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ABSTRACT

An analysis is presented of a network of distributed receivers encumbered by strong in-

band interference. The structure of information present across such receivers and how

they might collaborate to recover a signal of interest is studied. Unstructured (random

coding) and structured (lattice coding) strategies are studied towards this purpose

for a certain adaptable system model. Asymptotic performances of these strategies

and algorithms to compute them are developed. A jointly-compressed lattice code

with proper configuration performs best of all strategies investigated.
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Chapter 1

INTRODUCTION

Figure 1.1: High-level sketch of the scenario. Distributed observers seek to recover

information about a signal of interest. Observers each broadcast a limited amount of

information to each other via a local array network (LAN). In-band interfering signals

are present and obscure the signal of interest from each individual observer.

Consider a situation where multiple receivers have the common goal of recovering

a broadcast in the presence of much stronger interfering signals. If the listening

nodes are able to form a local array network (LAN) among one another, the nodes

can mitigate interference and recover the signal of interest by sharing information and

processing the messages they share. This scenario could arise, for instance, when a

group of local nodes must aid a neighbor’s reception, when a group of cellular nodes

have the common goal of receiving a code-domain-multiple-access transmission in a

crowded environment, or when an adversary jams a broadcast node meant to serve

multiple users. A high level model of this scenario is shown in Figure 1.1. When

the amount of information transmission among listeners is limited (as it well may

be if they must conserve power or bandwidth), they must take care to only forward

novel information to their neighbors. Several approaches to the problem are presented
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Xsrc
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WK

Q1

...

QK

Base X̂src
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hK

X1,raw

XK,raw

�
U1

R1

�
UK

RK

Figure 1.2: A block diagram of the system in question.

culminating in a strategy involving jointly-compressed lattice codes. The strategy is

potentially practically realizable.

This scenario is studied in terms of a reduced version of the system where instead

of communicating to one another, all listeners instead forward digital messages over

a reliable LAN link to a base node (possibly virtual, representing knowledge common

to all receivers). Interfering signals are modeled as a correlated Gaussian component

added to all observers’ discrete-time observations. A detailed description of this model

is presented in Section 1.1 along with a rationale for how it may arise in an actual

wireless communications setting. A block diagram is shown in Figure 1.2.

The coding strategies presented address either the problem of recovering a signal of

interest to low mean-squared-error or the problem of decoding a message modulated

into the signal of interest. Though closely related, the two problems are theoret-

ically distinct as the decoding problem imposes message structure on the source’s

transmission which can be exploited at the observers.

1.1 System Model

This section presents the mathematical model for the problem studied and an

example of how the model might arise in the scenario just described. A list of math-

ematical notation used is given in Table 2.1. A message is modulated and broadcast

2



as a real source Xsrc with power constraint E[‖Xsrc‖2] ≤ 1. The source is observed

by K receivers as X1,raw, . . . , XK,raw, where

Xk,raw = hkXsrc +Wk, k = 1, . . . , K, (1.1)

~h ∈ RK and noise terms ~W[K] are multivariate Gaussian N (0,Σnoise), noise covariance

Σnoise ∈ RK×K positive definite. Vectors formed by n repeated uses of this channel

are indicated with superscript. Each of the K receivers forward information to a base

node at rate Rk > 0 through a side channel.

Definition 1. A source-to-base communication rate R is said to be achievable if for

any ε > 0 then for large enough n the following objects can be constructed to satisfy

a low-error-probability condition:

• Modulation scheme φ : [2n(R−ε)]→ Rn with

2−n(R−ε) ·
∑
m

1

n
‖φ(m)‖2 < 1

• Relay encoding functions (enck)k∈[K], enck : Rn → [2nRk ]

• Base decoder dec :
∏

k∈[K][2
nRk ]→ [2n(R−ε)].

The low-error-probability condition is as follows. Taking:

M ∼ unif [2n(R−ε)],

Xn
src := φ(M),

M̂ := dec
(
enc1(Xn

1,raw), . . . , encK(Xn
K,raw)

)
,

then P
(
M̂ 6= M

)
< ε.

Definition 2. For a source Xn
src with each component i.i.d. N (0, 1), a mean-squared-

error distortion D is said to be achievable if for any ε > 0 then for large enough n

the following objects can be constructed to satisfy a low-error-probability condition:

3



• Relay encoding functions (enck)k∈[K], enck : Rn → [2nRk ]

• Base decoder dec :
∏

k∈[K][2
nRk ]→ Rn.

The low-error-probability condition is as follows. Taking:

X̂src
n

:= dec
(
enc1(Xn

1,raw), . . . , encK(Xn
K,raw)

)
,

then P
(

1
n
‖Xn

src − X̂src

n
‖2 > D

)
< ε.

1.1.1 Model Ontology

This section describes how the model above may arise among wireless radios.

LAN

The LAN link between observers is a side channel over which each observer can broad-

cast and recover fellow observers’ messages. It may correspond to some multiple-

access frequency band unencumbered by interfering sources. Redistribution among

observers of bandwidth or time-slot resource along such a band corresponds to re-

distribution of the receiver-to-base bitrates R1, . . . , RK . The LAN has been modeled

such that for each channel use, each receiver forwards a fixed number of bits to the

base. Each observer may forward to the base at some predetermined rate, or ob-

servers may adapt their rates within LAN resources. Both situations are considered

throughout the study.

Jointly-Gaussian Discrete-Time Observations

Take the source of interest to be a single-antenna broadcaster modulating its informa-

tion into a train of orthogonal-frequency-division-multiplexing (OFDM) symbols as

discussed in (Bliss and Govindasamy, 2013, §10.5.3). Make the following assumptions:

4



• Interferers broadcast white Gaussian noise over subcarrier bands, and this noise

is independent of the source’s modulation at each subcarrier.

• The channels between broadcasters and observers have approximately flat fre-

quency response within each subcarrier band and many OFDM symbols fit

within these channels’ coherence times.

• Each broadcaster’s signal is observed with roughly equal Doppler shift at all

the observers1

Now the ensemble of observer responses at a particular subcarrier frequency, averaged

over each symbol duration, are approximately represented by a complex version of

the given model: the source Xsrc now takes on complex values within its unit power

constraint, the real multivariate normal noise distribution in Equation (1.1) is replaced

with a circularly-symmetric complex multivariate normal, and channel coefficients ~h

are complex.2 In the sequel the problem of coding for the real or complex component

of an individual subcarrier is considered. Adaptations of the main theorems to the

complex case can be obtained by decomposing the channel into a real one with the

proper symmetries. This is done in Appendix F. The complex case is not treated

directly since most lattice theory results and intuitions are in terms of real geometry.

1The Doppler and slow channel evolution assumptions can possibly relaxed although the problem

of designing robust codes is considerably complicated. Avenue for further study of these aspects is

outlined in the conclusion, Section 6.1.4.
2Vector ~X< + j ~X= is circularly-symmetric complex multivariate normal about 0 with positive-

semidefinite covariance M ∈ CK×K if ( ~X<, ~X=) ∼ N (0,
[
<{M} −={M}
={M} <{M}

]
)

5



Channel State

All coding schemes studied presume access to perfect channel state information at all

observe nodes. That is, observe nodes have access to the tuple

(~h,Σnoise),

quantities averaged over many OFDM symbols. Initial numerical investigations (pre-

sented later) suggest existence of configurations of the investigated schemes which are

tolerant to poor channel state estimates. However this has not been deeply studied

and presents an avenue for further research discussed in Chapter 6.

One method by which channel state estimates can be made available to observers

is as follows, assuming source and observe nodes are synchronized enough that each

observer properly captures each transmitted OFDM symbol. Take the first few OFDM

symbols as a training sequence of which all observers are informed. Observers repeat

quantizations of the observed phase and amplitude at each subcarrier frequency for

each training symbol over the LAN. These quantizations can be used to build an

estimate of the channel state.

1.2 Background

This section provides context for existing work on the problem.

The problem of finding the best achievable mean-squared-error distortion as given

in Definition 2 has been studied as the quadratic Gaussian many-help-one distributed

source coding problem Tavildar and Wagner (2009). Strategies for the source coding

problem (Definition 2) can be adapted to yield an achievable source-to-base rate for

the communication problem (Definition 1) by first performing a source coding stage

at the encoders and base, then channel coding on the resulting point-to-point channel

6



from source to base. This adaptation is sub-optimal in general since the source coding

stage as described may not take advantage of the source’s codebook structure.

Both problems are similar in structure to the CEO problem Berger et al. (1996).

The CEO problem is of structure similar to the present network: distributed observers

provide a base node side information at some rate about a source of interest which

the base attempts to estimate. Unfortunately it is unusual for studies on the CEO

problem to take noise across observers as correlated. For this reason, most studies on

the CEO problem cannot directly be adapted to an effective strategy for the present

problems.

1.2.1 Unstructured Coding Strategies

By ‘unstructured coding’ it is meant that codebooks involved are populated by

drawing codewords from a distribution and do not have any designed internal al-

gebraic structure. Much work on unstructured codes for similar networks can be

adapted to the present problems. For some covariance structures, the best possible

performance of the source coding problem in Definition 2 is such a coding technique

Tavildar and Wagner (2009), but in general much better performance is possible.

The best possible performance for the case of two observing nodes is bounded in

Maddah-Ali and Tse (2010).

The major study on the application unstructured codebooks for the communi-

cations problem in Definition 1 for general channel is Sanderovich et al. (2008). A

specialization to the present channel is Chapman et al. (2018) and the main results

of this study are the topic of Chapter 3. Although the studies treat the communi-

cations problem directly, their analytic strategies are still fundamentally built off of

(and limited by) a distributed source coding perspective and do not directly exam-

7



ine performance gains that can be gotten by imposing joint-structure on source and

observer codebooks. This technicality is examined further in Chapters 2 and 3.

Unstructured coding schemes for the source-coding problem are known, although

given results from studies on structured codes like those in Wagner (2011), Nazer and

Gastpar (2008), Krithivasan and Pradhan (2011) and Lim et al. (2018) it seems likely

that strategies imposing more structure on the codebooks can outperform unstruc-

tured strategies.

1.2.2 Lattice-Based Strategies

Many recent developments in structured distributed source coding for Gaussian

channels involve lattice structures. Lattices have many useful properties which make

them attractive structures for building distributed source codes. Throughout this

document, terminology and basic lattice theory results are taken from Zamir (2014),

and the necessary concepts are introduced in proper in Sections 2.4, 2.5. A lattice

in the context of this study is a collection Λ ⊂ Rn of separated vectors closed under

integer linear combinations. A lattice Λ can be endowed with a base region B ⊂ Rn,

which is any set with zero moment where (B + λ)λ∈Λ is a partition of Rn. Fixing Λ

and B, a modulo-Λ operation can be defined as follows, for any a ∈ Rn:

modΛ(a) := a+ λ∗

where λ∗ ∈ Λ is the unique choice so that a + λ∗ ∈ B. It is straightforward to

demonstrate that this operation satisfies the following relation:

modΛ [modΛ(a) + modΛ(b)] = modΛ(a+ b). (1.2)

This property is useful for distributed compression of correlated signals: say one

observer receives a and another receives b, and the base seeks to recover (a+ b). Say

8



a and b correlated so that the variance of (a+ b) is much smaller than that of either

a or b. If Λ and B are designed so that (a+ b) probably lies within B (i.e. with high

probability modΛ(a + b) = a + b) then instead of quantizing the entire observation,

each observer can instead quantize the modulo of its observation, and the decoder

can still recover its component of interest through Equation (1.2). In many cases

the modulo of the signal will have much smaller dynamic range, making quantization

fidelity cheaper. The decoder can recombine the quantized modulo results using the

above identity to recover (a + b) with better precision than available had the relays

not performed this modulo operation.

The MIMO processing methods presented in Ordentlich and Erez (2017), extended

in He and Nazer (2016)3 are closely related to the present scenario. These papers ex-

amine application of a lattice code exploiting properties such as those described above

to a slightly different problem: design a lattice code such that the decoder recovers an

estimate for all the observers’ signals, not just a single component of interest within

them. Relaxing this constraint allows for a larger rate region for the many-help-one

problem investigated in Chapter 4. Lattice-coding-based strategies perform well for

similar problems and in certain settings provide optimal performance or performance

strictly better than known unstructured codebook strategies Zamir et al. (2002),

Nazer et al. (2016), (Zamir, 2014, Chapter 12), Cheng et al. (2018). A prominent

development in lattice-based distributed compression called Integer Forcing Source

Coding (IFSC) Ordentlich and Erez (2017) deals with a variation of the present

problem where multiple users have a message for a decoder informed by distributed

antennas. Lattice coding schemes can be designed for MIMO communication to have

3Extensions appears in conference proceedings in dates before the initial results since initial

results were made available in arχv.org some time before their appearance in a Journal.
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universality properties such that a transmitter need not know the channel Campello

et al. (2018), Ordentlich and Erez (2014).

1.2.3 Second-Order Lattice-Based Strategies

Lattice-modulo-encoded messages such as those described in the previous often

carry redundant information. Reference Wagner (2011) provides an upper and lower

bound on conditional entropies between two such messages. Reference Yang and

Xiong (2011) realized an according compression scheme for such encodings using

further lattice processing on them in the context of an insightful ‘coset planes’ ab-

straction. It was further noticed in Yang and Xiong (2014) that improvement towards

the many-help-one problem is gotten by splitting helper messages into two parts: one

part a coarse quantization of the signal, compressed across helpers via Slepian-Wolf

joint-compression (these message parts corresponding to the ‘high bit planes’), and

another a lattice-modulo-encoding representing signal details (corresponding to ‘low

bit planes’). Chapter 5 extends these ideas to a general quantity of helpers, providing

upper and lower bounds for the joint-entropy of such encodings. It also treats a case

where a component of the sources has lattice structure.

A joint-compression scheme for lattice encodings called ‘Generalized Compute

Compress and Forward’ was introduced in Cheng et al. (2018) towards coding for a

multi-user additive white Gaussian noise channel where a decoder seeks to recover all

user’s messages and is informed by helpers. The scheme exploits the same idea from

Yang and Xiong (2014), this time splitting lattice encodings into an arbitrary amount

of messages at different coset planes. The scheme in Chapter 5 work follows along the

same lines, although for a network with one user and where many interferers without

codebook structure are also present.
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1.2.4 Other Techniques

Other bodies of work that deal with distributed source coding with this problem

structure but are not deeply investigated in this study include:

• Joint-compression schemes for discrete sources, such as Stankovic et al. (2006)

and Shirani et al. (2016). When the relays first quantize their broadcast and

then use these codes, their performance is subsumed by the ones presented in

Section 2.3.

• Distributed source coding using syndromes Pradhan and Ramchandran (1999),

a general approach to practical distributed source coding. Choi et al. (2015)

and related works develop relay processing strategies to preserve specific con-

stellations patterns (BPSK, etc.) and investigate coded bit error rates after

syndrome fusion.

• Distributed lossy arithmetic coding, where distributed sources use arithmetic

codes with overlapping intervals. Its theory is developed in detail in (Wang

et al., 2017, Chapter 6).

1.3 Overview and Contributions

Chapter 2 covers the necessary technical results used throughout the rest of the

study. Chapter 3, based on Chapman et al. (2018) provides the best known bounds

on the system’s achievable rate using unstructured coding schemes. Chapter 4, based

on Chapman et al. (2019) discusses a lattice coding strategy for the problem. Chapter

5, based on Chapman and Bliss (2019) examines inefficiencies in the strategy from

Chapter 4, yielding description of a performance-improving joint-compression stage.

Chapter 6 describes viable directions for improvement and future study.
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Considered jointly with time-sharing, performance of the strategies introduced

by this study are the strongest currently known for their scenarios. It is unknown

whether the achievable communications rates for the strategy described in Chapter 5

subsume those given in Chapter 3. In contrast the source coding strategy described

in Chapter 5 does subsume the one described in Chapter 3.

Mathematical notation is described in Table 2.1. Preliminaries for each section

as well as a local description of variables is given in a table at the beginning of each

chapter. Long proofs are delayed to appendices.
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Chapter 2

TECHNICAL PRELIMINARIES

This chapter introduces some technical concepts and constructions used in the re-

mainder of the document. A table of general mathematical notation is given in 2.1.

a := b Define a to equal b

[n] Integers from 1 to n

log(·) Logarithm, base-2

A,a,~a, ~A Matrix, column vector, vector, random vector

j;<,= Complex unit; real, imaginary component

A†,a† Conjugate transpose

[A]S,T Submatrix corresponding to rows S, columns T of A

~YS an |S|-vector, the sub-vector of ~Y including components

with indices in S. If S has order then this vector respects

S’s order.

IK K ×K identity matrix

0K K × 1 zero vector

diag~a Square diagonal matrix with diagonals ~a

pinv(·) Moore-Penrose pseudoinverse

N (0,Σ) Normal distribution with zero mean, covariance Σ

X ∼ f X is a random variable distributed like f

Xn, f(xn) Vector of n independent trials of a random variable dis-

tributed like X, a function interpreted to take inputs such

as the variable just discribed
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E[X] Expectation of X

var(a) Variance (or covariance matrix) of (components of) a (av-

eraged over time index if applicable).

var(a|b) Conditional variance (or covariance matrix) of (compo-

nents of) a given observation b (averaged over time index

if applicable).

cov(a, b), cov (a, b|c) Covariance between a and b,, covariance between a and b

conditioned on c (averaged over time index if applicable).

E(a|b) Linear MMSE estimate of a given observations b

E⊥(a|b) Complement of E(a|b), i.e., E⊥(a|b) := a − E(a|b). An

important property is that E(a|b) and E⊥(a|b) are uncor-

related.

H(X|Y ), h(X|Y ), I(X;Y Shannon entropy, differential entropy, mutual information

roundL(·),modL(·) Lattice round, modulo to a lattice L (when it is clear what

base region is associated with L).

Table 2.1: Symbols and Notation

2.1 Basic Information Theorems

2.2 Slepian-Wolf Lossless Joint-Compression

The encoder rates needed for lossless distributed compression of discrete sources

is given by the Slepian-Wolf theorem (El Gamal and Kim (2011)).

Theorem 1. Take ~Sn = (Sn1 , . . . , S
n
K) to be n independent identically distributed

trials of a random source (S1, . . . , SK) with distribution P~S over finite support S =

S1 × · · · × SK. ‘Compression rates’ R1, . . . , RK > 0 are said to be ‘achievable’ if any
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ε > 0 has n large enough so that ‘encoder’ maps enck : Snk → [2nRk ], k = 1, . . . , K

and a ‘decoder’ map dec exist with

P(dec(enc1(Sn1 ), . . . , encK(SnK)) 6= ~Sn) ≤ ε.

Compression rates R1, . . . , RK > 0 are achievable if and only if:∑
k∈T

Rk > H(ST |S[K]\T ) ∀T ⊂ [K]

A common method for demonstrating achievability of the bound is to select each

encoder uniformly at random from the collection of possible encoding maps. Provided

rates are as large as prescribed, then for long enough blocklength it is unlikely that any

source vector in the inverse map of the encodings is typical according to the source’s

distribution, other than the source vector itself. This strategy is known as ‘random

binning.’ Unfortunately, practically realizable encoding maps are often difficult to

realize in practice.

2.3 Berger-Tung Lossy Joint-Compression

The Berger-Tung inner and outer bounds give approximate rate-distortion regions

for a closely related problem of lossy distributed source coding where each observer’s

reception must be recovered at the base to within some distortion criterion. In par-

ticular they deal with the following problem (stated for two encoders):

A source (X1,t, X2,t) is i.i.d. in time t. Receiver i (i = 1, 2) observes Xi T

times as (Xi,t)t∈[T ] and processes it through an encoder fi into a message

Mi = fi((Xi,t)t∈[T ]) with rate Ri (equivalently H(Mi) ≤ TRi). Receiver

i forwards Mi to a base. The base processes receiver messages (Mi)i=1,2

through decoders (gi)i=1,2 into estimates

(gi((Mj)j=1,2))i = ((X̂i,t)t∈[T ])i=1,2.
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For distortion measures d1(x1, x̂1), d2(x2, x̂2) ≥ 0, what rate-distortion

pairs (R1, D1), (R2, D2) are achievable?

For distortion measures d1(·), d2(·), then a rate-distortion pair ( (Ri, Di) )i=1,2

is said to be “achievable” if for any ε > 0 and T large enough then en-

coders (fi)i=1,2 and decoders (gi)i=1,2 exist so that for i = 1, 2, receiver i

forming Mi = fi((Xi,t)t∈[T ]) and base forming (X̂i,t)t∈[T ] = gi((Mj)j=1,2),

• H(Mi) ≤ TRi,

• P
(

1
T

∑T
`=1 di(Xi,`, X̂i,`) ≥ Di

)
< ε.

Berger and Tung provide an achievable rate region and an outer bound for this

problem (El Gamal and Kim (2011)):

Theorem 2. (Berger-Tung inner bound) (Ri, Di)i=1,2 is achievable if there are ran-

dom variables (U1, U2, Q) where:

• R1 > I(X1;U1|U2, Q),

• R2 > I(X2;U2|U1, Q),

• R1 +R2 > I(X1, X2;U1, U2|Q),

• Some decoder functions g∗i (u1, u2, q) have di(Xi, g
∗
i (U1, U2, Q)) < Di for i = 1, 2,

• The PMF of (X1, X2, U1, U2, Q) can be factored: PX1,X2·PQ·PU1|X1,Q·P (U2|X2, Q)

(It suffices to check Ui with Image(Ui) ≤ Image(Xi) + 4)

One strategy for achieving the Berger-Tung inner bound is to first form quantiza-

tions of the observed variables (quantization possibly piloted by additional artificial
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commonly known side-information Q), then jointly compress these quantizations us-

ing the Slepian-Wolf theorem described above. The inner bound is deficient in general

as described below.

Theorem 3. (Berger-Tung outer bound): For (Ri, Di)i=1,2 to be achievable, then

there must be some random variables (U1, U2) which satisfy:

• R1 > I(X1, X2;U1|U2),

• R2 > I(X1, X2;U2|U1),

• R1 +R2 > I(X1, X2;U1, U2),

• Some decoder functions g∗i (u1, u2) have di(Xi, g
∗
i (U1, U2)) < Di for i = 1, 2,

• The tuple (X1, X2, U1, U2) satisfies Markov conditions: U1 ↔ X1 ↔ X2 and

X1 ↔ X2 ↔ U2.

2.3.1 Sub-optimality of Berger-Tung Inner and Outer Bounds

The inner and outer Berger-Tung bounds are not tight in general for their source

coding problem. The specific reason for this is discussed briefly in (El Gamal and

Kim, 2011, Section 12.5) and we expound on it here. Because of the correlation

between X1 and X2, Receiver 1’s observation of X1 contains some information about

the other source’s realization, X2. This means Receiver 1 may have some information

about the result of Receiver 2’s processing on X2. In particular Receiver 1 may be

able to derive some knowledge of U2, Receiver 2’s message content. It can use this

knowledge of U2’s realization to improve its own message content U1.

The inner bound’s PMF factoring restriction is too strong. It enforces that Re-

ceiver 1’s message be independent of all the other receivers’ messages after condition-

ing on Receiver 1’s observation. This disallows Receiver 1 from using its knowledge
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of Receiver 2’s message realization to improve its own. An example where this helps

is given in (El Gamal and Kim, 2011, Section 12.5).

The outer bound’s Markov constraint is too lax. It allows for arbitrary dependence

between messages after conditioning on their respective receiver’s observations, even

when such dependence is not possible. For example, if X1, X2 are jointly Gaussian

then the Markov constraint allows U1 = X1 +N1 +Nc, U2 = X2 +Nc where N1, Nc are

independent Gaussian distortions. Indeed, one can verify that the Markov conditions

U2 → X2 → X1 and U1 → X1 → X2 are satisfied and that noise powers can be made

for the outer bound’s entropy conditions to hold, but clearly this scheme can’t be

realized outside some trivial edge cases.

The discrepancy between the inner and outer bound is that depending on the

channel, Receiver 1 varies in its ability to observe what specific parts of its source are

lost or retained during Receiver 2’s lossy reduction of X2 into U2. (And vice versa for

Receiver 2).

There is further loss in Berger-Tung source coding in its application to the prob-

lems in Definitions 1, 2 due to the strategy’s aspect of recovering all the receiver’s

observations rather than only the component of interest. This is examined further in

Chapter 3.

2.4 Lattices

Definition 3. A lattice L ⊂ Rn is a countably infinite set of discrete points closed

under addition and subtraction characterized by a lattice basis, a finite collection

{`1, . . . , `k} ⊂ Rn of not-linearly-dependent vectors whose integer linear combinations

span L. The dimension of L is the size of the basis.

The dimension of lattices described in this study will have the dimension of their

underlying space unless explicitly mentioned.
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Figure 2.1: A graphical example of lattice modulo and rounding operations on a vector

x ∈ R2 for a particular lattice (drawn as dots) and hexagonal base region s (outlined

in black, translates outlined by solid gray lines). Notice x = rounds(x) + mods(x),

that the image of rounds(·) is the lattice, and that the image of mods(·) is s.

Definition 4. A region s ⊂ Rn is a base region for a lattice L if the sets (l + s)l∈L

are all disjoint, their union forms Rn, and if s has its moment at the origin.

One can define modulo and rounding operations relative to a base region s for a

lattice L:

rounds : Rn → L,

rounds(x) := l ∈ L where (x− l) ∈ s,

mods : Rn → s,

mods(x) := x− rounds(x).

Note that rounds is well defined since s being a base region implies there is one and

only one lattice point l that satisfies its prescription. These operations have some

useful properties. A graphical example of the lattice round and modulo operations

for a lattice in R2 and a hexagonal base region s is shown in Figure 2.1.

Property 1. (mod is the identity within s) x ∈ s has mods(x) = x.
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Proof: mods(x) = x− rounds(x) = x.

Property 2. x ∈ Rn, l ∈ L have rounds(x+ l) = rounds(x) + l.

Proof: (x+ l)−(rounds(x)+ l) = (x−rounds(x)) ∈ s. So by definition rounds(x+ l) =

rounds(x) + l.

Property 3. x ∈ Rn, l ∈ L have mods(x+ l) = mods(x).

Proof: mods(x+l) = (x+l)−rounds(x+l) = (x+l)−rounds(x)−l = x−rounds(x) =

mods(x). The second equality is by Property 2.

Property 4. (Lattice modulo is distributive) x, y ∈ Rn have:

mods(mods(x) + y) = mods(x+ y).

Proof: mods(mods(x) + y) = mods(x + y − rounds(x)) = mods(x + y). The last

equality is by Property 3.

2.5 Asymptotic Lattice Constructions

Lattices in high dimension can have useful properties for coding problems. These

properties are described in terms of a sequence of lattices increasing in dimension.

The essential properties exploited in this study are presented in this section using

terminology slightly adapted from Zamir (2014). The definitions in this section have

many equivalent characterizations, and only the characterizations most immediately

applicable to their utility here are presented.

Definition 5. A sequence of lattices L(n) ∈ Rn with base regions B(n) are said to

be good for quantization (synonymous with Rogers-good) with mean-squared-error

distortion σ2 if for X ∼ unif B(n) and any ε > 0, then

P(X 6∈ B(n)(0,
√
n(σ2 + ε)))→n 0.
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Definition 6. A sequence of lattices L(n) ∈ Rn with base regions B(n) are said to

be good for coding (synonymous with Penrose-good) in noise of power below σ2 if for

any ε > 0 and X uniform in B(0,
√
n(σ2 − ε)), then

P(X 6∈ B(n))→n 0

Definition 7. For lattices L
(n)
c , L

(n)
f with L

(n)
c ⊂ L

(n)
f with respective base regions

B
(n)
c , B

(n)
f (subscript c standing for ‘coarse’ and f ‘fine’), then if

1

n
log(|B(n)

c ∩ L
(n)
f |)→n r

then L
(n)
f is said to have nesting rate r in B

(n)
c .

The nesting rate characterizes the highest possible entropy-rate for a signal that

has support B
(n)
1 ∩L

(n)
2 . A pictoral example for a two-dimensional lattice is shown in

Figure 2.2.

A construction essential to the lattice codes developed in this study is provided

in Ordentlich and Erez (2016):

Theorem 4. (Ordentlich and Erez, 2016, Theorem 2) For any σ2
1 > σ2

2 > · · · > σ2
K >

0 there exists a sequence of nested lattices:

L
(n)
1 ⊂ · · · ⊂ L

(n)
K ⊂ Rn

with respective base regions B
(n)
1 , . . . , B

(n)
K ⊂ Rn (formed by their lattice’s Voronoi

partition) with the following properties:

• L(n)
k is good for coding in noise of power below σ2

k.

• L(n)
k is good for quantization with mean-squared-error distortion σ2

k.

• For k < m then L
(n)
m has nesting rate 1

2
log

σ2
k

σ2
m

in B
(n)
k .
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Figure 2.2: An example of nested lattices in R2. Points from a coarse lattice Lc are

drawn as large dots. Points from a fine lattice Lk ⊃ Lc besides those in Lc are drawn

as small dots. A base region Bc for Lc and its transaltes Bc +Lc are outlined by solid

lines, and a base region Bk for Lk and its translates Bk + Lk are outlined by dashed

lines. The base regions for points in Lk ∩ Bc are shaded. Notice that Lk ∩ Bc has

24 points, so 4 bits are required to describe a general point in Lk ∩ Bc, or 2 bits per

real sample.

Loosely, such a construction is gotten by forming the generator matrix for a ran-

dom block code over a large finite field, embedding its rows in real space and using

the resulting vectors as a lattice basis.

22



Chapter 3

UNSTRUCTURED SCHEMES

This chapter presents some unstructured coding schemes to bound the problem’s

achievable rate. These bounds are compared in Figure 3.1.

3.1 Cut-set Upper Bound

The achievable rate is upper bounded by the relaxation of the problem where any

collection S of relays can provide unlimited information to the decoder. On the other

hand, no more than a total of
∑

k∈S Rk bits of information can be provided to the

decoder by the relays in S ⊂ [K], so the achievable rate cannot be greater than

RCS := min
S⊂[K]

I(Xsrc; (Xk,raw)k∈S)) +
∑
k∈SC

Rk,

This upper bound is an application of the cut-set bound described in (El Gamal and

Kim, 2011, Chapter 20).

3.2 Plain Quantization

One strategy for each observer would be to encode its reception with an approximately-

rate-distortion optimal source coder for its observed source at the prescribed observer

rate Rk. This yields an achievable rate Chapman et al. (2018):

RQF := I(Xsrc; (Xk,raw + Zk)k∈[K]), Zk ∼ N (0, varXk,raw/(2
2Rk − 1)) (3.1)

and an achievable distortion

DQF := var(Xsrc|(Xk,raw + Zk)k∈[K]), Zk ∼ N (0, varXk,raw/(2
2Rk − 1)).
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Figure 3.1: Bound performance versus combined relay rate (that is, the total rate

available to hub from all the helpers combined). 4 relays with 0 dB average receiver

SNR, averaged over 200 channels with gains ∼ CN (0, I). A single-rank interferer

present at each receiver with a uniform random phase and ±20 dB INRs. Single-user

quantize-and-forward is most greatly affected by interference (Compare the Broadcast

curves from -20 dB to 20 dB INR). Distributed compression offers the most significant

benefits over Gaussian compress-and-forward in strong interference and when relay-

to-base resources are scarce. Lattice compression schemes (curves for Corollaries 1,

2) are covered in Chapters 4, 5. Computational details are provided in Appendix B.2
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Source encoders which operate near the rate-distortion limit for Gaussian sources

tend to be very computationally expensive. One strategy of reasonable complexity

which comes within half a bit of this limit is to first bin each sample and then perform

arithmetic coding on sequences of binned outputs. This is discussed in more detail in

Popat (1990).

3.3 Berger-Tung-Based Strategies

The strategy used to achieve the Berger-Tung inner bound discussed in Section

2.3 can be adapted to the present problem.

Theorem 5. (Berger-Tung with Gaussian distortion for distributed receive, (Chap-

man et al., 2018, Theorem 2)) Fix non-negative numbers σ2
1, . . . , σ

2
K so that the follow-

ing conditions hold. Defining U∗k , Xk,raw +WQ,k and WQ,k ∼ N (0, σ2
k) independent,

then all S ⊂ [K] have:∑
k∈S

Rk ≥ I((Xk,raw)k∈S; (U∗k )k∈[K]|(U∗k )k∈SC ).

Now any source-to-base rate

RBT < I(Xsrc; ~U
∗
[K])

or distortion

DBT > var
(
Xsrc

∣∣∣~U∗[K]

)
(3.2)

is achievable.

Proof for the achieved distortion is provided in Appendix B.1.

3.4 Improvements to the Berger-Tung Strategy

Theorem 3 from Chapman et al. (2018) gives an inner bound on the achievable rate

for this problem through a realization of a modification the Berger-Tung distributed
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source coding strategy in El Gamal and Kim (2011) Theorem 12.1, restricted to

Gaussian distortions.

In this strategy, each relay produces a quantization of its observation with Gaus-

sian distortion, then the relays jointly compress their quantizations with the Slepian-

Wolf theorem so that there is only one source message jointly typical with the ensem-

ble of compressions. The generalization over plain Berger-Tung compression comes

from an improvement that binning rates in joint compression only need be chosen to

retain information pertaining to the source, not all the quantizations.

Theorem 6. (Improved Berger-Tung with Gaussian distortion for distributed re-

ceive) Fix non-negative numbers σ2
1, . . . , σ

2
K , λ so that the following conditions hold.

Defining U∗k , Xk,raw +WQ,k, WQ,k ∼ N (0, σ2
k), then ∀S ⊂ [K]:∑

k∈S

Rk ≥ I((Xk,raw)k∈S; (U∗k )k∈[K]|(U∗k )k∈SC )− λ.

Now any source-to-base rate

RB̄T < I(Xsrc; ~U
∗
[K])− λ (3.3)

is achievable.

Proof for the achieved communications rate is provided in Appendix B.1.

A more general version of this bound (in particular, without the restriction to

Gaussian distortion) is the main subject of Sanderovich et al. (2008). This more

general bound does not have closed form, even for the Gaussian case. This is the

strongest bound known for the present problem. The extent to which the improvement

fully overcomes the inefficiencies in application of the plain Berger-Tung strategy from

Theorem 5 is not known. Inefficiencies are both those discussed in Section 2.3.1 and

the ones previously mentioned in Section 1.2 due to relays not decoding when Xn
src

has codebook structure.
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Chapter 4

STRUCTURED SCHEME

4.1 Introduction

In this chapter a scheme for recovery of a signal by distributed listeners in the

presence of Gaussian interference is constructed by exhausting an ‘iterative power

reduction’ property of lattice codes. When the amount of information shared among

observers is limited (as it well may be if they must conserve power or bandwidth, see

Section 1.1.1), they must take care to only forward novel information to their neigh-

bors. Broadly, the codes described in this chapter provide a method of controlling

the specificity of information provided by each observer’s message to this end. The

strategy is called in this chapter ‘Successive Integer-Forcing Many-help-one’ (SIFM).

An upper bound for the coding scheme’s achieved mean-squared-error distortion

for the base’s estimate of Xsrc is derived. The strategy exposes a parameter search

Xsrc

+

+

...

W1

WK

+

+
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Wd,K

roundL1

roundLK

modLc
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...
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Figure 4.1: Block diagram of structured lattice coding strategy, expanded from the

general block diagram in Figure 1.2. See the beginning of Section 4.2 for details.
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problem which, when solved, results in a scheme which outperforms others of its

kind. Performance of a blocklength-one scheme is simulated and is seen to improve

over plain source coding without compression in the presence of many interferers,

and experiences less outages over ensembles of channels. The asymptotic version of

the strategy presented in this chapter still has a performance gap to random coding

bounds from Chapter 3 in some regimes. This gap is partially remedied in Chapter

5 whose topic is joint-compression of the encodings produced in this chapter.

This is a strategy for the Gaussian many-help-one source coding problem Tavildar

and Wagner (2009), allowing for the case where the ‘receiver being helped’ cannot

provide side information to the decoder. The asymptotic version of the scheme is a

direct application of general results and ideas from Nazer et al. (2016) to the many-

help-one problem, although derivation differs, yielding a different characterization of

its achieved rate region in terms of Algorithm 1. There is a lot of existing literature on

lattice signal processing for this scenario, and similar techniques have been applied

to closely related problems. The procedures which comprise SIFM have also been

described notionally in Ordentlich and Erez (2017) and are contained within more

involved MIMO communication scenarios in Zamir (2014)[Chapter 12].

SIFM is a strict generalization of a scheme by Krithvasan and Pradhan (KP) in

Krithivasan and Pradhan (2007). Although conceptually very similar, the general-

izations of SIFM over KP necessitate a near ground-up re-description of the strategy.

This parametrization of the KP scheme in terms of SIFM is shown in Appendix C.4.

Unfortunately, SIFM replaces KP’s formulaic choice of certain parameters with a

difficult continuous-domain nonlinear parameter search problem described in Section

4.4.2. This comes with the benefit of SIFM reliably outperforming KP in the regimes

tested in Section 4.4.
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It was recognized in References Wagner (2011), Yang and Xiong (2011), Yang

and Xiong (2014) and Cheng et al. (2018) that the lattice messages involved in such

schemes are still non-trivially jointly distributed and could be further compressed to

yield performance improvements. Most results on this correlation Wagner (2011),

Yang and Xiong (2011) focus on the case of two observers, and the compression

described in Cheng et al. (2018) is inexhaustive. SIFM suffers from the same problem,

and the amount of redundancy still present in observer messages has not yet been

totally characterized. Analysis of the network scheme in the method presented here

enables further study of these encoding redundancies. An initial investigation of such

properties is presented in Chapter 5.

4.1.1 Outline

A coding scheme for recovery of a Gaussian source using side information from

many receivers in the presence of interference is presented in Section 4.2. This scheme

outperforms others of its kind by exhausting a power-reduction property. The asymp-

totic version of the scheme is presented in Section 4.3, yielding Theorem 7. An algo-

rithm for calculating the asymptotic scheme’s performance in Theorem 7 is presented

as Algorithm 1.

The coding scheme is described in terms of events of successful decoding (Defini-

tion 8) constructed in terms of arbitrary lattices. The definition allows for an upper

bound on achieved distortion depending on scheme parameters and the lattices used

(Lemma 2.) In limit with blocklength and certain choice of lattices, Lemma 2 yields

an asymptotic performance (Corollary 1.) This bound, along with several others is

plotted over various regimes in Section 4.4.
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4.2 Successive Integer Forcing Many-Help-One Scheme

A block diagram of the scheme is shown in Figure 4.1. Broadly, the strategy

operates as follows.

Design: First a blocklength n is chosen and a ‘coarse lattice’ Lc ⊂ Rn is chosen

according to some design to be specified. One assumes the LAN is established and

allows for reliable communication from receivers to the base node, each k-th receiver

at some rate Rk. Given these rates, a ‘fine lattice’ Lk ⊃ Lc is chosen for each k-th

receiver according to some design to be specified. At each k-th receiver a quantization

dither1 Wd,k is selected randomly uniformly over the base region of the receiver’s fine

lattice, Lk.

One assumes that the covariance between the transmitter’s signal and all the

receivers’ observations is known at all the receivers and stable over n observations.

As a function of rates R1, . . . , RK > 0 and the channel covariance matrix, some scale

parameters α1, . . . , αK > 0 are designed.

Operation:

1. Receiver k, labeled Qk in Figure 4.1, normalizes all its observed sequence of n

samples by αk/
√

varXk,raw so that expected-power-per-sample is 1.

2. Receiver k quantizes the result from the previous step by adding dither Wd,k,

then rounding the result onto a nearby point on its fine lattice Lk.

1The quantization step involves dither. The dither causes quantization noise to manifest as

additive, independent of the input signal, and uniform over the base of Lk. These properties are

demonstrated via the crypto lemma (Zamir, 2014, Theorem 4.1.1). Use of dither is described in

detail in the Appendix proofs and must be included here for a complete description of the scheme’s

operation but is inessential to an initial broad understanding of the scheme.
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3. Receiver k takes the modulo of the rounded result onto to Lc, producing a point

in Lc’s ‘modulo-space.’ Lk must be designed with respect to Lc such that the

result of this step has entropy-rate less than Rk. Receiver k forwards this result

to the base. See Figure 2.2 for an example design of Lc and Lk for blocklength

n = 2 and receiver rate Rk = 2 bits per sample.

4. The base receives all the receiver messages, each message being some point in

Lc-modulo-space, and removes the dither by subtracting the chosen dithers from

each message, and taking the Lc-modulo of the result.

5. The base recombines them in a way that the result is no longer in modulo-space,

but some linear combination of the quantizations.

6. The base recombines this recovered component from all the original modulo-

space messages to produce new modulo-space points with the just-recovered

component removed. The removal process is illustrated in Figure 4.2.

7. This removal allows for new recombinations to allow recovery of different com-

ponents. This process is repeated until no more components can be recovered.

All repetitions of steps 5-7 are included in ‘Dec’ block in Figure 4.1.

8. All recovered components are used to estimate the source.

This is described in full precision below. To simplify exposition, this chapter instead

works over variables

Xk :=
1√

varX1,raw

Xk,raw, k = 1, . . . , K

so that normalization is not necessary.

An example of how Property 4 can be used is shown in Figure 4.2. The efficacy

of the lattice strategy presented in this chapter is in exhaustive use of this technique.
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Figure 4.2: A graphical instance of removal of a vector component a from modulo

mod(a + b). Drawn in the same context as Figure 2.1. The full signal, a + b sans

any modulo operations, is plotted on the left. Say that available for processing are

the vectors mod(a) and mod(a+ b), illustrated in the middle. A particular process-

ing of mod(a) and mod(a + b) produces mod(b), shown on the right. Non-modulo

components are drawn lightly under each modulo.

4.2.1 Lattice Scheme Description

Fix the following parameters:

• Blocklength n

• Receiver scales ~α = (α1, . . . , αK) ∈ RK ,

• ‘Fine’ lattices Lk ⊂ Rn each with a base region Bk ⊂ Rn, k ∈ [K]

• A ‘coarse’ lattice Lc ⊂ Rn with a base region Bc, where Lk ⊃ Lc and 1
n

log |Bc∩

Lk| ≤ Rk for each k ∈ [K].

• Functions φk : (Bc ∩ Lk)→ [2nRk ] which enumerate their domain’s points
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• Dither variables ~Wd = (Wd,1, . . . ,Wd,K), with Wd,k ∼ unif Bk independent over

index k.

For brevity we neglect to denote application of the enumeration φk and its inverse

when it is clear from context where it should be applied.

Encoders

Each encoder first scales its observation then quantizes the result by rounding with

dither onto its fine lattice Lk. This discretizes the source’s observation onto a count-

able collection of points, but it may still be too high-rate to forward to the base

directly. The encoder wraps the discretization onto the coarse lattice’s base region

Bc by applying modBc . The domain reduction from all of Lk to only points within

Bc ∩ Lk reduces the discretization’s entropy enough to forward it to the decoder.

Construct the encoder for receiver k as enck : Rn → [2nRk ]:

enck(x
n
k) := φk(modLc (roundLk

(αkx
n
k +Wd,k)))

Decoders

The decoder produces estimates of particular integer linear combinations a1, . . . , aK

of the source observations by processing the encodings in stages. In stage k, the

decoder recovers combination ak, and in all future stages the ak component is used

to aid recovery. This is be described in more detail later. To construct each stage

it is necessary to describe the covariance between receiver quantizations. By (Zamir,

2014, Theorem 4.1.1),

roundLk
(αkX

n
k +Wd,k)−Wd,k = αkX

n
k − W̃d,k (4.1)

and W̃d,k ∼ unif Bk is independent of Xn
k . Denote W̃d = (W̃d,1, . . . , W̃d,K). Also

denote the scaled receiver observations as
−→
αX = (α1X1, . . . , αKXK), and similarly for
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time-expanded ~Xn. Then on average over time, the receivers’ dithered rounding to

their fine lattices effectively adds noise of the following covariance to the observations:

ΣQ := diag

((
E
[

1

n
‖W̃d,k‖2

])
k∈[K]

)
.

A covariance matrix C between the sources after dithered rounding to the fine lattices

can be written as the time-averaged covariance of vectors in (4.1):

C := E
[

1

n
(
−→
αXn − W̃d)

†(
−→
αXn − W̃d)

]
.

= (diag ~α)Σ(diag ~α)† + ΣQ.

Now some events over outcomes of (
−→
αXn − W̃d) are constructed.

Definition 8. For some K ′ ∈ [K], fix an integer matrix A ∈ ZK×K′ , call its columns

a1, . . . , aK′ ∈ ZK , and take Ak to be the first k columns of A.

In terms of A define2 matrices for each k = 1, . . . , K ′ :

Sk(v) := arg min
u∈Rk

var
(

(v −Aku)†(
−→
αXn − W̃d)

)
Rk(v) := [IK×K −AkSk]v.

Also in terms of A define events M(A1), . . . ,M(AK′) ⊂ (Rn)K :

M(A1) := {z ∈ RK×n : a†1z ∈ Bc},

M(Ak) :=M(Ak−1) ∩
{
z ∈ RK×n : (Rk−1ak)

†z ∈ Bc

}
.

The events designate when a particular processing of the encodings successfully

produces an estimate of the observations without modulo:

Lemma 1. Fix A ∈ ZK×K′ as in Definition 8. Take Uk = enck(X
n
k ) for k ∈ [K].

There is a function f where f(~U) = A†(
−→
αXn− W̃d) whenever (

−→
αXn− W̃d) ∈M(A).

2The arg min is derived in closed form in Appendix C.3
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The functions f1, . . . , fK′ for each output of f , f[k] denoting the first k outputs,

are given as follows, all mod taken with respect to coarse base region Bc.

f1

(
~U
)

:= mod
(
a†1(~U − ~Wd)

)
,

fm

(
~U
)

:= mod
{

a†m(~U − ~Wd)− . . .

mod
(

[Sm−1am]†f[m−1](~U)
)}

+ . . .

[Sm−1am]†f[m−1](~U).

Proof is delayed to Appendix C.1.

This aspect of general reuse of all previously recovered components for the recovery

of a new one is the source of benefit of the present scheme over Krithivasan and

Pradhan (2007). Comments in Zamir (2014) among other documents describe such a

compression strategy.

A decoder can be realized from each event from Definition 8 by using a linear esti-

mator on the output of f gotten from that event in Lemma 1. The likelihood of each

event is quite sensitive to channel covariance Σ receiver scalings ~α and integer vector

a` and as layers of component recovery are added the events become increasingly

unlikely. Thus only a few decoders perform reliably.

Decoder Performance

We now bound the worst-case performance of such decoders.

Definition 9. In the context of Lemma 1, take eX|A to be the coefficients of the best

linear unbiased estimator for X given A†(
−→
αX − ~WQ), ~WQ ∼ N (0,ΣQ). Then for

∆ > var
(
X|A†(

−→
αX − ~WQ)

)
define a decoder:

dec
(
~U ; A

)
:= e†X|Af(~U), (4.2)

or 0 if the observed average power of (4.2) is greater than ∆.
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The mean-squared-error distortion each such decoder achieves can be upper bounded

in terms of the probability of the event M(A):

Lemma 2. Take a decoder from Definition 9 and define

d2 := 1− var(X|e†Xsrc|A(
−→
αX + ~WQ)).

Take E to be the event where the decoding is zero. Then no worse than the following

mean-squared-error is achieved in estimating Xn
src:

d2 + (∆ + 1)2 ·
√

3P(MC) +
√

3P(E)

Proof. The goal is to approximate the integral:∫
1

n
‖ dec(~U ; A)−Xn

src‖2dP =

∫
M

1

n
‖ dec(~U ; A)−Xn

src‖2dP + . . . (4.3)∫
MC

1

n
‖ dec(~U ; A)−Xn

src‖2dP.

Bound the first summand of (4.3):∫
M

1

n
‖ dec(~U ; A)−Xn

src‖2dP =
1

n

∫
M

1EC‖E[Xn
src|A(

−→
αX − ~WQ)]−Xn

src‖2 + 1E‖Xn
src‖2dP

<
1

n

∫
‖E[Xn

src|A(
−→
αX − ~WQ)]−Xn

src‖2dP +
1

n

∫
E
‖Xn

src‖2dP

= d2 +
1

n

∫
E
‖Xn

src‖2dP.

where the first equality follows by Lemma 1 and choice of decoder. Bound the second

summand of (4.3):∫
MC

1

n
‖ dec(~U ; A)−Xn

src‖2dP ≤ 1

n

∫
MC

‖(1 + ∆)Xn
src‖2dP

= (1 + ∆)2 1

n

∫
MC

‖Xn
src‖2dP.
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Applying Hölder’s inequality as follows to the two bounds yields the result:∫
S

‖Xn
src‖dP ≤

[∫
12
SdP

]1/2

·
[∫
‖Xsrc‖4dP

]1/2

=
√

3P(S).

The bound on distortion suffices for the asymptotic analysis in Section 4.3, but is

quite coarse in low dimension.

4.3 Asymptotic Scheme

Analysis of the scheme in limit with blocklength over particular choice of Lc, (Lk)k∈[K]

yields a nice characterization of its performance. Theorem 7 demonstrates that in

limit with blocklength and certain lattice design, there is essentially one decoder

which performs at least as well as any others. The subspace of receiver observations

it reliably recovers is characterized. First, a matrix definition is needed.

Definition 10. For ε > 0 define covariance matrices ΣQ∞,C∞ ∈ RK×K

ΣQ∞ := diag
(
2−2R1+ε, . . . , 2−2RK+ε

)
. (4.4)

C∞ := (diag ~α)†Σ(diag ~α) + ΣQ∞.

C∞ represents the covariance between quantized observations achieved in limit

with blocklength when the lattices (Lk)k∈[K] are chosen well.

Theorem 7. Take ε > 0 small and C∞ from (4.4). Define S to be the small-

est subspace in RK with the property that all integer vectors v ∈ ZK have either

mins∈S(v − s)†C∞(v − s) ≥ 1 or v ∈ S. Fix P∞ as the projection onto S. Then for

large enough blocklength n and certain encoders, some processing f of the encodings

has with high probability

f(~U) = P∞(
−→
αXn + ~W ′

Q),

where ~W ′
Q = (W ′

Q,1, . . .W
′
Q,K) has independent components and E( 1

n
‖W ′

Q,k‖2) < 2−2Rk+2ε.
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Corollary 1. A decoder provided side information as in Theorem 7 can achieve the

following MSE distortion in estimating Xsrc:

d2
L := 1− ~α† pinv(P∞C∞P∞)~α.

Proof. Apply a linear estimation for the source on f ’s output.

Proof is given in Appendix C.2. The theorem is demonstrated by observing that

if lattices are chosen well, then events from Definition 8 approach probability zero

or one, and that P∞’s image coincides with the span of the high-probability-events’

vectors. Computation of the projection P∞ can be done via repeated reduction of

the covariance C
1/2
∞ :

Algorithm 1 Compute projection P∞ and processing stages A from C∞.

A← [ ], a← SLVC(C
1/2
∞ ), R← IK×K ,

while 0 < (Ra)†C∞Ra < 1 do

A← [A, a]

R← IK×K −A pinv(A†C∞A)A†C∞

a← SLVC(C
1/2
∞ R)

end while

P∞ ← A(A†A)−1A†

return P∞, A

In Algorithm 1, the subroutine SLVC(B), ‘Shortest Lattice Vector Coordinates’

returns the nonzero integer vector a which minimizes the norm of Ba while Ba 6=

0. SLVC(·) can be implemented using a lattice enumeration algorithm like one in

Schnorr and Euchner (1994) together with the LLL algorithm to convert a set of

spanning lattice vectors into a basis Buchmann and Pohst (1987). Algorithm 1 indeed

returns P∞ since it is lifted from P∞’s construction in the proof of Theorem 7 given

in Appendix C.2.
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4.3.1 Complexity of Scheme

The complexity of the scheme in operation is identical to that of codes with

similar structure. Examples include IFSC and KP as discussed in the introduction.

In particular if g(n) grows like the amount of operations used to evaluate roundL (L

the involved lattice for which roundL is hardest to compute), then it follows from

the scheme description that the time complexity of each encoder is O(n+ g(n)) and

the time complexity of the base’s decoder is O(nK + K2 · g(n))). Practicality of

such a scheme is then primarily dependent on the existence of lattices which both

satisfy the ‘goodness’ properties described here and have rounding, modulo operations

of tractable complexity. Several propositions for such lattice structures exist, for

instance LDPC lattices (O(n)) da Silva and Silva (2018) and polar lattices (O(n log n))

Liu et al. (2018).

Configuration of the scheme is also a difficult computational problem. Determi-

nation of the optimal configuration is a non-smooth continuous-domain search for the

objective given in Corollary 1 over choice of encoder scalings ~α ∈ R+. Each objective

evaluation involves computing Algorithm 1. Due to this algorithm involving several

shortest-lattice-vector-problems in dimension up to K, one implementation of this

algorithm has time complexity O(K2K). This complexity reduces considerably if the

strict shortest-lattice-vector problem is relaxed to allow approximate solutions such

as those provided by the LLL algorithm. No method for global optimization of the

objective is known. Computationally tractable approximations can provide strong

performance as seen in Section 4.4.
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4.4 Performance

Here the performance of the scheme is compared to existing results. All numerical

results deal with complex circularly-symmetric Gaussian channels. Although the

SIFM derivations shown are in terms of real channels for easier exposition, they

apply just as well to the complex case by considering each complex observation as

two appropriately correlated real observations. The explicit extension to the complex

case is presented in Appendix F. Each data point was computed on average over 200

randomly generated channel covariances selected with the prescribed statistics. An

outer bound representing the performance if the base had access to the receivers’

observations in full precision is also shown.

4.4.1 Quantize and Forward

One strategy much simpler than SIFM is for each observer forward its own quan-

tized representation of its observations to the base. A ‘saturating uniform quantizer’

was simulated, where each real observation was clipped to some interval, then rounded

onto a quantization step using the prescribed data rate. This curve is labeled ‘1D

Quantize & Forward.’

Performance when observers used rate-distortion quantizers for Gaussian sources

was also computed and is labeled ‘HD Quantize & Forward.’ Performance for the

rate-distortion quantizer strategy when observer bitrates were allowed to vary within

a sum-rate was also plotted as ‘HD Quantize & Forward (Variable-Bitrate).’

These techniques are strong when the LAN rate is severely limited or the inter-

ference is low, as seen in 4.3 and 4.5. The function of joint compression in these

regimes is more subtle since there are less superfluous correlated components among

receiver observations to eliminate. Quantize & Forward schemes are weak relative to
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the others in the presence of many strong interferers, as seen in Figures 4.6, 4.3, 4.4,

and 4.5.

4.4.2 Asymptotic Scheme

The distortion SIFM achieves is dependent on choice of observer scales ~α and is

non-convex in terms of them due to the discontinuity of Algorithm 1’s outputs. For

this reason some form of search for good scale parameters is required for each fixed

channel covariance and observer rate vector ~r. For performance evaluation, the search

problem was solved approximately.

Recall that the asymptotic scheme described here includes one by Krithivasan

and Pradhan (KP, see Introduction) as a special case. Details of the parametrization

of the KP scheme in terms of SIFM are shown in Appendix C.4. It was observed

empirically that scaling all receiver’s observation by the same constant can yield

strong performance. The strongest between uniform and KP scaling was chosen as

an initial guess and was improved by taking random steps.

4.4.3 One-Shot Scheme

If the involved lattices are all one-dimensional (i.e. nested intervals) then the

likelihood of each event in Definition 8 is straightforward to approximate via Monte-

Carlo simulation. This enables a slight modification of Algorithm 1 to be used for

identifying a strong decoding strategy for given receiver scalings. Although the upper

bound in Lemma 2 applies to the one-shot strategy, it is often too weak in low

dimension to be informative of a scheme’s true distortion. Distortion was estimated

by simulation instead. In plots this scheme is labeled ‘1D SIFM.’

Unfortunately, the best identified configurations for the one-shot scheme did not

consistently provide significant improvement over uniform quantization as the high
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dimensional scheme had. This is thought to be because even in extreme observations,

the uniform quantizer saturates and still provides a reasonable representation of the

source. In contrast the same observation in SIFM creates a lattice wrapping distortion

which significantly affects the final decoding result. Reducing the likelihood of such

errors in low dimension requires conservative choice of scales which further degrades

performance. However, such problems diminish in limit with dimension.

Performance for the asymptotic SIFM strategy when observer bitrates were al-

lowed to vary within a sum-rate was also plotted as ‘HD SIFM (Variable-Bitrate).’

4.4.4 Versus Increasing Receiver Rates

Performance for the various schemes considered is shown in Figure 4.3 for 5 re-

ceivers, each messaging to the base at rate varying from 2 bits-per-complex-sample up

through 16 bits-per-complex-sample, in the presence of 3 interferers each appearing

at each observer at an average of 20 dB above an 0 dB signal of interest.

Coincidentally the performance of the KP scheme with equal bitrates was observed

in all plots to closely match the performance of the variable-bit-rate Quantize &

Forward scheme.

As seen in Figure 4.4 there is still a significant gap at low bitrates between the

performance of SIFM and the bound given in Chapman et al. (2018). This bound is

based on non-structured joint-compression of quantizations (like Berger-Tung source

coding El Gamal and Kim (2011) but binned for recovery of a source rather than all

the observers’ quantizations). The gap in performance could be due to a combination

of factors. First, the scheme from Chapman et al. (2018) is designed so that receiver

messages are independent of one another, while in SIFM some inter-message depen-

dences are still present after lattice processing. This means SIFM messages could
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Figure 4.3: MSE performance versus receiver bitrate for five receivers the presence of

three 20 dB interferers, all observing a 0 dB source. SIFM consistently significantly

outperforms the rest of the schemes, and does not appear to benefit much from

redistribution of observer bit-rates.

be jointly compressed to improve performance. Another contributing factor could be

poor solution of the search problems mentioned in Section 4.4.2.

4.4.5 Versus Adding Interferers

Performance for the various schemes is is shown in Figure 4.5 for a system of 5

receivers, each messaging to the base at a rate of 6 bits-per-complex-sample, in the

presence of 0 through 5 independent interferers each appearing at each observer an

average of 20 dB above a 0 dB signal of interest.
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Figure 4.4: Achievable end-to-end communication rate between source and base for

various sources, including an achievable rate using Berger-Tung-like lossy distributed

source coding. Four receivers each observing a source at 0 dB in the presence of one

20 dB interferer. Notice that at low bitrates there is a large gap between this bound

and the achieved SIFM rate. This could either be due to the fact that SIFM messages

are not independent of each other and could be further jointly compressed, or because

the SIFM messages are sub-optimally configured.

4.4.6 One-Shot Outage Probability

One may be interested in likelihood of being able to recover a signal to above some

acceptable noise threshold over an ensemble of channels. Although in low-interference

regimes the one-shot SIFM scheme is reliably outperformed by the much simpler one-

shot Quantize & Forward scheme (Figure 4.5), one-shot SIFM is much less likely to

perform exceptionally poorly when averaged over the current channel model. See

Figure 4.6.
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Figure 4.5: MSE performance versus amount of 20 dB interferers, when each of 5

observer encodes at a rate of 6 bits per observation (or 30 bits total shared among

observers for Variable-Rate strategies). SIFM consistently outperforms the rest of the

strategies and was not observed to improve much by reconfiguring observer bitrates.

One-shot SIFM did not consistently outperform much simpler one-shot quantizers.
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Figure 4.6: Likelihood of scheme providing recovery of Xsrc better than −3 dB SNR

versus amount of 20 dB interferers, when each of 5 observer encodes at a rate of 6

bits per observation. For this threshold and ensemble of channels, one-shot SIFM

performs roughly as reliably as one-shot Quantize & Forward with one less 20 dB

interferer present.

4.5 Conclusion

Successive Integer-Forcing Many-Help-One (SIFM) is a lattice-algebra-based strat-

egy for distributed coding of a Gaussian source in correlated noise. For good choice

of parameters, SIFM consistently outperforms many of the strategies it generalizes.

Finding good parameters for SIFM is a difficult non-convex search problem but rea-

sonably strong solutions can be found through well-initialized random search.

A one-shot implementation of the scheme usually outperforms plain uncompressed

quantization when multiple interferers are present, but often performs worse when

there are few. This is probably due to SIFM’s heavy dependence on the absence of

tail events that are somewhat common in low blocklength versions of the scheme.

In spite of this, the one-shot scheme is more typically above low-SNR thresholds in
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certain ensembles of channels. It is expected that performance would improve greatly

if higher dimensional nested lattices were used.

There is still some gap between the best achievable rate and SIFM as seen in

Figure 4.4. This is at least partially due to redundancies in SIFM messages. As

noted by Wagner (2011) and Yang and Xiong (2011), some redundancies still exist

between SIFM messages. This indicates that further compression of the messages is

possible. This is investigated in Chapter 5.
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Chapter 5

STRUCTURED SCHEME WITH JOINT COMPRESSION

Figure 5.1: Collapse of the support of a random signal’s modulo after conditioning

on the modulo of a related signal. Modulo is shown to some lattice L with base

region B. Consider a signal comprised of two independent random components, ~a

and ~b, equaling β~a+~b. A possible outcome is drawn on the far left. Unconditioned,

the support for mod(β~a+~b) is the entire base region B, shown fully shaded in gray.

Once mod(~a) is observed, the component β~a is known up to an additive factor in βL.

If further the powers of ~a and ~b are bounded above, this leaves feasible points for

mod(β~a+~b) as a subset of those of the unconditioned variable. This subset is shaded

yellow on the far right.

As seen in Chapter 4, lattices provide useful structure for distributed coding of

correlated sources. The basic lattice encoder construction investigated in Chapter 4

is to first round an observed sequence to a ‘fine’ lattice with dither, then produce the

result’s modulo to a ‘coarse’ lattice as the encoding. Such encodings may be jointly-

dependent. In this chapter a class of upper and lower bounds is established on the
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conditional entropy-rates of such encodings when sources are correlated and Gaussian

and the lattices involved are a from an asymptotically-well-behaved sequence. The

upper bounds guarantee existence of a joint–compression stage which can increase

encoder efficiency. The bounds exploit the property that the amount of possible

values for one encoding collapses when conditioned on other sufficiently informative

encodings. The bounds are applied to the scenario of communicating through a many-

help-one network in the presence of strong correlated Gaussian interferers, and such

a joint–compression stage is seen to compensate for some of the inefficiency in certain

simple encoder designs.

5.1 Introduction

Lattice codes are a useful tool for information theoretic analysis of communica-

tions networks. Sequences of lattices can be designed to posess certain properties

which make them useful for noisy channel coding or source coding in limit with di-

mension. These properties have been termed ‘good for channel coding’ and ‘good

for source coding’ Zamir (2014). Sequences posessing both such properties exist, and

an arbitrary number of sequences can be nested Ordentlich and Erez (2016). One

application of ‘good’ sequences of nested lattices is in construction of distributed

source codes for Gaussian signals. Well designed codes for such a scenario built off

of such lattices enables encoders to produce a more efficient representation of their

observations than would be possible without joint code design Chapman et al. (2019).

Such codes can provide optimal or near-optimal solutions to coding problems Erez

and Zamir (2004); Ordentlich et al. (2013); Ordentlich and Erez (2014). Despite their

demonstrated ability to compress signals well in these cases, literature has identified

redundancies across lattice encodings in other contexts Wagner (2011); Yang and

Xiong (2011, 2014); Cheng et al. (2018). In these cases, further compression of en-
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codings is possible. This chapter studies the correlation between lattice encodings of

a certain design.

A class of upper bounds on the conditional Shannon entropies between lattice

encodings of correlated Gaussian sources is produced by exploiting linear relations

between lattice encodings and their underlying signals’ covariances. The key idea be-

hind the analysis is that when the lattice-modulo of one random signal is conditioned

on the lattice-modulo of a related signal, the region of feasible points for the first

modulo collapses. A sketch of this support reduction is shown in Figure 5.1. This

process is repeated until all information from the conditionals is integrated into the

estimate of the support set. The upper bound establishes stronger performance limits

for such coding structures since it demonstrates that encoders are able to convey the

same encodings at lower messaging rates.

5.1.1 Background

The redundancy of lattice-modulo-encoded messages has been noticed before, usu-

ally in the context of the following many-help-one problem: many ‘helpers’ observe

correlated Gaussian signals and forward messages to a decoder which is interested in

recovering a linear combination of said signals. Towards this end, Wagner in Wagner

(2011) provides an upper and lower bound on conditional entropies such as those here

for a case with two lattice encodings. Yang in Yang and Xiong (2011) realized a sim-

ilar compression scheme for such encodings using further lattice processing on them

and presents an insightful ‘coset planes’ abstraction. It was further noticed by Yang

in Yang and Xiong (2014) that improvement towards the many-help-one problem is

obtained by splitting helper messages into two parts: one part a coarse quantization

of the signal, compressed across helpers via Slepian–Wolf joint–compression (these

message parts corresponding to the ‘high bit planes’), and another a lattice-modulo-
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encoding representing signal details (corresponding to ‘low bit planes’). This chapter

extends these ideas to a general quantity of helpers, and treats a case where a single

component of the observations is known to have lattice structure.

Most recently, a joint–compression scheme for lattice encodings called ‘Generalized

Compute Compress and Forward’ was introduced in Cheng et al. (2018), towards

coding for a multi-user additive white Gaussian noise channel where a decoder seeks

to recover all user’s messages and is informed by helpers. The scheme in Cheng

et al. (2018) makes use of concepts from Yang and Xiong (2014). In the scheme each

lattice message is split into a combination of multiple components, each component

from a different coset plane. Design of which coset planes are used yields different

performance results. Section 5.3 follows along the same lines, although for a network

with one user and where many interferers without codebook structure are also present.

Throughout the chapter, terminology and basic lattice theory results are taken

from Zamir (2014). The lattice encoders studied are built from an ensemble of

nested lattices, all both ‘good for quantization’ (Rogers-good) and ‘good for cod-

ing’ (Poltyrev-good). Such a construction is provided in Ordentlich and Erez (2016).

An algorithm from Chapman et al. (2019) is also used which takes as an argument

the structure of some lattice modulo encodings and returns linear combinations of

the underlying signals recoverable by a certain type of processing on such encodings.

This algorithm is listed here as Stages∗(·) and is shown in Appendix D.1.

5.1.2 Outline

The main theorem providing upper bounds on conditional entropies of lattice

messages, along with an overview of its proof is stated in Section 5.2. An adaptation

of the result to a lower bound is provided in Section 5.2.1. The theorem is slightly

strengthened for an application to the problem of communicating over a many-help-
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one network in Section 5.3. A numerical analysis of the bounds is given in Section

5.3.2. A conclusion and discussion on the bound’s remaining inefficiencies is given in

Section 5.4. A table of notation is provided in Table 2.1. A key for the interpretation

of significant named variables is given in Table A.1.

5.2 Main Results

The main results are as follows:

Theorem 8. For covariance Σ ∈ RK×K, take ~Xn = (Xn
1 , . . . , X

n
K) to be n indepen-

dent draws from the joint-distribution N (0,Σ). Take rates r1, . . . , rK > 0 and any

ε > 0. If n is large enough, an ensemble of nested lattices Lc ⊂ L1, . . . , LK (with

base regions Bc ⊃ B1, . . . , BK) from (Ordentlich and Erez, 2016, Theorem 1) can

be designed so that the following holds. First fix independent dithers Wk ∼ unif Bk.

These dithers have varWk = 2−2rk . Also fix Yk := roundBk
(Xn

k +Wk)−Wk and lattice

modulo encodings Uk := modBc(roundBk
(Xn

k +Wk)).

Now for any ν0 ∈ ZK−1, number n0 ∈ N, basis {ν1, . . . ,νK} ⊂ ZK , fix variables:

Y0 := YK + 1
n0
ν†0~Y[K−1],

~Yc := (Y0 − YK , Y1, . . . , YK−1),

δ2
0 := n2

0,

σ2
k := var

(
Y0

∣∣∣∣Stages∗(var
(
~Yc

∣∣∣(ν†j ~Yc)0<j≤k

))†
~Yc

)
, k ∈ {0} ∪ [K],

δ2
k := var

(
ν†k
~Yc

∣∣∣∣Stages∗(var
(
~Yc

∣∣∣(ν†j ~Yc)0<j<k

))†
~Yc

)
, k ∈ [K].

Then the conditional entropy-rate is bounded:

1

n
H
(
~UK

∣∣∣~U[K−1], ~W
)
≤ min

k∈{0}∪[K]

[
rK +

1

2
log σ2

k +
k∑
j=0

max{1

2
log δ2

j , 0}

]
+K2 · ε.

Bounds of this form hold simultaneously for any subset and reordering of message

indices 1, . . . , K.
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Proof for Theorem 8 is given in Appendix D.2. The proof is built from (Chapman

et al., 2019, Theorem 1), its associated algorithm Stages∗(·) (listed here in Appendix

D.1) and two lemmas which provide useful decompositions of the involved quantities.

Lemma 3. Take variables as in the statement of Theorem 8. Then, the ensemble

of lattices described can include an ‘auxiliary lattice’ L̂′ ⊂ LK with base region B̂′,

nesting ratio 1
n

log |B̂′ ∩ LK | → 1
2

log σ2 + ε so that

UK = modBc

(
C +

1

n0

Ỹ + Ỹ⊥

)
,

where C,D are functions of (~U[K], ~W ), and with high probability

Ỹ = −ν†0~Y[K−1] ∈ (D + Lc),

Ỹ⊥ = E⊥
(
Y0

∣∣∣ ~A) ∈ B̂,
~A = Stages∗

(
var ~Yc

)†
~Yc.

In addition, σ2 = max{2−2rK , var Ỹ⊥}.

Lemma 4. Take variables as in the statement of Theorem 8. Then, the ensemble of

lattices described can include ‘auxiliary lattices’ L̂ ⊂ Lc, L̂
′ ⊂ LK with base regions

B̂, B̂′, nesting ratios 1
n

log |B̂ ∩ Lc| → 1
2

log δ2 + ε, 1
n

log |B̂′ ∩ LK | → 1
2

log σ2 + ε so

that, for any linear combination Y of ~Y[K], vector ~α ∈ ZK, matrix A ∈ R∗×K and

~A = A~Yc, then

Y = C + βỸ + Ỹ⊥,

where C,D are functions of ( ~A,modn0Bc(Y0), ~U[K], ~W ), β is some scalar estimation

coefficient, and with high probability

Ỹ = E⊥
(
~α†Yc

∣∣∣ ~A) ∈ (D + Lc) ∩ B̂,
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Ỹ⊥ = E⊥
(
Y
∣∣∣ ~A, Ỹ ) ∈ B̂′.

In addition, δ2 = var Ỹ , σ2 = max{2−2rK , var Ỹ⊥}.

Proofs for Lemmas 3, 4 are given in Appendix D.2. These lemmas do not

strictly require that the sources be multivariate normal. This technical generalization

is relevant in the application to the communication strategy in Section 5.3. Broadly,

the proof of Theorem 8 goes as follows.

1. Choose some ν0 ∈ ZK−1, n0 ∈ N. Apply Lemma 3 to UK . Call Ỹ⊥ a ‘residual.’

2. Choose some ν ∈ ZK . Apply Lemma 4 to the residual to break the residual Ỹ⊥

up into the sum of a lattice part due to ν†~Y[K−1] and a new residual, whatever

is left over.

3. Repeat the previous step until the residual vanishes (up to K−1 times). Notice

that this process has given several different ways of writing UK ; by stopping at

any amount of steps, UK is the modulo sum of several lattice components and

a residual.

4. Design the lattice ensemble for the encoders such that the log-volume con-

tributed to the support of UK by each component can be estimated. The dis-

crete parts will each contribute log-volume 1
2

log δ2 and residuals will contribute

log-volume rK + 1
2

log σ2.

5. Recognize the entropy of UK is no greater than the log-volume of its support.

Choose the lowest support log-volume estimate of those just found.

Notice that each lemma application involves choice of some integer parameters.

Choices which yield the strongest bound are unknown. Possible schemes for these

54



decisions are the subroutines Alpha0(·) , Alpha(·), listed in Appendix D.1. As im-

plemented, Alpha0(·) chooses n0 = 1 and the integer linear combination ν0 which

leaves the least residual. As implemented, Alpha(·) chooses the integer linear combi-

nation ν for which ν†~Y[K−1] is closest to being recoverable from current knowledge at

each lemma application. It produces the combination for which the entropy 1
2

log δ2 of

the unknown part of ν†~Y[K−1] is minimized. This may be a suboptimal choice since,

while such combinations are close to recoverable, they may not be very pertinent to

a description of UK . Nonetheless, it is still a good enough rule to produce nontrivial

entropy bounds, as seen in Section 5.3.2.

5.2.1 Lower Bound

Entropies for the involved variables can be rearranged to adapt the upper bound

in Theorem 8 into a lower bound. Compute:

H
(
UK

∣∣∣~U[K−1, ~W
)

= H
(
UK

∣∣∣~Y[K−1], ~W
)

+ I
(
UK ; ~Y[K−1]

∣∣∣~U[K−1], ~W
)

= H
(
UK

∣∣∣~Y[K−1], ~W
)

+H
(
~Y[K−1]

∣∣∣~U[K−1], ~W
)
− . . .

H
(
~Y[K−1]

∣∣∣~U[K], ~W
)

= H
(
UK

∣∣∣~Y[K−1], ~W
)

+H
(
~Y[K−1]

∣∣∣ ~W)− . . .
H
(
~U[K−1]

∣∣∣ ~W)−H(~Y[K−1]

∣∣∣~U[K], ~W
)
.

= H
(
Ys

∣∣∣~Y[K−1], ~W
)

+H
(
~Y[K−1]

∣∣∣ ~W)− . . .
H
(
Ys

∣∣∣UK , ~Y[K−1], ~W
)
− . . .

H
(
~U[K−1]

∣∣∣ ~W)−H(~Y[K−1]

∣∣∣~U[K], ~W
)

= H
(
~Y[K]

∣∣∣ ~W)−H(Ys∣∣∣UK , ~Y[K−1], ~W
)
− . . . (5.1)

H
(
~U[K−1]

∣∣∣ ~W)−H(~Y[K−1]

∣∣∣~U[K], ~W
)
.
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The entropy-rate of the summand in Equation (5.1) is given by Lemma 8. Each

subtracted summand requires an upper bound. These are provided by Theorem 8

and Theorem 11. Lemma 8 and Theorem 11 are provided in Appendix E.

5.3 Lattice-Based Strategy for Communication via Decentralized Processing

Consider a scenario where a decoder seeks to decode a message from a single-

antenna broadcaster in an additive white Gaussian noise (AWGN). The decoder does

not observe a signal directly but instead is provided information by a collection of

distributed observers (‘helpers’) which forward it digital information, each observer-

to-decoder link supporting a different communications rate. This network is depicted

in Figure 1.1. A block diagram is shown in Figure 1.2. This is the problem of a

single-antenna transmitter communicating to a decoder informed out-of-band by a

network of helpers in the presence of additive white Gaussian noise and interference.

Note that this problem is different from the problem of distributed source coding

of a linear function Tavildar and Wagner (2009); Wagner (2011); Yang and Xiong

(2014, 2011); Chapman et al. (2019). In contrast to the source coding problem,

the signal being preserved by the many-help-one network in the present case has

a codebook structure. This structure can be exploited to improve the source-to-

decoder communications rate. This problem has been studied Sanderovich et al.

(2008); Chapman et al. (2018), but the best achievable rate is still unknown. In this

section, we present a strategy that takes advantage of this codebook structure.

The core of the strategy is to apply a slight modification of Theorem 8 to the net-

work. The transmitter modulates its communications message using a nested lattice

codebook such as one in Erez and Zamir (2004). The helpers employ lattice encoders

such as those from Theorem 8, and then perform Slepian–Wolf distributed lossless

compression (El Gamal and Kim, 2011, Theorem 10.3) on their encodings to further
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reduce their rate. Because the codeword appears as a component of all the helper’s

observations, the bound on the message’s joint entropy obtained from Theorem 8 can

be strengthened, allowing one to use a more aggressive post-compression stage.

5.3.1 Description of the Communication Scheme

It is well known that a nested lattice codebook with dither achieves Shannon

information capacity in a point-to-point AWGN channel with a power-constrained

transmitter Erez and Zamir (2004). One interesting aspect of the point-to-point

communications scheme described in Erez and Zamir (2004) is that decoding of the

noisy signal is done in modulo space. We will see in this section how lattice encodings

like those in Theorem 8 can be used to provide such a decoder enough information

to recover a communications message.

Without loss of generality, assume that the transmitter is limited to have aver-

age transmission power 1. The scheme’s codebook is designed from nested lattices

Lf,msg ⊃ Lc,msg with base regions Bf,msg, Bc,msg. Lf,msg is chosen to be good for coding

and Lc,msg good for quantization. The messaging rate of this codebook is determined

by the nesting ratio of Lc,msg in Lf,msg:

Rmsg :=
1

n
log |Lf,msg ∩Bc,msg| .

Lattices can be designed with nesting ratios such that any rate above zero can be

formed. Taking a message M ∈ Lf,msg∩Bc,msg and choosing a dither Wmsg ∼ −Bc,msg

of which the decoder is informed, then the codeword associated with M is:

Xn
msg(M) :=

modLc,msg (M +Wmsg)√
varWmsg

∈
BLc,msg√
varWmsg

⊂ Rn.

We now describe observations of such a signal by helpers in the presence of AWGN

interferers. For covariance Σnoise ∈ RK×K , take

~Xn
noise = (Xn

noise,1, . . . , X
n
noise,K) ∈ (Rn)K
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to be n independent draws from the joint-distribution N (0,Σnoise). In addition, take

a random vector Xn
msg as described at the beginning of Section 5.3.1 and a vector

cmsg ∈ RK and define Σmsg := cmsgc
†
msg. Now, the k-th helper observes the vector:

Xn
k = [cmsg]kX

n
msg +Xn

noise,k ∈ Rn.

Form an observations vector:

~Xn := cmsg(Xn
msg) + ~Xn

noise ∈ (Rn)K ,

and finally form a cumulative time-averaged covariance matrix as

Σ := var ~Xn = cmsgc
†
msg + Σnoise ∈ RK×K .

If helpers are informed of message dither Wmsg, then they are informed of the

codebook for Xmsg and its lattice structure. Using lattice encoders such as those

described in Theorem 8, this codebook information can be used to strengthen the

upper bound on conditional entropies between the messages.

Unfortunately, the lower bound from Theorem 8 cannot be strengthened in the

same way. With the added dither term Wmsg, an argument that a particular inter-

action information equals zero (Equations (E.3)-(E.4)) no longer holds. It is unclear

whether or not this complication is fundamental to the lower bound argument used.

The usual lower bound from Theorem 8 still holds but is looser in this context.

Theorem 9. In the context of the channel description given in Section 5.3.1, entropy

bounds identical to those from Theorem 8 hold for its described observer encodings.

The bounds also hold re-defining:

Y0 := Xmsg,
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defining the rest of the variables in the theorem as stated. The bounds also hold instead

re-defining:

Yc := (Y0 − YK , Y1, . . . , YK−1, Xsrc),

vectors {ν1, . . . ,νK+1} ⊂ ZK+1 a basis where all vectors but one νs, s ∈ [K + 1] have

0 as their (K + 1)-th component and νs = [0, 0, . . . , 0, 1]†, taking

~a
(msg)
R ∈ imageStages∗

(
var
(

[~Yc][K]

∣∣∣(ν†j ~Yc)0<j<s

))
,

~a
(msg)
Z ∈ ZK ,

λ(msg) := cov(Xn
msg, (~a

(msg)
R + ~a

(msg)
Z )†[~Yc][K]),

Y
(msg)
⊥ := E

(
(~a

(msg)
R + ~a

(msg)
Z )†[~Yc][K]

∣∣∣Xn
msg

)
,

δ2
(msg) :=

(
λ(msg)

γn
− 1

)2

+ varY
(msg)
⊥ ,

δ2
s := max{1,

δ2
(msg)

2−2rmsg
+ ε},

and taking the rest of the variables in the theorem as stated over range k ∈ [K + 1].

A sketch for Theorem 9 is provided in Appendix D.3. The theorem’s statement

can be broadly understood in terms of the proof of Theorem 8. After a number of

steps s in the support analysis for Theorem 8, the codebook component Xn
msg can

be partially decoded yielding tighter estimation of that component’s contribution to

the support of UK . The variables λ(msg),~a
(msg)
R ,~a

(msg)
Z are parameters for this partial

decoding. Lattice modulo messages such as those described in Theorem 9 can be

recombined in a useful way:

Lemma 5. For ε > 0 and vectors aZ ∈ ZK, aR ∈ imageStages∗(Σ) ⊂ RK, then

lattice modulo encodings ~U[K] from Theorem 9 can be processed into:

Uproc := modLc,msg (λXmsg + Ynoise) , (5.2)
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where λ ∈ R is some constant:

λ := cov
(
Xn

msg, (aZ + aR)†~Y[K]

)
and the noise term Ynoise has the following properties:

• σ2
noise := varYnoise = var

(
(aZ + aR)†~Y[K]

∣∣∣Xn
msg

)
,

• Ynoise ⊥ (Xmsg,M,Wmsg),

• Ynoise is with high probability in the base cell of any lattice good for coding semi

norm-ergodic noise up to power σ2
noise + ε.

Lemma 5 is demonstrated in Appendix D.4. Notice that Equation (5.2) is pre-

cisely the form of signal processed by the communications decoder described in Erez

and Zamir (2004). The following result summarizes the performance of this commu-

nications strategy.

Corollary 2. Fix a codebook rate rmsg > 0. As long as helper-to-decoder messaging

rates R1, . . . , RK > 0 satisfy all the following criteria:

∀S ⊂ [K],
∑
k∈S

Rk > H̃(S|[K]\S) + ε, (5.3)

each H̃(S|[K]\S) being any entropy-rate bound obtained from Theorem 9, then the fol-

lowing communications rate from source to decoder is achievable, taking aZ, aR, λ, σ
2
noise

from their definitions in Lemma 5:

Rmsg < min

{
rmsg, sup

aZ, aR

max
γ2∈(0,1]

1

2
log

[
γ2

(λ− γ)2 + σ2
noise

]}
. (5.4)

Proof for Corollary 2 is given in Appendix D.5, and evaluation of the achieved

communications rates for certain lattice code designs is shown in Section 5.3.2.

60



5.3.2 Numerical Results

The achievable rate given in Corollary 2 depends on the design of the lattice

encoding scheme at the helpers. Identification of the best such lattice encoders for

such a system is closely tied to a receivers’ covariance structure Chapman et al. (2019).

For this reason and for the purpose of evaluating the effect of joint compression stage,

we restrict our attention to a particular channel structure and lattice encoder design.

The line-of-sight configuration shown in Figure 5.2 is considered. It yields helper

observations with the following covariance structure, in Figure 5.2 labeling interfering

sources WI1, WI2, and WI3 and helpers from top to bottom:

Xraw,1 =

√
PS

‖1 + (2
3)eiπ·1/2‖

Xmsg +W1 + . . .

√
PI

‖(2
3)(eiπ·1/2 − eiπ·2/3)‖

WI1 +

√
PI

‖(2
3)(eiπ·1/2 − eiπ·1)‖

WI2 +

√
PI

‖(2
3)(eiπ·1/2 − eiπ·4/3)‖

WI3,

Xraw,2 =

√
PS

‖1 + (2
3)eiπ·5/6‖

Xmsg +W2 + . . .

√
PI

‖(2
3)(eiπ·5/6 − eiπ·2/3)‖

WI1 +

√
PI

‖(2
3)(eiπ·5/6 − eiπ·1)‖

WI2 +

√
PI

‖(2
3)(eiπ·5/6 − eiπ·4/3)‖

WI3,

Xraw,3 =

√
PS

‖1 + (2
3)eiπ·7/6‖

Xmsg +W3 + . . .

√
PI

‖(2
3)(eiπ·7/6 − eiπ·2/3)‖

WI1 +

√
PI

‖(2
3)(eiπ·7/6 − eiπ·1)‖

WI2 +

√
PI

‖(2
3)(eiπ·7/6 − eiπ·4/3)‖

WI3,

Xraw,4 =

√
PS

‖1 + (2
3)eiπ·3/2‖

Xmsg +W4 + . . .

√
PI

‖(2
3)(eiπ·3/2 − eiπ·2/3)‖

WI1 +

√
PI

‖(2
3)(eiπ·3/2 − eiπ·1)‖

WI2 +

√
PI

‖(2
3)(eiπ·3/2 − eiπ·4/3)‖

WI3,

Wk ∼ N (0, 1) i.i.d.
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Figure 5.2: The line-of-sight channel considered. A black transmit node at (0, 0)

seeks to communicate with a black decoder node at (1, 0). Three red ‘interferer’

nodes broadcast an independent Gaussian signal, each interferer has its own signal.

The decoder does not observe any signal directly but is forwarded messages from

four blue ‘helper’ nodes which observe signals through a line-of-sight additive-white-

Gaussian noise channel. The interferers and helpers are oriented alternatingly and

equispaced about a radius-2/3 semicircle towards the encoder with center (1, 0).

where PS, PI > 0 are signal, interferer powers, respectively. Choice of this channel

is arbitrary but provides an instance where the decoder would not be able to recover

the signal of interest if it observed directly without the provided helper messages.

Communications Schemes

First, we describe a class of lattice encoders the four helpers could employ:

• Fix some c ∈ (0, 3). If helper k ∈ [4] in the channel from Figure 5.2 observes

Xn
raw,k, then it encodes a normalized version of the signal:

Xn
k :=

c√
varXn

raw,k

Xn
raw,k.
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• Fix equal lattice encoding rates per helper r = r1 = r2 = r3 = r4, and take

lattice encoders as described in Theorem 8. These rates may be distinct from

the helper-to-base messaging rates R1, . . . , R4 if the encodings are compressed

afterwards; after compression Rk ≤ rk.

Communications schemes involving lattice encoders of this form are compared in

Figure 5.3 over an ensemble of choices for lattice encoder rates r and scales c ∈ (0, 3).

Achieved transmitter-to-decoder communication rate versus sum-rate from helpers to

decoder are plotted. The following quantities are plotted:

• Upper Bound : An upper bound on the achievable transmitter-to-decoder com-

munications rate, corresponding to helpers which forward with infinite rate.

This bound is given by the formula I(Xmsg; (Xraw,k)k∈[4]).

• Corollary 2 The achievable communications rate from Corollary 2, where each

helper computes the lattice encoding described above, then employs a joint–

compression stage to reduce its messaging rate. The sum-helpers-to-decoder

rate for this scheme is given by Equation (5.3), taking S = [4]. The achieved

messaging rate is given by the right-hand-side of Equation (5.4).

• Uncompressed Lattice: The achievable communications rate from Corollary 2,

with each helper forwarding to the decoder its entire lattice encoding without

joint–compression. The sum-helpers-to-decoder rate for this scheme is 4r since

in this scheme each helper forwards to the base at rate Rk = r. The achieved

messaging rate is given by the right-hand-side of Equation (5.4).

• Quantize & Forward : An achievable communications rate where helper-to-

decoder rates Rk, k ∈ [4] are chosen so that R1 +R2 +R3 +R4 = Rsum and each

helper forwards a rate-distortion-optimal quantization of its observation to the
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decoder. The decoder processes these quantizations into an estimate of Xmsg

and decodes. This is discussed in more detail in Chapman et al. (2018). The

sum-helpers-to-decoder rate for this scheme is Rsum. The achieved messaging

rate is I(Xmsg; (Xraw,k + Zk)k∈[4]), where Zk ∼ N (0, var(Xraw,k) · 2−2Rk).

Performance of these strategies for different broadcaster powers is shown in Figure

5.3. In each subplot the transmitter broadcasts with power such that the average SNR

seen across helpers is the given ‘transmitter’ dB figure. Each interferer broadcasts

its own signal with its power the given ‘interferer’ dB stronger than the transmitter’s

power. Notice that, although the uncompressed lattice scheme is often outperformed

by plain Quantize & Forward for the same helper message rates, adding a properly

configured compression stage can more than make up for the sum-rate difference. In

certain regimes, even the compressed lattice scheme performs worse or practically the

same as Quantize & Forward, indicating the given lattice encoder design is weak; un-

compressed lattice encoders can be configured to implement the Quantize & Forward

scheme. Notice that none of the strategies produce convex rate regions, indicating

that time-sharing can be used to achieve better rates in some regimes.

In all figures shown, the gap between achieved rates from the joint–compression

bound given from Theorem 8 and Theorem 9 (the latter being an improvement) were

often nonzero but too small to noticeably change the graphs in Figure 5.3. For this

reason only, achievable rates for the strategy from Corollary 2 are plotted. The gain

from involving codebook knowledge in lattice encoding compression is either insignifi-

cant for the tested scenario, or choices in computing the upper bounds are too poor to

reveal its performance gains. Sub-optimality of the algorithm implementations here

are all summarized and discussed in Section 5.4.
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Figure 5.3: Communications rate versus helper-sum-rate for 1000 randomly chosen

encoding schemes as described in Section 5.3.2 in the line-of-sight channel from Figure

5.2, Equation 5.3.2.
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5.4 Conclusion

A class of upper bounds on the joint entropy of lattice-modulo encodings of cor-

related Gaussian signals was presented in Theorem 8. Proof of these bounds involves

reducing the problem to the entropy of one lattice message, say, UK conditioned on

the rest, ~U[K−1]. The upper bound for this reduced case involves an iterative con-

struction where in each step a suitable integer vector is chosen. Choice of vectors in

these steps determines the order in which the observed lattice-modulo components

are integrated into an estimate of UK ’s support. Different choice of vectors at each

step yields a different bound, and the strongest sequence of choices is unknown. For

numerical results in Section 5.3.2, a certain suboptimal was used although there is no

guarantee that this choice is optimal.

The upper bounds were applied to the problem of communicating through a many-

help-one network, and these bounds were evaluated for a rendition of the problem

using lattice codes of simple structure. The bounds in 8 can be strengthened in

this scenario by integrating codebook knowledge. This strengthening is described in

Theorem 9.

In spite of the suboptimal lattice encoder designs analyzed, it was seen in Sec-

tion 5.3.2 that jointly-compressed lattice encoders are able to significantly outperform

more basic schemes in the presence of heavy interference, even when the joint com-

pression stage uses the weaker entropy bounds from Theorem 8. In the numerical

experiments tried, the strengthening in Theorem 9 was not seen to significantly im-

prove compression. Whether this is typically true or just an artifact of poor design of

the joint-compression stage is unknown. In either case, the simpler joint-compression

strategy without codebook knowledge was seen to improve performance.
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The most immediate forwards steps to the presented results is in characterization

of the search problems posed by Theorems 8, 9. Although not discussed, corner-points

of joint compression described here are implementable using further lattice processing

on the encodings U1, . . . , UK and their dithers ~W . Such a process might mimic the

compression procedure described in Cheng et al. (2018). Tightness arguments from

this work may also apply to the present less structured channel.

Finally, according to the transmission method in Cheng et al. (2018), the achiev-

able rate in Corollary 2 may be improvable by breaking the transmitter’s message M

up into a sum of multiple components, each from a finer lattice. Joint–compression

for such a transmission could integrate codebook information from each message com-

ponent separately, allowing for more degrees of freedom in the compression stage’s

design, possibly improving the achievable rate. This is an extension of the argument

in Appendix D.4. These improvements are out of this chapter’s scope but provide

meaningful paths forward.
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Chapter 6

CONCLUSION

The problem of communicating in the presence of correlated Gaussian noise was

studied. Analytic techniques involving unstructured coding are presented in Chapter

3. A first-order lattice strategy which subsumes others of its type is presented in

Chapter 4. Evaluation of the first-order scheme’s asymptotic performance involves

a difficult search problem over lattice encoder configurations, but numerical experi-

ments demonstrate that it reliably outperforms related schemes. A one-dimensional

simulation of the lattice strategy was simulated and seen to perform more reliably

over ensembles of channels than a simpler encoding scheme.

A second-order strategy involving joint compression of messages from Chapter 4

is presented in Chapter 5. The joint-compression stage is developed by describing

upper bounds on the joint-entropy of lattice encodings. The upper bound can be

strengthened when it is known that the source of interest uses a lattice codebook.

The strategy for upper-bounding the joint entropy can be adapted into a lower bound.

Evaluation of these joint-entropies for a given lattice encoder configuration introduces

another search problem. Rather than attempt to solve the joint-search to evaluate

the strategy’s performance, certain configuration designs were studied. In spite of
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the sub-optimal choices the asymptotic joint-compression scheme could significantly

outperform simpler encoding schemes.

6.1 Discussion and Avenues for Further Study

6.1.1 Improvement of Joint-Entropy Bound

Though the present study gives handles for computing performance and entropy

figures for the schemes described, the analytic behavior of these figures is poorly

understood. The gap between the upper bound in Theorem 8 and the lower bound

provided by Section 5.2.1 is unknown. Search space reductions for the problems

involved in numerical evaluation of the bounds have not been investigated.

6.1.2 Implementation of Structured Schemes and

Sensitivity to Channel State Estimation Error

The essential ingredients to implementation of the structured scheme described in

Chapter 4 is a high-dimensional lattice good for coding and quantization with readily

computable rounding and modulo operations. Much effort has been devoted to such

a construction Liu et al. (2018), da Silva and Silva (2018), Conway and Sloane (1982),

Ingber et al. (2012). Given such a lattice, certain nesting constructions are easy to

obtain. For instance, for a a whole number, any lattice L in dimension n is nested

within the scaled lattice ( 1
a
)L with nesting ratio log a.

Sensitivity of actual implementations to low-dimensional, imperfect lattice design

has not been investigated, though simulation of numerical results in Chapter 4 demon-

strates such techniques can provide improvement even in one dimension. Numerical

experiments in Section 5.3.2 suggest existence of lattice encoder configurations which,

though sub-optimal for particular channels, have low outage rate over a wide ensemble

of channels.
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The description of the conditional entropy upper bounds in Chapter 5 implicitly

describes a scheme for joint-compression of such messages. The derived compression

and decompression schemes involve only further lattice processing of the messages.

The decompression stage would form lattice of judicious recombinations of the de-

scribed rounding results.

Proofs in D.2 involve somewhat intricate nested lattice and typical set construc-

tions, but many of properties are either never used or are only of theoretical impor-

tance. For instance, the property that fine lattices are nested within one another is

never used. Roughly speaking, the entire utility of auxillary lattices L̂k is in upper-

bounding the amount of points in Lc which occur within a ball mostly contained in

B̂k. Estimating the amount of lattice points Lc occuring within a sphere is analyti-

cally involved, but counting those in B̂k is easy given that L̂k was constructed. For

practical purposes, existence of L̂k is likely unnecessary.

6.1.3 Improvement of Joint Compression Stage

The joint-compression stage for lattice encodings described in Chapter 5 supports

some immediate improvements. For the communications problem described in Defi-

nition 1, instead of designing the compression stage such that the lattice encodings

are first recovered and then processed into a message, one could instead design the

compression stage such that only the message M is preserved, recovered directly from

the compressions provided by the observers. Similarly for the source-coding problem

described in Definition 2, one could design the compression stage such that only

the lattice recombination of interest is recovered, rather than the lattice encodings

first followed by lattice processing. The rate region of this lossless coding problem

is treated by Gelfand and Pinsker in Gel’fand and Pinsker (1979) (result stated in

english in Theorem 1, Wolf et al. (2017)). However, in this situation the path to im-
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plementation as described in Section 6.1.2 is less immediate. More granular structure

is needed to organize each source sequence.

6.1.4 MIMO Problems and Channels with Doppler

A very strong assumption about observed Doppler was made in Section 1.1.1. It

may be possible to relax this assumption by assuming that although Doppler shifts

may distinct between a transmitter and each observer, shifts still evolve slowly over

a period of many OFDM symbols. In this situation noise may appear correlated over

different subcarriers across receivers. Such a situation would require an expansion of

the described lattice schemes to handle joint processing of multiple subcarriers. Such

extensions would also be relevant to a setting where the base seeks to recover multiple

sources, or where receivers observe through multiple antennas.
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APPENDIX A

KEY OF VARIABLES
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K Number of lattice encodings in current context.
n Scheme blocklength

Wk Lattice dither k
Uk Lattice encoding k

Xk,raw Observation at receiver k, before normalizing.
Xk Normalized observation at receiver k, i.e. Xk/ varXk

Yk Quantization of Xn
k

Σ K × K time-averaged covariance between observations
Xn

1 , . . . , X
n
K

ΣQ K × K time-averaged covariance between quantizations
Y1, . . . , YK

R1, . . . , RK Side information messaging rates for helpers in the Section
5.3 communications scenario

α1, . . . , αK Scales for lattice encoders to use on normalized observa-
tions

Lc Central coarse lattice, good for quantization and coding
with scale 1

r1, . . . , rK Nesting ratios for fine lattices L1, . . . , LK in the coarse
lattice base region Bc, equivalent to the encoding rates of
lattice codes when joint compression is not used

rmsg Nesting ratio for codebook coarse lattice Lc,msg in code-
book fine lattice Lf,msg in Section 5.3, equivalent to code-
book rate

cmsg Covariance between codeword and quantizations in Sec-
tion 5.3

νs Integer combination of ~Yc to analyze in step s of Appendix
D.2

δ2
s Variance of ν†s ~Yc after removing prior knowledge in Ap-

pendix D.2
σ2
s Variance of YK uncorrelated with prior knowledge and
ν†s ~Yc in Appendix D.2

βs Regression coefficient for ν†s ~Yc in YK after including prior
knowledge at step s in Appendix D.2

Table A.1: General Description of Common Variables in Body and Appendices
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APPENDIX B

SUPPLEMENTS TO UNSTRUCTURED BOUNDS
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B.1 Acheivability Proofs for Unstructured Strategies

Several lemmas are needed to prove bound achievability. The following lemma
demonstrates that (non-overflowed) lattice encodings become close in information
content to the observations plus Gaussian noise. Lemma 6 demonstrates the joint
differential entropies between source estimates from the encodings are close to the
equivalent differential entropies in the Gaussian distortion system. Lemma 7 demon-
strates the encodings themselves have joint Shannon entropies that are close to mutual
informations in the Gaussian distortion system.

Lemma 6. Take helper observations ~Xn
[K],raw and independent dithers ~WQ,[K] where

for each k, the dither vector ~WQ,k is distributed along the Voronoi base cell of a
good-for-quantization lattice in Rn with mean-squared-error distortion σ2

Q,k. For any
A ⊂ [K], ε > 0 and n large enough,∣∣∣∣ 1nh( ~Xn

A,raw − ~WQ,A)− h( ~XA,raw + W̃Q,A)

∣∣∣∣ < ε

for W̃Q,k ∼ N (0, σ2
Q,k), k = 1, . . . , K independent.

Proof. Follows similarly to Theorem 3 from Zamir and Feder (1996). Notice that for
any additive-independent-noise channel x → x + w then I(x;x + w) = h(x + w) −
h(x+ w|x) = h(x+ w)− h(w) so that h(x+ w) = h(w) + I(x;x+ w). Then

1

n
h( ~Xn

A,raw − ~WQ,A) =
1

n
[h( ~WQ,A) + I( ~Xn

A,raw; ~Xn
A,raw − ~WQ,A)]

=
1

n
[h( ~WQ,A)− nh(W̃Q,A) + nh(W̃Q,A) + . . .

I( ~XA,raw; ~XA,raw − ~WQ,A)]

=
1

n
[[
∑
k∈A

h( ~WQ,k)− nh(W̃Q,k)] + nh(W̃Q,A) + . . . (B.1)

I( ~Xn
A,raw; ~Xn

A,raw − ~WQ,A)]

≥ 1

n
[[
∑
k∈A

h( ~WQ,k)− nh(W̃Q,k)] + nh(W̃Q,A) + . . . (B.2)

nI( ~XA,raw; ~XA,raw + W̃Q,A)]

=
1

n
[[
∑
k∈A

h( ~WQ,k)− nh(W̃Q,k)] + nh( ~XA,raw + W̃Q,A)]

=
1

n
[
∑
n∈A

D(P ~WQ,k
‖P n

W̃Q,k
)] + h( ~XA,raw + W̃Q,A)

n↑∞→ ε+ h(XA,raw +WA). (B.3)

where (B.1) follows since the terms are independent, (B.2) follows by the worst addi-
tive noise lemma (Diggavi and Cover (2001)), and the substitution and convergence
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in (B.3) follow by Section III of Zamir and Feder (1996). Also:

1

n
h( ~XA,raw − ~WQ,A) =

1

n
[h( ~WQ,A) + I( ~Xn

A,raw; ~Xn
A,raw − ~WQ,A)]

≤ 1

n
h( ~WQ,A) + I( ~XA,raw; ~XA,raw + W̃Q,A) + . . . (B.4)∑

k∈A

D(P ~WQ,k
‖
∏

k∈A P
n
W̃Q,k

)

< I( ~XA,raw; ~XA,raw + W̃Q,A) +
∑
k∈A

1

n
h( ~WQ,k) + ε/|A|(B.5)

≤ I( ~XA,raw; ~XA,raw + W̃Q,A) +
∑
k∈A

h(W̃Q,k) + ε (B.6)

= I( ~XA,raw; ~XA,raw + W̃Q,A) + h(W̃Q,A) + ε

= h( ~XA,raw + W̃Q,A) + ε

where (B.4) follows by Lemma 1 from Ihara (1978) and (B.5),(B.6) follow since the

terms in ~WQ,A are independent and by Section III of Zamir and Feder (1996).

Lemma 7. Take length-n helper observations ~Xn
[K],raw, dithered lattice encodings of

said observations ~U[K] = roundLnk ( ~Xn
k,raw + ~WQ,k) (dithers ~WQ,[K] independent and

uniform over their fine lattices Lnk , each lattice good for quantization to noise of
power σ2

Q,k). Then for any ε > 0, n large enough has for all S ⊆ [K]:∣∣∣∣ 1nH(~US| ~WQ,S)− I( ~XS,raw; ~YS)

∣∣∣∣ < ε. (B.7)

In (B.7), ~YS := ~XS,raw +W̃Q,S, with ~XS,raw distributed the same as helper observations
at a single time index, and

W̃Q = (W̃1, . . . , W̃K) ∼ N
(
0, diag

(
σ2
Q,1, . . . , σ

2
Q,N

))
.

Proof. Say S = {s1, . . . , s|S|}. Now

1

n
H(~US| ~WQ,S) =

|S|∑
t=1

1

n
H(Ust |~U{s1,...,st−1},

~WQ,S)

=

|S|∑
t=1

1

n
H(Ust |~U{s1,...,st−1},

~WQ,{s1,...,st}).

Apply Lemma 8 to each of the summands, identifying ~WQ,k ↔ WQ,k.

With these lemmas we are prepared to prove achievability of performances in
Chapter 3.
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Theorem 10. Communications rate RQF from Equation (3.1) and distortion DQF from
Equation 3.2 are achievable.

Proof. Achieve DQF by applying linear estimation for Xsrc on decodings from rate-
distortion source coders as described in Cover and Thomas (2012). Strategy for
achieving communications rate RQF is described in detail below.

If some k ∈ [K] has Rk = 0, the system is equivalent to the case where the kth

receiver’s observation is not present, so without loss of generality assert that each
Rk > ε. Fix some rate Rmsg < RQF and a block length N = n2 ∈ N. Form a message
M uniform on [2nRmsg ].
Outline

Form a rate-Rmsg codebook with length-n codewords. At receiver k ∈ [K], form
a length-n lattice encoder with coarse, fine lattices chosen such that encodings have
rate rn. Combine encodings at base and find the typical codeword. Observe that
probability of error is low by recognizing that each n-length encoding from a helper
approximately contains the information content of the helper’s observation plus Gaus-
sian distortion.
Transmitter setup

Generate a codebook mapping φ : [2NRmsg ]→ RN×1 where:

φ(m) = (xm,1, . . . , xm,N) ∈ RN×1

with each component xm,` drawn iid from N (0, 1). Reveal φ to the transmitter and
the base.
Helper encoder setup

For each helper k, k ∈ [K], generate a dither vector ~WQ,k = ( ~WQ,k,`)`∈[n] ∈
(Rn×1)n, where each successive n-segment is uniform in the base region Bf,k of a
lattice Lnk ⊂ Rn good for quantization to MSE distortion

Gn(Lnk) =
varXk,raw

2rk−ε − 1
.

Reveal ~WQ,k to the base and helper n.
Transmission

To send message M ∈ [2nRmsg ], the transmitter broadcasts

XN
src = (X(1)

src , . . . , X
(n)
src ) = φ(M).

Helper encoding and forwarding

Helper k (k ∈ [K]) observes a sequence of length N , ~XN
k,raw = ( ~X

(`)
k,raw)`∈[n] ∈

(Rn×1)n. Now Xk,raw − ~WQ,k = (X`
k,raw − ~W

(`)
Q,k)`∈[n] ∈ RN = (Rn)n is composed of

n consecutive length-n segments. For the `-th length-n segment (` ∈ [n]), form a
quantization U `

n ∈ Lnk by finding the point in Lnk associated with the region `+Bf,k in
which that segment resides. The properties of such Un are the subject of References
Zamir and Feder (1992, 1996). By the extension of Theorem 1 in Appendix A of
Reference Zamir and Feder (1992),

H(U `
k| ~WQ,k) =

1

n
I(Xk,raw;Xk,raw − ~WQ,k).
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Further, by Theorem 3 in Reference Zamir and Feder (1996)

1

n
I
(
Xn
k,`,raw;Xn

k,`,raw − ~WQ,k

)
→
n↑∞

I(Xk,raw; Xk,raw + W̃Q,k) = rk − ε

where
W̃Q,k ∼ N (0, Gn(Lnk , Bf,k)), k ∈ [K]. (B.8)

Thus the n encoded messages produced by helper k, (U `
k)`∈[n], are within the LAN

rate constraint for large enough blocklength N .
Helper k ∈ [K] forwards (U `

k)`∈[n] to the base.
Decoding

At the base receive all of the lattice quantizations,

~U := ((U `
k)`∈[n])k∈[K].

Take ANε (Xsrc, ~U | ~WQ,[K]) to be the collection of

(xm,u) ∈ Range(φ)×

∏
k∈[K]

Lnk

n

which are jointly ε-weakly-typical with respect to the joint distribution of (XN
src,

~U),

conditional on all the dithers ( ~WQ,k)k∈[K]. Weak- and joint-typicality are defined in
Cover and Thomas (2012).

At the base, find a message estimate m̂ ∈ [2NRmsg ] where (φ(m̂), ~U) ∈ ANε (Xsrc, ~U | ~WQ,[K]).

Declare error events E0 if M is not found to be typical with ~U , and E1 if there is some
m̂ 6= M where (φ(m̂), ~U) ∈ ANε (Xsrc, ~U | ~WQ,[K]).
Error analysis

By typicality and the law of large numbers, P (E0)→ 0 as n→∞. Also,

P (E1) ≤
∑
m̂6=M

P
(
{φ(m̂) : (φ(m̂), ~U) ∈ ANε (Xsrc, ~U | ~WQ,[K])}

)
≤
∑
m̂6=M

2−t·(I(X
(1)
src ;(~U

(1)
k )k∈[K]| ~W

(1)
Q,[K]

)−3ε)

< 2−n·(I(X
(1)
src ;(~U1

k )k∈[K]| ~W
(1)
Q,[K]

)−3ε)+NRmsg (B.9)

= 2−n·(h(X
(1)
src )−h(X

(1)
src |(~U1

k )k∈[K], ~W
(1)
Q,[K]

)−3ε−nRmsg)

≤ 2−n·(h(X
(1)
src )−h(X

(1)
src |X

(1)
[K],raw

− ~W (1)
Q,[K]

)−3ε−nRmsg) (B.10)

≤ 2−n·(n·I(Xsrc; ~X[K],raw+W̃Q,[K])−4ε−nRmsg) (B.11)

W̃Q,[K] is defined as in Equation (B.8). Equation (B.10) follows by the data processing
inequality. Equation (B.11) follows by combining the entropies into a mutual informa-
tion, then using the worst additive noise lemma Diggavi and Cover (2001). So if Rmsg

is chosen less than I(Xsrc; ~X[K],raw+W̃Q,[K])−4ε then P (E0∪E1)→0 when T →∞.
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Theorem. Communications rate RB̃T from Equation (3.3) is achievable, and distortion
DBT from Equation (3.2) is achievable.

Proof. For the distortion bound, fix variables as in the statement of Theorem 5.
Apply Slepian-Wolf joint-compression on the rate-distortion encodings described in
Theorem 10, then apply linear estimation on the base’s decodings. The achievability
strategy for the communications rate is detailed below.

Fix the following variables such that the statement in Theorem 6 is satisfied.
λ > 0. Fix σ2

1, . . . , σ
2
K > 0,

ρ1 :=
1

2
log(varX1,raw/σ

2
1), . . . , RK :=

1

2
log(varXK,raw/σ

2
K),

and messaging rate Rmsg. Take block length N = n2 ∈ N.
If some k ∈ [K] has Rk = 0 or ρk = 0, the system is equivalent to the case where

the kth helper is not present, so without loss of generality assert that each Rn, ρn > ε.
Form a message M uniform on [2NRmsg ].

Outline
Form a rate-Rmsg codebook with length-n codewords. At receiver k ∈ [K], form

a length-n regular lattice encoder with lattice chosen coarse enough that its encod-
ings have rate ρn. Randomly bin the encodings down to rate Rn. At the base find
the codeword jointly typical with the binned encodings. Observe that probability
of error is low by recognizing that the un-binned n-length encodings from helpers
approximately contain the joint-information content of the helper’s observations plus
Gaussian distortion.
Transmitter setup

Generate a codebook mapping φ : [2nRmsg ]→ Rn×1 where

φ(m) = (xm,1, . . . , xm,n) ∈ Rn×1

with each component xm,` drawn i.i.d. from N (0, 1). Reveal φ to the transmitter and
the base.
Helper encoder setup

For each helper k, k ∈ [K], generate a dither vector ~WQ,k = ( ~W
(`)
Q,k)`∈[k] ∈ (Rn×1)n,

where each successive n-segment is uniform in the base region Bf,k of a lattice Lnk ⊂ Rn

good for quantization to MSE distortion σ2
k. Reveal ~WQ,k to the base and helper n.

For each receiver k ∈ [K], form a random mapping Indexk : Lnk → [2nRk ] which
takes on iid values at each un ∈ Lnk :

Indexk(uk) ∼ Uniform
(
[2nRk ]

)
Indexk is the binning scheme used by receiver k. Distribute each map Indexk to helper
k and the base.
Transmission

To send a message M ∈ [2NRmsg ], have the transmitter broadcast

X = (X(1)
src , . . . , X

(n)
src ) = φ(M).
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Helper encoding
Helper k (k ∈ [K]) observes a sequence of length N ,

XN
k,raw = (X`

k,raw)`∈[n] ∈ (Rn×1)n

Now XN
k,raw− ~WQ,k = (X`

k,raw− ~W
(`)
Q,k)`∈[n] ∈ RN = (Rn)n is composed of n consecutive

length-n segments. For the `-th length-n segment, ` ∈ [n], form a quantization
U `
k ∈ Lnk by finding the point in Lnk associated with the region Bf,k in which that

segment resides.
Applying Lemma 7, then for large enough n, any S ⊆ [K] has

1

n
H(U `

S|U `
SC , ( ~WQ,k)k∈[K]) →

n↑∞
I(XS,raw + W̃Q,S;XS,raw|W̃Q,SC ) <

∑
k∈S

Rk

where the right-hand inequality comes from choice of (ρ1, . . . , ρK).
Helper joint-compression and forwarding

At receiver k ∈ [K], form binned encodings (V `
k )`∈[n] where for each `,

V `
k := Indexk(U

`
k).

Note that |Range(Indexk)| ≤ 2n·Rk so H(V `
k ) ≤ n · Rk and H((V `

k )`∈[n]) ≤ n · Rk so
that the LAN messaging constraint is satisfied.

Each receiver forwards (V `
k )`∈[n] to the base.

Decoding
At the base receive all all the binned helper encodings V = ((V `

k )`∈[n])k∈[K].

Take ANε (Xsrc, ~U | ~WQ,[K]) to be the set of

(
xm, (u

1, . . . ,uK)
)
∈ Range(φ)×

∏
k∈[K]

Lnk

n

which are jointly ε-weakly-typical with respect to the joint distribution of (X, ~U),

conditional on all the dithers ( ~WQ,k)k∈[K]. Weak- and joint-typicality are defined in
Reference Cover and Thomas (2012).

For an ensemble v of bin indices from all the receivers,

v := ((v`k)`∈[n])k∈[K] ∈
∏
k∈[K]

[2n·Rn ]n,

define:

Bv ,

u ∈
∏
k∈[K]

Lnk

n∣∣∣∣∣∣Indexk(u`k) = v`k, k ∈ [K], ` ∈ [n]

 .

Each Bv represents the set of helper lattice quantizations represented by the ensemble
of helper bin indices v. At the base, find m̂ for which there is some û ∈ BV where
(φ(m̂), û) ∈ ANε (Xsrc, ~U | ~WQ,[K]). Declare m̂ as the decoded message.
Error analysis

We have the following error events:
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• EJT : X is not typical with anything in BV ,[K]

• Em̂,S: For S ⊆ [K], there is some m̂ 6= M and û = (ûS, ûSC ) ∈ BV where

(φ(m̂), û) ∈ ANε (Xsrc, ~U | ~WQ,[K]) and ûSC = ~USC , but any k ∈ S has ûk 6= ~Uk.
1

By the law of large numbers and properties of typical sets, as n becomes large,
eventually P (EJT ) < ε. Now compute:∑
m̂ 6=M

P (Em̂,S) ≤ 2NRmsg ·
∑

ũ∈AN
ε (Xsrc,~U | ~WQ,[K]):

ũ
SC =~U

SC

1BV
(ũ) · P

(
(X̃src, ũ) ∈ ANε (Xsrc, ~U | ~WQ,[K])

)

where X̃src is a random variable independent of and distributed identically as Xsrc.
Then with high probability for large enough t,∑

m̂ 6=M

P (Em̂,S) ≤ 2NRmsg ·
∑

ũ∈AN
ε (Xsrc,~U | ~WQ,[K]):

ũ
SC =~U

SC

1BV
(ũ) · 2−n·(I(Xsrc;~U[K]| ~WQ,[K])−3ε)

≤ 2NRmsg ·
∣∣∣{ũ ∈ ANε (Xsrc, ~U | ~WQ,[K])|ũSC = ~USC}

∣∣∣ · . . . (B.12)

(1 + ε) · P (~U ∈ BV ) · 2−n·(I(Xsrc;~U[K]| ~WQ,[K])−3ε)

≤ 2NRmsg · 2n·(H(~US |~USC , ~WQ,[K])+ε) · . . .

2−n·(n·
∑

k∈S Rk−ε) · 2−n·(I(Xsrc;~U[K]| ~WQ,[K])−3ε)

where (B.12) follows by construction of BV . Taking the log,

log

(∑
m̂6=M

P (Em̂,S)

)
≤NRmsg + n · (H(~US|~USC , ~WQ,[K]) + ε)− . . .

n · (n ·
∑
k∈S

Rk − ε)− n ·
(
I(Xsrc; ~U[K]| ~WQ,[K])− 3ε

)
+ ε

≤n · (H(~US|~USC , ~WQ,[K])− n ·
∑

k∈S Rk + nRmsg − . . .
I(Xsrc; ~U[K]| ~WQ,[K]) + 6ε)

≤n2 · (I(XS,raw;XS,raw + W̃Q,S|XSC ,raw + W̃Q,SC )− . . . (B.13)∑
k∈S

Rk +Rmsg − I(Xsrc;X[K],raw + W̃Q,[K]) + 8ε/n).

Equation (B.13) follows by using Lemma 7 on H(~US|~USC )/n and using reasoning

identical to (B.9) through (B.11) on I(Xsrc; ~U | ~WQ,[K]). Recall that Rmsg was chosen

1Em̂,S denotes the situation where the base identifies the wrong quantizations for all the receivers
in S.
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so that Rmsg < I(Xsrc;X[K],raw + W̃Q,[K]) − λ. Then (B.13) will approach −∞ as
n→∞ (thereby P(∪m̂,SEm̂,S) approaches 0) if all S ⊆ [K] satisfy:

I(XS,raw;XS,raw + W̃Q,S|XSC ,raw + W̃Q,SC ) < λ+
∑
k∈S

Rk − 8ε. (B.14)

By assumption (B.14) holds for all S for ε small enough. Since all error events
approach 0, then a rate of RB̃T is achievable.

B.2 Numerical Optimization Details

Evaluation of the Gaussian distortion and distributed compression bounds in
each environment requires optimization of a quasi-convex objective (Chapman et al.
(2018)) over a non-convex domain. To overcome this, an iterative interior point
method was used to find the maximum: each constraint f(x) < 0 is replaced with a
stricter constraint, f(x) + β < 0 for some β > 0 and a minimization of the objective
is performed under the new constraint. The optimal point is passed as the initial
guess for the next iteration, where the objective function is minimized with updated
constraints f(x) + β′ < 0 with 0 < β′ < β. The method is iterated until the con-
straint is practically equivalent to f(x) < 0 or the optimal point converged. Each
individual minimization was performed using sequential least-squares programming
(SLSQP) through SciPy Jones et al. (01 ).
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APPENDIX C

SUPPLEMENTS FOR STRUCTURED CODE
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C.1 Proof of Lemma 1 Construction of Mod-Elementary Decoders

Proof. Assume M(Aj) occurs. Then M(A1) ⊃ · · · ⊃ M(Aj−1) have occurred also.
Compute:

f1

(
~U
)

= mod
(
a†1(mod(αkX

n
k )− W̃d,k)k

)
(C.1)

= mod
(
a†1(mod(αkX

n
k )−mod(W̃d,k))k

)
(C.2)

= mod
(
a†1(
−→
αXn − W̃d)

)
(C.3)

= a†1(
−→
αXn − W̃d). (C.4)

where (C.1) is due to (Zamir, 2014, Theorem 4.1.1) (the crypto lemma), (C.2) is since
W ′
d,k ∈ Bc, (C.3) is by Property 4 and (C.4) since M(A1) occurred.

Now for any m > 1 say f[m−1] has:

f[m−1](~U) = A†[m−1](
−→
αXn − W̃d,k).

Then compute (similarly to the base case):

fm

(
~U
)

= mod
{

mod
(
a†m(
−→
αXn − W̃d)

)
− . . .

mod
(

[Sm−1am]†A†[m−1](
−→
αXn − W̃d)

)}
+ . . .

[Sm−1am]†A†[m−1](
−→
αXn − W̃d)

= mod
{

a†m(
−→
αXn − W̃d)− . . .

[Sm−1am]†A†[m−1](
−→
αXn − W̃d)

}
+ . . .

[Sm−1am]†A†[m−1](
−→
αXn − W̃d)

= mod
{

[Rm−1am]† (
−→
αXn + W̃d)

}
+ . . . (C.5)

[Sm−1am]†A†[m−1](
−→
αXn − W̃d).

Since M(Am) has ocurred, then [Rm−1am]† (
−→
αXn + W̃d) ∈ Bc, hence by Property 1,

(C.5) reduces:

fm

(
~U
)

= [Rm−1am]† (
−→
αXn + W̃d) + . . .

[Sm−1am]†A†[m−1](
−→
αXn − W̃d)

= A†m(
−→
αXn − W̃d).

So by induction the described mod-elementary functions behave as desired.
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C.2 Proof of Theorem 7, Asymptotic Lattice Scheme Performance

Proof. Italicized words here are technical terms taken from the specified source. Using
the construction in (Ordentlich and Erez, 2016, Theorem 2), take sequences of lattices

L
(n)
c , (L

(n)
k )k∈[K] with base regions B

(n)
c , (B

(n)
k )k where:

• L(n)
c with B

(n)
c is good for channel coding in the presence of semi norm-ergodic

noise, (Ordentlich and Erez, 2016, Definition 4) scaled to handle semi norm-
ergodic (Ordentlich and Erez, 2016, Definition 2) noise of power less than 1.

• Each L
(n)
k ⊂ L

(n)
c is good for mean squared error quantization (Ordentlich and

Erez, 2016, Definition 5), with limn
1
n
E[‖u(n)

k ‖2] < 2−2rk+ε, taking each u
(n)
k ∼

unif B
(n)
k independent.

• Eventually in n, 1
n

log(|L(n)
c ∩ L(n)

k |) < rk.

For each k ∈ [K] take Zn
k := αkX

n
k − W̃d,k, where (W̃d,k)k∈[K] is distributed

like (u
(n)
k )k∈[K] and is independent of (Xn

k )k∈[K]. Each event M(Aj) has associated
with it some linear combination Rj−1 = I if j = 1 or as in Definition 8 other-
wise. Then by (Krithivasan and Pradhan, 2007, Appendix V) the linear combination
(Rj−1aj)

†(Zn
k )k∈[K] probably lands in the base of a lattice cell as long as that lattice

is good for coding for powers greater than

p =
1

n
E[‖(Rj−1aj)

†(Zn
k )k∈[K]‖2] = (Rj−1aj)

†C∞(Rj−1aj).

Since L
(n)
c is good for channel coding in the presence of semi norm-ergodic noise

with power less than 1 Ordentlich and Erez (2016) then (by definition) Zn
k occurs in

M(Aj) with arbitrarily high probability eventually in n if p < 1, and with arbitrarily
low probability if p > 1. The case where p = 1 never occurs when using ε > 0 that
affects C∞ so that every (Rj−1aj)

†C∞(Rj−1aj) is irrational (only countable Rj−1, aj
are possible, so ε small enough always exist).

We now demonstrate that in this situation, among the high-probability events
from Definition 8, there are some whose conditions cannot be strengthened. Any event
M(Aj) with probability eventually high and associated projection Rj−1 either has
some vector a ∈ ZK with a not in Rj−1’s null space and 1

n
E[‖(Rj−1a)†(Zn

k )k∈[K]‖2] <
1, or no such vector a exists. If there is such an a then taking aj+1 = a, the event
M([Aj, aj+1]) will also have eventually high probability. Repeating the argument,
such a’s can only be found up to m < K times: by then the matrix Aj has column
basis for all RK , or all choice of a ∈ ZK yields 1

n
E[‖(Rj−1a)†(Zn

k )k∈[K]‖2] > 1.
The result of this maximal strengthening ofM(Aj)’s conditions toM(Aj+m) has

associated with it a projection R− with the property that any integer vector a ∈ ZK
has either a in R−’s null space or 1

n
E[‖(R−a)†(Zn

k )k∈[K]‖2] = (R−a)†C∞(R−a) > 1.
Any projections created in such a way from two different events must be equal, since if
the first strengthened event’s projection’s null space had a vector the second’s did not,
then the second strengthened event could be further strengthened using the vectors
in the first event’s sequence.
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By above, if R− has nonzero range, and if a nonzero subspace U does not contain
(image R−) then some nonzero integer vector a ∈ ZK away from U has mins∈U(a −
s)†C∞(a−s) < 1. So S = image(R−) is the smallest of all subspaces with the property
that any a ∈ ZK has either mins∈S(a− s)†C∞(a− s) ≥ 1 or a ∈ S otherwise.

Finally apply Lemma 1 and Corollary 2 to any high-probability event associ-
ated with projection R−. Since the event eventually has arbitrarily high probability,
choosing ∆ > 1 eventually gives expected distortion arbitrarily close to d2

L.

C.3 Closed Form for Sk(v)

For exposition the definition of Sk(v) is shown semantically, as a minimizer, as
opposed to in closed form. Its closed form is readily derived:

arg min
u∈Rk

(v −A(k)u)†C(v −A(k)u)

= arg min
u∈Rk

− 2
{
v†CA(k)u

}
+ u†A(k)†CA(k)u

=
[
pinv(A(k)†CA(k))A(k)†C

]
v.

C.4 KP Parametrization

Here the parametrization the KP scheme Krithivasan and Pradhan (2007) provides
in terms of the asymptotic scheme and Lemma 1 is shown. First fix some c ∈ RK

and an ordered partition (Θ1, . . . ,Θp) of [K]. With these variable choices, the KP
scheme specifies use of A with columns am = 1Θm . A matrix with this structure is
denoted with subscript as AKP .

It also specifies receiver scaling coefficients ~α defined in parts over the partition
sets. Starting at m = 1 and up through m = p, then the components (αk)k∈Θm are
specified by a minimization problem dependent on the result of previous steps. Take
~WQ∞ ∼ N (0,ΣQ∞). Also take cΘk

to be the |Θk|-vector with coefficients taken from
c at indices in Θk. Now starting at m = 1 and up through m = p define, if possible:

(αk)Θm :=

√√√√√ 1− var
(
a†k
~WQ∞

)
var
(
cΘm

~X
∣∣∣AKP,m−1(

−→
αX + ~WQ∞)

)cΘm . (C.6)

If the square-root in (C.6) does not exist (i.e. if the numerator is not positive),
then a KP scheme with the partition (Θ1, . . . ,Θp) cannot be designed for specified c
and encoder rates (R1, . . . , RK). For any c and nonzero rates, there is always some
partition that works. For example, a singleton partition works. A well-formed KP
scheme guarantees achievable average distortion:

d̂2
KP = var

(
Xsrc

∣∣∣A†KP (
−→
αX + ~WQ∞)

)
.

90



APPENDIX D

SUPPLEMENTS FOR STRUCTURED CODE JOINT COMPRESSION

91



D.1 Subroutines

Algorithm 2 Compute recoverable linear combinations A ∈ RK×m from modulos of
lattice encodings with covariance ΣQ ∈ RK×K .

function Stages∗(Σ)

A← [ ], ~a← SLVC
(
Σ

1/2
Q

)
, R← IK ,

while 0 < (R~a)†ΣQ(R~a) < 1 do
A← [A,~a]
R← IK −A pinv(A†ΣQA)A†ΣQ

~a← SLVC
(
Σ

1/2
Q R

)
end while
A← [A,LatticeKernel

(
Σ

1/2
Q R,A

)
]

return A
end function

Here, we provide a list of subroutines involved in a statement of the results:

• Stages∗(·) is a slight modification of an algorithm from Chapman et al. (2019),
reproduced here in Algorithm 2. The original algorithm characterizes the inte-
gral combinations A†~Y which are recoverable with high probability from lattice
messages ~U and dithers ~W , excluding those with zero power. The exclusion is
due to the algorithm’s use of SLVC(·) as just defined. Such linear combina-
tions never arose in the context of Chapman et al. (2019), although it provides
justification for them being recoverable; in the paper, the algorithm’s argument
is always full-rank. This is not true in the present context. The version here
includes these zero-power subspaces by including a call to LatticeKernel(·)
before returning.

• SLVC(B), ‘Shortest Lattice Vector Coordinates’ returns the nonzero integer
vector ~a which minimizes the norm of B~a while B~a 6= 0, or the zero vector if
no such vector exists. SLVC(·) can be implemented using a lattice enumera-
tion algorithm like one in Schnorr and Euchner (1994) together with the LLL
algorithm to convert a set of spanning lattice vectors into a basis Buchmann
and Pohst (1987).

• LatticeKernel(B,A), for B ∈ RK×d, A ∈ Zd×a returns the integer matrix
A⊥ ∈ Zd×b whose columns span the collection of all ~a ∈ ZK whereB~a = 0 while
A†~a = 0a. In other words, it returns a basis for the integer lattice in kerB whose
components are orthogonal to the lattice A. This can be implemented using
an algorithm for finding ‘simultaneous integer relations’ as described in Hastad
et al. (1989).

• ICQM(M , ~v, c) is an “Integer Convex Quadratic Minimizer.” It provides a
solution for the NP-hard problem: “Minimize (~x†M~x + 2~v†~x + c) over ~x with
integer components.” Although finding the optimal solution is exponentially
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difficult in input size, algorithms are tractable for low dimension. (Ghasemme-
hdi and Agrell, 2011, Algorithm 5, Figure 2)

• CVarComponents(ΣQ,A) returns certain variables {M , ~v, c} involved in com-
puting

var
(
YK − ν†~Y[K−1]

∣∣∣A~Y[K−1]

)
when ~Y = (Y1, . . . , YK) has covariance ΣQ. Write some matrices in block form:

ΣQ =

[
M1 ~v1

~v†1 ς2
1

]
,

ΣQ

[
A
0

]([
A
0

]†
ΣQ

[
A
0

])−1 [
A
0

]†
ΣQ =

[
M2 ~v2

~v†2 ς2
2

]
.

Then, taking M = (M1 −M2), v = −(~v1 − ~v2), c = (ς2
1 − ς2

2 ), one can check:

var
(
YK − ν†~Y[K−1]

∣∣∣A~Y[K−1]

)
= ν†Mν + 2~v†ν + c.

• CVar(M1|M2; Σ) computes the conditional covariance matrix of M †
1
~Z condi-

tioned on M †
2
~Z for ~Z ∼ N (0,Σ). This is given by the formula:

CVar(M1|M2; Σ) := M †
1ΣM1 −M †

1ΣM2 pinv(M †
2ΣM2)M †

2ΣM2.

• Alpha0(ΣQ,A) in Algorithm 3 implements a strategy for choosing ν0 in The-
orems 8, 9.

• Alpha(Σ,A) in Algorithm 4 implements a strategy for choosing νs in Theorems
8, 9.

Algorithm 3 Strategy for choosing ν0 for Theorems 8, 9

function Alpha0(Σ) . Find ν0 which minimizes var
(
YK − ν†0~Y[K−1]

∣∣∣A~Y[K−1]

)
for

Σ = var ~Y[K−1],A = Stages∗(Σ) .
A← Stages∗(Σ) .
{M , ~v, c} ← CVarComponents(Σ,A)
{ν, σ2} ← ICQM(M , ~v, c)
n0 ← 1
return {n0,ν, σ

2}
end function
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Algorithm 4 Strategy for picking νs for Theorems 8, 9.

function Alpha(Σ,A) . Entropy-greedy implementation: choose ν where

the unknown part of ν†~Y[K−1] has the least entropy among any combination with

an unknown part. Expects Σ = var ~Yc, A = Stages∗
(

var
(
~Yc

∣∣∣[ν0, . . . ,νs−1]†~Yc

))
.

if rankA = K then
ν ← 0

else
Σreduced ← CVar(IK |A; Σ) , ν ← SLVC(Σreduced)

end if
return ν

end function

D.2 Proof of Lemmas 3, 4, Theorem 8

Proof. (Lemma 3)

Take D := modBc(ν
†
0(~U[K−1]− ~W[K−1])). Then, by modulo’s distributive property

D = modBc(ν
†
0
~Y[K−1]) so that Ỹ = −ν†0~Y[K−1] ∈ (D + Lc). Compute:

1

n0

modn0Bc Ỹ =
1

n0

modn0Bc(−~α
†
0
~Y[K−1]).

= modBc

(
− 1

n0

~α†0~Y[K−1]

)
.

Now:

UK = modBc

(
Wk + Yk +

1

n0

ν†0~Y[K−1] −
1

n0

ν†0~Y[K−1]

)
= modBc

(
Wk + Y0 −

1

n0

ν†0~Y[K−1]

)
= modBc

(
Wk + E

(
Y0

∣∣∣ ~A)+ E⊥
(
Y0

∣∣∣ ~A)− 1

n0

ν†0~Y[K−1]

)
= modBc

(
Wk + E

(
Y0

∣∣∣ ~A)+ Ỹ⊥ +
1

n0

Ỹ

)
.

By (Chapman et al., 2019, Theorem 1), ~A can be recovered by processing (~U[K−1], ~W, Ỹ ),

hence E
(
Y0

∣∣∣ ~A) can also be recovered. Choose C := −Wk+E
(
Y0

∣∣∣ ~A) so that the claim

holds applying modulo’s distributive property.

Proof. (Lemma 4)

Take U0 = n0UK + ν†0U[K−1], W0 = n0WK + ν†0W[K−1], ~Uc = (U0, ~U[K]), ~Wc =

(W0, ~W ). Take C := E
(
ν†~Yc

∣∣∣ ~A) and D := modBc(ν
†(~Uc − ~Wc) − E

(
ν†Yc

∣∣∣ ~A)) =

modBc(E⊥
(
ν†Yc

∣∣∣ ~A)). Choose β :=
cov(Y,Ỹ | ~A)

δ2
.
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Include good-for-coding auxillary lattices with the prescribed scales in the lat-
tice ensemble from Theorem 8. With high probability since L̂ is good for coding
semi norm-ergodic noise of power δ2 + ε Ordentlich and Erez (2016) and applying
(Krithivasan and Pradhan, 2007, Appendix V) to Ỹ , Ỹ⊥ yields the result.

Proof. (Theorem 8)

D.2.1 Upper Bound for Singleton S

Take a nested lattice construction from (Erez et al., 2005, Theorem 1), involving
the following sets:

• Coarse and fine encoding lattices Lc, L1, . . . , LK (base regions Bc, B1, . . . , BK)
with each k has Lc ⊂ Lk designed with nesting ratio 1

n
log |Bc ∩ Lk| → rk.

• Discrete part auxiliary lattices L̂1, . . . , L̂K (base regions B̂1, . . . , B̂K) with each

L̂k ⊂ Lc having nesting ratio 1
n

log |Bc ∩ L̂k| → 1
2

log δ2
k.

• Initial residual part auxiliary lattice L̂′0 (base region B̂′0) with L̂′0 ⊂ LK , nesting

ratio 1
n

log |B̂′0 ∩ LK | → 1
2

log σ2
0.

• Residual part auxiliary lattices L̂′1, . . . , L̂
′
K (base regions B̂′1, . . . , B̂

′
K) with each

L̂′k ⊂ LK , having nesting ratio 1
n

log |B̂′k ∩ LK | → 1
2

log σ2
k.

The specified nesting ratios for the auxiliary lattices, σ2
0, σ

2
1, . . . , σ

2
K , δ

2
1, . . . , δ

2
K will be

specified later.
Initialization
Apply Lemma 3 to UK , and label the resulting variables Ỹ0 := Ỹ , Ỹ0⊥ :=

Ỹ⊥, (L̂′0, B̂
′
0) := (L̂′, B̂′), D0 := n0D, C0 := C, σ2

0 := σ2. In addition, define

δ2
0 := n2

0, β0 = 1
n0
, B̂0 := n0Bc Now,

UK = modBc

(
C0 + β0Ỹ0 + Ỹ0⊥

)
so the support of UK is contained within:

S0 :=[C0 + B̂′0 + (Lc/n0 +D0)] ∩ (Bc ∩ LK)

=[C0 + B̂′0 + β0[(D0 + Lc) ∩ B̂0] ∩ (Bc ∩ LK).

Support Reduction
Iterate over steps s = 1, . . . , K. For step s, condition on any event of the form

Ỹ(s−1) = `s ∈ (Ds−1+Lc)∩B̂s−1, of which there are no more than 2n·(log(δ2s−1)+ε) choices

due to the nesting ratio for L̂s−1 in Lc. TakeAs := Stages∗
(

var
(
~Yc

∣∣∣[ν0, . . . ,νs−1]†~Yc

))
.

By (Chapman et al., 2019, Theorem 1), ~As := A†s~Yc is recoverable by processing

( ~As−1,modn0Bc Y0
~U[K], ~W ).
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Now, apply Lemma 4 to (Y,ν,A) = (Ỹ(s−1)⊥,νs,As), and label the resulting vari-

ables Ỹs := Ỹ , Ỹs⊥ := Ỹ⊥, (L̂s, B̂s) := (L̂, B̂), (L̂′s, B̂
′
s) := (L̂′, B̂′), Ds := D, Cs :=

C, βs := β, σ2
s := σ2, δ2

s := δ2. Now,

UK = modBc

([
s∑
t=0

Ct + βtỸt

]
+ Ỹs⊥

)

so the support of UK is contained within:

Ss :=

[[
s∑
t=0

Ct + βt

[
(Dt + Lc) ∩ B̂t

]]
+ B̂′s

]
∩ (Bc ∩ LK).

Count Points in Estimated Supports
By design, there are no more than

∏s
t=0 2n·(

1
2

log(δ2t )+ε) possible choices for Ss. Each

Ss has no more than |B̂′s ∩ (Bc ∩ LK)| ≤ 2n·(rK+ 1
2

log(σ2
s)+ε) points. Then,

H(UK |~U[K−1], ~W ) ≤ min
s∈{0}∪[K]

n ·

(
rs +

1

2
log(σ2

s) +
s∑
t=0

1

2
log(δ2

t ) +Kε

)
.

Bound Simultaneity
An argument is given in Section D.2.1 for an upper bound on the singleton case.

The argument uses a Zamir-good nested lattice construction with a finite amount of
nesting criteria, and conditions on a finite amount of high-probability events. Then,
the argument holds for all cases of this form simultaneously by using a Zamir-good
nested lattice construction satisfying all of each case’s nesting criteria and condition-
ing on all of each case’s high-probability events.

The entropy for the general case S = {s1, . . . , s|S|}, T = {t1, . . . , t|T |} can be
rewritten using the chain rule:

H
(
~US

∣∣∣~UT , ~W) =

|S|∑
p=1

H
(
~Usp

∣∣∣~U{sm:m<p}∪T , ~W
)
.

D.3 Sketch of Theorem 9 for Upper Bound on Entropy-Rates of Decentralized
Processing Messages

Proof. (Sketch) Proceed identically as in the proof of Theorem 8 in Appendix D.2 up
until either Section D.2.1 Initialization if definition for Y0 was changed, or repetition
s where νs = [0, 0, . . . , 0, 1] in Section D.2.1 Support Reduction if definition for (νk)k
changed. In this portion, perform the following analysis instead. Compute:

D(msg) := modBc,msg((~a
(msg)
R + ~a

(msg)
Z )†~Y[K−1] −Wmsg)

= modBc,msg(λ
(msg)Xn

msg + Y
(msg)
⊥ −Wmsg)
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= modBc,msg

(
λ(msg)

γn
modBc,msg(M +Wmsg) + Y

(msg)
⊥ −Wmsg

)
= modBc,msg

((
1 +

λ(msg)

γn
− 1

)
modBc,msg(M +Wmsg) + Y

(msg)
⊥ −Wmsg

)
= modBc,msg

(
M +

(
λ(msg)

γn
− 1

)
modBc,msg(M +Wmsg) + Y

(msg)
⊥

)
. (D.1)

The additive terms in Equation (D.1) are independent of one another, and the terms

besides M have observed power δ2
(msg). Choose the nesting ratio for Lf,msg in B̂s as

r̂s :=
1

2
log
(
δ2
s

)
.

Then, with high probability since L̂s is good for coding semi norm-ergodic noise
below power δ2

s Ordentlich and Erez (2016) and applying (Krithivasan and Pradhan,
2007, Appendix V) to the derivation in Equation (D.1),

M ∈ L(msg) := (Lf,msg ∩Bc,msg) ∩modBc,msg

(
D(msg) + B̂s

)
, (D.2)

where D(msg) is computable by processing (~U[K−1], ~W, (Ỹt)[s−1]) and

1

n
log |L(msg)| ≤ r̂s + ε.

Rearranging Equation (D.2),

Xn
msg = modBc,msg(M +Wmsg) ∈ Ls := modBc,msg

(
L(msg) +Wmsg

)
.

Now define:

Ỹs := Xn
msg,

Ỹs⊥ := E⊥
(
Ỹ(s−1)⊥

∣∣∣Xn
msg

)
,

Cs := E
(
Ỹs−1

∣∣∣ ~As) ,
βs :=

cov
(
Ỹ(s−1)⊥, Ys

∣∣∣ ~As)
δ2
s

,

σ2
s := var(Ỹs⊥).

By construction, Ỹs⊥ is the components in Ỹ(s−1)⊥ uncorrelated with Xn
msg:

Ỹ(s−1)⊥ = βsỸs + Ỹs⊥ + Cs,
Ỹs ∈ Ls.

Proceed as in proof of Theorem 8.
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D.4 Proof of Lemma 5 for Recombination of Decentralized Processing Lattice
Modulos

Proof. By (Chapman et al., 2019, Theorem 1), a processing of ~U[K] with high proba-
bility outputs

a†R
~Y[K],

aR ∈ imageStages∗(Σ) ⊂ RK .

One can assume the nested lattices for the message transmitter, Lf,msg ⊃ Lc,msg,
are part of the lattice ensemble from Theorem 8, in particular ones finer than the
main coarse lattice Lc so that Lc ⊆ Lc,msg and:

1

n
log |Lc,msg ∩Bc| → r̂c,msg ≥ 0.

With this structure, then, for any aZ ∈ ZK , the encodings can be processed to
produce (using lattice modulo’s distributive and subgroup properties)

modLc,msg

(
modLc

(
a†R
~Y[K] + a†Z(~U[K] − ~W[K])

))
= . . .

modLc,msg

(
modLc

(
a†R
~Y[K] + a†Z

~Y[K]

))
= . . .

modLc,msg

(
a†R
~Y[K] + a†Z

~Y[K]

)
= . . .

modLc,msg (λXmsg + Ynoise) ,

where, in Equation (5.2), λ ∈ R and Ynoise is the conglomerate of noise terms inde-
pendent of Xmsg that are left over.

For channels with additive Gaussian noise, Ynoise is a mixture of Gaussians and
independent components uniform over good-for-quantization lattice base regions, so
Ynoise will probably, for long enough blocklength, land inside the base of any coarse
enough good-for-coding lattice (Krithivasan and Pradhan, 2007, Appendix V).

D.5 Proof of Corollary 2 for Achievability of the Decentralized Processing Rate

Proof. Fix any rmsg, aZ, aR, λ, σ
2
noise from their definitions in Lemma 5 and any γ2 ∈

(0, 1]. Choose a communications rate Rmsg satisfying the criterion in the statement.
Form an ensemble of lattices such as those described in Theorem 9, with nesting ratio
for Lc in Lmsg as 1

2
log(1/γ2) for γ ∈ (0, 1) and Lmsg = Lc if γ2 = 1. This design

means γ2
n := var modBc,msg(Xmsg +Wmsg)→n γ

2.
Have the transmitter encode its message M into a modulation Xn

msg as described
at the beginning of Section 5.3.1 using a dither Wmsg of which all helpers and the
decoder are informed. Have each k-th helper, k = 1, . . . , K, process its observation
vector into a lattice modulo encoding Uk as described in Theorem 9 using a dither
Wk of which the decoder is informed.

By Theorem 9, there exists a Slepian–Wolf binning scheme such that each k-th
helper can process its message Uk into a compression U∗k with 1

n
H(U∗k ) < Rk, and
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where a decoder can with high probability process the ensemble of compressions
(U∗1 , . . . , U

∗
K) along with dither side information ( ~W,Wmsg) into (U1, . . . , UK). Em-

ploy this binning scheme at each of the receivers, and have them each forward their
compressions U∗k to the decoder.

Have the decoder decompress (U∗1 , . . . , U
∗
K) into (Û1, . . . , ÛK). By the previous

statement, with high probability, (Û1, . . . , ÛK) = ~U. Use the processing obtained

from Lemma 5 on (Û1, . . . , ÛK), with high probability producing a signal:

Uproc := modLc,msg (λXmsg + Ynoise) .

Decoding
Decoding proceeds similar to Erez and Zamir (2004). At the decoder, compute:

U ′proc := modLc,msg (Uproc −Wmsg) = . . .

modLc,msg

(
λ

γn
modLc,msg (M +Wmsg) + Ynoise −Wmsg

)
= . . .

modLc,msg

((
1 +

λ

γn
− 1

)
modLc,msg (M +Wmsg) + Ynoise −Wmsg

)
= . . .

modLc,msg

(
M +

(
λ

γn
− 1

)
modLc,msg (M +Wmsg) + Ynoise

)
. (D.3)

Recall that the fine codebook lattice Lf,msg has been designed to be good for coding
and so that the coarse codebook lattice Lc,msg has a nesting ratio within it as Rmsg.
This means that Lf,msg is good for coding semi norm-ergodic noise with power less
than γ2

n2−2Rmsg .
Notice M ⊥ modLc,msg (M +Wmsg) ⊥ Ynoise, where the first independence is by

the crypto lemma Zamir (2014). This is to say that additive terms other than M in
Equation (D.3) are noise with power

var

{(
λ

γn
− 1

)
modLc,msg (M +Wmsg) + Ynoise

}
= . . .

γ2
n · (1− λ/γn)2 + σ2

noise. (D.4)

Furthermore, by (Krithivasan and Pradhan, 2007, Appendix V) on the noise, then
it is probably in the base region of any lattice good for coding semi norm-ergodic
noise with power less than Equation (D.4). Then, roundLf,msg

(U ′proc) = M with high
probability if

γ2
n · (1− λ/γn)2 + σ2

noise < γ2
n2−2Rmsg ,

or, rearranging,

Rmsg <
1

2
log

{
γ2
n

(λ− γn)2 + σ2
noise

}
. (D.5)

The limit of the right side of Equation (D.5) equals Equation (5.4).
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LOWER BOUND PROOFS
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Lemmas for calculation of entropies of the form H(~YT | ~W ) are needed to establish
the lower bound for Theorem 8. Writing T = {t1, . . . , t|T |} then using the chain rule

H(~YT | ~W ) =

|T |∑
p=1

H(Ytp |~Y{tq :q<a}p, ~W ).

Thus it is enough to treat a case of the form H(YK |~Y[K−1], ~W ).

Lemma 8. Take ~Y , ~W as described in the statement of Theorem 8. Then, the Zamir-
good lattices in the statement can be designed such that eventually∣∣∣∣ 1nH(YK |~Y[K−1], ~W )−

[
rK −

1

2
log
|[ΣQ][K−1],[K−1]|

|ΣQ|

]∣∣∣∣ ≤ ε.

Proof. The entropy-rate in question will be upper and lower bounded to within ε.
Upper Bound:

By the data processing inequality,

1

n
H(YK |~Y[K−1], ~W ) ≤ 1

n
H
(
YK

∣∣∣WK , E
(
YK

∣∣∣~Y[K−1]

))
=

1

n
H
(
YK − E

(
YK

∣∣∣~Y[K−1]

)∣∣∣WK , E
(
YK

∣∣∣~Y[K−1]

))
.

Take
σ2 := var

(
XK +W ∗

K

∣∣∣ ~X[K−1] + ~W ∗
[K−1]

)
+ ε.

Note σ2 ≥ var
(
YK

∣∣∣E(YK∣∣∣~Y[K−1]

))
by consideration of the involved variables’ covari-

ance matrices.
Now assume the lattice ensemble from the statement in Theorem 8 has a good

lattice Llem ⊂ LK with base region Blem and nesting ratio for Llem in LK approaching
1
2

log σ2/2−2rK . Since Llem is good for coding semi norm-ergodic noise of power σ2

Ordentlich and Erez (2016), applying (Krithivasan and Pradhan, 2007, Appendix V)

to YK −E
(
YK

∣∣∣~Y[K−1]

)
, then with high probability YK −E

(
YK

∣∣∣~Y[K−1]

)
∈ Blem. Then,

taking v† = cov(XK , ~X[K−1] + ~W[K−1]),

1

n
H(YK |~Y[K−1], ~W ) ≤ 1

2
log

σ2

2−2rK
+ ε

=
1

2

[
log

varXK +W ∗
K

2−2rK
− . . .

log(1− v† var( ~X[K−1] + ~W[K−1])
−1v)

]
+ ε

=
1

2
log

varXK +W ∗
K

2−2rK
− I(XK +W ∗

K ; ~X[K−1] + ~W ∗
[K−1]) + ε.
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Lower Bound:

H(YK |~Y[K−1], ~W ) = H(YK | ~W )− I(YK ; ~Y[K−1]| ~W )

= H(YK | ~W )− I(YK ; ~Y[K−1]) + I(YK ; ~Y[K−1]; ~W )

= H(YK | ~W )− I(YK ; ~Y[K−1]) (E.1)

= H(YK | ~W )− h(YK)− h(~Y[K−1]) + h(~Y )

= H(YK |WK)− h(YK)− h(~Y[K−1]) + h(~Y )

≥ n ·
(

1

2
log

varYK
2−2rK

− ε
)
− h(YK)− h(~Y[K−1]) + h(~Y ). (E.2)

where Equation (E.1) is because (noting Wk = −modLk
(Yk))

I(YK ; ~Y[K−1]; ~W ) = h(YK) + h(~Y[K−1]) + h( ~W ) . . . (E.3)

− h(YK , ~Y[K−1])− h(YK , ~W )− h(~Y[K−1], ~W ) . . .

+ h(YK , ~Y[K−1], ~W )

= h(YK) + h(~Y[K−1]) + h( ~W ) . . .

− h(YK , ~W )− h(~Y[K−1], ~W )

= h(YK) + h(~Y[K−1]) + h( ~W ) . . .

− h(YK)− h(W[K−1])− h(~Y[K−1])− h(WK)

= h(YK) + h(~Y[K−1]) . . .

− h(YK)− h(~Y[K−1])

= 0 (E.4)

and Equation (E.2) is because generating a dither WK and encoding XK as (YK , ~W ) is
a rate-distortion-efficient quantization scheme for that source and rate rk. By (Zamir
and Feder, 1996, Equation (22)) on each independent W1, . . . ,WK and the vector
entropy power inequality, eventually:

1

n
H(YK |~Y[K−1], ~W ) ≥ −2ε+

1

2
log

varXK +W ∗
K

2−2rK
− . . .

h(XK +W ∗
K)− h( ~X[K−1] + ~W ∗

[K−1]) + h( ~X∗ + ~W ∗)

with ~X, ~W ∗ as in the statement.

Theorem 11. Take ~Y , ~U, ~W as described in the statement of Theorem 8. Then for
disjoint S, T ⊂ [K − 1] define

• ~U ′ :=
(
~US,
(

modLc

Yt√
varYt+ε

)
t∈T

, YK√
varYK+ε

)
.

• ~Y ′ :=
(
~YS,
(

Yt√
varYt+ε

)
t∈T

, YK√
varYK+ε

)
.
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• r′K := rK + 1
2

log varYK .

then the Zamir-good lattices in the statement can be designed such that

1

n
H(YK |~US∪{K}, ~YT , ~W ) ≤ 1

n
H
(
U ′|S|+|T |+1

∣∣∣~U ′S∪T , ~W)+ ε.

and fixing variables (ν0,ν1, . . . ,νK , n0) as described in Theorem 8 then the upper

bound described therein holds on the variables (~U ′, ~Y ′, r′K ,
~W ).

Proof. Eventually in n, with high probability each U ′k = Y ′k for k = |S|+ 1, . . . , |S|+
|T | + 1. Also 1

n
H(YK |~US∪{K}, ~YT , ~W ) ≤ 1

n
H(YK |UK) In the nested lattice ensemble

from the statement, include lattice good-for-coding within noise power varYK with
base region B and 1

n
log |LK ∩ B| →n rK + 1

2
log varYK . Then with high probability

YK ∈ B. Take E as the intersection of all these high-probability events. Then:

1

n
H(YK |~US∪{K}, ~YT , ~W ) ≤ 1

n
[H(YK |~US∪{K}, ~YT , ~W, E) +H(1E)]

≤ 1

n
H(YK |~US∪{K}, ~YT , ~W, E) +

1

n

Then the first inequality in the statement holds for large enough n. The rest of the
proof follows identically to the provided one for Theorem 8 on variables (~U ′, ~Y ′, r′K ,

~W ).
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APPENDIX F

APPLICATION OF MAIN RESULTS TO COMPLEX CHANNEL STRUCTURE
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The model described in Section 1.1.1 is complex, but the rest of the body treats
a real model. The model in Section 1.1.1 is equivalent to the real channel where the
k-th observer receives two real signals:

X<k,raw := <(hkXsrc +Wk)

X=k,raw := =(hkXsrc +Wk)

where the vector (X<[K],raw, X
=
[K],raw) has covariance structure:

(X<[K],raw, X
=
[K],raw) ∼ N

(
0,

[
<(Σnoise + ~h~h†) −=(Σnoise + ~h~h†)

=(Σnoise + ~h~h†) <(Σnoise + ~h~h†)

])
. (F.1)

Apply encoding strategies as described in the body of the study to this equivalent
real channel as follows. Treat each observer as two virtual ones, one observing X<k,raw

and the other X=k,raw. Take equal scales α<k = αImk in the structured schemes. When
observer k is designated observer-to-base rate Rk > 0 each of the virtual observers
forms a rate-1

2
RK encoding of its observation.

Due to the block-antisymmetric structure of the covariance matrix in (F.1) and
evenly split message rates, any linear combination of the form

[a1, . . . , aK , b1, . . . , bK ]

of the encodings has equal recovery probability from Lemma 1 as the combinations

[b1, . . . , bK , a1, . . . , aK ],

[a1, . . . , aK , −b1, . . . ,−bK ].

Then the real and imaginary components of the underlying complex signals are re-
covered with equal probability to identical distortion levels through the described
schemes. Two options for treating the complex channel model are:

• Re-derive each result using complex lattices and different source coding formulae
when appropriate.

• Apply the reduction to real channels as described above.

The first option can yield some performance gains in low-blocklength implementations
since an n-dimensional complex lattice can be designed to have at least as good
performance characteristics as those of a real n-dimensional lattice.
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