
EEG-Based Estimation of Human Reaction Time Corresponding to

Change of Visual Event.

by

Mohammad Samin Nur Chowdhury

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2019 by the
Graduate Supervisory Committee:

Daniel W. Bliss, Chair
Antonia Papandreou-Suppappola

Gene Brewer

ARIZONA STATE UNIVERSITY

December 2019



ABSTRACT

The human brain controls a person’s actions and reactions. In this study, the main

objective is to quantify reaction time towards a change of visual event and figuring out

the inherent relationship between response time and corresponding brain activities.

Furthermore, which parts of the human brain are responsible for the reaction time

is also of interest. As electroencephalogram (EEG) signals are proportional to the

change of brain functionalities with time, EEG signals from different locations of

the brain are used as indicators of brain activities. As the different channels are

from different parts of our brain, identifying most relevant channels can provide the

idea of responsible brain locations. In this study, response time is estimated using

EEG signal features from time, frequency and time-frequency domain. Regression-

based estimation using the full data-set results in RMSE (Root Mean Square Error)

of 99.5 milliseconds and a correlation value of 0.57. However, the addition of non-

EEG features with the existing features gives RMSE of 101.7 ms and a correlation

value of 0.58. Using the same analysis with a custom data-set provides RMSE of

135.7 milliseconds and a correlation value of 0.69. Classification-based estimation

provides 79% & 72% of accuracy for binary and 3-class classification respectively.

Classification of extremes (high-low) results in 95% of accuracy. Combining recursive

feature elimination, tree-based feature importance, and mutual feature information

method, important channels, and features are isolated based on the best result. As

human response time is not solely dependent on brain activities, it requires additional

information about the subject to improve the reaction time estimation.
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Chapter 1

INTRODUCTION

It is known that different parts of the brain are responsible for different human

behaviors and a person’s response to a particular event directly depends on how the

brain is functioning. A lot of previous psychological experiments on human behavior

have been conducted to establish a relationship between human action and brain ac-

tivities. However, as the brain is one of the largest and most complicated parts of the

human body with uncountable functions going on continuously, there is a long way

to go to unfold all the mysteries in this field. This study involves a specific form of

human reaction and electroencephalogram (EEG) signals from different parts of the

brain are used here as the representatives of brain states.

This study is based on an experiment conducted to observe human responses

based on a change of visual event. A computer screen was used where a plus sign

(+) was shown at the center and after variable time duration, the sign was changed

into a cross. This action was repeated several times for each subject and every single

repetition is considered as a trial. The number of repetitions is also variable. The

task of every subject was to press the space bar as soon as the sign was changed from

plus (+) to cross. The EEG signal used for response estimation is considered from the

beginning of the action to the time of sign-change. On the other hand, from the time

of sign-change to the time of key-press is the response time of the person. Figure-1.1

shows how the experiment is working.

1



Figure 1.1: Experiment Demonstration

The goal of this study is to observe how fast a person reacts to this change and

how it depends on different psychological parameters using EEG signals. A feature

extraction-based approach is taken here, where features from time, frequency and

time-frequency domain are extracted from different EEG channels to understand the

brain activities during the relevant time frames. Further, different machine learning

algorithms are taken into account to establish the relation between EEG signal and

reaction time. Based on the relationship, channels (brain locations) and features that

are highly related to the response are separated.

1.1 Organization

The whole study is divided into 11 chapters. The basic idea of this study is

already expressed in chapter 1. Chapter 2 covers the background information relevant

to the study. It includes the basics of EEG signal, human response time and prior

works related to this experiment. The structure and organization of the data and the

necessary pre-processing is discussed in chapter 3. Before working with the data, we

need to observe the data first. Visualization of the EEG data in time, frequency and

time-frequency domain are covered in chapter 4. This chapter also includes individual

subject analysis. Chapter 5 contains information about feature extraction in all the
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stated domains. In chapter 6 a regression-based approach is shown to predict the

response time using extracted features and evaluate the performance. Using the same

features, we now consider the problem in hand as a classification problem and chapter

7 discusses different algorithms and their performances for classification. Both binary

and 3-class classification are considered here with an additional high-low response-

based classification. Chapter 8 demonstrates an attempt to figure out which EEG

channels and features are of interest in our study. Possible future extensions to this

study are provided in chapter 9. Chapter 10 brings an end to our study and chapter

11 shows all the reference works that were taken into account.
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Chapter 2

BACKGROUND

2.1 EEG Signal

Electroencephalography (EEG) is a method of electrophysiological monitoring to

record the electrical activity of the brain. Although invasive electrodes are sometimes

used, as in electrocorticography, it is usually noninvasive, with the electrodes placed

along the scalp. Voltage fluctuations resulting from ionic current within the brain

neurons are measured by EEG. Clinically, EEG refers to the recording of the brain’s

spontaneous electrical activity over a certain period. The recording is from multiple

electrodes placed on the scalp. Diagnostic applications are focused either on event-

related potentials or the spectral content of EEG. The first one investigates potential

fluctuations time-locked to an event, such as ’button press’ or ’stimulus onset’. The

latter analyses the type of neural oscillations known as ”brain waves” that can be

observed in the frequency domain representation of EEG signals.

Though the spatial resolution is limited, EEG is a valuable tool for research and

diagnosis. It is one of the very few mobile techniques available that offers millisecond-

range temporal resolution which is not possible with CT, PET or MRI. In scalp based

conventional EEG, the recording is obtained by placing electrodes on the scalp with

a conductive gel, usually after preparing the scalp area by light abrasion to reduce

impedance due to dead skin cells. Most of the systems usually use electrodes, each

of which is connected to a separate wire. In some systems, electrodes are embedded

into caps or nets; this is particularly useful when high-density arrays of electrodes are
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needed.

Each electrode is connected to one input of a differential amplifier (one amplifier

per pair of electrodes) and a common reference electrode is connected to the other

input of each differential amplifier. These amplifiers amplify the voltage between the

active electrode and the reference (typically 1,000100,000 times). Most EEG systems

these days are digital, and the amplified signal is digitized via an analog-to-digital

converter (ADC), after being passed through an anti-aliasing filter. Analog-to-digital

sampling can go up to 20 kHz for some research applications but typically it is 256512

Hz in clinical scalp EEG. Opensource hardware such as OpenBCI can capture EEG

signal and this signal can be processed by freely available EEG software such as

EEGLAB or the Neurophysiological Biomarker Toolbox.

Typically, an adult human EEG signal is around 10 V to 100 V in amplitude

when measured from the scalp and is about 1020 mV when measured from subdural

electrodes. Since an EEG voltage signal represents a difference between the voltages

at two electrodes, the display of the EEG for the reading of encephalography may be

set up in one of several ways. The representation of the EEG channels is referred to

as a montage.

1. Sequential montage

2. Referential montage

3. Average reference montage

4. Laplacian montage
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2.1.1 Channels

An EEG channel is an electrode capturing brainwave activity. EEG systems can

have as few as a single channel to as many as 256 channels typically. Electrode

placement on the head maintains a formal standard known as the 10/20 system or

International 10/20 system. This system uses the distance from the bridge of the nose

to the lowest point of the skull from the back of the head as a reference distance for

a given person’s head size. Then the electrodes are separated from each other either

by 10% or 20% of the reference distance. When an greater number of channels is

required, the 10/20 system is modified where the electrodes are separated by 10% of

the reference distance (10/10). Further resolution of %5 separation (10/5) distances

adds even more electrodes to the network cluster. Figure-2.1 shows sample EEG

channel locations.

Figure 2.1: EEG Channel Locations
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2.2 Human Reaction Time

Reaction time or response time usually refers to the amount of time that takes

place between when a person perceives something to when that person responds to

it. It is the combined ability to detect, process, and respond to a stimulus. Reaction

time is a combination of the following factors:

1. Perception: Seeing, hearing, or feeling a stimulus with certainty is very impor-

tant for good reaction time.

2. Processing: To have good reaction time, it’s necessary to be highly focused and

understand the information quickly.

3. Response: Motor agility is necessary to be able to act fast and have a good

response time.

If any part of these processes is altered, reaction time will be affected consequently.

Reaction time includes a motor component, unlike processing speed. Therefore, hav-

ing good reaction time is associated with having good reflexes.

Reaction time can vary depending on a variety of factors:

1. The complexity of the stimulus: The more complex the stimulus, the more

information that has to be processed, the longer this process will take.

2. Familiarity and expectations: If a stimulus to respond is known and was re-

sponded before, the reaction time will be lower. The less information that one

needs to process, the quicker the reaction time will be.

3. The current state of the organism: Some factors that may negatively affect the

detection of the stimulus are attention, fatigue, high temperature, old age, or
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even eating too much food or substances like alcohol or other drugs. All of these

factors may negatively affect the detection of the stimulus, processing it, and

responding to it.

4. Stimulated sensory modality: Reaction time is shorter when the stimulus that

triggers the response is auditory than if it is visual because auditory stimuli

require less processing. Each sensory modality has a different reaction time.

Aside from other factors, the type of stimulus that we process also affects reaction

time:

1. Simple: There is one single response to a single stimulus. For example, pressing

a specific key on the computer when a word appears.

2. Choice: There are different responses to different stimuli. For example, pressing

the right arrow key if a word appears in Spanish, and pressing the left arrow

key if the word appears in another language.

3. Selection: There are different stimuli, but you only have to respond to one.

For example, press the space bar only when the word appears in English. If it

appears in Spanish, you don’t do anything.

Good reaction time allows a person to be agile and efficient when it comes to respond-

ing to stimuli and situations like having a conversation, driving, playing sports, etc.

Luckily, reaction time can be trained and improved. For this study, we are dealing

with a simple visual event.

2.3 Prior Works

Some works tried to analyze brain signals corresponding to visual events and eval-

uate the relationships. EEG frequency and reaction time-based sequential analysis
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was performed in one of the prior studies to establish a relationship between speed

of response and background frequency (Morrell, 1966). Another study demonstrates

an experiment to monitor EEG signal and reaction time during a normoxic satura-

tion dive. Three of the Navy divers were exposed to a normoxic breathing mixture

at a certain pressure for seven consecutive days. Visual evoked responses (VERs),

electroencephalograms (EEGs) and simple reaction time (RT) were measured for all.

The outcomes of the experiment indicate changes in the amplitude of both alpha

and theta with a decrease in alpha frequency (Mckay et al., 1977). One of the stud-

ies tried to apply a method for temporally extracting stimulus- and response-locked

components of brain activity from human scalp electroencephalography (EEG) dur-

ing an auditory simple reaction time task (Takeda et al., 2008). A power spectrum

based analysis was performed using ICA, PCA to estimate visual attention from the

EEG signal (Ahirwal and Londhe, 2012). Twenty-six pre-elite table tennis players in

Taiwan were recruited to perform a cued reaction time task to observe the relation

between reaction time and EEG signal (Cheng et al., 2010).

However, our study tries to predict the reaction time of a person using a single

trial EEG signal. A few of the works tried to predict response time based on EEG

(Luo and Sajda, 2006; Wu et al., 2017). Most of these approaches only considered the

regression-based analysis and didn’t use a large enough data-set for reliable outcomes.

Also, most of the studies were subject-specific and didn’t produce a generalized model.

In general, not much work has been done yet in this exact field.
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Chapter 3

DATA HANDLING AND PREPROCESSING

3.1 Data Structure

• As the artifacts created by eye blinks cause a problem in reading and processing

the EEG data, no-blinks data-set was used in this study where the artifacts are

already taken care of. Figure-3.1 shows how the no-blinks data-set is represented

in EEGLAB.

Figure 3.1: No Blinks EEG Data for All the Channels

• The experiment was conducted on 48 subjects.

• For each subject, the duration of the experiment was around 30 minutes.

• EEG signal was captured at a sampling rate of 1000 samples/second.

• For each subject, the number of data points in any channel is around 30*60*1000=1,800,000.
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• EEG signals were obtained from 30 effective channels.

3.2 Normalization

Normalization is a standard procedure while dealing with EEG signals. It enables

the post-processing to be balanced for all the channels. The data in hand is normalized

as follows:

1. Mean- The mean value of all the data points in a channel was subtracted from

each of the points.

2. Variance- All the data points of a particular channel were divided by the stan-

dard deviation (square root of variance) of that channel’s data points. So, we

have zero mean and unit variance data for all the channels.

3.3 Important Data Isolation

For each subject, the same experiment has been conducted multiple times and

there are several events. The events are:

1. staring point

2. beginning of the wait interval

3. change of sign

4. response of the subject

5. endpoint

• For the purpose of analysis, we need to isolate data for every single trial in a

certain way.
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• Between the starting point and endpoint, the other three events repeat several

times depending on how many times the experiment has been repeated.

• For each experiment:

1. beginning of wait interval to change of sign = observation time of the

subject

2. change of sign to the response of the subject= response time of the subject

• EEG data for each channel is separated for all the subjects and all the trials

based on both observation time and response time.

• So, now for each channel, we have:

Number of observation sequences or response sequences = Number of trials for

each subject

The pre-processing is done and now from the Observation sequences we can extract

features and use them to establish desired relations with the response sequences.
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Chapter 4

VISUALIZATION OF DATA IN DIFFERENT DOMAINS

4.1 Time Domain Visualization

The observation sequences in hand can be visualized in the time domain. The

time domain representations of the sequences vary in length as the observation pe-

riod changes in each trial. However, the range of this period is from 919 ms to 8908

ms. Figure-4.1 demonstrates sample time domain representations.

(a) (b)

(c)

Figure 4.1: Time Domain Representation of EEG Signal for (a) Subject-1, Channel-1,

Trial-1, (b) Subject-28, Channel-6, Trial-5, (c) Subject-45, Channel-22, Trial-10.
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4.2 Frequency Domain Visualization

Taking the Fourier transform of the time domain sequence gives us the frequency

domain observation. Frequency domain representation is very important as the dif-

ferent frequency band properties can be of good use while categorizing the sequences

to establish a relationship with the response time.

As real-time data is discrete in both time and frequency domain, discrete Fourier

transform (DFT) gives us the desired spectral representation. Equation (4.1) shows

the basic computation of DFT.

X[k] =
N−1∑
n=0

x[n]e
−j2πkn

N (4.1)

Where, X[k] and x[n] are frequency and time domain sequences respectively. k is used

to denote the frequency domain ordinal, and n is used to represent the time-domain

ordinal. N is the length of the sequence to be transformed. However, to reduce the

computational complexity, fast Fourier transform (FFT) was used.

For any frequency domain analysis, the frequencies of less than half the sampling

frequency are of interest. In our case, as the sampling frequency is 1000 Hz, we are

taking all the frequency bins less than 500 Hz into account. However, it is seen that all

the bins over 150 Hz are almost zero. So, we are using frequency domain representa-

tion up to 150 Hz. Figure-4.2 demonstrates sample frequency domain representations.
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(a) (b)

(c)

Figure 4.2: Frequency Domain Representation of EEG Signal for (a) Subject-1,

Channel-1, Trial-1, (b) Subject-28, Channel-6, Trial-5, (c) Subject-45, Channel-22,

Trial-10.

4.3 Time-frequency Domain Visualization

Time-frequency representation gives an overview of how a signal’s frequencies

are changing over time. There are lots of popular time-frequency representations

available. For this study, a reassigned version of the spectrogram is used. Time-

frequency domain representation using spectrogram is calculated using equation (4.2)

(Sanders et al., 2014).

Sx(m,ω) =

∣∣∣∣∣
∞∑

n=−∞

x[n]h[n−m]e−jωn

∣∣∣∣∣
2

(4.2)

Where, x[n] is the signal and h[n] is the window function. m here indicates the time

and ω is the angular frequency. Time-frequency domain representation can provide
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useful information about frequency variation over time. Figure-4.3 demonstrates sam-

ple time-frequency representations of the data.

(a)

(b)

(c)

Figure 4.3: Time-Frequency Domain Representation of EEG Signal for (a) Subject-1,

Channel-1, Trial-1, (b) Subject-28, Channel-6, Trial-5, (c) Subject-45, Channel-22,

Trial-10.
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4.4 Individual Subject’s Response Analysis

Looking into individual subject’s reaction times over the period of 30 minutes, it

is evident that the majority of the participants (75%) have shown a gradual increase

of response time with successive trials. Performing a moving average operation on

an individual’s response times shows an upward trend. Sorting the response times

of a subject from low to high, the overall variation of response times can be seen.

The average value of skewness (defined as (µ − ν)/σ where, µ is mean, ν is median

and σ is standard deviation) for all the subjects’ reaction time is 1.83. Sample plots

of reaction time after moving average operation and sorting operation are shown in

figure-4.4 and 4.5 respectively.

(a) (b)

(c) (d)

Figure 4.4: Sample Observation of Individual Response Times After Moving Average

Operation Where, (a), (b) & (c) Shows Upward Trend, While (d) Shows Downward

Trend.
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(a) (b)

(c)

Figure 4.5: Sample Observation of Individual Response Times After Sorting Opera-

tion.
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Chapter 5

FEATURE EXTRACTION

Features are extracted from the multi-channel EEG signal recorded during the

observation period of each trial. Several features from time, frequency and time-

frequency domain are extracted from all 30 channels (Aboalayon et al., 2016).

5.1 Time Domain Features

From the time domain representation of the data, features like Hjorth parameters

(Charbonnier et al., 2011; Gudmundsson et al., 2005) and average power can be of

great use. Activity, mobility, and complexity are Hjorth parameters.

5.1.1 Activity

The activity parameter represents the signal power, the variance of a time function.

This can indicate the surface of the power spectrum in the frequency domain. This

is represented by equation (5.1):

Activity = var
(
y(t)

)
(5.1)

Where y(t) represents the signal and var indicates variance.

5.1.2 Mobility

The mobility parameter represents the mean frequency or the proportion of the

standard deviation of the power spectrum. This is defined as the square root of the
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variance of the first derivative of the signal y(t) divided by variance of the signal y(t).

Equation (5.2) shows it:

Mobility =

√
var
(
dy(t)
dt

)
var
(
y(t)

) (5.2)

5.1.3 Complexity

The Complexity parameter represents the change in frequency. The parameter

compares the signal’s similarity to a pure sine wave, where the value converges to 1

if the signal is more similar. Equation (5.3) indicates the calculation:

Complexity =
Mobility

(dy(t)
dt

)
Mobility

(
y(t)

) (5.3)

5.1.4 EEG Average Power

The average power of the sequence is calculated by taking the time sequence and

computing the l-2 norm followed by an averaging operation.

5.2 Frequency Domain Features

5.2.1 Spectral Entropy

The spectral entropy is a measure of the regularity of the signal, a pure sine wave

has entropy zero and uncorrelated white noise has entropy one. Spectral entropy

(SEN) is the Shannon entropy properly normalized and applied to the power spectrum
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density of the EEG signal (Radha et al., 2014). SEN can be calculated using equation

(5.4).

SEN =
−
∑
Pk logPk

logN
(5.4)

where, Pk are the spectral powers of the normalized frequencies, such that
∑
Pk = 1

and N is the number of frequencies (bin).

5.2.2 Percentage of Energy in Each Frequency Band

The observation sequence data was separated into delta(1-4Hz), theta(4-8Hz),

alpha(8-12Hz), beta(12-35Hz) and gamma(35-150Hz) frequency bands (Aboalayon

and Faezipour, 2014). Sum of power for each band divided by the total energy gives

us the following percentages of energy in each frequency band:

1. Delta Energy/Total Energy

2. Theta Energy/Total Energy

3. Alpha Energy/Total Energy

4. Beta Energy/Total Energy

5. Gamma Energy/Total Energy

5.2.3 Power Ratio of the Frequency Bands

The ratio of the average power of one frequency band with respect to the con-

secutive higher frequency band is calculated, i.e., the power ratios of delta/theta,

theta/alpha, alpha/beta, and beta/gamma are evaluated. They are as following:

1. Average Delta Power/Average Theta Power

2. Average Theta Power/Average Alpha Power
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3. Average Alpha Power/Average Beta Power

4. Average Beta Power/Average Gamma Power

5.2.4 Power Ratio and Percentage Energy of the Frequency Bands for Multiple

Smaller Windows

The ratio of the average power of one frequency band with respect to the consec-

utive higher frequency band as well as percentage energy is calculated for multiple

0.1-seconds smaller windows and the maximum, minimum and median values among

all the 0.1-seconds windows are taken into account.

5.3 Time-frequency Domain Features

Renyi information and ridges can be useful in our study (Sanders et al., 2014).

5.3.1 Renyi Information

Renyi information is a measurement of the complexity of a signal. It indicates the

number of basic sinusoids involved with the particular signal in hand (Fraiwan et al.,

2012). Renyi information can be calculated using equation (5.5).

Rα
x =

1

1− α
log2

[
∞∑

m=−∞

∞∑
ω=−∞

Sαx (m,ω)

]
(5.5)

Where, Rα
x is the Renyi information of order α. α = 3 was used for our calculation.

We used a moving non-overlapping window of 0.4 seconds duration to see the

change of Renyi information with time. So, we have the following features:

1. Maximum Renyi Information Among Windows

2. Minimum Renyi Information Among Windows
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3. Median Renyi Information Among Windows

5.3.2 Ridges in Frequency Bands

Ridges give an idea of the time-frequency structure of the data by providing sig-

nificant points of the representation. Figure-5.1 shows a sample time-frequency rep-

resentation and the corresponding ridge plot.

(a) (b)

Figure 5.1: (a) Sample Reassigned Version of Spectrogram & (b) Corresponding Ridge

Plot.

Using the same 0.4-seconds window, the number of ridges for different bands are

calculated. The following features are taken from the calculations:

1. Average Total Number of Ridges Over All Windows

2. Maximum Number of Ridges for Delta and Theta Bands Among All Windows

3. Minimum Number of Ridges for Delta and Theta Bands Among All Windows

4. Median Number of Ridges for Delta and Theta Bands Among All Windows

5. Maximum Number of Ridges for Alpha and Beta Bands Among All Windows

6. Minimum Number of Ridges for Alpha and Beta Bands Among All Windows
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7. Median Number of Ridges for Alpha and Beta Bands Among All Windows

8. Maximum Number of Ridges for Gamma Band Among All Windows

9. Minimum Number of Ridges for Gamma Band Among All Windows

10. Median Number of Ridges for Gamma Band Among All Windows

5.4 Last Moment Observation Effect

To see if the last moment observation has any impact on the outcome, all the

above features were extracted again from the last 0.8 seconds of the observation pe-

riod instead of the whole observation.

5.5 Non-EEG Features

All the features stated in the previous sections are extracted from a single trial

EEG signal. Other than these, 3 additional features are added just to monitor the

performance of the regression-based analysis. These features are discussed in this

section.

5.5.1 Mean Waiting Time

The experiment is designed in such a way that the mean waiting time for the

subjects can be classified into 3 categories. These categories consist of mean waiting

times around 3500ms, 5000ms, and 6000ms respectively. Figure-5.2 shows the mean

waiting time for all 48 subjects. Every single category has 16 subjects. These 3

categories are labeled as 1,2 and 3. Afterward, these labels are normalized and used

as a subject-specific feature.
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Figure 5.2: Mean Waiting Times for each Subject.

5.5.2 Subject Number

EEG signal varies from subject to subject. So, it is important to see if the subject

number can contribute to our analysis by providing information about the subject

identity.

5.5.3 Trial Number

Trial numbers can be a useful feature to see if the performance of a subject has

any direct relation with the passage of time.
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Chapter 6

REGRESSION APPROACH

Regression is done using extracted features to estimate the response time. Several

algorithms are used to get results and compare them. The algorithms and results are

discussed in this section.

6.1 Regression Algorithms

6.1.1 Linear Regression

Linear Regression is a statistical tool used to model the relationship between a

dependent variable and some ”explanatory” variables. Let the domain set X be

a subset of Rd for some d, and let the label set Y belong to R. Then the linear

function h: Rd −→ R best approximates the relationship between the variables. The

hypothesis class of linear regression predictors can be denoted as

Hreg = Ld = {x 7→ 〈w,x〉+ b : w ∈ Rd, b ∈ R} (6.1)

The definition of loss in classification is given by `(h, (x, y)). This indicates whether

h(x) correctly predicts y or not. For regression, the squared loss function is defined,

which is given by:

`(h, (x, y)) = (h(x)− y)2 (6.2)

6.1.2 Ridge Regression

Ridge Regression is a technique for analyzing multiple regression data that suf-

fer from multicollinearity. When multicollinearity occurs, least squares estimates are
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unbiased, but their variances are large so they may be far from the true value. By

adding a degree of bias to the regression estimates, ridge regression reduces the stan-

dard errors. It is hoped that the net effect will be to give estimates that are more

reliable.

6.1.3 Support Vector Regression

SVMs are binary classifiers and their primary goal is to locate a separating hyper-

plane in the space between the two classes by mapping the data into a higher-

dimensional space.

Let there be a dataset constituting l patterns where each l happens to be a pair

of the type (xi, yi)∀i ∈ [1, ..., l], xi ∈ Rm, and yi = ±1. A standard binary SVM is

formulated by minimizing a Convex Constrained Quadratic Programming (CCQP)

objective function as follows:

min
α

1
2
αTQα− rTα (6.3)

0 ≤ αi ≤ C∀i ∈ [1, . . . , l], (6.4)

yTα = 0, (6.5)

where C is the regularization parameter or penalty term which controls how well the

SVM would perform on unseen test data, ri = 1∀i and Q is the symmetric positive

semidefinite l × l kernel matrix where qi,j = yiyjK(xi, xj).

The solution of the CCQP function affords us with the αi∀i ∈ [1, . . . , l] values

which are plugged into the Feed-Forward Phase (FFP) of the SVM as follows in order
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to do class prediction:

f(x) =
l∑

i=1

yiαiK(xi, x) + b (6.6)

where b is the bias term and is generally computed based on the support vectors that

lie in the margins.

6.1.4 Extra Tree Regression

The Extra-Tree method (standing for extremely randomized trees) was proposed

with the main objective of further randomizing tree building in the context of nu-

merical input features, where the choice of the optimal cut-point is responsible for a

large proportion of the variance of the induced tree.

With respect to random forests, the method drops the idea of using bootstrap

copies of the learning sample, and instead of trying to find an optimal cut-point for

each one of the K randomly chosen features at each node, it selects a cut-point at

random.

This idea is rather productive in the context of many problems characterized by a

large number of numerical features varying more or less continuously: it leads often to

increased accuracy thanks to its smoothing and at the same time significantly reduces

computational burdens linked to the determination of optimal cut-points in standard

trees and random forests.
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6.1.5 Random Forest Regression

Random Forest operates by adding multiple decision trees and using the Bootstrap

Aggregation Method. It is a highly efficient ML algorithm for predictive analysis. The

random forest model is very suitable at handling tabular data with numerical features.

Unlike linear models, random forests are able to capture non-linear interaction be-

tween the features and the target. However, the tree-based models are not designed

to work with very sparse features. When dealing with sparse input data, the sparse

features need to either be pre-processed to generate numerical statistics or in such

cases, a linear model should be incorporated.

6.2 Results

To measure regression-based performance, correlation coefficient and root mean

square error (RMSE) are computed using different algorithms. 3 different regression-

based approaches are taken here:

1. At first, regression-based analysis is performed using the complete data-set.

2. Then the effect of additional non-EEG features is also observed.

3. Finally, as most of the reaction times are lying in the same region which is from

300 ms to 500 ms, a custom data-set consists of equivalent number of sample

data points in all the regions is used to perform regression-based analysis.
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6.2.1 Regression Using Full Data

Table-6.1 shows the outcomes. Actual and predicted reaction times and their

comparisons are also provided in this segment.

Table 6.1: Regression-Based Analysis Results Using Full Data

Algorithm Correlation Coeff. RMSE (ms)

Linear Regression 0.39 116.6

Ridge Regression 0.4 114.8

Support Vector Regression 0.40 112.5

Extra Tree Regression 0.56 99.6

Random Forest Regression 0.57 99.5

Figure 6.1: Actual and Predicted Reaction Time Using Linear Regression for Full

Data.
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Figure 6.2: Actual and Predicted Reaction Time Using Ridge Regression for Full

Data.

Figure 6.3: Actual and Predicted Reaction Time Using Support Vector Regression

for Full Data.
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Figure 6.4: Actual and Predicted Reaction Time Using Extra Tree Regression for

Full Data.

Figure 6.5: Actual and Predicted Reaction Time Using Random Forest Regression

for Full Data.
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(a) (b)

Figure 6.6: Actual vs Predicted Reaction Time for Full Data Using (a) Linear Re-

gression & (b) Ridge Regression.

(a) (b)

Figure 6.7: Actual vs Predicted Reaction Time for Full Data Using (a) Support Vector

Regression & (b) Extra Tree Regression.
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Figure 6.8: Actual vs Predicted Reaction Time for Full Data Using Random Forest

Algorithm.
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6.2.2 Regression Using Full Data and Additional Non-EEG Features

Table-6.2 shows the outcomes. Actual and predicted reaction times and their

comparisons are also provided in this segment.

Table 6.2: Regression-Based Analysis Results Using Full Data and Additional Non-

EEG Features

Algorithm Correlation Coeff. RMSE (ms)

Linear Regression 0.42 117.8

Ridge Regression 0.42 116.5

Support Vector Regression 0.43 114.9

Extra Tree Regression 0.56 102.8

Random Forest Regression 0.58 101.7

Figure 6.9: Actual and Predicted Reaction Time Using Linear Regression for Full

Data and Additional Non-EEG Features.
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Figure 6.10: Actual and Predicted Reaction Time Using Ridge Regression for Full

Data and Additional Non-EEG Features.

Figure 6.11: Actual and Predicted Reaction Time Using Support Vector Regression

for Full Data and Additional Non-EEG Features.
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Figure 6.12: Actual and Predicted Reaction Time Using Extra Tree Regression for

Full Data and Additional Non-EEG Features.

Figure 6.13: Actual and Predicted Reaction Time Using Random Forest Regression

for Full Data and Additional Non-EEG Features.

37



(a) (b)

Figure 6.14: Actual vs Predicted Reaction Time for Full Data and Additional Non-

EEG Features Using (a) Linear Regression & (b) Ridge Regression.

(a) (b)

Figure 6.15: Actual vs Predicted Reaction Time for Full Data and Additional Non-

EEG Features Using (a) Support Vector Regression & (b) Extra Tree Regression.
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Figure 6.16: Actual vs Predicted Reaction Time for Full Data and Additional Non-

EEG Features Using Random Forest Algorithm.
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6.2.3 Regression Using Custom Data

As the full data-set has the majority of the data points with a reaction time

between 300-500 ms, a custom data-set with a balanced number of data points in all

the regions may show an improved set of results. Figure-6.17 shows a comparison

between the full and the custom data-set.

Figure 6.17: Full Data-Set and Custom Data-Set

Table-6.3 shows the outcomes. Actual and predicted reaction times and their

comparisons are also provided in this segment.

Table 6.3: Regression-Based Analysis Results Using Custom Data

Algorithm Correlation Coeff. RMSE (ms)

Linear Regression 0.4 196.5

Ridge Regression 0.39 197.5

Support Vector Regression 0.46 175.7

Extra Tree Regression 0.68 136.1

Random Forest Regression 0.69 135.7
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Figure 6.18: Actual and Predicted Reaction Time Using Linear Regression for Custom

Data.

Figure 6.19: Actual and Predicted Reaction Time Using Ridge Regression for Custom

Data.
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Figure 6.20: Actual and Predicted Reaction Time Using Support Vector Regression

for Custom Data.

Figure 6.21: Actual and Predicted Reaction Time Using Extra Tree Regression for

Custom Data.
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Figure 6.22: Actual and Predicted Reaction Time Using Random Forest Regression

for Custom Data.

(a) (b)

Figure 6.23: Actual vs Predicted Reaction Time for Custom Data Using (a) Linear

Regression & (b) Ridge Regression.
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(a) (b)

Figure 6.24: Actual vs Predicted Reaction Time for Custom Data Using (a) Support

Vector Regression & (b) Extra Tree Regression.

Figure 6.25: Actual vs Predicted Reaction Time for Custom Data Using Random

Forest Algorithm.
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Result Verification

Outcomes from 10 different randomizations of the data are averaged to make sure the

results are consistent. The outcomes of this operation are:

1. For the full data-set, the average correlation coefficient value is 0.54.

2. For the custom data-set, the average correlation coefficient value is 0.65.
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Chapter 7

CLASSIFICATION APPROACH

7.1 Classification Algorithms

Different classification algorithms ar taken into account for all types of analysis

performed here (Sousa et al., 2015; Liang et al., 2011).

7.1.1 Linear Regression Classifier

Linear Regression is a statistical tool used to model the relationship between a

dependent variable and some ”explanatory” variables. Let the domain set X be

a subset of Rd for some d, and let the label set Y belong to R. Then the linear

function h: Rd −→ R best approximates the relationship between the variables. The

hypothesis class of linear regression predictors can be denoted as

Hreg = Ld = {x 7→ 〈w,x〉+ b : w ∈ Rd, b ∈ R} (7.1)

The definition of loss in classification is given by `(h, (x, y)). This indicates whether

h(x) correctly predicts y or not. For regression, the squared loss function is defined,

which is given by,

`(h, (x, y)) = (h(x)− y)2 (7.2)

7.1.2 Decision Tree

DTs are designed with the following goals in mind: 1) accurately classify most of

the training samples; 2) be adaptive enough to be equally or at least comparably good

when working on the test dataset; 3) be easy to update for new incoming training

46



data; 4) and boast a pleasingly simple structure. While designing a DT the following

are key points that are taken into account: the choice of the structure, the selection

of feature subsets for each internal node and the choice of the strategy to be devised

for each node. When the DT design is approached from a Bayesian perspective, the

following optimization problem needs to be solved subject to limited training data:

min
T,F,d

pe(T, F, d) (7.3)

where pe, is the total probability of error, T represents the selected tree structure

and F and d are the feature subsets and strategies respectively which are to be used

at the internal nodes. This optimization problem can be solved in two steps:

Step 1 For a given T and F search for d∗ as follows:

d∗ = d∗(T, F ) such that pe(T, F, d
∗(T, F )) = min

d
Pe(T, F, d) (7.4)

Step 2 Find T ∗ and F ∗ such that:

Pe(T
∗, F ∗, d∗(T ∗, F ∗)) = min

T,F
pe(T, F, d

∗(T, F )) (7.5)

7.1.3 Stochastic Gradient Descent

Gradient descent is an iterative optimization technique wherein the solution at

each step is improved by taking a step along the negative of the gradient of the func-

tion to be minimized at the current point. SGD allows the optimization procedure to

take a step along a random direction, as long as the expected value of the direction

is the negative of the gradient. Here, the direction need not be updated to be based

exactly on the gradient. Instead, the direction is set to be a random vector and its

expected value at each iteration equals the gradient direction. In other words, the

expected value of the random vector will be a subgradient of the function at the
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current vector. SGD is a simple and an efficient approach to discriminative learning

of linear classifiers under convex loss functions.

7.1.4 Support Vector Classifier

SVMs are binary classifiers and their primary goal is to locate a separating hyper-

plane in the space between the two classes by mapping the data into a higher dimen-

sional space.

Let there be a dataset constituting l patterns where each l happens to be a pair

of the type (xi, yi)∀i ∈ [1, ..., l], xi ∈ Rm, and yi = ±1. A standard binary SVM is

formulated by minimizing a Convex Constrained Quadratic Programming (CCQP)

objective function as follows:

min
α

1
2
αTQα− rTα (7.6)

0 ≤ αi ≤ C∀i ∈ [1, . . . , l], (7.7)

yTα = 0, (7.8)

where C is the regularization parameter or penalty term which controls how well the

SVM would perform on unseen test data, ri = 1∀i and Q is the symmetric positive

semidefinite l × l kernel matrix where qi,j = yiyjK(xi, xj).

The solution of the CCQP function affords us with the αi∀i ∈ [1, . . . , l] values

which are plugged into the Feed-Forward Phase (FFP) of the SVM as follows in order
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to do class prediction:

f(x) =
l∑

i=1

yiαiK(xi, x) + b (7.9)

where b is the bias term and is generally computed based on the support vectors that

lie in the margins.

7.1.5 Random Forest Classifier

Random Forest operates by adding multiple decision trees and using the Bootstrap

Aggregation Method. It is a highly efficient ML algorithm for predictive analysis. The

random forest model is very suitable at handling tabular data with numerical features.

Unlike linear models, random forests are able to capture non-linear interaction be-

tween the features and the target. However, the tree-based models are not designed

to work with very sparse features. When dealing with sparse input data, the sparse

features need to either be pre-processed to generate numerical statistics or in such

cases, a linear model should be incorporated.

7.2 Binary Classification

A binary classification case can be considered where the data separation point is

500ms (midpoint of response time range) and the classes can be labeled as:

1. above midpoint (response time>500 ms)

2. below midpoint (response time<=500ms)
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7.3 3-Class Classification

As mean response time is around 400 ms, a 3-class classification case can also be

formulated where the class boundaries are 400 ± 100 ms around. The classes can be

labeled as:

1. low response time (response time<=315 ms)

2. normal response time (315ms<response time<=515ms)

3. high response time (response time>515ms)

As the number of data is way too much in the normal response time class, class weight

balance or training data balance is required to perform 3-class classification.

7.4 High-Low Classification

Lastly, it is also of interest to see how good the extremes can be seperated. So,

taking the normal response class out of the calculation, a binary classification of high

and low response time is taken into account.
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7.5 Results

7.5.1 Binary Classification

Table 7.1: Binary Classification Results for Below and Above Midpoint Categories

Algorithm Accuracy(%) Precision Recall

Linear Regression 67 0.67 0.67

Decision Tree 63 0.63 0.63

SGD 63 0.63 0.63

SVM 73 0.72 0.73

Random Forest 79 0.79 0.78

(a) (b)

Figure 7.1: Confusion Matrix for Binary Classification Using (a) Linear Regression-

Based Classifier & (b) Decision Tree Algorithm.

51



(a) (b)

Figure 7.2: Confusion Matrix for Binary Classification Using (a) Stochastic Gradient

Descent & (b) Support Vector Machine Algorithm.

Figure 7.3: Confusion Matrix for Binary Classification Using Random Forest Algo-

rithm.
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7.5.2 3-Class Classification

Table 7.2: 3-Class Classification Results for Low, Normal & High Response Time

Algorithm Accuracy(%) Precision Recall

Linear Regression 52 0.54 0.53

Decision Tree 56 0.55 0.56

SGD 59 0.56 0.56

SVM 70 0.54 0.59

Random Forest 72 0.71 0.70

(a) (b)

Figure 7.4: Confusion Matrix for 3-Class Classification Using (a) Linear Regression-

Based Classifier & (b) Decision Tree Algorithm.
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(a) (b)

Figure 7.5: Confusion Matrix for 3-Class Classification Using (a) Stochastic Gradient

Descent & (b) Support Vector Machine Algorithm.

Figure 7.6: Confusion Matrix for 3-Class Classification Using Random Forest Algo-

rithm.
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7.5.3 High-Low Classification

Table 7.3: Binary Classification Results for High and Low Categories

Algorithm Accuracy(%) Precision Recall

Linear Regression 80 0.82 0.82

Decision Tree 85 0.84 0.86

SGD 80 0.78 0.79

SVM 85 0.85 0.83

Random Forest 95 0.96 0.93

(a) (b)

Figure 7.7: Confusion Matrix for High-Low Classification Using (a) Linear Regression-

Based Classifier & (b) Decision Tree Algorithm.
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(a) (b)

Figure 7.8: Confusion Matrix for High-Low Classification Using (a) Stochastic Gra-

dient Descent & (b) Support Vector Machine Algorithm.

Figure 7.9: Confusion Matrix for High-Low Classification Using Random Forest Al-

gorithm.
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Chapter 8

EEG CHANNEL AND FEATURE ISOLATION

8.1 Channel Isolation

8.1.1 Method

Based on binary classification of high and low response using random forest clas-

sifier, important channels are isolated (Koley and Dey, 2012) combining the following

methods:

1. Recursive elimination

2. Tree-based feature importance method

3. Mutual feature information criterion

Recursive elimination of unnecessary channels preserving or enhancing the overall

accuracy is demonstrated in Algorithm-1.

8.1.2 Results

Using the stated set of methods, it’s evident that the following channels are of the

highest importance:

1. T7

2. C3

3. TP7

4. CP3

5. P7

6. P3

Figure-8.1 shows the important channels’ locations.
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Algorithm 1: Channel Isolation

Input: EEG features from all the channels

Output: useful channels

Initialization: N ← 0,

useful channels ← {1,2,3,...,29,30}

1 while N 6= size of useful channels do

2 N ← size of useful channels

3 X ← Random Forest accuracy for useful channels

4 channels ← null

5 for n ← 1 to N do

6 modified features ← EEG features for (useful channels - nth element of

useful channels)

7 accuracy ← Random Forest accuracy using modified features

8 if accuracy >= X then

9 X ← accuracy

10 else

11 channels.append ( nth element of useful channels)

12 useful channels ← channels
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Figure 8.1: Important Channel Locations

8.2 Feature Isolation

8.2.1 Method

Feature selection is also based on binary classification of high and low response

using random forest classifier and the same set of methods is used. Algorithm-2 shows

the isolation of features using recursive elimination of features preserving or enhancing

the accuracy. But before all of these, a correlation matrix is formed to identify highly

correlated (correlation coeff. > 0.75) features and get rid of repetitions. Figure-8.2

shows feature correlation matrix and highly correlated features.

(a) (b)

Figure 8.2: (a) Feature Correlation Matrix & (b) Highly Correlated Features.
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Algorithm 2: Feature Isolation

Input: EEG features from isolated channels

Output: useful features

Initialization: N ← 0,

useful features ← {1,2,3,...,54,55}

1 while N 6= size of useful features do

2 N ← size of useful features

3 X ← Random Forest accuracy for useful features

4 features ← null

5 for n ← 1 to N do

6 modified features ← EEG features for (useful features - nth element of

useful features)

7 accuracy ← Random Forest accuracy using modified features

8 if accuracy >= X then

9 X ← accuracy

10 else

11 features.append ( nth element of useful features)

12 useful features ← features
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8.2.2 Results

Based on the stated methods, Hjorth parameters and band power-based features

have been found most important. Though all the band information has been proven

to be important, alpha & theta band are comparatively more impactful. Table-8.1

shows the list of 10 most important features with their relative weights.

Table 8.1: 10 Most Important Features and Corresponding Weights

Rank Feature Weight

1 Activity 0.0513

2 Activity of last moment 0.0413

3 Complexity 0.0363

4 Complexity of last moment 0.0335

5 Minimum theta power/alpha power among moving windows 0.0283

6 Mobility 0.0247

7 Median theta power/alpha power among moving windows 0.0234

8 Maximum alpha energy percentage among moving windows 0.0228

9 Minimum delta power/theta power among moving windows 0.0219

10 Theta energy percentage 0.0217
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Chapter 9

FUTURE WORK

This study is conducted on the basis of specific feature extraction from differ-

ent domains and the implementation of these features in selected regression and

classification-based algorithms. However, there are lots of other features that can

be extracted from all the domains. Also, different algorithms can be implemented to

create a better model.

Though our model is a generalized one, it can’t predict a person’s reaction time

well based on a model trained on other participants’ data. So, training with a big-

ger data-set of longer duration and more variation among subjects may contribute

towards generalizing the model for better performance in any circumstances.

Similar experiments involving different visual tasks, levels of complexity and type

of response may reveal new information about the relationship between EEG signal

and reaction time.
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Chapter 10

CONCLUSION

This experiment is performed on regular subjects in regular conditions without

much change of mental state (unlike sleep stages) and the change of EEG pattern

is very subtle. Moreover, the response may depend on eye motion, improvement of

muscle memory with time or emotional parameters. So it is difficult to find any

direct correlation between a particular feature and the output response. Considering

the circumstances, both regression, and classification-based studies are challenging.

In spite of all the stated constraints, a maximum correlation coefficient of 0.69 has

been obtained from regression-based analysis and 95% of maximum accuracy from

the classification of the extremes. So, it can be said that this study has shown some

promising results compared to the earlier works.
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