21] can be computed as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4.1)

a(i) =
1

|Ci| − 1

∑
y∈Ci,x 6=y

d(x, y) (4.1a)

b(i) = min
j 6=i

1

|Cj|
∑
z∈Cj

d(x, z) (4.1b)

where x, y, and z are given instances, Ci is a cluster assignment, and |Ci| is the

magnitude of a cluster or the number of instances assigned to that cluster.
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Once each silhouette coefficient has been calculated, a silhouette plot can be

generated. This plot displays a measure of how close each point in one cluster is to

points in the neighboring clusters and thus provides a way to assess parameters like

number of clusters visually. The optimal silhouette plot should be roughly equivalent in

size and thickness for each cluster, demonstrating that the clusters are well separated.

The second commonly used metric to determine the optimal number of clusters

for unsupervised clustering algorithms is the Caliński-Harabasz Index [4] which is also

known as the Variance Ratio Criterion. The metric is defined as Equation 4.2 below:

SSB

SSW

× N − k
k − 1

(4.2)

SSB =
k∑
i

∑
x

‖x− µi‖2 −
k∑
i

∑
x∈Ci

‖x− µi‖2 (4.2a)

SSW =
k∑
i

∑
x∈Ci

‖x− µi‖2 (4.2b)

where k is the number of clusters, N is the total number of instances (data points),

x is a given instance, Ci is a cluster assignment, µi is a cluster centroid, SSW is the

overall within-cluster variance, and SSB is the overall between-cluster variance.

For clarity, SSB measures the variance of all the cluster centroids from the dataset’s

grand centroid. Hence, a large SSB value means that all of the centroids are well

separated from each other. Conversely, SSW measures the density of the cluster, or

how close each of the points are to the centroid. Intuitively, SSW will keep decreasing

as the number of clusters goes up since each cluster becomes smaller and tighter. So

Caliński and Harabasz [4] reasoned this SSW value would quickly decrease until the

optimal number of clusters and then, after that number, the decrease would become

less drastic. Therefore, for the Calinski-Harabasz Index, the ratio of SSB

SSW
will be

largest at the optimal clustering size.
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Chapter 5

EXPERIMENTS AND FINDINGS

5.1 Experiment 1: Validating the Data

The first experiment performed in this study was an attempt to determine if

aggregating the datasets would produce meaningful results when trying to demonstrate

that there are different types of bots that are not unique to one datset. So, it was

necessary to validate that clustering algorithms could be utilized across the entire

data and that these algorithms would not produce trivial results. For example, a

trivial clustering might separate the data into distinct clusters each containing a

different original dataset. To do this validation, the three datasets (recall the Cresci

2017 dataset was actually comprised of five smaller datasets, for a total of seven

datasets overall) in Chapter 3 were combined and the features were extracted as

described in Section 4.2. Then, the three clustering algorithms (k -Means, GMM, and

Ward Hierarchical clustering from Section 4.3) were used to see if it was possible to

separate each individual dataset from the combined data. Since it was already known

that were seven datasets in the combined data, the analysis was done with only k

= 7 clusters. The assumption was that if the datasets were completely separable,

then there would be no reason to attempt to cluster any other number of clusters

since seven should produce the optimal clusters. Figure 1 shows an example cluster

decompositions for this experiment using k -Means. The figure displays the number

of bots within a given cluster as well as which proportions of those bots belong to

each dataset. In this example, almost 60% of the bots assigned to the Cluster 1 are
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from the Caverlee dataset, 33.7% are from Fake Followers, 5.4% of Cluster 1 bots are

from the Morstatter dataset, and the rest are from Traditional Spambots #1. While

Clusters 1-4 do not seem to be completely represented by one specific dataset, Clusters

5, 6, and 7 almost exclusively contain the Social Spambots #1, Social Spambots #3,

and Social Spambots #2, respectively. This raised some suspicions that perhaps the

Social Spambots (#1, #2, and #3) datasets contained features much different than

the other datasets. In that case, comparing these datasets to the others would be

ineffective due to the inherent bias of the data. For example, if a dataset contained

only combinations of numbers and no words, then clustering using content-based

features would always separate that data from other datasets that contain natural

language tweets. In order to confirm this suspicion on the bias in the Social Spambots

datasets, the LDA topic probabilities of each dataset were individually analyzed. The

result was that a majority of bot accounts in each dataset shared the exact same topic

with the largest probability. For instance, in Social Spambots #1 almost every bot

had the same most contributing LDA topic. Figure 3 shows this analysis. Thus, these

Social Spambots datasets were indeed biased. To validate this claim, an additional

experiment was performed to do a traditional bot detection task of distinguishing

bots from humans. One of the results is shown in Figure 2 for Social Spambots #1.

This figure shows that almost all of the bots were correctly classified using solely

the tweet content features and unsupervised clustering (the f1 score was 99.56% for

k -Means, 99.56% for GMM, and 99.14% for Ward Hierarchical clustering). Therefore,

these datasets (Social Spambots #1, #2, and #3) were removed from the rest of

the experiments due to the existing data bias. It is assumed that the rest of the

dataset should avoid the limitation of data bias because the content of the bots in

those datasets are not obviously separable and appear in more than one cluster.
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Figure 1. Cluster decompositions using k -Means with k = 7. Social Spambots #1,
Social Spambots #2, and Social Spambots #3 datasets are nearly separable.

Figure 2. Empirical demonstration of dataset bias in the Social Spambots #1 dataset
using clustering to do traditional bot detection. Principle Component Analysis
(PCA) [16] was performed prior to graphing in 2-dimensions but the unsupervised
algorithms were trained and tested without the use of dimensionality reduction.
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Figure 3. Analysis of the largest (top) LDA topic probabilities for the Social
Spambots (#1, #2, and #3) datasets, respectively from top to bottom. Note the
humans accounts are the same for each dataset since there was only one set of these
users in the Cresci dataset. The results show that all of the bots in each dataset
roughly share the top LDA topics meaning their content is extremely similar to each
of the other bots in that datset. Due to this content bias in the datasets, these
datasets were removed for future experiments.
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5.2 Experiment 2: Choosing the Optimal Number of Clusters

Since the collection of Social Spambots datasets were determined to be biased in

the previous experiment, they were excluded from this experiment. So, this experiment

was completed on the combined data of the Caverlee 2011, Morstatter 2016, Fake

Followers, and Traditional Spambots #1 datasets. This experiment attempted to use

the metrics from Section 4.4, the Silhouette Score and the Caliński-Harabaz Index, to

determine if there was an optimal number of clusters for each of the three clustering

algorithms. Figure 4 shows eight silhouette plots to provide a complete picture of

a Silhouette Analysis for k -Means. The clusters are plotted individually and the

silhouette coefficients for that cluster are shown as the area under each curve. The

red dashed-line represents the average silhouette coefficient value across all clusters.

As mentioned in Section 4.4, the optimal cluster size should be represented by the

silhouette plot where each cluster is nearly equivalent in size and all coefficient values

should be positive. However, from the results, it is hard to determine which number of

clusters is optimal using this metric. The plots for k = 3 and k = 4 have roughly the

same average silhouette coefficient as the plot for k = 2. But in k = 2, and from k = 5

to k = 9, the largest cluster contains some individual negative silhouette coefficients.

Figure 5 shows the Caliński-Harabaz Index value for each cluster size k. While the

results of the Caliński-Harabaz Index varied by algorithm, there was a general trend

where the index value decreased as the number of clusters increased. Overall, k -Means

produced the best results for this metric regardless of the cluster size. Combining the

results of the Silhouette Analysis and Caliński-Harabaz Index, the optimal number of

clusters for the k -Means clustering algorithm is 3 or 4. As such, the following sections

examine both of these number of clusters.
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Figure 4. Silhouette Analysis for k -Means Clusters
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Figure 5. Calinski-Harabasz Index for Each Clustering Algorithm. The results,
combined with the Silhouette Analysis, show that k -Means with k = 3 and k = 4
produces the best (most well-separated and dense) clusters.

Figure 6. Word Clouds for k -Means with k = 4. This is introduced in Section 5.3.
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5.3 Experiment 3: Determining Domain Significance in Clusters

The next experiment was conducted to determine if the domain that the bots

were present in had any effect on the final clusters obtained using the unsupervised

learning algorithms. First, the LDA topic probabilities were examined for each cluster

using the same method as Experiment 1 (comparing the “top” topics with the largest

probability). It was challenging to determine if the top topics for each cluster correlated

back any one of the original datasets, especially since the Caverlee dataset contained

the largest number of bots in each cluster. But, it was clear that the aggregated topic

probability distributions were somewhat similar for each cluster. Next, Word Clouds

were generated for each cluster in an attempt to identify topics that were prevalent

in only some of the clusters. This was done for all of the clustering algorithms at

their respective optimal number of clusters. This work used word frequency, i.e. Word

Clouds, in an attempt to find similarity between the clusters. Other NLP techniques

exist to find differences between or highlight the uniqueness of each cluster, but that

was not the focus of this experiment. An example of the Word Cloud output is shown

in Figure 6 for k -Means with k = 4 clusters. By examining these Word Clouds, it

is obvious that all four of the clusters found using k -Means algorithm have similar

topics. The top words shared between the bots in each cluster were “free” and “twitter”

for all four clusters. Additionally, words such as: “money”, “news”, “blog”, “online”,

and “marketing” can all be found in each of the clusters. Since the top words are very

similar between each of the clusters, it can be assumed that the topics are similar.

Thus, the domain where the bots are participating in is similar if not the same for all

clusters, which means the bots are clustered based on other features.
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5.4 Experiment 4: Clustering Bots by Type

In this experiment, unsupervised machine learning was used to find different types

of bots on the combined data previously used in Experiments 2 and 3. First, these

algorithms were run with the optimal number of clusters determined in Experiment

2. Then, Word Cloud and LDA topic probability distribution analyses were used in

Experiment 3 to check that the domain was consistent across all of the clusters. To

ultimately determine the types of bots, the actual features of the accounts that had

been grouped in each cluster were analyzed. The results for this comparison are shown

in Figures 7 and 10 for k = 3 and k = 4, respectively. In Figure 7, Cluster 1 has

less than 10% of all major features except for URLs. These bots may only interact

indirectly with other users in the network, and do not attempt to spam or directly

contact others using mentions or hashtags. So, it may be assumed that these are

fake follower bots. Cluster 2 has high interactions with almost 70% of their tweets

mentioning other users. These bots could fall into the category of sophisticated bots.

Sophisticated bots often disguise themselves as human users in an attempt to convince

others to promote their content. Cluster 3 contains bots that post URLs in 90% of

their tweets but do not combine these with any other text features. These bots can be

considered simple bots since they are usually the easiest for humans to identify. Figure

10 shows the clusters for k -Means with k = 4. Here, Cluster 1 has similar features as

Cluster 3 in Figure 7. The high URL rate is a defining characteristic of simple bots.

Likewise, Cluster 2 in Figure 10 is similar to Cluster 1 in Figure 7. Since this group

does not interact much with others, these accounts could be indicative of fake follower

bots. Cluster 3 contains a type of bots which was not seen in the k = 3 clusters. This

group uses many URLs (over 75% of their tweets) but also uses hashtags to promote
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these URLs. Since there is no category between simple and sophisticated bots, this

group can still be labelled as simple bots, but future typologies should be expanded

to include this phenomenon. Finally, Cluster 4 is the sophisticated bot group which

often mentions other users and may retweet others in an attempt to gain viewership.

To further understand the differences of each cluster, or bot type, two additional

analyses were conducted for both the k = 3 and k = 4 case. First, the current state

of the bot accounts in each cluster were checked using the Twitter API in October

2019. The state of each account could be one of three labels: 1) active meaning that

the accounts could still participate on the network, 2) suspended meaning that the

accounts had violated Twitter’s terms and conditions and was temporarily blocked

from network participation, or 3) deleted meaning that the original authors or Twitter

had removed the account from the network. This current state analysis is shown

in Figures 8 and 11. Interestingly, over 40% of the bots in the clusters previously

associated to fake follower bots were suspended by Twitter for both k = 3 and k = 4.

Subsequently, the process conducted in Experiment 1 was repeated to determine the

decomposition of each cluster. This is shown in Figures 9 and 12. Since this step

relies on having ground-truth information about the dataset, it does not need to be

performed to group bots by type. The only necessary part of the methodology is

comparing the cluster features to determine types. However, this analysis ensured that

each of the clusters contained bots from several of the original datasets and helped to

validate the type labels. While the Caverlee dataset made up the largest portion of

each cluster due to the sheer size of the dataset, the majority of the Morstatter and

Fake Followers datasets were found in the clusters corresponding to sophisticated bots

and fake follower bots, respectively. These two analyses help to prove that common

types of bots can be identified across the datasets.
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Figure 7. Features by cluster for k -Means with k = 3. Cluster 1 is labeled as fake
follower bots, Cluster 2 sophisticated bots, and Cluster 3 simple bots.

Figure 8. Current state of bots as of October 2019. Cluster 1, fake follower bots, had
both the largest number and percentage of bots suspended compared to the other
clusters. On the other hand, Cluster 2, sophisticated bots, had the least.

Figure 9. Decomposition of clusters by dataset. Cluster 1, which was previously
labeled fake followers bots, contains 86.41% of bots in the Fake Followers dataset.
61.03% of bots in the Morstatter dataset fall in Cluster 2 (sophisticated bots).
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Figure 10. Features by cluster for k -Means with k = 4. The clusters are labeled as:
simple bots, fake follower bots, simple bots, and sophisticated bots from left to right.

Figure 11. Current state of bots as of October 2019. Cluster 2, fake follower bots, had
both the largest number of bots suspended compared to the other clusters. Cluster 1
had the 2nd largest but Cluster 3 had the least, though both were simple bots.

Figure 12. Decomposition of clusters by dataset. 85.43% of bots from the Fake
Followers dataset are grouped in Cluster 2. 59.40% of the bots from the Morstatter
dataset are in Cluster 4. The number of bots in each cluster is similar to the k = 3
case previously shown in Figure 9.
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5.5 Experiment 5: Observing Bot Types Over Time

This experiment was performed to determine if there were different distributions

of bot types in the datasets since these datasets span multiple years of the Twitter

data. In other words, have bot types changed over time? To this aim, Experiment 5

aggregated the “created_at” tweet feature to group tweets by month and then plotted

the number of tweets by month for each dataset. This was further broken down by

cluster as previously obtained by the k -Means with k = 4 during the Experiment 4.

Figure 13 shows this distribution of each cluster in terms of the number of tweets

per month by bots in that clusters. The number of tweets is only compared within

individual datasets since the dataset collection techniques differed. For instance, the

Morstatter dataset is much different in terms of the number of tweets by month since

the authors used the honeypot collection method to collected user_ids for the bot

accounts [19]. Once all bot user_ids had been collected, in 2015, the authors used

the Twitter Searching API to crawl the bots’ timelines and get their latest tweets.

By contrast, the other datasets were tracking the tweets of bots real-time for several

months using the Twitter Streaming API. This collection difference explains the

difference in the number of tweets by month in Figure 13. The datasets are shown in

order of time from oldest, Caverlee and Traditional Spambots #1, to the latest. It is

clear, by examining the figure, that the oldest datasets have a larger percentage of

tweets from bots in Cluster 1, or simple bots, than the others. The Fake Followers

dataset is dominated by a majority of tweets from the bots in Cluster 2, or fake

follower bots. Then, the Morstatter dataset is mostly comprised of tweets from bots

in Cluster 4, or sophisticated bots. This shows that the most prevalent bot type has

changed over time and all types of bots can be found in each dataset.
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Figure 13. Temporal analysis of bot types by dataset. The area under the curve
shows the distribution of the number of tweets by cluster. It is clear Cluster 1 (simple
bots) is most prevalent in the first two (older) datasets. Eventually there is a
transition in the distribution of tweets which represents more bots from Cluster 4
(sophisticated bots) are now present in the more recent dataset.
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5.6 Experiment 6: Applying the Method to Individual Datasets

For the last experiment, the author wanted to cluster bots by type as in Experiment

4, but strictly cluster within one individual dataset rather than using the aggregated

dataset presented in Chapter 3. This way, future researchers can be assured that

the methodology presented in this work can be applicable to their data, even if they

do not combine multiple datasets. So, the methodology from Chapter 4 was applied

to the datasets individually and all prior knowledge about the datasets was ignored.

k -Means, GMM, and Ward Hierarchial Clustering were all performed on each dataset

and the Caliński-Harabasz Index and Silhouette Analysis were used to determine the

optimal number of clusters. Using this method, the results for the Caverlee 2011

and Morstatter 2016 datasets were very similar to the results found in Experiment 4.

The optimal number of clusters was three for both datasets and the analysis of the

clusters’ features yielded three unique types of bots that matched the types (simple,

fake follower, and sophisticated) found in the typology by Yang et al. However, the

third dataset, Cresci 2017, had much different results. The Silhouette Analysis and

Caliński-Harabasz Index metrics found k -Means with k = 8 to be the optimal clusters.

Figure 14. Silhouette Plot and Caliński-Harabasz Index for k -Means on Cresci
Dataset. The optimal number of clusters was found to be k = 8 for this dataset.
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The unique results for this Cresci dataset might be attributed to the fact that the

authors combined several smaller datasets manually. Experiment #1 already showed

that there was some sort of data bias in the Social Spambots #1, #2, and #3 datasets.

If the dataset were from different domains or contained very different bot accounts as

far as the bots’ content, then it would make sense that they might be well separated

into small clusters of distinguishable accounts. Figure 15 shows the prevalence of

tweet features by cluster for this Cresci 2017 dataset. Using the typology proposed

by Yang et al., Clusters 1 and 8 could be labeled as sophisticated bots, Clusters 4, 6,

and 7 as simple bots, and Clusters 2 and 5 as fake follower bots. However, Cluster

3 does not fit within the existing typology as the bots in that cluster mention other

users about 30% of the time but do not ever retweet them or post any URLs in their

content. Future work should expand the typology to include this phenomenon.

Figure 15. Features by cluster for k -Means with k = 8. Cluster 3 is much different
from all of those in the previous experiments and, thus, could not be labeled within
the three types presented by Yang et al.
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Chapter 6

CONCLUSION AND FUTURE WORK

The contributions of this research are as follows: this work summarized the

existing research of types of bots in social media networks and surveyed the current

unsupervised bot detection models. Then, the author created an aggregated dataset

and performed experiments to ensure that combined the dataset did not contain any

bias and that all bots in the dataset operated within a single domain. Finally, the

researcher experimentally demonstrated that it is possible to group bots by their

respective types by testing several unsupervised machine learning and showing that

k -Means could separate these bots into types. Analysis performed on the clusters

obtained from these experiments proves that multiple types of bots can be found

within a single domain and that the most prevalent type of bot on the social network

changes over time.

As a continuation of this work, more features from the bot accounts should be

extracted to solidify the existing types of bots and create more unique types as

subcategories of the previous framework. For example, profile features, such as the

ratio of friends to followers, can be used to further differentiate bots. Other possible

features include the graph structure of the network in the form of connections between

users either in their tweet interactions or their friend/follow network, account metadata

like creation date or geo-location, and intent of users which could be found using

natural language processing sentiment techniques. Additionally, the methodology

presented in this work should be expanded to include other unsupervised algorithms

like DBSCAN [12] which are capable of automatically calculating the optimal number
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of clusters as opposed to using Silhouette Analysis or the Caliński-Harabasz Index to

determine this number of clusters. This, in conjunction with adding more features,

should make the final clusters more unique and, thus, make it easier to distinguish

between different types of bots in the final analysis.

Another future direction of this research will be to choose one type of bot identified

in this research and study the areas on the social media network where this type is

found. Additionally, tracking this type of bot over time could indicate if or how that

bot is evolving to evade detection within the network. Moreover, a given type of bots’

topic probability distribution (found using LDA on the accounts’ tweet corpus) can be

compared to previous distributions to see which topic areas fluctuate the most. While

comparing LDA topic probability distributions is somewhat trivial as it is obvious

there will be certain changes to the topics as new online trends emerge over time, it

might be possible to discover that bots within a certain domain either change their

tactics or migrate to another domain entirely.
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