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ABSTRACT

Graph is a ubiquitous data structure, which appears in a broad range of real-world

scenarios. Accordingly, there has been a surge of research to represent and learn from

graphs in order to accomplish various machine learning and graph analysis tasks.

However, most of these efforts only utilize the graph structure while nodes in real-

world graphs usually come with a rich set of attributes. Typical examples of such

nodes and their attributes are users and their profiles in social networks, scientific

articles and their content in citation networks, protein molecules and their gene sets

in biological networks as well as web pages and their content on the Web. Utilizing

node features in such graphs—attributed graphs—can alleviate the graph sparsity

problem and help explain various phenomena (e.g., the motives behind the formation

of communities in social networks). Therefore, further study of attributed graphs is

required to take full advantage of node attributes.

In the wild, attributed graphs are usually unlabeled. Moreover, annotating data is

an expensive and time-consuming process, which suffers from many limitations such

as annotators’ subjectivity, reproducibility, and consistency. The challenges of data

annotation and the growing increase of unlabeled attributed graphs in various real-

world applications significantly demand unsupervised learning for attributed graphs.

In this dissertation, I propose a set of novel models to learn from attributed graphs

in an unsupervised manner. To better understand and represent nodes and communi-

ties in attributed graphs, I present different models in node and community levels. In

node level, I utilize node features as well as the graph structure in attributed graphs to

learn distributed representations of nodes, which can be useful in a variety of down-

stream machine learning applications. In community level, with a focus on social

media, I take advantage of both node attributes and the graph structure to discover

not only communities but also their sentiment-driven profiles and inter-community
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relations (i.e., alliance, antagonism, or no relation). The discovered community pro-

files and relations help to better understand the structure and dynamics of social

media.
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Chapter 1

INTRODUCTION

In a broad range of real-world applications, data can be represented as graphs. Social

networks, the Wide World Web, biological networks, computer networks are some

examples, which can be modeled as graphs. Accordingly, there has been a surge of

research to learn from graphs in order to accomplish various machine learning and

graph analysis tasks. However, most of these efforts only utilize the graph struc-

ture while nodes in real-world graphs usually come with a rich set of attributes (i.e.

features). Typical examples of such nodes and their attributes are users and their

profiles in social networks, scientific articles and their text in citation networks, pro-

tein molecules and their gene sets in biological networks as well as web pages and

their content on the Web. Graphs in which their nodes come with attributes are

called attributed graphs 1 . Node attributes in attributed graphs have the potential

to alleviate the graph sparsity problem and explain various phenomena in graphs

(e.g., the motives behind the formation of communities in social network graphs).

In the wild, attributed graphs are usually unlabeled. Moreover, annotating data is

an expensive and time-consuming process, which suffers from many limitations such

as annotators’ subjectivity, reproducibility, and consistency. The challenges of data

annotation and the growing increase of unlabeled attributed graphs in various real-

world applications significantly demand unsupervised learning for attributed graphs.

In this dissertation, I propose a set of novel models for unsupervised attributed

graph learning in node and community levels in order to better understand and rep-

1The terms ”attributed graphs”, ”attributed networks”, and ”graph-structured data” are ex-
changeably used in this dissertation.
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resent nodes and communities in attributed graphs. In node level, I utilize node

attributes as well as the graph structure to learn distributed representations of nodes

in graphs, which can be useful for many downstream machine learning tasks. In com-

munity level, with a focus on social media, I take advantage of both node attributes

and the graph structure to not only detect communities but also their sentiment-

driven profiles and inter-community relations (i.e., alliance, antagonism, or no rela-

tion). The discovered community profiles and inter-community relations help us to

better understand the structure and dynamics of social media.

1.1 Research Challenges

The research challenges I face in this dissertation are as follows:

• How can I utilize node attributes as well as the graph structure to learn low-

dimensional vector representations of nodes?

• How can I utilize node attributes as well as the graph structure in social media

to detect and profile communities in a way that community profiles represent

the collective opinions of community members?

• How can I utilize node attributes as well as the graph structure in social me-

dia to detect communities and their inter-community relations (i.e., alliance,

antagonism, or no relation)?

1.2 Contributions

The contributions of this dissertation are summarized as follows:

• Proposing a novel neural network architecture to embed nodes in attributed

graphs in such a way that their learned node representations encode the graph

structure and node attributes.

2



• Proposing a novel framework to detect and profile communities in a way that

a community profile reflects the collective opinions of community members.

• Presenting a novel framework to detect communities and their inter-community

relations.

• Conducting experiments on real-world datasets to verify the efficacy of the

proposed frameworks.

1.3 Organization

The rest of this dissertation is organized as follows. In Chapter 2, I propose a graph

auto-encoder equipped with self-attention mechanism to learn the representations of

nodes in attributed graphs. In Chapter 3, I present a novel framework to detect

and profile communities in a way that a community profile reflects the collective

opinions of community members. In Chapter 4, I present a novel framework to detect

communities and their inter-community relations.
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Chapter 2

UTILIZING NODE ATTRIBUTES FOR GRAPH REPRESENTATION

LEARNING

2.1 Overview

Auto-encoders have emerged as a successful framework for unsupervised learning.

However, conventional auto-encoders are incapable of utilizing explicit relations in

structured data. To take advantage of relations in graph-structured data, several

graph auto-encoders have recently been proposed, but they neglect to reconstruct

either the graph structure or node attributes. This hinders their capability to learn

rich node representations. In this chapter, I present the graph attention auto-encoder

(GATE), a neural network architecture for unsupervised representation learning on

graph-structured data (i.e., attributed graphs). The proposed architecture is able to

reconstruct graph-structured inputs, including both node attributes and the graph

structure, through stacked encoder/decoder layers equipped with self-attention mech-

anisms. In the encoder, by considering node attributes as initial node representations,

each layer generates new representations of nodes by attending over their neighbors’

representations. In the decoder, I attempt to reverse the encoding process to recon-

struct node attributes. Moreover, node representations are regularized to reconstruct

the graph structure. The proposed architecture does not need to know the graph

structure upfront, and thus it can be utilized for inductive learning. My experi-

ments demonstrate competitive performance on several node classification benchmark

datasets for transductive and inductive tasks.
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2.2 Introduction

Low-dimensional vector representations of nodes in graphs have demonstrated

their utility in a broad range of machine learning tasks. Such tasks include node clas-

sification (Grover and Leskovec, 2016), recommender systems (Ying et al., 2018), com-

munity detection (Wang et al., 2017b), graph visualization (Perozzi et al., 2014; Tang

et al., 2015), link prediction (Wei et al., 2017) and relational modeling (Schlichtkrull

et al., 2018). Accordingly, there has been a surge of research to learn better node

representations. However, most of the proposed methods (Grover and Leskovec, 2016;

Belkin and Niyogi, 2002; He and Niyogi, 2004; Ahmed et al., 2013; Cao et al., 2015;

Ou et al., 2016; Perozzi et al., 2014; Grover and Leskovec, 2016; Perozzi et al., 2016;

Chamberlain et al., 2017; Tian et al., 2014; Wang et al., 2016; Tang et al., 2015;

Cao et al., 2016; Chen et al., 2018a) only utilize the graph structure while nodes in

real-world graphs usually come with a rich set of attributes (i.e. features). Typical

examples are users in social networks, scientific articles in citation networks, protein

molecules in biological networks and web pages on the Internet.

Significant efforts have been made (Huang et al., 2017b; Yang et al., 2016; Deffer-

rard et al., 2016; Monti et al., 2017; Kipf and Welling, 2017; Velickovic et al., 2018;

Hamilton et al., 2017) to utilize node attributes for graph representation learning.

Nevertheless, the most successful methods, notably graph convolutional networks

(Kipf and Welling, 2017) and graph attention networks (Velickovic et al., 2018), de-

pend on label information, which is not available in many real-world applications.

Moreover, the process of annotating data suffers from many limitations, such as an-

notators’ subjectivity, reproducibility, and consistency.

To avoid the challenges of annotating data, several unsupervised graph embed-

ding methods (Kipf and Welling, 2016; Duran and Niepert, 2017; Pan et al., 2018;

5



Veličković et al., 2019; Gao and Huang, 2018; Huang et al., 2017a; Yang et al., 2015)

have been proposed, but these methods suffer from at least one of the three follow-

ing problems. First, despite utilizing node features, some of these models (Kipf and

Welling, 2016; Pan et al., 2018; Gao and Huang, 2018) heavily depend on the graph

structure. This hinders their capability to fully exploit node features. Second, many

(Gao and Huang, 2018; Huang et al., 2017a; Yang et al., 2015) are not capable of in-

ductive learning, which is crucial to encounter unseen nodes (e.g., new users in social

networks, recently published scientific articles and new web pages on the Internet).

Third, even though some efforts have been made (Veličković et al., 2019; Hamilton

et al., 2017) to address inductive learning tasks, they are not unified architectures for

both transductive and inductive tasks.

Auto-encoders have recently become popular for unsupervised learning due to

their ability to capture complex relationships between input’s attributes through

stacked non-linear layers (Baldi, 2012; Bengio et al., 2013). However, conventional

auto-encoders are not able to take advantage of explicit relations in structured data.

To utilize relations in graph-structured data, several graph auto-encoders (Kipf and

Welling, 2016; Wang et al., 2017a; Pan et al., 2018) have been proposed. Although

the encoders in these models fully utilize graph-structured inputs, the decoders ne-

glect to reconstruct either the graph structure or node attributes. This hinders their

capability to learn rich node representations.

Another successful neural network paradigm is the attention mechanism (Bah-

danau et al., 2014), which has been extremely useful in tackling many machine learn-

ing tasks (Chorowski et al., 2015; Chen et al., 2016; Wang et al., 2018), particularly

sequence-based tasks (Vaswani et al., 2017; Luong et al., 2015; Dehghani et al., 2018;

Rush et al., 2015). The state-of-the-art attention mechanism is self-attention or intra-

attention, which computes the representation of an input (e.g., a set or sequence) by
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focusing on its most relevant parts. Self-attention has been successfully applied to a

variety of tasks including machine translation (Vaswani et al., 2017), video classifica-

tion (Wang et al., 2018) and question answering (Dehghani et al., 2018). Nonetheless,

the majority of these efforts target supervised learning tasks, and few efforts (Devlin

et al., 2018; He et al., 2017) are made to tackle unsupervised learning tasks.

In this chapter, I present a novel graph auto-encoder to learn node representations

within graph-structured data (i.e., attributed graphs) in an unsupervised manner. Our

auto-encoder takes in and reconstructs node features by utilizing the graph structure

through stacked encoder/decoder layers. In the encoder, node attributes are fed

into stacked layers to generate node representations. By considering node features

as initial node representations, each encoder layer generates new representations of

nodes by utilizing neighbors’ representations according to their relevance, which is

determined by a graph attention mechanism. In the decoder, the architecture aims

to reverse the entire encoding process to reconstruct node attributes. To this end,

each decoder layer attempts to reverse the process of its corresponding encoder layer.

Moreover, node representations are regularized to reconstruct the graph structure.

To our knowledge, no auto-encoder is capable of reconstructing both node attributes

and the graph structure. Our architecture can also be applied to inductive learning

tasks since it doesn’t need to know the graph structure upfront.

Our key contributions are summarized as follows:

• I propose a novel graph auto-encoder for unsupervised representation learning

on graph-structured data by reconstructing both node features and the graph

structure.

• I utilize self-attention for unsupervised attributed graph representation learning.

• I present a unified neural architecture capable of both transductive and induc-
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tive learning.

The rest of the chapter is organized as follows. I review related work in Section

2.3. In Section 2.4, I formally define the problem of unsupervised representation

learning on graph-structured data. Section 2.5 presents the architecture of our pro-

posed graph auto-encoder. In Section 2.6, I quantitatively and qualitatively evaluate

GATE using several benchmark datasets for both transductive and inductive learning

tasks. Section 2.7 concludes the chapter.

2.3 Related Work

2.3.1 Graph Representation Learning

Most of the graph embedding methods fall into one of the following three cate-

gories: factorization based, random walk based, and auto-encoder based approaches.

Factorization based approaches are inspired by matrix factorization methods,

which assume that the data lies in a low dimensional manifold. Laplacian Eigenmaps

(Belkin and Niyogi, 2002) and LPP (He and Niyogi, 2004) rely on eigendecomposi-

tion to preserve the local manifold structure. Due to expensive eigendecomposition

operations, these methods face difficulty to tackle large-scale graphs. To alleviate this

problem, several techniques—notably the Graph Factorization (GF) (Ahmed et al.,

2013), GraRep (Cao et al., 2015) and HOPE (Ou et al., 2016)—have been proposed.

These methods differ mainly in their node similarity calculation. The graph factoriza-

tion computes node similarity based on the first-order proximities directly extracted

from the adjacency matrix. To capture more accurate node similarity, GraRep and

HOPE utilize the high-order proximities obtained from different powers of the adja-

cency matrix and similarity measures (i.e., cosine similarity) respectively.

Random walk based approaches assume a pair of nodes to be similar if they are
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close in simulated random walks over the graph. DeepWalk (Perozzi et al., 2014)

and node2vec (Grover and Leskovec, 2016) are the most successful methods in this

category and differ primarily in their random walk generation. DeepWalk simulates

uniform random walks while node2vec relies on a biased random walk generation.

Preozzi et al. (Perozzi et al., 2016) extend DeepWalk to encode multiscale node

relationships in the graph. In contrast to DeepWalk and node2vec, which embed

nodes in the Euclidean space, Chamberlan et al. (Chamberlain et al., 2017) utilize

the hyperbolic space.

Factorization based and random walk based approaches adopt shallow models,

which are incapable of capturing complex graph structures. To solve this problem,

auto-encoder based approaches are proposed to capture non-linear graph structures by

using deep neural networks. Tian et al. (Tian et al., 2014) present a stacked sparse

auto-encoder to embed nodes by reconstructing the adjacency matrix. Moreover,

Wang et al. (Wang et al., 2016) propose a stacked auto-encoder, which reconstructs

the second-order proximities by using the first-order proximities as a regularization.

Cao et al. (Cao et al., 2016) use stacked denoising auto-encoder to reconstruct the

pointwise mutual information matrix.

Although the majority of graph embedding methods fall into one of the aforemen-

tioned categories, there are still some exceptions. For instance, LINE (Tang et al.,

2015) is a successful shallow embedding method to preserve both the local and global

graph structures. Another example is HARP (Chen et al., 2018a), which introduces

a graph processing step coarsening a graph into smaller graphs at different levels of

granularity, and then it embeds them from the smaller graph to the largest one (i.e.,

the original graph) by using one of the graph embedding methods (i.e., DeepWalk,

node2vec, and LINE).
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2.3.2 Attributed Graph Representation Learning

The graph embedding methods described in the previous section only utilize the

graph structure to learn node representations. However, nodes in real-world graphs

usually come with a rich set of attributes. To take advantage of node features, many

attributed graph embedding methods have been proposed, which fall into two main

categories: supervised and unsupervised approaches.

Supervised attributed graph embedding approaches embed nodes by utilizing label

information. For example, Huang et al. (Huang et al., 2017b) propose a supervised

method leveraging spectral techniques to project the adjacency matrix, node feature

matrix, and node label matrix into a common vector space. Hamilton et al. (Hamilton

et al., 2017) present four variants of GraphSAGE, a framework to compute node em-

beddings in an inductive manner. Many approaches address graphs with partial label

information. For example, Graph Convolution Network (GCN) (Kipf and Welling,

2017) incorporates spectral convolutions into neural networks. Graph Attention Net-

work (GAT) (Velickovic et al., 2018) utilizes an attention mechanism to determine

the influence of neighboring nodes in final node representations.

The unsupervised attributed graph embedding methods address the lack of la-

bel information, which exists in many real-world applications. Yang et al. (Yang

et al., 2015) and Huang et al. (Huang et al., 2017a) propose matrix factorization

methods to combine the graph structure and node attributes. Moreover, Kipf et al.

(Kipf and Welling, 2016) propose two graph auto-encoders utilizing graph convolu-

tion networks. Pan et al. (Pan et al., 2018) also introduce a graph-encoder based

on an adversarial approach. For graph clustering, Wang et al. (Wang et al., 2017a)

present a graph auto-encoder, which is able to reconstruct node features. However,

these auto-encoders reconstruct either the graph structure or node attributes instead
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of both. To alleviate this limitation, Gao et al. (Gao and Huang, 2018) propose a

framework consisting of two conventional auto-encoders, which reconstruct the graph

structure and node attributes separately. These two auto-encoders are regularized in

a way that their learned representations of neighboring nodes are similar. However,

their framework does not fully leverage the graph structure due to the incapability

of conventional auto-encoders in utilizing explicit relations in structured data. Most

of the aforementioned unsupervised methods are not designed for inductive learning,

which is crucial to encounter unseen nodes. Velivckovic et al. (Veličković et al., 2019)

and Hamilton et al. (Hamilton et al., 2017) propose unsupervised models for tackling

inductive tasks, but their models are not unified frameworks for both transductive

and inductive tasks.

2.4 Problem Statement

In this section, I present the notations used in the chapter and formally define

the problem of unsupervised node representation learning on graph-structured data.

I use bold upper-case letters for matrices (e.g., X), bold lowercase letters for vectors

(e.g., x), and calligraphic fonts for sets (e.g., N ). Moreover, I represent the transpose

of a matrix X as XT . The ith element of vector x is denoted by xi. Xij denotes the

entry of matrix X at the ith row and the jth column. Table 2.1 summarizes the main

notations used in the chapter.

In the attributed graph representation learning setup, we are provided with the

node feature matrix X = [x1,x2, ...,xN ], where N is the number of nodes in the

graph and xi ∈ RF corresponds to the ith column of matrix X, denoting the features

of node i. We are also given the adjacency matrix A ∈ RN×N , representing the

relations between nodes. Even though the matrix A may consist of real numbers,

in our experiments, I assume the graph is unweighted and includes self-loops, i.e.,

11



Table 2.1: The Notations Used in Chapter 2.

Notations Definitions

N The number of nodes in the graph

E The number of edges in the graph

L The number of layers

d(k) The number of node representation dimensions in the kth en-

coder/decoder layer

F The number of node features (d(0) = F )

P The number of iterations (i.e., epochs)

A ∈ RN×N The adjacency matrix

H(k) ∈ Rd(k)×N The node representation matrix generated by the kth encoder layer

Ĥ(k) ∈ Rd(k)×N The node representation matrix reconstructed by the kth decoder layer

H ∈ Rd(L)×N The node representation matrix (H = H(L) = Ĥ(L))

X ∈ RF×N The node feature matrix (H(0) = X)

X̂ ∈ RF×N The reconstructed node feature matrix ( X̂ = Ĥ(0))

C(k) ∈ RN×N The attention matrix in the kth encoder layer

Ĉ(k) ∈ RN×N The attention matrix in the kth decoder layer

hi
(k) ∈ Rd(k)

The representation of node i generated by the kth encoder layer

ĥ
(k)
i ∈ Rd(k)

The representation of node i reconstructed by the kth decoder layer

hi ∈ Rd(L)
The representation of node i (hi = hi

(L) = ĥ
(L)
i )

xi ∈ RF The features of node i (h
(0)
i = xi)

x̂i ∈ RF The reconstructed features of node i (x̂i = ĥ
(0)
i )

α
(k)
ij The attention coefficient indicating the relative relevance of neighbor-

ing node j to node i in the kth encoder layer

α̂
(k)
ij The attention coefficient indicating the relative relevance of neighbor-

ing node j to node i in the kth decoder layer

Ni The neighborhood of node i, including itself
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Aij = 1 if there is an edge between node i and node j in the graph or i equals j, and

Aij = 0 otherwise.

Given the node feature matrix X and the adjacency matrix A, our objective is to

learn node representations in the form of matrix H = [h1,h2, ...,hN ], where hi ∈ RD

corresponds to the ith column of matrix H, denoting the representation of node i.

2.5 Architecture

In this section, I illustrate the architecture of the graph attention auto-encoder.

First, I present the encoder and decoder to show how the proposed auto-encoder

reconstructs node features using the graph structure. Then, I describe the proposed

loss function, which learns node representations by minimizing the reconstruction loss

of node features and the graph structure. In the end, I present the matrix formulation

of GATE as well as its time and space complexities.

2.5.1 Encoder

The encoder in my architecture takes node features and generates node represen-

tations by using the graph structure through stacked layers. I use multiple encoder

layers for two reasons. First, more layers make the model deeper, and hence increas-

ing the learning capability. Second, they propagate node representations through the

graph structure, resulting in richer node embeddings.

Each encoder layer generates new representations of nodes by utilizing their neigh-

bors’ representations according to their relevance. To determine the relevance between

nodes and their neighbors, I use a self-attention mechanism with shared parameters

among nodes, following the work of Velickovic et al. (Velickovic et al., 2018). In the

kth encoder layer, the relevance of a neighboring node j to node i is computed as

follows:
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Figure 2.1: The Illustration of Reconstructing the Features of Node 3, with Neighbor-

hood N3 = {1, 2, 3, 4, 5}, Using the Graph Attention Auto-encoder with Two Layers.

e
(k)
ij = Sigmoid

(
v(k)
s

T
σ
(
W(k)h

(k−1)
i

)
+ v(k)

r

T
σ
(
W(k)h

(k−1)
j

))
(2.1)

where W(k) ∈ Rd(k)×d(k−1)
, v

(k)
s ∈ Rd(k)

, and v
(k)
r ∈ Rd(k)

are the trainable parameters

of the kth encoder layer, σ denotes the activation function and Sigmoid represents the

sigmoid function (i.e., Sigmoid (x) = 1/(1 + exp−x)).

To make the relevance coefficients of node i’s neighbors comparable, I normalize

them by using the softmax function as follows:

α
(k)
ij =

exp
(
e
(k)
ij

)
∑

l∈Ni
exp

(
e
(k)
il

) (2.2)

where Ni represents the neighborhood of node i (i.e., a set of nodes connected to node

i according to the adjacency matrix A, including node i itself).

By considering node features as initial node representations (i.e., hi
(0) = xi, ∀i ∈

{1, 2, .., N}), the kth encoder layer generates the representation of node i in layer k

as follows:
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h
(k)
i =

∑
j∈Ni

α
(k)
ij σ

(
W(k)h

(k−1)
j

)
(2.3)

After applying L encoder layers, I consider the output of the last layer as the final

node representations (i.e., hi = h
(L)
i , ∀i ∈ {1, 2, .., N}).

2.5.2 Decoder

The encoder is reminiscent of graph attention networks (Velickovic et al., 2018),

which use supervised learning to embed nodes. My main contribution is reversing

the encoding process in order to learn node representations without any supervision.

To this end, I use a decoder with the same number of layers as the encoder. Each

decoder layer attempts to reverse the process of its corresponding encoder layer. In

other words, each decoder layer reconstructs the representations of nodes by utilizing

the representations of their neighbors according to their relevance. The normalized

relevance (i.e., attention coefficient) of a neighboring node j to node i in the kth

decoder layer is computed as follows:

α̂
(k)
ij =

exp
(
ê
(k)
ij

)
∑

l∈Ni
exp

(
ê
(k)
il

) (2.4)

ê
(k)
ij = Sigmoid

(
v̂(k)
s

T
σ
(
Ŵ(k)ĥ

(k)
i

)
+ v̂(k)

r

T
σ
(
Ŵ(k)ĥ

(k)
j

))
(2.5)

where Ŵ(k) ∈ Rd(k−1)×d(k)
, v̂

(k)
s ∈ Rd(k−1)

, and v̂
(k)
r ∈ Rd(k−1)

are the trainable param-

eters of the kth decoder layer.

By considering the output of the encoder as the input of the decoder (i.e., ĥ
(L)
i =

h
(L)
i , ∀i ∈ {1, 2, .., N}), the kth decoder layer reconstructs the representation of node

i in layer k − 1 as follows:
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ĥ
(k−1)
i =

∑
j∈Ni

α̂
(k)
ij σ

(
Ŵ(k)ĥ

(k)
j

)
(2.6)

After applying L decoder layers, I consider the output of the last layer as the

reconstructed node features (i.e., x̂i = ĥ
(0)
i , ∀i ∈ {1, 2, .., N}). Figure 2.1 illustrates

the process of reconstructing node features in GATE through an example. Note that

h
(0)
i = xi, hi = h

(2)
i = ĥ

(2)
i , and x̂i = ĥ

(0)
i , ∀i ∈ {1, 2, .., N} .

2.5.3 Loss Function

Graph-structured data include node features and the graph structure, and both

should be encoded by high-quality node representations. I minimize the reconstruc-

tion loss of node features as follows:

N∑
i=1

||xi − x̂i||2 (2.7)

The absence of an edge between two nodes in the graph does not necessarily imply

dissimilarity due to the possibility of feature similarity. Thus, I minimize the recon-

struction loss of the graph structure by making the representations of neighboring

nodes similar. I accomplish this by minimizing the following equation:

−
N∑
i=1

∑
j∈Ni

log

(
1

1 + exp(−hTi hj)

)
(2.8)

By merging Eq. (2.7) and Eq. (2.8), I minimize the reconstruction loss of node

features and the graph structure as follows:

Loss =
N∑
i=1

||xi − x̂i||2 − λ
∑
j∈Ni

log

(
1

1 + exp(−hTi hj)

)
(2.9)

where λ controls the contribution of the graph structure reconstruction loss.
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2.5.4 Matrix Formulation

Since the adjacency matrix A is usually very sparse in practice, I can leverage

sparse matrix operations (e.g., sparse softmax) to tackle large graphs. Therefore, I

present the corresponding matrix formulas for the aforementioned encoder and de-

coder equations.

Let us begin with obtaining the attention matrix C(k) ∈ RN×N in the kth encoder

layer, where C
(k)
ij = α

(k)
ij if there is an edge between node i and node j, and C

(k)
ij = 0

otherwise. I compute C(k)as follows:

C(k) = Softmax
(
Sigmoid

(
M(k)

s + M(k)
r

))
(2.10)

M(k)
s = A�

(
v(k)
s

T
σ
(
W(k)H(k−1))) (2.11)

M(k)
r = A�

(
v(k)
r

T
σ
(
W(k)H(k−1)))T (2.12)

where � is element-wise multiplication with broadcasting capability and σ denotes

the activation function.

By considering H(0) = X, the kth encoder layer generates node representations in

layer k as follows:

H(k) = σ
(
W(k)H(k−1))C(k) (2.13)

After applying L encoder layers, I consider H(L) as the final node representation

matrix (i.e., H = H(L)).

The attention matrix Ĉ(k) ∈ RN×N in the kth decoder layer, where Ĉ
(k)
ij = α̂

(k)
ij if

there is an edge between node i and node j, and Ĉ
(k)
ij = 0 otherwise, is computed as

follows:

Ĉ(k) = Softmax
(

Sigmoid
(
M̂(k)

s + M̂(k)
r

))
(2.14)
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M̂(k)
s = A�

(
v̂(k)
s

T
σ
(
Ŵ(k)Ĥ(k)

))
(2.15)

M̂(k)
r = A�

(
v̂(k)
r

T
σ
(
Ŵ(k)Ĥ(k)

))T
(2.16)

By considering Ĥ(L) = H(L), the kth decoder layer reconstructs node representa-

tions in layer k − 1 as follows:

Ĥ(k−1) = σ
(
Ŵ(k)Ĥ(k)

)
Ĉ(k) (2.17)

After applying L decoder layers, I consider Ĥ(0) as the reconstructed node feature

matrix (i.e., X̂ = Ĥ(0)).

Algorithm 1 shows the forward propagation of the proposed architecture using

matrix formulation.

2.5.5 Complexity

The proposed auto-encoder is highly efficient because the operations involved in

the graph attention mechanisms can be parallelized across edges, and the rest of the

operations in the encoder and decoder can be parallelized across nodes. Theoretically,

the time complexity of the architecture for one iteration can be expressed as follows:

O(NFD + ED) (2.18)

where N and E are respectively the number of nodes and edges in the graph, F

is the number of node features and D is the maximum d(k) in all layers (i.e., D =

maxk∈{1,2,..,L} d
(k)).

By taking advantage of sparse matrix operations, the space complexity of the

proposed auto-encoder is linear in terms of the number of nodes and edges.
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Algorithm 1 GATE Forward Propagation Algorithm Using Matrix Formulation.

Input: The node feature matrix X and the adjacency matrix A

output: The node representation matrix H and the reconstructed node feature

matrix X̂

1: Initialize W(k), Ŵ(k), v
(k)
s , v̂

(k)
s , v

(k)
r and v̂

(k)
r , ∀k ∈ {1, 2, .., L}

2: H(0) = X

3: for epoch← 1 to P do

4: for k ← 1 to L do

5: Compute C(k) according to Eq. (2.10)

6: H(k) = σ
(
W(k)H(k−1))C(k)

7: end for

8: Ĥ(L) = H(L)

9: for k ← L to 1 do

10: Compute Ĉ(k) according to Eq. (2.14)

11: Ĥ(k−1) = σ
(
Ŵ(k)Ĥ(k)

)
Ĉ(k)

12: end for

13: H = H(L)

14: X̂ = Ĥ(0)

15: end for

2.6 Evaluation

In this section, I quantitatively and qualitatively evaluate the proposed GATE

architecture using several benchmark datasets. Section 2.6.1, 2.6.2, and 2.6.3 respec-

tively describe the datasets, baselines, and experimental setup used in the experi-

ments. In Section 2.6.4, I quantitatively evaluate the efficacy of the architecture.

Section 2.6.5 investigates the impact of the three main components used in the pro-

posed architecture, namely the self-attention mechanism, graph structure reconstruc-
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Table 2.2: The Statistics of the Benchmark Datasets Used in Chapter 2.

Dataset Nodes Edges Features Classes Train/Val/Test Nodes

Cora 2,708 5,429 1,433 7 140/500/1,000

Citeseer 3,327 4,732 3,703 6 120/500/1,000

Pubmed 19,717 44,338 500 3 60/500/1,000

tion, and node feature reconstruction. Finally, I investigate the quality of the node

representations learned by GATE in Section 2.6.6.

2.6.1 Datasets

For transductive tasks, I use three benchmark datasets—Cora, Citeseer and Pubmed

(Sen et al., 2008)—that are widely used to evaluate attributed graph embedding meth-

ods. In all datasets, each node belongs to one class. I follow the experimental setup of

Yang et al. (Yang et al., 2016), where 20 nodes per class are used for training. In the

transductive setup, I have access to the graph structure and all nodes’ feature vectors

during training. I evaluate the predictive performance of each method on 1000 test

nodes. The statistics of the datasets are presented in Table 2.2.

For inductive tasks, I also use the same datasets and experimental setup in order to

evaluate the generalization power of different methods to unseen nodes by comparing

the difference between their performance in transductive and inductive tasks for the

same dataset. As required by inductive learning, any information related to (unseen)

test nodes, including features and edges, are completely unobserved during training.
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2.6.2 Baselines

I compare my proposed auto-encoder against the following state-of-the-art unsu-

pervised methods:

• DeepWalk (Perozzi et al., 2014): DeepWalk is a graph embedding method,

which trains Skipgram model (Mikolov et al., 2013) on simulated random walks

over the graph.

• Enhanced DeepWalk (DeepWalk + features): This baseline is a variant

of DeepWalk concatenating raw node features and DeepWalk embeddings to

take advantage of node features.

• Graph Auto-Encoder (GAE) (Kipf and Welling, 2016): GAE uses graph

convolutional networks as the encoder and reconstruct the graph structure in

the encoder.

• Variational Graph Auto-Encoder (VGAE) (Kipf and Welling, 2016): VGAE

is the variational version of GAE.

• GraphSAGE (Hamilton et al., 2017): GraphSAGE has four unsupervised vari-

ants, which differ in their feature aggregator as follows: GraphSAGE-GCN (ap-

plying a convolution-style aggregator), GraphSAGE-mean (taking the element-

wise mean of feature vectors), GraphSAGE-LSTM (aggregating by providing

neighboring nodes’ features into a LSTM), and GraphSAGE-pool (performing

an element-wise max-pooling operation after applying a fully-connected neural

network).

• Deep Graph Infomax (DGI) (Veličković et al., 2019): DGI is an unsuper-

vised attributed graph embedding, which simultaneously estimates and maxi-
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mizes the mutual information between the graph-structured input and learned

high-level graph summaries. stochastic algorithm for graph convolutional net-

works, which uses neighborhood sampling and historical hidden representations

to reduce the receptive field of the graph convolution.

For transductive tasks, I compare my proposed auto-encoder against unsupervised

approaches, which are DeepWalk, enhanced DeepWalk, VGAE, GAE, and DGI. For

inductive tasks, I similarly compare GATE against unsupervised approaches, which

are VGAE, GAE, and four unsupervised variants of GraphSAGE.

2.6.3 Experimental Setup

In the experiments, Adam optimizer (Kingma and Ba, 2014) is used to learn model

parameters with an initial learning rate of 10−4. For all datasets, I use two layers

with 512 node representation dimensions (i.e., d(1) = d(2) = 512). I set the number

of epochs to 100 for Cora and Citeseer, and 500 for Pubmed. I also set λ to 0.5 for

Cora and Pubmed, and 20 for Citeseer. I use only half of the trainable parameters by

setting Ŵ(k) = W(k)T and Ĉ(k) = C(k). Moreover, σ is set to the identity function,

empirically resulting in better performance compared to other activation functions. I

have used Tensorflow (Abadi et al., 2016) to implement GATE 1 .

For the baselines to which I directly compare GATE, I use their default hyperpa-

rameter settings as well as the following settings. I perform a hyperparameter sweep

on initial learning rates {10−3, 10−4, 10−5, 10−6, 10−7}. I also swept over the number

epochs in the set {50, 100, 200, 300} for VGAE and GAE due to their sensitivity to

this hyperparameter. I also set the number of node representation dimensions to 512

for all baselines.

1The implementation of the proposed architecture may be found at: https://github.com/
amin-salehi/GATE
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Table 2.3: Transductive Node Classification Accuracies on the Cora, Citeseer and

Pubmed Datasets.

Available Data Method Cora Citeseer

Pubmed

Raw features 47.9± 0.4% 49.4± 0.2% 69.1± 0.3%

DeepWalk (Perozzi et al. (Perozzi et al., 2014)) 67.2% 43.2% 65.3%

DeepWalk + features 70.7± 0.6% 51.4± 0.5% 74.3± 0.9%

VGAE (Kipf & Welling (Kipf and Welling, 2016)) 72.4± 0.2% 55.7± 0.2% 71.6± 0.4 %

GAE (Kipf & Welling (Kipf and Welling, 2016)) 81.8± 0.1% 69.2± 0.9% 78.2± 0.1%

DGI (Velickovic et al. (Veličković et al., 2019)) 82.3± 0.6% 71.8± 0.7% 76.8± 0.6%

GATE (ours) 83.2± 0.6% 71.8± 0.8% 80.9± 0.3%

Table 2.4: Inductive Node Classification Accuracies on the Cora, Citeseer and

Pubmed Datasets.

Available Data Method Cora Citeseer

Pubmed

GraphSAGE-LSTM (Hamilton et al. (Hamilton et al., 2017)) 50.1± 0.2% 40.3± 0.2% 77.1± 0.1%

GraphSAGE-pool (Hamilton et al. (Hamilton et al., 2017)) 57.5± 0.2% 45.9± 0.2% 79.9± 0.1%

VGAE (Kipf & Welling (Kipf and Welling, 2016)) 58.4± 0.4% 55.4± 0.2% 71.1± 0.2%

GraphSAGE-mean (Hamilton et al. (Hamilton et al., 2017)) 67.0± 0.2% 52.8± 0.1% 79.3± 0.1%

GraphSAGE-GCN (Hamilton et al. (Hamilton et al., 2017)) 74.3± 0.1% 54.5± 0.1% 77.5± 0.1%

GAE (Kipf & Welling (Kipf and Welling, 2016)) 80.5± 0.1% 69.1± 0.9% 78.1± 0.2%

GATE (ours) 82.5± 0.5% 71.5± 0.7% 80.8± 0.3%

2.6.4 Comparison

In this section, I compare out proposed method with the aforementioned state-

of-the-art baselines based on transductive and inductive node classifications. For

transductive node classification, I report the mean classification accuracy (with stan-
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dard deviation) of the proposed method on the test nodes after 100 runs of training

(followed by logistic regression). The accuracies for DeepWalk are retrieved from Kipf

& Welling (Kipf and Welling, 2017). I also reuse the metrics reported in Velickovic et

al. (Veličković et al., 2019) for the performance of enhanced DeepWalk, DGI, and lo-

gistic regression with raw features. Moreover, I directly compare my method against

GAE and VGAE.

Table 2.3 shows the transductive node classification accuracies for the Cora, Cite-

seer, and Pubmed datasets. Accordingly, I make the following observations:

• GATE achieves strong performance across all three datasets. Particularly,

GATE outperforms all baselines on the Cora and Pubmed datasets.

• GATE outperforms or matches all baselines across all datasets. I observe an

improvement of 2.7% and 0.9% over the second best baseline for Pubmed and

Cora respectively.

• The reconstruction of node features by GATE results in a considerable im-

provement compared to the graph auto-encoder baselines reconstructing only

the graph structure. Compared to the best graph auto-encoder baseline (i.e.,

GAE), my method achieves an improvement gain of 2.7%, 2.6%, and 1.4% on

Pubmed, Citeseer, and Cora respectively.

For inductive node classification, I utilize the same datasets used for the transduc-

tive tasks. This enables us to compare the performance of GATE between transduc-

tive and inductive tasks for the same dataset in order to evaluate the generalization

power of the proposed auto-encoder to unseen nodes. I report the mean classification

accuracy (with standard deviation) of my method on the (unseen) test nodes after

100 runs of training (followed by logistic regression). I directly compare my method

against VGAE, GAE, and four variants of GraphSAGE.
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Table 2.4 shows the inductive node classification accuracies for the Cora, Citeseer,

and Pubmed datasets. Accordingly, I make the following observations:

• GATE exceeds the performance of the baselines across all three datasets. I are

able to improve upon the best baselines by a margin of 2.4%, 2%, and 0.9% on

Citeseer, Cora, and Pubmed respectively.

• I can observe that GATE achieves similar accuracies for inductive and transduc-

tive tasks with regard to the same dataset. For example, the accuracy difference

between inductive and transductive tasks is 0.1%, 0.3%, and 0.7% on Pubmed,

Citeseer, and Cora respectively. This suggests that GATE naturally generalizes

to unseen nodes.

2.6.5 In-depth Analysis

In this section, I investigate the impact of the three main components used in the

proposed architecture, namely the self-attention mechanism, graph structure recon-

struction and node feature reconstruction. In the experiments, I use the following

variants of my architecture:

• GATE: The full version of the proposed auto-encoder which includes all three

components.

• GATE/A: A variant of the architecture which includes all components except

the self-attention mechanism. In other words, I assign the same importance to

each neighbor.

• GATE/S: A variant of the architecture which includes all components except

the graph structure reconstruction.
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• GATE/F: A variant of the architecture which includes all components except

the node feature reconstruction.

Cora Pubmed Citeseer

65

70

75

80

85

GATE GATE/F GATE/S GATE/A

(a) Trandsuctive

Cora Pubmed Citeseer

65

70

75

80

85

GATE GATE/F GATE/S GATE/A

(b) Inductive

Figure 2.2: Node Classification Accuracies on the Cora, Citeseer and Pubmed

Datasets for the Different Variants of the proposed Architecture GATE.

I first compare the four variants of the proposed architecture based on transductive

node classification. Figure 2.2a shows the mean classification accuracy (with standard

deviation) of all four variants on the test nodes after 100 runs of training (followed

by logistic regression). Accordingly, I make the following observations:

• GATE outperforms other variants in all datasets. Therefore, each component

contributes to the overall performance of my architecture.

• GATE/A performs worse than other variants. This suggests that the self-

attention mechanism contributes the most in my architecture compared to the

graph structure and node feature reconstructions.
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• In Cora and Pubmed which have higher average node degree (i.e., 2 and 2.5

respectively), GATE/F outweighs the performance of GATE/S. On the other

hand, GATE/S exceeds the performance of GATE/F in Citeseer which has the

lowest average node degree (i.e., 1.4) and the highest number of features.

Now I compare all variants of my architecture based on inductive node classifica-

tion. Figure 2.2b shows the mean classification accuracy (with standard deviation)

of all four variants on the (unseen) test nodes after 100 runs of training (followed by

logistic regression). Accordingly, I make the following observations:

• Like the transductive node classification experiments, GATE and GATE/A are

respectively the best and the worst variants of my architecture in all datasets.

• I observe that the performances of GATE/F and GATE/S in Cora and Citeseer

are similar to those of transductive node classification experiments. However,

I notice a huge drop in the performance of GATE/F in Pubmed even though

the performance of GATE/S has not undergone such a decrease. This can be

attributed to both the low number of features and high average node degree of

Pubmed compared to those of Cora and Citeseer, which hugely benefit GATE/F

in transductive learning over inductive learning.

2.6.6 Qualitative Analysis

In this section, I qualitatively investigate the effectiveness of the node represen-

tations and attention coefficients learned by GATE. To this end, I utilize t-SNE

(Maaten and Hinton, 2008) to project the learned node representations into a two-

dimensional space. Due to space limitation, I only show the visualization for the Cora

dataset. Figure 2.3a shows the t-SNE visualization of the learned node representa-
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Figure 2.3: The t-SNE Visualizations of the Node Representations Learned by GATE

on the Cora Dataset in Node and Edge perspectives.

Note: In Figure 2.3a, node colors denote classes. In Figure 2.3b, the edges with

source and target nodes belonging to the same class are colored with the correspond-

ing color of the class, and the others are colored black. Moreover, edge thickness

indicates the averaged attention coefficients between node i and j across all layers

(i.e.,
∑L

k=1

(
α
(k)
ij + α̂

(k)
ij

)
/2L )

tions for Cora, where node colors denote classes. I can observe that the learned node

representations result in discernible clusters.

Figure 2.3b shows the t-SNE visualization of the edges, in the Cora dataset,

thickened by their attention coefficients averaged across all layers. In this figure,

the edges with source and target nodes belonging to the same class are colored with

the color of the class, and the others are colored black. Accordingly, I expect high-

quality node representations to result in thicker colorful edges. In Figure 2.3b, I can

observe that the colorful edges are usually thicker than the black edges. However,
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in few spots where GATE faces difficulty in separating nodes belonging to different

classes, I can notice the presence of some thick black edges.

2.7 Conclusion

In this chapter, I introduced the graph attention auto-encoder (GATE), a novel

neural architecture for unsupervised representation learning on graph-structured data.

By stacking multiple encoder/decoder layers equipped with graph attention mecha-

nisms, GATE is the first graph auto-encoder, which reconstructs both node features

and the graph structure.

Experiments on both transductive and inductive tasks using three benchmark

datasets demonstrate the efficacy of GATE, which learns high-quality node represen-

tations. In most experiments, the proposed auto-encoder outweighs state-of-the-art

unsupervised baselines. Moreover, the experiments show that GATE naturally gen-

eralizes to unseen nodes.
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Chapter 3

UTILIZING NODE ATTRIBUTES FOR COMMUNITY PROFILING

3.1 Overview

Web 2.0 helps to expand the range and depth of conversation on many issues and

facilitates the formation of online communities. Online communities draw various

individuals together based on their common opinions on a core set of issues. Most ex-

isting community detection methods merely focus on discovering communities without

providing any insight regarding the collective opinions of community members and

the motives behind the formation of communities. Several efforts have been made to

tackle this problem by presenting a set of keywords as a community profile. How-

ever, they neglect the positions of community members towards keywords, which play

an important role in understanding communities in the highly polarized atmosphere

of social media. To this end, I present a sentiment-driven community profiling and

detection framework which aims to discover community profiles presenting positive

and negative collective opinions of community members separately. With this re-

gard, the proposed framework initially extracts key expressions in users’ messages as

representative of issues and then identifies users’ positive/negative attitudes towards

these key expressions. Next, it uncovers a low-dimensional latent space in order to

cluster users according to their opinions and social interactions (i.e., retweets). I

demonstrate the effectiveness of the proposed framework through quantitative and

qualitative evaluations.
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3.2 Introduction

With the advent of social media platforms, individuals are able to express their

opinions on a variety of issues online. Like-minded users forge online communities by

interacting with each other and expressing similar attitudes towards a set of issues.

While many methods (Papadopoulos et al., 2012) have been proposed to detect online

communities, most of them do not provide insights into the collective opinions of

community members. To shed light on such opinions, few efforts have focused on

profiling communities, but a large body of work has been devoted to user profiling

(Mislove et al., 2010; Harvey et al., 2013; Ikeda et al., 2013). Indeed, “the founders of

sociology claimed that the causes of social phenomena were to be found by studying

groups rather than individuals” (Hechter, 1988).

Turner et al. (Turner et al., 1987) suggest that individuals come together and

form communities by developing a shared social categorization of themselves in con-

trast to others . Therefore, to profile a community, we need to uncover the collective

opinions of its members which make them distinguishable from the members of other

communities. Tajfel (Tajfel, 2010) suggests focusing on unit-forming factors (e.g.,

similarities, shared threats, or common fate) which function as cognitive criteria for

segmentation of the social world into discrete categories. Accordingly, the controver-

sial issues on which users have different opinions can be taken into account in order

to discover the motives driving the segmentation of social media and the formation of

communities. As a result, the profile of a community should present its important is-

sues on which its members generally have the same position. Such community profiles

can be found useful in a broad range of applications such as recommender systems

(Sahebi and Cohen, 2011), community ranking (Chen et al., 2008; Han et al., 2016),

online marketing (Kozinets, 2002), interest shift tracking of communities (Zhou et al.,
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2012), and community visualization (Cruz et al., 2013). For example, a group recom-

mender system (Boratto, 2016) can suggest more relevant items to communities by

knowing the collective opinions of their members.

Many community detection methods (Cai et al., 2017; Zhou et al., 2012; Akbari

and Chua, 2017; Natarajan et al., 2013; Ozer et al., 2016; Pathak et al., 2008; Pei

et al., 2015; Sachan et al., 2012; Zhou et al., 2006) which are capable of commu-

nity profiling have been proposed. However, these methods usually present a set of

frequent keywords used by the members of a community as the community profile.

However, it is common in social media that the members of different communities

use the same keywords in their messages. Therefore, keywords alone might not be

enough to differentiate communities in which their members have similar word usage.

For instance, in the course of the US presidential election of 2016, Republicans and

Democrats have used many common keywords such as Trump, Clinton, and Oba-

macare but with different sentiments. To differentiate and understand these two

parties, not only keywords but also the collective attitude of community members

towards these keywords should be taken into account.

In this chapter, I tackle the aforementioned problem by proposing a sentiment-

driven community profiling and detection framework which utilizes user-generated

content and social interactions. The proposed framework first captures key expres-

sions in users’ messages as representative of issues by utilizing a POS-tagger and

built-in features of social media platforms (i.e. hashtags and user accounts). Next,

it identifies users’ attitudes towards the extracted key expressions. Finally, I employ

a novel graph regularized semi-nonnegative matrix factorization (GSNMF) technique

to cluster users according to both their opinions and social interactions. GSNMF

uncovers not only communities but also their sentiment-driven profiles. The main

contributions of the chapter are as follows:

32



• Providing sentiment-driven community profiles which separately present the

positive and negative collective attitudes of the members of each community

towards their important key expressions;

• Achieving higher performance in detecting communities compared to several

existing state-of-the-art community detection methods.

The rest of the chapter is organized as follows. I review related work in Section

3.3. I also formally define the problem in Section 3.4. In Section 3.5, I propose the

sentiment-driven community profiling and detection framework. To demonstrate the

efficacy of my framework, I conduct quantitative and qualitative experiments by using

real-world social media datasets in Section 3.6. Section 3.7 concludes the paper and

discusses future work.

3.3 Related Work

Community detection methods can fall into three broad categories: link-based,

content-based and hybrid methods. Most of the existing works belong to the first

category and utilize only social interactions (Clauset et al., 2004; Blondel et al., 2008).

However, they neglect to utilize valuable user-generated content in which users express

their opinions. On the other hand, content-based methods only utilize user-generated

content (Lee et al., 2013). Nevertheless, the content on social media is extremely

noisy, resulting in the failure in detecting communities effectively. To alleviate these

challenges, hybrid community detection methods are proposed. These methods are

the most related work to my study since they not only exploit both user-generated

content and social interactions but are also capable of profiling communities. These

methods roughly fall into two categories: probabilistic graphical models and non-

negative matrix factorization (NMF) based methods.
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3.3.1 Probabilistic Graphical Models

Community User Topic (CUT) models (Zhou et al., 2006) are one of the earliest

works for detecting communities using probabilistic graphical models. The first pro-

posed model (CUT1) assumes that a community is a distribution over users, while

the second one (CUT2) considers a community as a distribution over topics. To

discover communities, CUT1 and CUT2 are biased towards social interactions and

user-generated content, respectively. Community Author Recipient Topic (CART)

(Pathak et al., 2008) is an unbiased model which assumes the members of a com-

munity discuss topics of mutual interests and interact with one other based on these

topics. CART considers users as both authors and recipients of a message. However,

in well-known social networks such as Twitter and Facebook, the number of recipients

for a message can be very large. To make community detection scalable, Topic User

Community Model (TUCM) (Sachan et al., 2012), considering users as authors not

recipients, is proposed. Since CART and TUCM consider users as authors, recipi-

ents, or both, they are limited to certain types of social interactions (e.g., retweet

and reply-to in Twitter). The link-content model (Natarajan et al., 2013) solves this

problem by ignoring the assumption that messages can be related to each other using

social interactions. It is also capable of using different types of social interactions

(e.g., friendship in Facebook and followership in Twitter). Furthermore, COCOMP

(Zhou et al., 2012) is proposed to model each community as a mixture of topics

about which a corresponding group of users communicate. (Cai et al., 2017) is an-

other model which detects and profiles communities in the domains having user-user,

user-document, and document-document links.
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3.3.2 NMF-based Methods

In order to encode graphs as local geometric structures, many methods extending

standard NMF are proposed. LLNMF (Gu and Zhou, 2009) introduces a regularizer,

imposing the constraint that each data point should be clustered based on the labels

of the data points in its neighborhood. GNMF (Cai et al., 2011) further incorpo-

rates a graph regularizer to encode the manifold structure. Moreover, DNMF (Shang

et al., 2012) is proposed based on the the idea that not only the data, but also the

features lie on a manifold. The graph regularizers proposed by the above methods

have been utilized by several other works (Pei et al., 2015; Ozer et al., 2016) to detect

communities on social media. Moreover, another work (Akbari and Chua, 2017) pro-

poses an NMF-based approach utilizing a graph regularizer to exploit different social

views (i.e., different social interactions and user-generated content) as well as prior

knowledge in order to detect and profile communities.

3.4 Problem Statement

I first begin with the introduction of the notations used in the paper as summarized

in Table 3.1. Let U = {u1, u2, ..., un} be the set of n users, C = {c1, c2, ..., ck} indicate

the set of k communities, and S = {s1, s2, ..., sk} denote the set of m key expressions.

X ∈ Rm×n indicates the matrix of users’ attitudes towards key expressions, where

Xli corresponds to the attitude of user ui towards key expression sl. Furthermore,

U ∈ Rn×k
+ indicates the community membership matrix, in which Uik corresponds

to the membership strength of user Ui in community ck. V ∈ Rm×k further denotes

the community profile matrix, where Vlk corresponds to the contribution strength of

key expression sl in the profile of community ck. Moreover, W ∈ Rn×n
+ indicates the

social interaction matrix, in which Wij represents the number of social interactions
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Table 3.1: The Notations Used in Chapter 3.

Notation Explanation

U The set of users

C The set of communities

S The set of key expressions

n The number of users

m The number of key expressions

k The number of communities

X User opinion matrix

U Community membership matrix

V Community profile matrix

W Social Interaction matrix
∼

W Symmetrically normalized matrix W

D Degree matrix of W

between user ui and user uj. I use
∼

W to denote the symmetric normalization of W

(i.e.,
∼

W = D−1/2WD−1/2, where D is the degree matrix of W).

By using the above notations, the problem of detecting and profiling communities

can be defined as: Given an attributed graph in which node features and the graph

structure are represented by user opinion matrix X and social interaction matrix W

respectively, I aim to obtain community membership matrix U and community profile

matrix V.
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3.5 The Proposed Framework

3.5.1 Extracting Key Expressions as Issues

Social media presents an opportunity to utilize user-generated content in which

individuals express their opinions on various issues. The first step towards under-

standing users’ opinions is the extraction of the issues they discuss. To this end,

many efforts (Qiu et al., 2011; Mukherjee and Liu, 2012; Zhang and Liu, 2014) have

been made to extract issues or related aspects. However, these methods require

enough training samples for a specific domain to work accurately. Due to the lack

of such dataset for the required experiments, I follow a simple approach to extract

key expressions. I utilize the built-in features common among well-known social me-

dia platforms. In such social networks, hashtags and user account mentions, which

usually indicate issues, are perpended by ’#’ and ’@’, respectively. However, the

built-in features are not enough to detect all issues. To tackle this problem, I employ

a part-of-speech (POS) tagger to extract proper nouns and noun phrases (two or

more nouns in a row) as representative of issues. If some proper nouns are in a row,

they are considered as a single key expression. I utilize the POS tagger proposed in

(Gimpel et al., 2011) proven to perform well for the content on social media.

3.5.2 Capturing Users’ Opinions

The position individuals take towards issues reflects their opinions 1 . Many efforts

(Pontiki et al., 2016; Tang et al., 2016) have been made to detect users’ sentiments

towards issues. However, these methods work effectively when enough training sam-

ples for a specific domain are given. However, there is no such a dataset for the

required experiments so I apply a simple approach although a sophisticated approach

1An opinion is defined as an attitude towards an issue (Fishbein and Ajzen, 1977).
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can improve the result of the proposed framework. First, a window with a certain

size centered at each positive/negative sentiment word is created. Next, the near-

est key expression to the sentiment word is selected, and the positivity/negativity of

the sentiment word determines the user’s positive/negative attitude towards that key

expression. For instance, in the message ”Conservatives seem angry every time econ-

omy adds jobs”, I assume the author has a negative sentiment towards key expression

”conservatives” because it is the closest key expression to the negative sentiment

word ”angry” if I consider the window size to be at least two. To generate matrix

X, I need to apply the above procedure for all messages. Therefore, for each message

if author ui takes a positive/negative attitude towards key expression sl, I add the

sentiment strength of the corresponding sentiment word to Xli, respectively. I utilize

SentiStrength (Thelwall et al., 2010) to discover positive and negative words as well

as their sentiment strength.

3.5.3 Modeling Users’ Opinions

After extracting users’ attitudes towards key expressions, the next major objec-

tive is sentiment-driven community profiling and detection of like-minded users. To

accomplish this, I exploit semi-nonnegative matrix factorization (Ding et al., 2010)

as follows:

min
U,V

||X−VUT ||2F

s.t. U ≥ 0.

(3.1)

Since the non-negativity constraint in Eq. (3.1) only holds on matrix U, matrix

V can contain both positive and negative values. A positive/negative value of Vlk

denotes that the members of community ck have a collective positive/negative attitude

towards key expression sl. The larger the positive value of Vlk is, the more the

members of community ck have a collective positive attitude towards key expression
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sl. The lower the negative value of Vlk is, the more the members of community ck

have a collective negative attitude towards key expression sl. This property of matrix

V also results in the categorization of key expressions into positive and negative

categories according to the sign of the corresponding elements of key expressions in

matrix V. Therefore, key expressions in a community profile are divided into two

positive and negative categories. Moreover, the key expressions in each category can

also be ranked by their values in matrix V in order to show how important they are

to the members of the corresponding community.

3.5.4 Modeling Social Interactions

Social interactions (e.g., retweets in Twitter and friendships in Facebook) are one

of the most effective sources of information to detect communities (Papadopoulos

et al., 2012). To utilize social interactions, NMF-based methods exploit graph regu-

larizers. Gu et al. (Gu et al., 2011) suggest that graph regularizers used in GNMF

(Cai et al., 2011) and DNMF (Shang et al., 2012) suffer from the trivial solution

problem and the scale transfer problem. When the graph regularizer parameter is

too large, the trivial solution problem occurs and results in similarity among the ele-

ments of each row of community membership matrix U. The scale transfer problem,

in which {V∗,U∗} stands as the optimal solution for Eq. (3.1), results in a smaller

objective value for the scaled transferred solution (V∗
β
, βU′) , for any real scalar β > 1.

To avoid these problems, I propose using the following graph regularizer,

max
U

Tr(UT
∼

WU)

s.t. U ≥ 0,UTU = I.

(3.2)

where I is the identity matrix with the proper size. Eq. (3.2) clusters users into

k communities, with the most interactions within each community and the fewest
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interactions between communities. In fact, Eq. (3.2) is equivalent to the nonnegative

relaxed normalized cut as put forth in (Ding et al., 2005).

3.5.5 The Proposed Framework GSNMF

In the previous sections, I introduced my solutions to exploit and social interac-

tions and users’ attitudes toward key expressions. Using these solutions, the proposed

framework simultaneously utilizes users’ opinions and social interactions to uncover

communities and their profiles. The proposed framework requires solving the follow-

ing optimization problem,

min
U,V

F = ||X−VUT ||2F − λTr(UT
∼

WU)

s.t. U ≥ 0,UTU = I.

(3.3)

where λ is a non-negative regularization parameter controlling the contribution

of the graph regularizer in the final solution. Since the optimization problem in Eq.

(3.3) is not convex with respect to variables U and V together, there is no guaran-

tee to find the global optimal solution. As suggested by (Lee and Seung, 2001), I

introduce an alternative scheme to find a local optimal solution to the optimization

problem. The key idea is optimizing the objective function with respect to one of

the variables U or V, while fixing the other one. The algorithm keeps updating the

variables until convergence.

Computation of U

Optimizing the objective function F in Eq. (3.3) with respect to U is equivalent to

solving
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min
U

FU = ||X−VUT ||2F − λTr(UT
∼

WU)

s.t. U ≥ 0,UTU = I.

(3.4)

Let Γ and Λ be the Lagrange multiplier for constraints UTU = I and U ≥ 0

respectively, and the Lagrange function is defined as follows:

min
U

LU = ||X−VUT ||2F − λTr(UT
∼

WU)

− Tr(ΛUT ) + Tr(Γ(UTU− I))

(3.5)

The derivative of LU with respect to U is

∂LU

∂U
= −2XTV + 2UVTV − 2λ

∼
WU−Λ + 2UΓ (3.6)

By setting ∂LU
∂U

= 0, I get

Λ = −2XTV + 2UVTV − 2λ
∼

WU + 2UΓ (3.7)

With the KKT complementary condition for the nonnegativity of U, I have

ΛijUij = 0. Therefore, I have

(−XTV + UVTV − λ
∼

WU + UΓ)ijUij = 0 (3.8)

where Γ = UTXTV −VTV + λUT
∼

WU.

Matrices Γ, XTV, and VTV take mixed signs. Motivated by (Ding et al., 2010), I

separate positive and negative parts of any matrix A as A+
ij = (|Aij|+Aij)/2, A−ij =

(|Aij| −Aij)/2.

Thus, I get

[−((XTV)+ + [U(VTV)−] + λ
∼

WU + UΓ−)

+((XTV)− + [U(VTV)+] + UΓ+)]ijUij = 0

(3.9)

Therefore, optimizing the objective function F with respect to U leads to the

following update rule,
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Algorithm 2 The Proposed Algorithm for GSNMF

Input: user opinion matrix X and social interaction matrix W

output: community membership matrix U and community profile matrix V

1: Initialize U and V randomly where U ≥ 0

2: while not convergent do

3: Update U according to Eq. (3.10)

4: Update V according to Eq. (3.13)

5: end while

U = U�

√√√√(XTV)+ + [U(VTV)−] + λ
∼

WU + UΓ−

(XTV)− + [U(VTV)+] + UΓ+
(3.10)

where � denotes the Hadamard product.

Computation of V

Optimizing the objective function F in Eq. (3.3) with respect to V is equivalent to

solving

min
V

FV = ||X−VUT ||2F (3.11)

The derivative of FV with respect to V is

∂FV

∂V
= −2XU + 2VUTU (3.12)

By setting ∂FV

∂V
= 0, I compute the updating rule of V as follows:

V = XU(UTU)−1 (3.13)
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3.5.6 Algorithm Complexity

The algorithm for GSNMF is shown in Algorithm 2. In line 1, it randomly initial-

izes U and V. From lines 2 to 5, it updates U and V until convergence is achieved.

In Algorithm 2, the most costly operations are the matrix multiplications in update

rules Eq. (3.10) and Eq. (3.13). Therefore, I provide the time complexity of these

two updating rules as follows:

• The time complexity of Eq. (3.10) is O(nmk +mk2 + n2k + nk2).

• Since the inversion of small matrix UTU is trivial, the time complexity of Eq.

(3.13) is O(mnk + nk2).

Accordingly, the time complexity of Algorithm 2 is O(ik(nm + mk + n2 + nk))

where i is the number of iterations. The proposed framework can be applied to large

scale social network platforms by exploiting the distributed approaches outlined in

(Liu et al., 2010; Gemulla et al., 2011; Li et al., 2014).

3.6 Experiments

To evaluate the efficacy of my framework, I need to answer the following two

questions:

1. How effective is my framework in detecting communities compared to the the-

state-of-the-art community detection methods?

2. How effective is my framework in profiling communities according to the collec-

tive opinions of community members?

In the next sections, I first describe the datasets used in this study. Next, the

performance of GSNMF is compared with several state-of-the-art community detec-
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tion methods. Then, I qualitatively evaluate the community profiles uncovered by

my framework.

3.6.1 Data Description

I take politics as an example to evaluate my framework. In this regard, I used the

Twitter search API to crawl politicians’ tweets from three different countries, namely

the United States, United Kingdom, and Canada. However, Twitter API imposes

the limitation of retrieving only the latest 3200 tweets for each user. To overcome

this limitation, I crawled politicians’ user accounts several times during the time each

dataset covers. The datasets are described as follows,

• US Dataset consists of the tweets posted by 404 politicians from two major

political parties (Republican party and Democratic party) in the United States

from August 26 to November 29, 2016.

• UK Dataset consists of the tweets posted by 317 political figures from five

major political parties (Conservative Party, Labour Party, Scottish National

Party, Liberal Democratic Party, and UK Independence Party) in the United

Kingdom from January 1 to September 30, 2015.

• Canada Dataset consists of the tweets posted by 102 politicians from three

major political parties (Liberal Party, Conservative Party, and New Democratic

Party) from January 1 to November 18, 2016.

All users in the datasets have discussed at least 15 key expressions. Moreover,

the key expressions used by less than 15 users and stop words are eliminated. As a

window size, I experimentally determine the threshold of 3 for the nearest keywords

on both sides of each sentiment word. Furthermore, the party to which a user belongs

is labeled as ground truth. The statistics for the datasets are shown in Table 3.2.
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Table 3.2: The Statistics of the Datasets Used in Chapter 3.

US UK Canada

# of tweets 113,818 236,008 98,899

# of retweets 18,891 6,863 3,104

# of distinct words 5,773 7,653 3,738

# of distinct key expressions 165 349 69

# of users 404 317 102

# of baseline communities 2 5 3

The GSNMF code and users’ Twitter accounts as well as their ground truth labels

used in this paper are available 2 .

3.6.2 Community Detection Evaluation

Baselines

In order to demonstrate the effectiveness of my framework, I compare GSNMF with

the following state-of-the-art community detection methods,

• GNMF (Cai et al., 2011) is a hybrid method utilizing both user-generated and

social interactions by incorporating a graph regularizer into standard NMF.

• Louvain (Blondel et al., 2008) is a link-based method optimizing modularity

using a greedy approach.

• Infomap (Rosvall and Bergstrom, 2008) is a link-based method built upon

information theory to compress the description of random walks in order to

find community structure.

2https://github.com/amin-salehi/GSNMF
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• DNMF (Shang et al., 2012) is a hybrid method utilizing both user-generated

content and social interactions by incorporating two regularizers (i.e, a graph

regularizer and a word similarity regularizer) into standard NMF.

• Soft Clustering (Yu et al., 2005) is a link-based method that assigns users to

communities in a probabilistic way.

• CNM (Clauset et al., 2004) is a link-based method based on modularity opti-

mization.

Evaluation Metrics

To evaluate the performance of the methods, I utilize three metrics frequently used

for community detection evaluation; namely, Normalized Mutual Information (NMI),

Adjusted Rand Index (ARI) and purity.

Experimental Results

For this experiment, I use all three datasets. I also utilize the party membership

of each politician as ground truth in the evaluation. For the methods providing

soft community membership, like my framework, I select the community with the

highest membership value for each user as the community to which she/he belongs.

Regularization parameters of NMF-based methods are set to be all powers of 10 from

0 to 9 to find the best configuration for each of these methods. I run each method 10

times with its best configuration and then report the best result. According to the

results shown in Table 3.3, I can make the following observations,

• The proposed framework achieves the highest performance in terms of NMI

and ARI for all three datasets. In terms of purity, it also achieves the best

in the Canada and US datasets. In the UK dataset, Louvain, Infomap, and
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Table 3.3: Performance Comparison of Community Detection Methods in Chapter 3.

US UK Canada

Method NMI ARI Purity NMI ARI Purity NMI ARI Purity

Louvain 0.5083 0.3889 0.9752 0.7077 0.4352 0.9937 0.8602 0.8430 0.9902

Infomap 0.5026 0.3755 0.9752 0.8871 0.8874 0.9936 0.8971 0.9299 0.9804

CNM 0.5741 0.4664 0.9752 0.8830 0.8746 0.9905 0.9405 0.9643 0.9902

GNMF 0.8564 0.9126 0.9777 0.8120 0.8291 0.9085 0.9597 0.9794 0.9902

DNMF 0.8599 0.9222 0.9802 0.8308 0.8030 0.8896 0.9574 0.9716 0.9902

Soft Clustering 0.8934 0.9413 0.9851 0.8481 0.8450 0.9495 1.0000 1.0000 1.0000

GSNMF 0.9069 0.9510 0.9876 0.9298 0.9612 0.9811 1.0000 1.0000 1.0000

CNM obtain higher purity compared to my framework since they generate an

artificially large number of communities for sparse graphs such as social media

networks. For instance, Louvain detects 21 communities for UK dataset.

• Exploiting both user-generated content and social interactions does not neces-

sarily result in achieving better performance compared to link-based methods.

For example, the Soft Clustering method achieves better results compared to

GNMF and DNMF in terms of all three used metrics. However, link-based

methods do not uncover any community profile.

• All NMF-based methods achieve their highest performance with large values

(i.e., from 106 to 109) for the graph regularizer parameter.

3.6.3 Community Profiling Evaluation

In this section, I evaluate the effectiveness of the proposed framework in profiling

communities by using the US and UK datasets. In this regard, I first label each com-

munity detected by my framework with the party to which the majority of community

members belong. Next, I evaluate how effectively the profile of a community repre-

sents its corresponding ground truth party. To this end, two graduate students who
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have knowledge of US and UK politics are assigned to label the results of community

profiling methods. It is asked that each key expression in a community profile to be

assigned to one of the following categories:

• Supported: A key expression is labeled as supported if the majority of commu-

nity members have a positive attitude towards it or support it.

• Opposed: A key expression is labeled as opposed if the majority of community

members have a negative attitude towards it or oppose it.

• Concerned: A key expression is labeled as concerned if the majority of commu-

nity members are concerned about it.

• Unrelated: A key expression is labeled as unrelated if the annotators cannot

find a strong relevance between the community (party) and the key expression.

In the tables representing community profiles, I color (and mark) supported, op-

posed, and concerned key expressions with green (+), red (−), and blue (±), respec-

tively. I also leave unrelated key expressions uncolored (and unmarked).

In the following experiments, I expect the proposed framework to achieve three

goals:

1. Uncovering community profiles which represent the collective opinions of com-

munity members into two positive/negative categories;

2. Assigning supported key expressions and opposed/concerned ones to positive/negative

categories, respectively;

3. Minimizing the number of unrelated key expressions in community profiles.

In Sections 3.6.3 and 3.6.3, I evaluate the results of GSNMF according to the first

and second goals by using US and UK datasets. To evaluate the performance of the
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third goal, Section 3.6.3 compares GSNMF with the baselines with regard to their

effectiveness in extracting relevant key expressions.

US Politics

The US dataset covers many events such as occurrences of gun violence, police bru-

tality (e.g., the shooting of Terence Crutcher), the Flint water crisis, and the death

of Fidel Castro; but the major event is the US presidential election of 2016. To give

brief background knowledge, two major US parties during the election are described

as follows (Lilleker et al., 2016),

• Democratic Party: A liberal party focusing on social justice issues. In 2016,

Hillary Clinton was nominated as the presidential candidate of the party with

Tim Kaine as her vice president. Moreover, Barrack Obama, the incumbent

Democratic President, was a strong advocate for Hillary Clinton.

• Republican Party: A conservative party, known as the GOP, which had the

majority of congressional seats in 2016 and embraces Judeo-Christian ethics.

Moreover, Donald Trump was nominated as the party candidate for the presi-

dency with Mike Pence as his vice president.

During the campaign, Republicans—especially Donald Trump—mainly criticized

President Obama and his policies (e.g., Obamacare, tax plans, and Iran deal) in order

to discredit Hillary Clinton, whom they claimed was going to continue the Obama

legacy and uphold the status quo (Lilleker et al., 2016). On the other hand, Clinton’s

campaign brought the issue of gun violence into the contest, and also focused on

human rights for groups such as women and LGBTQ (Lilleker et al., 2016).

Table 3.4 shows the profiles of two communities detected by my framework in the

US dataset as well as their corresponding ground truth political parties and experts’

49



Table 3.4: The Profiles of Two Communities Detected by GSNMF in the US Dataset.

Democrats Republicans

Positive Negative Positive Negative

+ HillaryClinton ± Zika + America − Obamacare

+ POTUS − Trump + @SpeakerRyan ± #BetterWay

+ America − @HouseGOP + Congress ± Zika

+ #WomensEqualityDay − Donald Trump + @Mike Pence − Iran

+ #NationalComingOutDay − Gun Violence + @RepTomPrice − Obama

+ Americans ± #Trans + @realDonaldTrump − Tax code

+ #LaborDay − #GunViolence + Texas ± Breast Cancer

+ TimKaine ± Climate Change + #VeteransDay − President Obama

+ Hillary ± #Trabajadores ICYMI ± GITMO

+ American ± TerenceCrutcher Senator − Islamic

Cubs − GOP + #LaborDay − State Sponsor

+ Halloween − Violence Situations + God − POTUS

+ Veterans − ISIS + Constitution Day − ISIS

Florida ± #FundFlint + USMC − Hillary

+ #LGBTQ equality − Donald + Thanksgiving − Fidel Castro

Note: All colors, signs, and the name of parties in the table are ground truth.

labels. According to the provided background, the community on the left highly re-

sembles the Democratic Party since its members have generally expressed: (1) positive

attitudes towards Hillary Clinton, the U.S. president (i.e., POTUS), Tim Kaine, and

human rights issues (e.g., #WomensEqualityDay, #LGBTQ equality, and #Nation-

alComingOutDay), and (2) negative attitudes towards the Republican Party (e.g.,

@HouseGOP and GOP), Donald Trump, and gun violence, police brutality (e.g., the

shooting of Terence Crutcher). On the other hand, the community on the right highly

resembles the Republican Party since its members have generally expressed: (1) posi-

tive attitudes towards the Republican Party (e.g., @HouseGOP and @SpeakerRyan),

Donald Trump, Mike Pence, Congress, and God, and (2) negative attitudes towards

President Obama and his policies (i.e., Obamacare, tax code, Iran, Guantanamo Bay

detention camp (i.e., GITMO)) as well as Hillary Clinton.
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Table 3.5: The Profiles of Two Communities Detected by GNMF and DNMF in the

US Dataset.

a. GNMF

Democrats Republicans

− Trump − Obamacare

+ Hillary ± #BetterWay

+ Gov + Congress

+ HillaryClinton ± Zika

− Donald Trump + America

± #DoYourJob + @HouseGOP

DebateNight + American

− @realDonaldTrump ICYMI

China − Obama

− @CoryBooker Florida

± Russia + Americans

ElectionDay − Iran

± Climate Change + U.S.

Debate ± #HurricanMatthew

+ Hillary Clinton − POTUS

− Donald + @realDonaldTrump

Virginia − Clinton

+ HRC ± Hurrican Matthew

VPDebate − Washington

+ America ± FBI

+ TimKaine + Texas

+ #WomenEqualityDay + Senate

+ FLOTUS + Veterans

+ #IamWithHer ± Matthew

± Flint #DoYourJob

+ POTUS + @SpeakerRyan

+ HouseDemocrats Ohio

− Steve Bannon ± #NeverForget

− Bannon + GOP

+ USA WSJ

b. DNMF

Democrats Republicans

− Congress + Congress

+ Obamacare − Obamacare

− Trump + Trump

#BetterWay ± #BetterWay

+ America + America

± Zika ± Zika

− @HouseGOP + @HouseGOP

+ American + American

+ Gov − Gov

± #DoYourJob #DoYourJob

ICYMI ICYMI

+ Americans − HillaryClinton

+ HillaryClinton + Americans

+ Hillary − Hillary

− @realDonaldTrump + @realDonaldTrump

+ Obama − Obama

+ U.S. + U.S.

+ POTUS − POTUS

+ Iran − Iran

+ Clinton − Clinton

− Donald Trump + Donald Trump

+ Veterans + Veterans

+ Washington − Washington

± HurricanMatthew ± HurricanMatthew

− Senate + Senate

± FBI ± FBI

Florida Florida

Texas + Texas

− GOP + GOP

Oct Oct

Negative sentiment implies both opposition and concern. If necessary, my frame-

work can differentiate opposition from concern by providing the sentiment words fre-

quently expressed by the members of a community towards each key expression. For

example, Democrats’ negative sentiment towards Donald Trump mainly comes from

the sentiment words “unfit”, “low”, and “dangerous” which suggest opposition. On

the other hand, their negative sentiment towards #Trans (i.e., transgender people)

mainly originates from the sentiment words “discrimination” and “murder” which
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indicate concern.

To demonstrate the advantage of my community profiling method, I compare the

profiles of typical community profiles usually provided by retrospective studies with

those uncovered by my framework. Table 3.5 shows the profiles of two communities

detected by GNMF and DNMF in the US dataset as well as their corresponding

ground truth political parties. As I observe, it is almost impossible for a non-expert

individual to recognize the party associated with each profile since the position of

the communities towards the key expressions are not taken into account. For ex-

ample, in profiles corresponding to the Democratic Party and the Republican Party,

many key expressions related to Trump, Clinton, and Obama exist, but there is no

information regarding collective attitude of community members toward such key

expressions. However, Table 3.4 shows that the proposed method correctly divides

opposed/concerned key expressions and supported ones into the correct categories.

Therefore, my framework makes it easy not only to differentiate and understand

communities better but also to associate online communities with their real-world

counterparts (if exist).

UK Politics

The UK dataset covers many events such as the rise of terrorism and terrorist attacks

(e.g., CharlieHebdo and Tunisia attack), and many natural disasters (e.g., Nepal

earthquake and Ebola) that happened in the first nine months of 2015. However,

the major event in this period of time is the UK general election. Brief background

knowledge about five major UK parties during the general election are provided as

follows (Moran, 2015),

• Conservative Party: This party is also known as Tory and was led by David

Cameron in 2015. David Cameron also led the UK government before and after
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the election of 2015. George Osborne, Nicky Morgan, and Jeremy Hunt were

some of his secretaries.

• Labour Party: Ed Miliband was the leader of the Labour party for the elec-

tion and selected Tom Watson as his deputy chair and campaign coordinator.

Jeremy Corbyn, Yvette Cooper, Liz Kendall, and Andy Burnham were among

the prominent members of the party.

• Liberal Democrat Party: Nick Clegg led the Liberal Democrat Party in 2015.

Norman Lamb, John Leech, Nick Harvey, Tim Farron, and Charles Kennedy

were some of the party’s parliamentarians.

• Scottish National Party: The SNP is a Scottish Nationalist party led by

Nicola Sturgeon in 2015. Alan Brown and Neil Gray were some of the party’s

parliamentarians.

• UK Independence Party: UKIP was led by Nigel Farage in 2015. The party

embodies opposition to both United Kingdom EU membership and immigration.

Table 3.6 shows the profiles of five communities detected by my framework in the

UK dataset as well as their corresponding ground truth political parties. As shown

in the table, all parties have a common key expression, the general election of 2015

(e.g, GE2015 and GE15). I can also observe that the members of each party have

generally expressed: (1) positive attitudes towards their party and also their promi-

nent members and (2) negative attitudes towards other parties and their prominent

members due to election competition (Moran, 2015). Moreover, the government was

a coalition between the Conservative Party and the Liberal Democrat Party before

the election. This coalition explains why they expressed positive sentiments towards

the government related issues (i.e., Govt and Cameron) (Moran, 2015).
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According to the negative attitudes of almost all parties, I can determine that the

Conservative party and the Labour party are the ones towards which other parties

expressed most of the negative sentiments. Furthermore, these two parties expressed

a high negative sentiment towards each other. The reason behind this antagonism is

that these parties are the two biggest parties having the highest chance of winning

an outright majority in the election (Moran, 2015). Moreover, UKIP’s negative view

on Calais, the city in France where immigrants enter the UK, and Mediterranean

(immigrants/immigration) reflects its anti-immigration stance. In addition, UKIP’s

positive sentiment on Brexit and its negative sentiment on Greece indicates its anti-

EU orientation.

Table 3.7 shows the profiles of five communities detected by GNMF in the UK

dataset as well as their corresponding ground truth political parties. Due to space

limitation, I do not provide the community profiles detected by DNMF. As I observe

from Table 3.7, the same problem which exists in the profiles of communities detected

by GNMF and DNMF in the US dataset still exists here. In other words, it is not clear

which community represents which party. For instance, the profile which corresponds

to the Conservative Party and the Labour Party shared many key expressions such as

Labour, Tories, David Cameron (@David Cameron), @Ed Miliband, UKLabour, and

VoteLabour, but there is no other information to understand the positions of these

two parties towards these key expressions in order to differentiate them and also

associate the community profiles to the parties. However, as Table 3.6 suggests, the

community profiles detected by my framework shows that the community associated

to the Conservative Party has a positive attitude towards David Cameron but a

negative attitude towards Labour and Miliband. On the other hand, the community

associated with the Labour Party has a positive attitude towards Labour, UKLabour,

and Miliband but a negative attitude towards Tories and David Cameron. Since this
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Table 3.7: The Profiles of Five Communities Detected by GNMF in the UK Dataset.

Conservatives Labours Lib dems SNPs UKIPs

− Miliband − UKIP + Libdems + SNP − @JessPhillips

+ Conservatives + Labour GE2015 + Scotland birmingham

GE2015 − Tories − Labour + VoteSNP − Labour

+ @David Cameron + NHS + @LFeatherstone GE15 john

− Labour + Britain − @CLeslieMP + @TheSNP − Libdems

+ VoteConservetives − Cameron Bradford − Labour − NHS

+ Govt − @Nigel Frange + @Nick Clegg − Westminster − LabourEoin

+ NHS + UKLabour London − Tory − Lib dems

LeaderDebates London ± Budget2015 GE2015 − Lib dem

+ @ZacGoldsmith + LabourDoorStep Wales + @NicolaSturgeon Hansard

− @Ed Miliband BBC + NHS LeadersDebate − @TobyPerkinsMP

MPs BBCqt − Miliband − LaboursDoorStep − UKLabour

London + Europe LeaderDebate MPs MPs

− UKLabour + @AndyBurnhamMP − @George Osborne ± Trident @SabelHardman

Wales + @ED Miliband + Lib dems + Scottish Jess

+ England + TessaJowell − David Cameron London − Labour party

+ @George Osborne − David Cameron + Lib dem − UKLabour − @SimonDanczuk

croydon − Tory ± Mental Health PMQS − Libdem

+ @NickyMorgan01 + Corbyn + @SWilliamsMP − @David Cameron GE2015

+ @NorwichChloe ± Calasis + @NormanLamb Wales Youtube

+ @RobertBuckland + @YvetteCooper − Conservatives + @GradySNP − Europe

− VoteLabour + VoteLabour − Tories + Glasgow − miliband

− @CLeslieMP ± Greece + Nick Clegg Front Page − Food Banks

− LabourLeadership + England Cardiff − VoteLabour − Housing Benefit

+ Tories + Jeremy Corbyn + @TimFarron − ScottishLabour Google

+ Minister − Farage − VoteConservatives + Nicola Sturgeon − @GiselaStuart

− Guardian + YvetteCooperLabour Bristol − LabourLeadership − Labour MPs

Leeds − Telegraph Croydon − Lab + Britain

+ Government + @EmmaReynoldMP Norwich Edinburgh Wales

State Thurrock − Chancellor − @AndyburnhamMP − @David Cameron

Note: All colors, signs, and the name of parties in the table are ground truth.

corresponds to the ground truth, I can conclude that sentiment information can play

an essential role in providing better community profiles.

Quantitative Results

In this section, I aim to compare GSNMF with GNMF and DNMF in terms of their

effectiveness in extracting relevant key expressions for community profiles. Figure

3.1 shows the accuracy of all methods in the US and UK datasets by considering a

different number of top key expressions as community profiles. As I observe, GSNMF
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Figure 3.1: The Accuracy of Community Profiling Methods in Extracting Relevant

Key Expressions.

outweighs GNMF and DNMF in all experiments. For instance, by considering top 30

key expressions as community profiles, 93% of key expressions extracted by GSNMF

in the US dataset are relevant compared to 82% in GNMF and 85% in DNMF. Sim-

ilarly, 83% of key expressions extracted by GSNMF in the UK dataset are relevant

compared to 65% in DNMF and 73% in GNMF. The experiments also suggest that

GSNMF achieves better accuracy with a lower number of top key expressions as com-

munity profiles. This implies that the higher a key expression is ranked by GSNMF,

the more likely it is relevant. Following these observations, sentiment-driven commu-

nity profiling produces key expressions which are more relevant than its sentiment

insensitive counterparts.

3.7 Conclusion

In this chapter, I presented a sentiment-driven community profiling and detec-

tion framework uncovering a low-dimensional latent space in order to cluster users

according to their opinions and social interactions. It also provides community pro-
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files reflecting positive/negative collective opinions of their members. Experimental

results on real-world social media datasets demonstrated: (1) my framework obtains

significant performance in detecting communities compared to several state-of-the-art

community detection methods, and (2) my framework presents a sentiment-driven

community profiling approach providing better insights into the collective opinions of

community members by dividing key expressions into positive/negative categories.
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Chapter 4

UTILIZING NODE ATTRIBUTES FOR INTER-COMMUNITY RELATION

DISCOVERY

4.1 Overview

Community detection on social media has attracted considerable attention for

many years. However, existing methods do not reveal the relations between com-

munities. Communities can form alliances or engage in antagonisms due to various

factors, e.g., shared or conflicting goals and values. Uncovering such relations can

provide better insights to understand communities and the structure of social me-

dia. According to social science findings, the attitudes that members from different

communities express towards each other are largely shaped by their community mem-

bership. Hence, I hypothesize that inter-community attitudes expressed among users

in social media have the potential to reflect their inter-community relations. There-

fore, I first validate this hypothesis in the context of social media. Then, inspired

by the hypothesis, I develop a framework to detect communities and their relations

by jointly modeling users’ attitudes and social interactions. I present experimental

results using three real-world social media datasets to demonstrate the efficacy of the

proposed framework.

4.2 Introduction

Although community detection plays an important role in providing insights into

the structure and function of social media (Papadopoulos et al., 2012), existing com-

munity detection methods do not reveal inter-community relations, which are indis-
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pensable to deepen our insights. Moreover, to better understand communities, there

is a need to uncover their relations. Indeed, social scientists suggest that “the under-

standing of policies and practices prevailing within groups will be inadequate unless

relations among them are brought into the picture” (Sherif and Sherif, 1953). A com-

munity, or group in social sciences, is defined as a set of users with many intra-group

social interactions and few inter-group ones (Girvan and Newman, 2001), who tend

to have mainly positive attitudes towards each other (Festinger et al., 1950; Lott and

Lott, 1965).

Several methods (Chu et al., 2016; Gao et al., 2016; Lo et al., 2013, 2011; Zhang

et al., 2010, 2013) have been proposed to detect antagonistic communities. There

are generally two categories of such methods: (1) those which detect antagonistic

communities from signed networks (Chu et al., 2016; Gao et al., 2016; Lo et al.,

2013, 2011), and (2) those which mine antagonistic communities by finding frequent

patterns in users’ ratings (Zhang et al., 2010, 2013). However, these methods suffer

from two main limitations. First, they cannot be applied to a majority of popular

social network platforms (e.g., Facebook and Twitter) since these platforms do not

provide signed links or users’ ratings explicitly. Second, inter-community relations

are not restricted to antagonisms. Indeed, communities can also form alliances.

According to social science findings, inter-community attitudes that individuals

express towards each other are largely shaped by their community membership rather

than their characteristics or personal relationships (Tajfel, 1979; Billig and Tajfel,

1973). Moreover, Tajfel (Tajfel, 2010) observed a pair of characteristics in inter-

community behavior. First, the members of a community display uniformity in their

behavior and attitude towards any other community. Second, they tend to perceive

the characteristics and behavior of the members of any other community as undiffer-

entiated. Moreover, social scientists suggest that “the social psychology of intergroup
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relations is concerned with intergroup behaviour and attitudes” (Tajfel, 2010). Ac-

cording to these observations, inter-community attitudes that users express towards

each other in social media have the potential to reflect inter-community relations.

In this chapter, I propose a framework, namely DAAC, which detects commu-

nities and their relations (i.e., antagonism, alliance, or neither) by exploiting users’

social interactions (e.g., retweets) and attitudes expressed on social media. My main

contributions are:

• Validating the hypothesis suggesting that inter-community attitudes that users

express towards each other in social media can reflect the relations of their

communities;

• Achieving higher performance in detecting communities compared to several

standard community detection methods;

• Uncovering inter-community relations, i.e., antagonism, alliance, or no relation.

The rest of the chapter is organized as follows. In Section 4.3, I review related

work. In Section 4.4, I formally define the problem of detecting communities and

their relations on social media. Section 4.5 describes three real-world social media

datasets used in the experiments. In Section 4.6, I first validate the aforementioned

hypothesis and then present the proposed framework. In Section 4.7, I demonstrate

the effectiveness of the proposed framework. Section 4.8 concludes the paper and

discusses future work.

4.3 Related Work

There has been a lot of efforts to detect communities efficiently and accurately. To

this end, a wide variety of approaches have been utilized. Modularity-based methods
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are among the most well-known techniques to detect communities. The modularity

measure proposed in (Newman and Girvan, 2004) evaluates whether a division is

good enough to form communities. Many variants of modularity-based community

detection (Clauset et al., 2004; Blondel et al., 2008) have been developed. Another

well-known category includes spectral algorithms (Dhillon et al., 2004; Ding et al.,

2005; Newman, 2006; Salehi et al., 2018) which aims to divide the network into

several communities in which most of the interactions are within communities while

the number of interactions across communities is minimized. Probabilist approaches

(Yu et al., 2005), in which users are assigned to clusters in a probabilistic way, are also

applied to the problem of community discovery. There are a variety of approaches

such as information theory based methods (Rosvall and Bergstrom, 2008), random

walk techniques (Harel and Koren, 2001; Pons and Latapy, 2006), and model-based

methods (Raghavan et al., 2007; Gregory, 2010) to tackle this problem.

Although many efforts are made to detect communities, to the best of my knowl-

edge, no previous work has been proposed to uncover the existence of antagonism and

alliance between communities. However, some efforts have been made (Chu et al.,

2016; Gao et al., 2016; Lo et al., 2013, 2011; Zhang et al., 2010, 2013) to detect only

antagonistic communities. These methods can be roughly divided into two main cat-

egories. The irst category includes the methods (Zhang et al., 2010, 2013) utilizing

frequent patterns in users’ ratings to mine antagonistic communities. The second

category includes the methods (Chu et al., 2016; Gao et al., 2016; Lo et al., 2013,

2011) utilizing signed networks, having trust and distrust links, to detect antagonistic

communities. A majority of these methods (Gao et al., 2016; Lo et al., 2013, 2011)

detect a pair of subgraphs with most trust links preserved between the members of

each subgraph and most distrust links remained between the members of different

subgraphs. These methods are limited to detecting only a pair of antagonistic com-
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munities. To address this limitation, another method (Chu et al., 2016) has been

proposed to detect multiple antagonistic communities by finding several dense sub-

graphs with the mentioned property. However, as experiments in (Chu et al., 2016)

show such methods usually end up with a large number of small subgraphs due to

high sparsity of users’ interactions in social media.

4.4 Problem Statement

I first begin with the introduction of the notations used in this chapter as summa-

rized in Table 4.1. Let U = {u1, u2, ..., un} be the set of n users and C = {c1, c2, ..., ck}

indicate the set of k communities. R ∈ Rn×n
+ denotes the social interaction ma-

trix, where Ri,j corresponds to the number of social interactions between user ui

and user uj. S ∈ Rn×n indicates the attitude matrix, where the positive/negative

value of Si,j corresponds to the positive/negative attitude strength of user ui to-

wards user uj. U ∈ Rn×k
+ indicates the community membership matrix, in which Ui,l

corresponds to the membership strength of user ui to community cl. H ∈ Rk×k de-

notes intra/inter-community relation matrix, where Hi,j, if i 6= j, corresponds to the

strength and type of inter-community relation between community ci and community

cj; the negative, positive, and zero value of Hi,j indicates antagonism, alliance, or

no relation between community ci and community cj, respectively. Moreover, Hi,i

corresponds to the intra-community attitudes that the members of community ci

have expressed towards each other. I define the symmetric normalization of R as
∼
R = D−1/2RD−1/2, where D = diag(d1, d2, ..., dn) is the degree matrix of R and the

degree of user ui is di =
∑n

j=1 Ri,j. I separate positive and negative parts of matrix

A as A+
i,j = (|Ai,j|+ Ai,j)/2 and A−i,j = (|Ai,j| −Ai,j)/2.

By using the aforementioned notations, the problem of detecting communities and

their relations on social media can be defined as follows: Given an attributed graph
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Table 4.1: The Notations Used in Chapter 4.

Notation Explanation

U The set of users

C The set of communities

n The number of users

k The number of communities

R The social interaction matrix

S The attitude matrix

U The community membership matrix

H The community intra/inter-relation matrix
∼
R Symmetrically normalized matrix R

D Degree matrix of R

A+ The positive part of matrix A (i.e., (|A|+ A)/2)

A− The negative part of matrix A (i.e., (|A| −A)/2)

in which node features and the graph structure are represented by attitude matrix S

and social interaction matrix R respectively, I aim to obtain community membership

matrix U and intra/inter-community relation matrix H.

4.5 Data Description

Politics is a domain in which it is common among political parties (i.e., commu-

nities) to form alliances or engage in antagonisms. To validate the aforementioned

hypothesis and evaluate the proposed framework, I use the following political Twitter

datasets:

• US Dataset consists of the tweets posted by 583 politicians from two major US

political parties (the Republican Party and the Democratic Party) from August
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26 to November 29, 2016. For the period of time that this dataset covers, there

were antagonisms between these parties particularly due to the 2016 presidential

election campaigning (Lilleker et al., 2016).

• Australia Dataset consists of the tweets posted by 225 user accounts, in-

cluding politicians and political groups, from five major Australian political

parties (the Liberal Party, the National Party, the Liberal National Party, the

Greens, and the Labor Party) from January 1 to November 18, 2016. For several

decades, there has been a coalition among the Liberal Party, the National Party,

and the Liberal National Party (Clune, 2016). In the 2016 federal election, all

relations between the parties were antagonistic except the relations between the

members of the coalition,.

• UK Dataset consists of the tweets posted by 389 user accounts, including

politicians and political groups, from five major UK political parties (the Con-

servative Party, the Labour Party, the Scottish National Party, the Liberal

Democrats Party, and the UK Independence Party) from January 1 to October

31, 2015. There was antagonism among five major UK political parties in this

period of time, especially due to the 2015 general election campaigning (Moran,

2015).

Pre-processing: For all datasets, I remove the users who do not have any retweet

(i.e., social interaction). Table 4.2 shows the statistics of the pre-processed datasets.

All users in the datasets have been labeled with their corresponding parties, and these

labels are used to evaluate the proposed method.

Although aspect-based sentiment classification techniques (Pontiki et al., 2016)

have been proposed to capture users’ attitudes towards entities, publicly available

training datasets are either too small or domain-oriented, making such techniques
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Table 4.2: The Statistics of the Datasets Used in Chapter 4.

US Australia UK

# of tweets 111,743 159,499 267,085

# of retweets 17,724 21,111 14,892

# of mentions 8,470 14,996 33,462

# of user accounts 583 225 389

# of true communities 2 5 5

# of allied relations 0 3 0

# of antagonistic relations 1 7 10

incapable to tackle real-world problems. Therefore, I use the following technique to

extract the attitudes that users express towards each other in social media. Given each

message in which author ui has mentioned user uj, I add the strength of the message’s

sentiment to the corresponding elements of matrix S (i.e., Si,j). Even though some

messages may carry a negative sentiment, the author may not necessarily have an

antagonistic attitude towards a mentioned user. To alleviate this problem, I ignore

such messages if there is social interaction (i.e., retweet) between the author and the

mentioned user since social interaction indicates the presence of a good relationship

(Conover et al., 2011). I utilize SentiStrength (Thelwall et al., 2010) to detect the

sentiment polarity and strength of messages. I have made the code and datasets used

in this chapter available 1 .

1https://github.com/amin-salehi/DAAC
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4.6 The Proposed Framework

In this section, I first demonstrate the existence of a significant level of correlation

between the type of inter-community relation (i.e., alliance or antagonism) between

two communities and the type of sentiment (i.e., positive or negative) that members

from these communities expressed towards each other. Next, I propose the framework.

4.6.1 Validating the Hypothesis

According to social science findings (Tajfel, 1979; Billig and Tajfel, 1973), the

attitudes that members from different communities express towards each other are

largely shaped by their community membership. Therefore, I hypothesize that inter-

community attitudes expressed among users towards each other in social media have

the potential to reflect inter-community relations. However, the findings borrowed

from social sciences do not necessarily hold in social media due to many factors,

such as the validity and representativeness of available information (Tufekci, 2014;

Ruths and Pfeffer, 2014). Moreover, the attitudes that users express towards each

other in social media might result from users’ personal relationships. Therefore, in

this section, I aim to verify my hypothesis by answering the following two questions.

With this respect, I utilize the Australia dataset since it is the only dataset containing

both allied and antagonistic relations.

• Are the communities of two users who express negative attitudes towards each

other more likely to be in antagonism?

• Are the communities of two users who express positive attitudes towards each

other more likely to be in alliance?

I first answer the former by using the following procedure inspired by (Beigi et al.,

2016). For each pair of users (ui, uj) who are from different communities and have
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expressed negative attitudes towards each other (i.e., Si,j < 0), I randomly select a

user uk where users ui and uk are from different communities and have not expressed

negative attitudes towards each other (i.e., Si,k ≥ 0). Then, I check whether there is

antagonism between the communities of ui and uj and between the communities of

ui and uk. If there is antagonism between the communities of ui and uj, I set tp = 1;

otherwise tp = 0. Similarly, if there is antagonism between the communities of ui and

uk, I set tr = 1; otherwise tr = 0. Let vector Tp denote the set of all tps for pairs

of users from different communities who have expressed negative attitudes towards

each other, and vector Tr denote the set of all trs for pairs of users from different

communities who have not expressed negative attitudes towards each other.

I conduct a two-sample t-test on Tp and Tr. The null hypothesis H0 and alternative

hypothesis H1 are defined as follows:

H0 : Tp ≤ Tr, H1 : Tp > Tr (4.1)

The null hypothesis is rejected at significance level a = 0.01 with p-value of

3.56e−105. Therefore, the result of the two-sample t-test demonstrates that the

communities of two users who express negative attitudes towards each other are highly

probable to be in antagonism. I apply a similar procedure to answer the second

question. For brevity, I only report the result of the two-sample t-test. The null

hypothesis is rejected at significance level a = 0.01 with p-value of 1.57e−26. As a

result, I conclude that the communities of two users who express positive attitudes

towards each other are highly probable to be in alliance.

4.6.2 Modeling Users’ Attitudes

In the previous section, I demonstrated that inter-community attitudes expressed

by users can reflect the relation of their communities in the context of social media.
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Inspired by this observation, I propose a model which uncovers intra/inter-community

relations by exploiting the attitudes users express towards each other as,

min
U,H

||W � (S−UHUT )||2F

s.t. U ≥ 0.

(4.2)

where � is Hadamard product, Wi,j controls the contribution of Si,j in the model,

and a typical choice of W ∈ Rn×n
+ is,

W =

 0, if S = 0

1, otherwise
(4.3)

Given communities ci and cj, Eq. (4.2) aims to uncover their inter-community

relation Hi,j by using their attitudes. To this end, U:,iHi,jU
T
:,j estimates the inter-

community attitudes among the members of these two communities as presented in

matrix S. Since the non-negativity constraint only holds on U, Hi,j will be negative,

positive, or zero if the members of two communities have generally expressed negative,

positive, or no attitudes towards each other, respectively. The lower the negative

value of Hi,j is, the more antagonistic communities ci and cj are. On the other

hand, the larger the positive value of Hi,j is, the more allied communities ci and

cj are. Moreover, Hi,i indicates the intra-community attitudes that the members of

community ci have expressed towards each other.

4.6.3 Modeling Social Interactions

Social interactions are one of the most effective sources of information to detect

communities (Papadopoulos et al., 2012). In this section, I aim to cluster users into k

communities with the most social interactions within each community and the fewest
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social interactions between communities. To this end, I use the following model,

max
U

Tr(UT
∼
RU)

s.t. U ≥ 0,UTU = I.

(4.4)

where I is the identity matrix with the proper size. In fact, Eq. (4.4) is equivalent

to the nonnegative relaxed normalized cut as put forth in (Ding et al., 2005).

4.6.4 The Proposed Framework DAAC

I separately introduced the models to utilize users’ attitudes and social interac-

tions. In this section, I propose my framework DAAC, which jointly exploits these

two models to uncover communities and their relations. The proposed framework

requires solving the following optimization problem,

min
U,H

F = ||W � (S−UHUT )||2F − λTr(UT
∼
RU)

s.t. U ≥ 0,UTU = I.

(4.5)

where λ is a non-negative regularization parameter controlling the contribution of

social interactions in the final solution.

Since the optimization problem in Eq. (4.5) is not convex with respect to variables

U and H together, there is no guarantee to find the global optimal solution. As

suggested by (Lee and Seung, 2001), I introduce an alternative scheme to find a local

optimal solution of the optimization problem. The key idea is optimizing the objective

function with respect to one of the variables U or H, while fixing the other one. The

algorithm keeps updating the variables until convergence.

Optimizing the objective function F in Eq. (4.5) with respect to U is equivalent

to solving:
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min
U

FU = ||W � (S−UHUT )||2F − λTr(UT
∼
RU)

s.t. U ≥ 0,UTU = I.

(4.6)

Let Γ and Λ be the Lagrange multiplier for constraints UTU = I and U ≥ 0,

respectively, and the Lagrange function is defined as follows:

min
U

LU = ||W � (S−UHUT )||2F − λTr(UT
∼
RU)

− Tr(ΛUT ) + Tr(Γ(UTU− I))

(4.7)

The derivative of LU with respect to U is

∂LU

∂U
= −2(W �W � S)UHT − 2(W �W � S)TUH

+ 2(W �W �UHUT )UHT

+ 2(W �W �UHUT )TUH

− 2λ
∼
RU−Λ + 2UΓ

(4.8)

For the sake of simplicity, let us assume that,

E1 = −(W �W � S)UHT (4.9)

E2 = −(W �W � S)TUH (4.10)

E3 = (W �W �UHUT )UHT (4.11)

E4 = (W �W �UHUT )TUH (4.12)

By setting ∂LU

∂U
= 0, I get

Λ = −2E1 − 2E2 + 2E3 + 2E4 − 2λ
∼
RU + 2UΓ (4.13)

With the KKT complementary condition for the nonnegativity of U, I have

ΛijUij = 0 (4.14)
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Therefore, I have

(E1 + E2 + E3 + E4 − λ
∼
RU + 2UΓ)ijUij = 0 (4.15)

where

Γ = −UTE1 −UTE2 −UTE3 −UTE4 + λUT
∼
RU (4.16)

Since E1, E2, E3, E4, and Γ can take mixed signs. Suggested by (Ding et al.,

2010), I separate positive and negative parts of any matrix A as

A+
ij = (|Aij|+ Aij)/2

A−ij = (|Aij| −Aij)/2

(4.17)

Then, I get the following update rule of U,

U = U�

√√√√E+
1 + E+

2 + E−3 + E−4 + λ
∼
RU + UΓ−

E−1 + E−2 + E+
3 + E+

4 + UΓ+
(4.18)

The derivative of F with respect to H is as follows:

∂F
∂H

=− 2UT (W �W � S)U

− 2UT (W �W �UHUT )U

(4.19)

Thus, the update rule of H is as follows:

H = H− α∂F
∂H

(4.20)

where α is the learning rate for updating H.

4.6.5 Time Complexity

The detailed algorithm for DAAC is shown in Algorithm 3. I briefly review Algo-

rithm 3. In line 1, it randomly initializes U and H. From line 2 to 5, it updates U

and H until convergence is achieved. In Algorithm 3, the most costly operations are
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the matrix multiplications in update rules Eq. (4.18) and Eq. (4.20) on which I focus

in this section. W and R are usually very sparse matrices, so let Nw and Nr denote

the number of non-zero elements of W and R, respectively. The time complexities of

Eq. (4.18) and Eq. (4.20) are described as follows:

• I first focus on the time complexity of Eq. (4.18). Note that W �W � S

needs to be calculated once. Therefore, the time complexities of both E1 and

E2 are O(Nwk + nk2) thanks to the sparsity of matrices W and S. The time

complexity of W �W �UHUT is O(Nwn+ nk2 + n2k). The number of non-

zero values of W �W � UHUT is the same as W owing to the sparsity of

W. Thus, the time complexities of both E3 and E4 are O(Nwn + nk2 + n2k).

Using a similar procedure, the time complexities of
∼
RU and Γ are O(Nrk) and

O(Nwn + nk2 + n2k + Nrk), respectively. As a result, the time complexity of

Eq. (4.18) is O(Nw(n+ k) +Nrk + nk2 + n2k).

• Now I provide the time complexity of Eq. (4.20). The cost of UT (W�W�S)

is O(Nwk) thanks to the sparsity of W. Thus, the time complexity of UT (W�

W � S)U is O(Nwk + nk2). Similarly, the cost of UT (W �W �UHUT )U is

O(Nwn+nk2 +n2k). Therefore, the time complexity of Eq. (4.20) is O(Nw(n+

k) + nk2 + n2k).

Hence, the time complexity of Algorithm 3 is O(i(Nw(n+ k) +Nrk+ nk2 + n2k))

where i is the number of iterations required for the convergence. My framework can

be applied to large scale social network platforms by exploiting distributed approaches

outlined in (Liu et al., 2010; Gemulla et al., 2011; Li et al., 2014).
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Algorithm 3 The Proposed Algorithm for DAAC

Input: attitude matrix S and social interaction matrix R

Output: community membership matrix U and intra/inter-community relation

matrix H

1: Initialize U and H randomly where U ≥ 0

2: while not convergent do

3: Update U according to Eq. (4.18)

4: Update H according to Eq. (4.20)

5: end while

4.7 Experiments

To evaluate the proposed framework, I design the required experiments to answer

the following two questions.

1. How effective is my framework compared to the standard community detection

methods?

2. How effective is my framework in discovering inter-community relations?

In the next section, I first compare the performance of several well-known commu-

nity detection methods with DAAC. Then, I evaluate the effectiveness of my frame-

work in uncovering inter-community relations. Finally, I study the sensitivity of my

framework with respect to regularization parameter λ. For the experiments, I set

the number of communities for any method, if it is required, as the true number of

communities (i.e., parties) in each dataset.
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4.7.1 Evaluation of Community Detection

Baselines

In order to demonstrate the efficacy of DAAC, I compare it with six well-known

community detection methods presented as follows:

• Louvain: This method (Blondel et al., 2008) greedily maximizes the benefit

function known as modularity to detect communities.

• InfoMap: This baseline (Rosvall and Bergstrom, 2008) is based on informa-

tion theory and compresses the description of random walks in order to find

communities.

• Leading eigenvectors: Newton (Newman, 2006) presents a formulation of

modularity in a matrix form, namely modularity matrix. Then, he proposes to

use the eigenvectors of modularity matrix to detect communities.

• CNM: This method (Clauset et al., 2004) uses a greedy approach to find the

divisions of the network which maximizes the modularity.

• Label propagation: (Raghavan et al., 2007) This method initially assigns

unique labels to users. Then, in each iteration, users adopt the label that most

of their neighbors posses. Finally, users with the same label fall into the same

community.

• Soft clustering: This baseline (Yu et al., 2005) assigns users to communities

in a probabilistic way.
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Table 4.3: Performance Comparison of Community Detection Methods in Chapter 4.

US dataset Australia dataset UK dataset

Method NMI ARI Purity NMI ARI Purity NMI ARI Purity

Louvain 0.4311 0.3863 0.9434 0.8252 0.8330 0.9422 0.8581 0.8417 0.9871

InfoMap 0.4314 0.3519 0.9468 0.8319 0.8317 0.9422 0.9097 0.9287 0.9923

Leading eigenvectors 0.5801 0.6780 0.9382 0.7799 0.5734 0.6933 0.9137 0.9533 0.9820

CNM 0.5029 0.4876 0.9451 0.8425 0.8483 0.9378 0.9391 0.9716 0.9846

Label propagation 0.6008 0.6556 0.9588 0.8222 0.8267 0.9378 0.9584 0.9790 0.9897

Soft clustering 0.7358 0.8292 0.9554 0.8412 0.8128 0.8444 0.9512 0.9743 0.9872

DAAC 0.7683 0.8545 0.9623 0.9037 0.9083 0.9511 0.9588 0.9788 0.9897

Performance Measures

To evaluate the performance of the methods, I utilize three following measures which

are frequently used for community detection evaluation: Normalized Mutual Infor-

mation (NMI), Adjusted Rand Index (ARI), and Purity.

Experimental Results

I run all methods with their hyperparameters initialized from {10x|x ∈ [0, 9]}. Table

4.3 shows the best result for each method. According to the table, I can make the

following observations:

• The proposed framework achieves the highest performance in terms of NMI and

ARI for all three datasets. In terms of Purity, it also achieves the best in US

and Australia datasets. In the UK dataset, only InfoMap obtains higher Purity

compared to my framework since it generates a large number of communities

(e.g., 11 communities for the UK dataset) for sparse graphs such as social media

networks.

• My framework achieves its highest performance with large values of regular-

ization parameter λ (e.g., 107). This implies that social interactions are more
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Table 4.4: The Uncovered Relations Between Detected Communities (i.e., Parties)

by DAAC in the US Dataset.

Republicans Democrats

Republicans 259 -138

Democrats -138 112

Note: all values in the table are rounded.

effective in detecting communities compared to users’ attitudes. I will study

more on the impact of the regularization parameter in Section 4.7.3.

4.7.2 Evaluation of Inter-community Relations

In this section, I evaluate the effectiveness of the proposed framework in uncov-

ering inter-community relations by conducting two experiments. To the best of our

knowledge, there is no previous work to discover inter-community antagonistic and

allied relations. Therefore, as the first experiment, I compare the inter-community

relations which my framework detects with the real-world inter-community relations.

Each community detected by my framework is labeled with the party to which the

majority of its members belong. Then, I evaluate inter-community relations (i.e., the

matrix H) detected by my algorithm according to the known ground-truth inter-party

relations as previously presented in Section 4.5.

Table 4.4 shows intra/inter-community relation matrix H for the US dataset as

well as the parties corresponding to the detected communities. In 2016, the Republi-

can Party and the Democratic Party were strongly antagonistic towards each other,

especially due to the 2016 presidential election campaigning 2 (Lilleker et al., 2016).

As Table 4.4 shows, my framework uncovers the existence of strong antagonism be-

tween these two parties. It also discovers that intra-community attitudes among the

2https://en.wikipedia.org/wiki/United_States_presidential_election,_2016
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Table 4.5: The Uncovered Relations Between Detected Communities (i.e., Parties)

by DAAC in the Australia Dataset.

Liberals Nationalists
Liberal

Nationalists
Labors Greens

Liberals 87 61 34 -21 -32

Nationalists 61 52 46 -4 -22

Liberal

Nationalists
34 46 39 -4 -61

Labors -21 -4 -4 121 -31

Greens -32 -22 -61 -31 64

Table 4.6: The Uncovered Relations Between Detected Communities (i.e., Parties)

by DAAC in the UK Dataset.

Conservatives Labours Lib dems SNPs UKIPs

Conservatives 154 -37 -7 -21 -9

Labours -37 242 -8 -11 -26

Lib dems -7 -8 63 -3 -14

SNPs -21 -11 -3 55 -5

UKIPs -9 -26 -14 -5 30

members of each community are highly positive as expected owing to the election

campaign dynamics.

Table 4.5 shows intra/inter-community relation matrix H for the Australia dataset

as well as the parties corresponding to the detected communities. The Liberal Party,

the National Party, and the Liberal National party forged a coalition in the 2016

federal election. Except the relations between the members of the coalition, other

relations among all parties were antagonistic 3 . As shown in Table 4.5, my framework

uncovers the coalition in which the three involved parties are in alliance with each

other. It also discovers antagonism between the members of the coalition and other

3https://en.wikipedia.org/wiki/Australian_federal_election,_2016
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Table 4.7: Inter-community Detection Performance of DAAC and the Two-step Ap-

proach.

US Australia UK

Two-step approach 1.0 1.0 0.8

DAAC 1.0 1.0 1.0

parties as well as the antagonism between the Greens and the Labor Party. Moreover,

it detects high positive intra-community attitudes among the members of communities

as expected.

Table 4.6 shows intra/inter-community relation matrix H for the UK dataset as

well as the parties corresponding to the detected communities. In 2015, there were

antagonisms between all five major UK political parties, especially due to the 2015

general election campaigning 4 (Moran, 2015). As shown in Table 4.6, my framework

correctly detects all antagonistic relations between these parties. It also discovers

that intra-community attitudes among the members of each community are highly

positive as expected.

The second experiment compares my framework with a two-step approach de-

scribed as follows. I first utilize social interactions to detect communities. Then, I

aggregate the sentiment expressed among the members of different communities in

order to figure out their inter-community relations. To have a fair comparison, I use

Eq. (4.4) to detect communities for the two-step approach; which is the main com-

ponent in DAAC for utilizing social interactions. As Table 4.7 shows, the two-step

approach is able to detect correct relations in the US and Australia datasets. How-

ever, it fails to detect two out of ten inter-community relations in the UK dataset.

4https://en.wikipedia.org/wiki/United_Kingdom_general_election,_2015
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Figure 4.1: Community Detection Performance With Regard to λ.
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Figure 4.2: The Correct Number of Inter-community Relations With Regard to λ.

This result shows that the proposed framework can detect inter-community relations

more accurately by jointly using and social interactions and attitudes among users

compared to an approach which sequentially detects communities and their relations.

4.7.3 Study on the Regularization Parameter

In this section, I investigate the sensitivity of my framework with respect to regu-

larization parameter λ. I vary the value of λ, and plot NMI, ARI and Purity measures

in Figure 4.1 for all three datasets used in the study. Similarly, I plot the correct
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number of inter-community relations discovered by DAAC in Figure 4.2 for all three

datasets with respect to different values of λ.

As I observe from Figure 4.1, very large values of λ (e.g., 106 and 107) for all

datasets result in the highest performance of DAAC in detecting communities. Sim-

ilarly, Figure 4.2 shows that very large values of λ also result in the highest number

of correct inter-community relations discovered by DAAC. The rationale behind this

is that inter-community relations cannot be correctly identified unless communities

are accurately detected.

4.8 Conclusion

In this chapter, I proposed a framework to discover communities and their re-

lations by exploiting social interactions and user-generated content. I validated the

hypothesis that inter-community attitudes that users express towards each other in

social media can reflect inter-community relations. As inspired by this hypothesis,

the proposed framework DAAC jointly models users’ attitudes and social interactions

in order to uncover communities and their antagonistic/allied relations. Experimen-

tal results on three real-world social media datasets demonstrated that the proposed

framework obtains significant performance in detecting communities compared with

several baselines and also detects inter-community relations correctly. Moreover, I

showed that a two-step approach, which sequentially detect communities and their

relations, can fail to detect correct inter-community relations.
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