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ABSTRACT  

   

The potential of using bio-geo-chemical processes for applications in geotechnical 

engineering has been widely explored in order to overcome the limitation of traditional 

ground improvement techniques. Biomineralization via urea hydrolysis, referred to as 

Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown 

to increase soil strength by stimulating precipitation of calcium carbonate minerals, 

bonding soil particles and filling the pores. Microbial Induced Desaturation and 

Precipitation (MIDP) via denitrification has also been studied for its potential to stabilize 

soils through mineral precipitation, but also through production of biogas, which can 

mitigate earthquake induced liquefaction by desaturation of the soil. Empirical 

relationships have been established, which relate the amount of products of these 

biochemical processes to the engineering properties of treated soils. However, these 

engineering properties may vary significantly depending on the biomineral and biogas 

formation mechanism and distribution patterns at pore-scale. This research focused on the 

pore-scale characterization of biomineral and biogas formations in porous media.  

The pore-scale characteristics of calcium carbonate precipitation via EICP and 

biogenic gas formation via MIDP were explored by visual observation in a transparent 

porous media using a microfluidic chip. For this purpose, an imaging system was designed 

and image processing algorithms were developed to analyze the experimental images and 

detect the nucleation and growth of precipitated minerals and formation and migration 

mechanisms of gas bubbles within the microfluidic chip. Statistical analysis was performed 

based on the processed images to assess the evolution of biomineral size distribution, the 

number of precipitated minerals and the porosity reduction in time. The resulting images 
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from the biomineralization study were used in a numerical simulation to investigate the 

relation between the mineral distribution, porosity-permeability relationships and process 

efficiency. By comparing biogenic gas production with abiotic gas production experiments, 

it was found that the gas formation significantly affects the gas distribution and resulting 

degree of saturation. The experimental results and image analysis provide insight in the 

kinetics of the precipitation and gas formation processes and their resulting distribution 

and related engineering properties. 
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CHAPTER 1 

INTRODUCTION 

1.1  BACKGROUND 

Most of traditional ground improvement techniques, such as jet grouting, pile 

driving, deep mixing, and vibratory compaction, are not appropriate to treat large volumes 

of soil since these techniques are expensive, require high pressure and heavy machinery, 

have a limited injecting distance, or they cannot be applied under or around existing 

facilities (O’Donnell et al., 2017; van Paassen, 2009). In order to overcome the limitations 

of traditional ground improvement techniques, the potential of using bio-geo-chemical 

processes for applications in geotechnical engineering has been widely explored (DeJong 

et al., 2010; Mitchell & Santamarina, 2005; van Paassen, 2009; Phillips et al., 2013). 

Pioneers in this field of research have found opportunities to use microbial activities 

in the subsurface, specifically Microbially Induced Carbonate Precipitation (MICP), to 

change the hydro-mechanical properties of soils, such as permeability (Nemati & 

Voordouw, 2003; Whiffin et al., 2007), shear strength (DeJong et al., 2006; van Paassen, 

2009; Whiffin, 2004), and compressibility (van Paassen, 2009). The process of MICP by 

urea hydrolysis has been the focus of research. In this process bacteria containing the 

enzyme urease are cultivated in the lab or stimulated in situ and supplied with a solution 

containing urea and calcium chloride. The urease enzymes catalyze the hydrolysis of urea, 

to produce ammonium chloride and dissolved inorganic carbon (DIC). In presence of 

dissolved calcium, the DIC will precipitate to form calcium carbonate minerals, which fill 

up the pore space, reducing porosity and permeability and form cementing bonds between 
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existing soil particles increasing density, strength and stiffness. The remaining ammonium 

chloride needs to be removed. Instead of using bacteria, the urease enzymes can also be 

extracted from plants. In that case the process is referred to as Enzymatic Induced 

Carbonate Precipitation (EICP). Many studies have proved that MICP or EICP via urea 

hydrolysis can be applied to various engineering applications, e.g. ground reinforcement 

(DeJong et al., 2006; van Paassen, 2009; Whiffin, 2004), liquefaction mitigation 

(O’Donnell, 2016), hydraulic control (Nemati & Voordouw, 2003; Zhang et al., 2010), 

entrapping groundwater contaminants (Ferris et al., 2004; Fujita et al., 2004), enhancing 

oil recovery (Brown, 2010), increasing storage security of CO2 (Cunningham et al., 2011), 

and fugitive dust control (Hamdan and Kavazanjian, 2016). The increase in strength and 

stiffness or reduction in porosity and permeability are related to the amount of precipitated 

calcium carbonate. The targeted amount of induced precipitation depends on the 

application.  

Besides urea hydrolysis, several other microbial processes have been investigated 

for their potential to stimulate biomineralization. (De Jong et al. 2010; Karatas, 2008). 

Microbial denitrification is one of these processes that is used to induce calcium carbonate 

precipitation (van Paassen et al., 2010). The process is slower than urea hydrolysis and 

requires more flushes at lower concentration; but in contrast to urea hydrolysis, 

denitrification does not result in any byproducts that require removal. One of these 

byproducts is nitrogen gas, which has been shown to have ground improvement potential, 

mitigating earthquake induced liquefaction through desaturation of the soil (He, 2013; 

O’Donnell, 2016). About 5 to 10 % of desaturation has been shown to be sufficient to 

dampen pore pressure build up during cyclic loading. The required amount of substrates to 
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desaturate a soil is much less than the amount of required calcium carbonate to cement the 

soil through biomineralization (van Paassen et al., 2017). However, as the persistence of 

the gas may be limited, it is proposed to use the process of Microbial Induced Desaturation 

and Precipitation (MIDP) by denitrification as a two-stage ground improvement method 

(O’Donnell et al., 2017a, b). During the first phase the soil is stabilized through biogas 

formation and if necessary in a second stage through biomineralization. 

1.2  MOTIVATION 

The processes of MICP, EICP or MIDP have been extensively studied and 

empirical relationships have been established between the engineering properties of treated 

soils such as soil strength and permeability and the overall amount of biomineral and biogas 

formations. However, these empirical relationships may significantly vary depending on 

the biomineral and biogas formation patterns including the location, size, and distributions, 

which require to be examined with pore-scale studies. This research will focus on the pore-

scale characterization of biomineral and biogas formations in porous medium.  

1.3  SCOPE AND ORGANIZATION 

In this study, the pore-scale characteristics of calcium carbonate precipitation via 

EICP and biogenic gas formation via MIDP were explored by visual observation in a 

transparent porous media using a microfluidic chip at a larger scale. For this purpose, an 

imaging system was designed and image processing algorithms were developed to analyze 

the experimental images and detect nucleation and growth of precipitated minerals and 

formation and migration of gas bubbles within the microfluidic chip. Statistical analysis 

was performed based on the processed images to assess the evolution of biomineral size 
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distribution, the number of precipitated minerals and degree of saturation over time due to 

the gas formation. The experimental results and image analysis provide insight in the 

kinetics of the precipitation process and gas formation and distribution. The purpose of this 

research is to attain a fundamental understanding of the process of biomineral and biogas 

formations at pore-scale. Specifically, the goals of this work are to: 

▪ Develop experimental testing systems and image processing algorithms for 

statistical evaluation of biomineral and biogas formations at pore-scale. 

▪ Characterize biomineral and biogas formation patterns at pore-scale. 

▪ Interpret the experimental results and study the effect of biomineral and biogas 

formations on the hydrodynamic properties of porous media. 

▪ Interpret biogeochemical transformations of biomineral and biogas formations at 

pore-scale by computational simulations. 

▪ Improve insights on the kinetics of biomineral and biogas formations in porous 

media. 

 

This dissertation is organized as follows. 

▪ Chapter 2 provides a literature review to give context to the background knowledge 

of microbially induced mineral and gas formations. 

▪ Chapter 3 describes a study on the kinetics and pore-scale characteristics of 

biological calcium carbonate precipitation in porous media using microfluidic chip 

experiment. 

▪ Chapter 4 presents a study in which the results of Chapter 3 are used to investigate 

how the pore-scale characteristics of the precipitated minerals affect the evolution 
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of hydrodynamic properties of porous media treated with multiple cycles of bio-

mineralization using a hybrid experimental-numerical approach. 

▪ Chapter 5 investigates biogenic gas formation mechanisms in comparison to the 

rapid CO2 gas formation via depressurization to assess how the rate of gas 

formation affects the gas formation and migration mechanisms and resulting gas 

distribution and equilibrated degree of saturation. 

▪ Chapter 6 summarizes the conclusions of this study and provides recommendations 

for further studies. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1      PRIOR STUDIES ON NUMERICAL MODELLING FOR ENGINEERING 

APPLICATION OF BIOMINERAL PRECIPITATION 

The design of engineering applications of MICP processes relies on availability of 

predictive models. However, since modeling of MICP in natural soil systems involves 

multiphase reactive transport and interactive coupled processes, this is challenging 

(Burbank et al., 2013; Hommel et al., 2016). Several numerical models have been 

developed and validated with a wide range of lab- and field-scale experimental studies. In 

order to predict the results of MICP process, these models interpret the MICP process at 

different scales including pore-scale (Kim et al., 2017; Mahabadi et al., 2017; Qin et al., 

2016), column-scale (Barkouki et al., 2011; Martinez et al., 2011), meter-scale (Nassar et 

al., 2018), and large-scale (van Wijngaarden et al., 2011, 2012, 2013). The geochemical 

processes for MICP can be modelled with different levels of complexity. Simplified models 

describe the process using a single chemical reaction equation (Cuthbert et al., 2012; 

Hommel et al., 2015; Qin et al., 2016). More advanced models include geochemical 

speciation reactions of the different solute species often by using specific geochemical 

speciation software packages such as PHREEQC (Charlton & Parkhurst, 2011; Parkhurst 

& Appelo, 2013), Orchestra (Salek et al., 2016; Ubbink, 2013), and TOUGHREACT 

(Barkouki et al., 2011). Although, currently developed models allow to predict the 

distribution of the solute species and solid minerals in time, validation of these predictions 

using actual experimental results is still limited (Barkouki et al., 2011; van Wijngaarden et 
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al., 2016). The parameters, which describe the kinetics of urea hydrolysis, such as the 

maximum urease activity, substrate affinity or product inhibition and enzymatic decay, or 

the kinetics of mineral nucleation and growth are often not implemented in these models 

or mathematically fitted to the experimental results. 

2.2  LARGE VARIATION IN EMPIRICAL CORRELATION BETWEEN 

ENGINEERING PROPERTIES AND BIOCEMENTED MATERIAL  

In order to employ biomineralization for engineering applications, empirical 

correlations have been established relating the amount of calcium carbonate to engineering 

properties (Al Qabany et al., 2011; Burbank et al., 2013; Mortensen et al., 2011; Terzis & 

Laloui, 2018; van Paassen, 2009; Whiffin et al., 2007; Zhao et al., 2014). However, these 

empirical correlations exhibit large variability. For example, Figure 2.1 shows empirical 

correlations between unconfined compressive strength and CaCO3 content reported in the 

literature (Gomez et al., 2017; Terzis & Laloui, 2018; van Paassen et al., 2010; Yasuhara 

et al., 2012). The observed variability in the engineering properties of the treated soils 

depends on many factors as explained in Figure 2.2. First, the initial conditions prior to 

treatment (Box I in Figure 2.2), which include the initial soil properties of the treated 

material, such as grain or pore size distribution, relative density and surface characteristics, 

and the environmental conditions, such as depth, temperature, pressure and groundwater 

chemistry (e.g. pH, salinity), will affect the feasibility, design and performance of the 

imposed treatment strategy (Box II in Figure 2.2), and the resulting engineering properties. 

The imposed treatment variables, which include the composition and concentration of the 

substrate solution, the type, amount and specific activity of the enzyme or micro-



  8 

organisms, and the injection strategy (mixing or permeation) together with the initial 

conditions will determine the properties of precipitated carbonate minerals (Box III in 

Figure 2.2). The characteristics of the precipitated minerals, which include the amount, 

size, mineral type, shape, texture, location and distribution, will define the final engineering 

properties of the treated soil mass. However, due to the complex coupling between the 

different variables and the wide range of potential initial and imposed process conditions, 

a large variability is expected for both the mineral properties and resulting engineering 

properties (Box IV). 

Scanning Electron Microscopy (SEM) images has been widely used to verify the 

existence of precipitated carbonate mineral within the biotreated materials (Al Qabany et 

al., 2011; DeJong et al., 2010; van Paassen, 2009). DeJong et al. (2010) analyzed SEM 

images of a thin cross section of MICP treated sands and proposed potential precipitation 

 

 
 

Figure 2.1. Empirical correlations relating unconfined compressive strength of MICP 

treated soils to the amount of calcium carbonate precipitation 
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Figure 2.2. Key factors affecting the biomineralization process and corresponding 

engineering properties of biotreated soils 
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patterns and failure mechanisms. Van Paassen (2009) found that mineral type, size and 

spatial distribution can vary depending on the precipitation conditions. Figure 2.3 

demonstrates the large variety of  precipitation patterns and mineral types and 

characteristics obtained via stimulating MICP, including randomly distributed calcite 

formation within the size range of 10~20 μm (Figure 2.3a), mixed lumps of spherical 

vaterite and rhombohedral calcite crystals up to 70 μm in size in silica sand (Figure 2.3b), 

a uniform coating of small calcite crystals 2~5 um in size on the surface of carbonate sands, 

and large rhombohedral calcite crystals up to 200 μm in size (Figure 2.3d). 

 

 

Figure 2.3. Large variation of biomineral type and precipitation patterns (a, b and c are 

SEM images of MICP treated sands, and d is SEM image of MICP treated glass beads, 

from van Paassen, 2009): (a) Randomly distributed calcite crystals, (b) Simultaneous 

formation of spherical vaterite and agglomerated calcite crystals, (c) Uniform coating 

calcite and bulk calcite sheets, (d) Irregular distribution of relatively large rhombohedral 

calcite crystals 
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2.3      REVIEW OF BIOGAS FORMATION VIA DENITRIFICATION 

Urea hydrolysis has been considered and studied as the most common process for 

MICP due to its efficiency and rapid process time to induce carbonate mineral precipitation 

within soils. However, urea hydrolysis also produces ammonium as a byproduct which is 

a potential toxic substance required to be removed. Microbial denitrification has shown the 

potential as an alternative MICP mechanism since it can precipitate carbonate mineral 

(much slower than urea hydrolysis). In addition, denitrification also can produce biogenic 

gases, nitrogen and carbon dioxide, as byproducts which are non-toxic gas and able to 

desaturate the treated soils. In particular, desaturation by biogenic gas formation during 

denitrification has been suggested as an application to mitigate both static liquefaction (He 

& Chu, 2014; Pham et al., 2016) and earthquake-induced liquefaction (He et al., 2013; 

Kavazanjian et al., 2015; Rebata-Landa & Santamarina, 2012). 

Denitrifying organisms are ubiquitous in the subsurface and one of well-known 

denitrifying organisms is Pseudomonas denitrificans which are very common in subsurface 

and aquatic environments (Ehrlich, 2002; Fredrickson and Fletcher, 2001; Fujita et al., 

2000; Hamdan et al., 2016; Karatas, 2008). Denitrifying organisms are active within 

oxygen deficient subsurface condition in the presence of an electron acceptor (e.g. 𝑁𝐶𝑂3
−). 

Denitrification is also expected to be a predominant microbial reaction under typical 

subsurface conditions due to highly negative standard Gibbs free energy (∆Gº = -785 

kJ/mol) in comparison to that of urea hydrolysis (∆Gº = -27 kJ/mol). 

It has been known that a small reduction of soil water saturation is sufficient to 

significantly increase the cyclic resistance of soils (Arab et al., 2011; Tsukamoto et al., 

2002; Yang et al., 2004; Yegian et al., 2007; O’Donnell, 2016). Recent studies have shown 
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that the saturation level could be decreased to 80~95 % via microbial denitrification due to 

the nitrogen gas formation within several days (Nakano, 2018; O’Donnell et al., 2017; 

Pham et al., 2016). There also have been efforts to develop numerical models to predict 

the desaturation of soils via microbially induced denitrification, which theoretically 

estimate the amount of nitrogen gas formation at different depth or pressure levels using 

the Henry’s law and ideal gas law (van Paassen et al., 2018; Hall et al., 2018). However, 

these models and experiments assume homogeneous gas distribution throughout the soil. 

Information about the spatial distribution and persistence of the biogenically formed gas is 

limited and requires further studies.  

Researchers have investigated the distribution patterns in biogenic gas formation 

through denitrification. He (2013) observed that large gas pockets were produced during 

microbial denitrification and non-uniformly distributed using X-ray CT cross section 

images. Pham et al. (2016) visualized produced biogenic gas within PVC sand column 

using 3D X-ray CT tomography. Most of the gas appeared to be present in coarser grained 

sand at the top and bottom of the column, while in a finer grained sand the produced gas 

created cracks mostly in the upper half of the sand column. Although it has been found that 

a small fraction of gas in the pores can significantly affect the mechanical behavior of soils, 

it is not clear how the mechanism of biogenic gas formation within a soil system will affect 

the spatial distribution, and how the equilibrated degree of saturation after treatment affects 

the mechanical response and persistence of the gas phase. 
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CHAPTER 3 

BIOMINERAL FORMATION IN POROUS MEDIA:  

AN EXPERIMENTAL STUDY 

 

This chapter has been submitted to Water Resources Research Journal as Kim, D., 

Mahabadi, N., Jang, J., van Paassen, L. A. (2019). “Assessing the Kinetics and Pore Scale 

Characteristics of Biological Calcium Carbonate Precipitation in Porous Media using a 

Microfluidic Chip Experiment.” The article is under review after the first revision.” 

 

ABSTRACT 

Biomineralization through Microbially or Enzymatically Induced Calcium 

Carbonate Precipitation (MICP/EICP) by urea hydrolysis has been widely investigated for 

various engineering applications, such as increasing strength and stiffness or reducing 

permeability in granular soils or fractured rocks. Empirical correlations relating the amount 

of mineral precipitation to engineering properties show a large variation, which can be 

partly attributed to the pore-scale characteristics of the precipitated minerals. This study 

aimed to gain insight into the kinetics and pore-scale characteristics of calcium carbonate 

precipitation in porous media. A reactive solution was flushed 10 times through a 

transparent microfluidic chip to stimulate hydrolysis of urea and precipitation of calcium 

carbonate. The process was monitored through time-lapse imaging. An image-processing 

algorithm was developed to detect the individual precipitated minerals and separate them 

from the grains and trapped air. Statistical analysis was performed to quantify the number 

and size distribution of precipitated minerals during each treatment cycle and the 
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cumulative volume, surface area, bulk precipitation rate, and supersaturation were 

calculated. Results were compared with a simple numerical model and existing theory on 

crystal nucleation and growth. The results showed that despite a limited resolution the 

observed bulk precipitation kinetics reasonably corresponded with simulated results, but 

were significantly affected by the assumed particle shape. The cumulative crystal volume 

(assuming a semi-spherical crystal shape), bulk precipitation rate and number of observable 

crystals were lower than expected. Possible explanations for observed discrepancies are 

discussed, including the presence of inhibiting compounds, local pore-clogging or 

observation bias. 

3.1  INTRODUCTION 

Biomineralization has potential for various engineering applications, e.g. 

improving soil strength (Phillips et al., 2013; van Paassen, 2009; Whiffin et al., 2007), 

reducing the hydraulic conductivity of soils (Nemati & Voordouw, 2003; Zhang et al., 

2010), immobilizing groundwater contaminants (Ferris et al., 2004; Fujita et al., 2004), 

enhancing oil recovery (Cunningham et al., 2009), increasing storage security of CO2 

(Cunningham et al., 2011), and fugitive dust control (Hamdan & Kavazanjian, 2016). 

Biomineralization can be stimulated through Microbially or Enzymatically Induced 

Carbonate Precipitation (MICP or EICP) by stimulating urea hydrolysis in presence of 

dissolved calcium ions. Urea hydrolysis is a slow irreversible reaction, which can be 

catalyzed by the enzyme urease. The urea is dissolved in water and hydrolyzes into 

ammonia and inorganic carbon. In aqueous solution, the ammonia is in equilibrium with 

ammonium, while the inorganic carbon can be present as carbon dioxide, bicarbonate or 
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carbonate depending on pH, or it can form complex ions in combination with calcium. At 

neutral pH, the dominant species are ammonium and bicarbonate and the overall reaction 

of urea hydrolysis is: 

𝐶𝑂(𝑁𝐻2)2 + 3𝐻2𝑂
   𝑈𝑟𝑒𝑎𝑠𝑒   
→      2𝑁𝐻4

+ + 𝐻𝐶𝑂3
− + 𝑂𝐻−          (1) 

The pH increases as hydroxide is generated to maintain the charge balance. An increase in 

pH causes bicarbonate to dissociate to carbonate and release a proton.  

𝐻𝐶𝑂3
−→ 𝐶𝑂3

2− + 𝐻+               (2) 

And in the presence of sufficient calcium ions, calcium carbonate will precipitate.  

𝐶𝑎2+ +𝐶𝑂3
2−→ 𝐶𝑎𝐶𝑂3(𝑠)                                (3) 

The acid released due to speciation and precipitation buffers the alkalinity production from 

the hydrolysis reaction and consequently the pH remains around neutral. As the 

precipitated biominerals fill the pore space they will reduce porosity and permeability and 

by forming cementing bonds between the grains in granular soils they may increase 

strength and stiffness of the soil matrix. 

The design of engineering applications of MICP or EICP processes relies on 

availability of predictive models. However, since modeling of EICP in natural soil systems 

involves multiphase reactive transport, non-linear reaction kinetics and interactive coupled 

processes, this is a challenging task (Burbank et al., 2013; Hommel et al., 2016). Several 

numerical models have been developed, of which some have been validated using 

experimental studies. These studies have interpreted the process at different scales 

including pore-scale (Kim et al., 2017; Mahabadi et al., 2017; Qin et al., 2016), column-

scale (Barkouki et al., 2011; Martinez et al., 2011), meter-scale (Nassar et al., 2018), and 

large-scale (Van Wijngaarden et al., 2011, 2012, 2013). The geochemical processes for 
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MICP can be modelled with different levels of complexity. Simplified models describe the 

process using a single chemical reaction equation, which combines equations 1, 2 and 3. 

(Cuthbert et al., 2012; Hommel et al., 2015; Qin et al., 2016). More advanced models 

include geochemical speciation reactions of the different solute species often by using 

specific geochemical speciation software packages such as PHREEQC (Charlton & 

Parkhurst, 2011; Parkhurst & Appelo, 2013), Orchestra (Salek et al., 2016; Ubbink, 2013), 

or TOUGHREACT (Barkouki et al., 2011). Some of these models included precipitation 

kinetics, describing the nucleation and growth rate of CaCO3 minerals (e.g. Barkouki et al., 

2011; Ebigbo et al., 2012; Qin et al., 2016). Van Paassen (2009) showed that biochemical 

conversion could be reasonable well predicted, using a simplified single reaction approach, 

in which the substrate concentrations, and kinetics of urea hydrolysis are used as input 

variables, but more complex models were required to predict pH, supersaturation and 

resulting characteristics of precipitated minerals. However, quantitative prediction to a 

level at which the pH, and the number, size and type of crystals were simulated accurately 

was not yet possible as the parameters, which describe the kinetics of urea hydrolysis, such 

as the maximum urease activity, substrate affinity, product inhibition, or enzymatic decay, 

and the kinetics of mineral nucleation and growth in such complex models could not be 

determined a priori and needed to be fitted mathematically to experimental results. 

In order to relate the amount of calcium carbonate to engineering properties, i.e. 

porosity, permeability, strength or stiffness, empirical relationships have been established. 

(Al Qabany et al., 2011; Burbank et al., 2013; Mortensen et al., 2011; Terzis & Laloui, 

2018; van Paassen, 2009; Whiffin et al., 2007; Zhao et al., 2014). However, these empirical 

correlations exhibit large variability (Terzis & Laloui, 2018; van Paassen, 2010; Yasuhara 
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et al., 2012). The observed variability in the engineering properties of the treated soils 

depends on many factors. The characteristics of precipitated carbonate minerals, such as 

the amount, size, mineral type, shape, texture, location and distribution, have been found 

to significantly affect the mechanical response (Almajed et al., 2019; De Jong et al., 2010). 

Many studies have used Scanning Electron Microscopy (SEM) images to analyze the 

characteristics of carbonate minerals formed through MICP or EICP (e.g. Almajed et al., 

2019; Al Qabany et al., 2011; DeJong et al., 2010; van Paassen, 2009). DeJong et al. 

(2010) analyzed SEM images of a thin cross section of MICP treated sands and suggested 

that the failure mechanism depended on the precipitation pattern. Van Paassen (2009) 

found that mineral type, size and spatial distribution can vary depending on the 

precipitation conditions. Although high-resolution imaging tools, such as SEM, Atomic 

Force Microscopy (AFM) or Transmission Electron Microscopy (TEM) can provide 

valuable information about mineral type and structure, they are not capable of monitoring 

the MICP process during treatment and don’t provide statistically quantifiable information 

about the spatial and property distribution of the precipitated minerals throughout a larger 

porous domain. Alternatively, microfluidic chips have been used to investigate 

precipitation kinetics and crystal characteristics of calcium carbonate in porous media 

(Dawe & Zhang, 1997; Wang et al., 2019; Yoon et al., 2012; Zhang et al., 2010). Dawe & 

Zhang (1997) developed a method in which they could observe crystal nucleation and 

growth inside a microfluidic chip under a constant supersaturation condition. They 

investigated the effects of the solution composition, temperature and the presence of a gas-

liquid interface on the spontaneous nucleation and the calcite crystal growth rate. Zhang et 

al. (2010) used a microfluidic chip to study precipitation induced by transverse mixing of 
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two separated solutions containing calcium and carbonate. The results were compared to 

numerical simulations by Yoon et al. (2012). Wang et al. (2019) used microfluidic chips to 

study the formation of calcite crystals by MICP. Using sequential microscopic images, with 

an image resolution of 0.65 μm/pixel, they were able to qualitatively describe the shape 

and size of the crystals, while varying the amount and composition of the injected solutions.  

In this study, the pore-scale characteristics of calcium carbonate precipitation via 

EICP were explored by visual observation in a microfluidic chip. Experiments were 

performed at a larger scale. For this purpose, we used an imaging system with a digital 

camera with micro-lens. An image processing algorithm was developed to analyze the 

experimental images and detect the growth of individual and agglomerated precipitated 

minerals with time for the entire microfluidic chip pore space. Statistical analysis was 

performed based on the processed images to assess the evolution of biomineral size 

distribution and the number of precipitated minerals over time. Existing theory on crystal 

nucleation and growth and a simplified model describing the combined process of urea 

hydrolysis and calcium carbonate precipitation was used to interpret the results of the 

image analysis and provide insight on the kinetics of the precipitation process. 

3.2  THEORETICAL BACKGROUND 

3.2.1    Kinetics of Calcium Carbonate Precipitation 

The amount, size and mineralogy of calcium carbonate minerals depend on the 

kinetics of the precipitation process. The precipitation process can be divided in two 

separate mechanisms: crystal nucleation and crystal growth. Several models have been 

proposed to describe the rate of calcite crystal growth (e.g. Lasaga, 1981; Nancollas & 
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Reddy, 1971; Noiriel et al., 2012; Söhnel & Garside, 1992). A general equation for the 

bulk precipitation rate, rp, [kmol m-3 h-1] is often described as: 

𝑟𝑝 = 𝑘𝑝(𝑆 − 1)
𝑛               (4) 

in which kp is the bulk kinetic ‘constant’ in [kmol m-3 h-1], S is the supersaturation, and n 

is the kinetic order. The kinetic order depends on the growth mechanism. For example, first 

order expressions (n = 1) have been suggested to describe the kinetics of calcite growth 

(Kazmierczak et al., 1982; Nancollas & Reddy, 1971), for example when the crystallization 

process is limited by adsorption of lattice ions (Nielsen, 1984) or when the rate is controlled 

by diffusion (Pokrovsky et al., 2005). Second order expressions (n = 2) are introduced to 

describe growth at screw dislocations by the spiral mechanism theoretically (Blum & 

Lasaga, 1987; Lasaga, 1998; Then et al., 2010) and have been measured experimentally 

(House, 1981; Nancollas & Reddy, 1973; Shiraki & Brantley, 1995). The second order 

expression is suggested to describe the precipitation rate for supersaturated solutions, 

where S is close to 2 while the pH of solution is above 7 (Davies & Jones, 1955; Dawe and 

Zhang, 1997). Different orders of expressions have been reported (Söhnel & Mullin, 1982) 

but were not considered in this study. The supersaturation S is defined as: 

𝑆 = √
𝐼𝐴𝑃

𝐾𝑠𝑝
                 (5) 

where IAP is the ionic activity product of the dissolved precipitating ions (calcium and 

carbonate) and Ksp is the solubility product of the mineral phase. Calcium carbonate is a 

polymorph, which implies that the crystal lattice can have varying configurations. The most 

common and stable calcium carbonate minerals are calcite and aragonite. Aragonite may 

form when the growth of calcite is inhibited due to the presence of dissolved ions, such as 
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magnesium and strontium (Hill & Forti, 1997; Morse, 1983; Perdikouri et al., 2013). 

Vaterite and amorphous calcium carbonate (ACC) are meta-stable calcium carbonate 

minerals and calcium carbonate monohydrate and ikaite are calcium carbonate minerals, 

which have water molecules incorporated in their crystals lattice. The solubility product 

depends on the mineral type and varies with temperature (Gal et al., 1996; Plummer & 

Busenberg, 1982). For example, at 25 ºC. Ksp is 10-8.48 for calcite, 10-8.34 for aragonite, 10-

7.91 for vaterite, and 10-6.40 for ACC (Gal et al., 1996; Plummer & Busenberg, 1982; Sass 

et al., 1983). Due to their higher solubility product, the meta-stable precursor minerals 

typically can only occur under conditions of very high supersaturation, and may dissolve 

and recrystallize into a more stable polymorph. 

The bulk kinetic ‘constant’, kp, is in fact not a constant, but a function of the growth 

mechanism, mineral type, crystal surface area and number of crystals:  

𝑘𝑝 =
𝑘𝑔𝐴𝑇

𝑉𝑚
=
𝑘𝑔𝐴𝑐𝑁

𝑉𝑚
               (6) 

in which kg is the actual crystal growth rate constant in [m s-1], AT is the total crystal surface 

area [m2], Ac is the average single crystal surface area [m2], N is the number of crystals in 

[m-3] and Vm is the molar volume of the crystallizing solid in [m3 kmol-1], which is the ratio 

between molar mass (Mc) in [g mol-1] and solid density (ρc) in [g m-3]. The growth rate 

constant, kg, in [m s-1] depends on the mineral type and temperature. For calcite, Mc = 100 

[kg kmol-1], ρc = 2710 [kg m-3] and consequently Vm = 0.0369 [m3 kmol-1] (Graf, 1961). 

The actual crystal growth rate constant depends on mineral type and temperature. For 

calcite, kg is about 10-11 [m s-1] at 25 ºC (Kralj et al., 1997). Both Ac and N can vary in time 

during the biomineral formation process. The overall precipitation rate is proportional to 

the total surface area, AT, of precipitated minerals calcite over the solution volume (Appelo 
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& Postma, 2004), in which the total surface area can be defined as the sum of surface areas 

of each individual crystal.  

Nucleation, i.e. the formation of new crystals, occurs when the solution becomes 

sufficiently supersaturated that clusters of dissolved molecules coagulate and get a critical 

size, which enables them to resist the tendency to redissolve, and allows them to start 

growing as a solid crystal. When nuclei appear in a pure liquid phase this is called 

homogeneous nucleation (primary nucleation). The theoretical rate of homogeneous 

nucleation for a spherical cluster of molecules is described using an Arrhenius equation, in 

which the activation energy, ΔGcrit, needs to be exceeded before nuclei can start to grow 

(Mullin, 2001):  

𝐽 =
𝑑𝑁

𝑑𝑡
= 𝐴 exp [−

∆𝐺𝑐𝑟𝑖𝑡

𝑘𝑇
] = 𝐴 exp [−

16𝜋𝛾3𝜈2

𝑘𝑇3(𝑘𝑇(ln𝑆))
2]             (7) 

where J is the nucleation rate in [m-3 s-1], A is the pre-exponential constant in [m-3 s-1], γ is 

the interfacial tension in [J m-2], ν is the molecular volume of CaCO3 (6.13 x 10-29 m3), k is 

Boltzman constant (1.3805 x 10-23 J K-1) and T is temperature [K]. The pre-exponential 

component, A, represents the frequency of collisions between reactant molecules, and can 

be estimated following Nielsen (1964), but is typically assumed to be constant. In this study 

we used A ≈ 1035.5 [m-3 s-1], following Söhnel & Mullin (1982). Assuming constant 

temperature at 298 K the nucleation rate can be calculated for different values of surface 

tension, which has been reported to range from 7 to 280 [mJ m-2] (Söhnel & Mullin, 1982). 

In this study we selected several values: γ = 0.029 J m-2 in presence of polymeric substrate 

(Dalas et al., 1988) to γ = 0.064 or 0.098 J m-2 at which spontaneous nucleation occurs in 

a homogeneous solution in absence of nucleation sites (Liouliou et al., 2007; Söhnel & 
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Mullin, 1982) or γ = 0.120 J m-2 in the presence of impurities which inhibit nucleation 

(Söhnel & Mullin, 1982). This equation indicates that theoretical nucleation rates may vary 

extremely, depending on the supersaturation and the presence of compounds, which either 

lower or increase the interfacial tension, and illustrates the difficulty to properly predict the 

rate of precipitation in case of spontaneous nucleation. On top of that, in the presence of 

seed crystals or other surfaces such as bacteria, enzymes, gas bubbles (Dawe & Zhang, 

1997) or other minerals, which can act as a crystal nucleus, new crystals can appear through 

heterogeneous nucleation. In this case, the activation energy for nucleation reduces by the 

presence of seed crystals or other nucleation sites. Not all the minerals can act as a nucleus. 

For example, Lioliou et al. (2007) showed that quartz was hardly active as nucleation site, 

while calcite obviously did. Consequently, in presence of calcite seeds, heterogeneous 

nucleation can take place at lower supersaturation or nucleation can be skipped completely 

(Lioliou et al., 2007; Qin et al., 2016; Tai & Chen, 1995). The impact of bacterial cell 

surfaces as nucleation sites on the morphology, mineralogy and size of CaCO3 precipitation 

has been also discussed (Mitchell & Ferris, 2006). Once crystals are present in the solution, 

their growth rate depends on the supersaturation and can be predicted using equations 4 

and 6 above, where the crystal growth rate constant can vary depending on the type of 

calcium carbonate mineral phase.   

3.2.2    Simplified Model Describing the Kinetics of EICP 

When combining hydrolysis of urea and precipitation of calcium carbonate, the rate 

of precipitation and the characteristics of resulting precipitated CaCO3 minerals will 

depend on the hydrolysis rate, as the hydrolysis and precipitation reactions are coupled.  
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The hydrolysis rate is a function of several factors including the amount and source 

of urease enzyme, concentration of urea, calcium, pH, temperature, and other 

environmental conditions, such as presence of inhibiting compounds, salinity, etc. (e.g. 

Fidaleo & Lavecchia, 2003; Hammes & Verstraete, 2002; Hammes et al., 2003; Lauchnor 

et al., 2015; Mortensen et al., 2011; Stocks-Fischer et al., 1999; Whiffin, 2004; van 

Paassen, 2009). The observed urease activity in EICP or MICP experiments is often lower 

than expected. Flocculation or flush out of enzymes may reduce the available amount of 

enzymes in the porous medium, or the hydrolysis rate may decrease in time, as a result of 

decay or encapsulation of the bacteria or enzymes into a crystal lattice.  

Combining urea hydrolysis and calcium carbonate precipitation, van Paassen 

(2009) demonstrated through batch experiments and numerical simulations that once 

nucleation has occurred and there is still sufficient calcium present in the solution, the 

hydrolysis rate and bulk precipitation rate are approximately equal during the major part 

of the reaction.  

𝑟ℎ ≈ 𝑟𝑝                 (8) 

This suggests that the bulk precipitation rate can be predicted if the hydrolysis rate 

is known. Also, it can be deduced by combining and inverting Equations 4 and 6 that the 

supersaturation is directly related to the bulk precipitation rate, and consequently a function 

of the hydrolysis rate: 

𝑆 = √
𝑟𝑝𝑉𝑚

𝑘𝑔𝐴𝑇

𝑛
+ 1                 (9) 

Which implies that at low hydrolysis rates precipitation occurs at relatively low 

supersaturation, while at high hydrolysis rates supersaturation is relatively high and may 
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remain high for a prolonged period of time. Conditions of prolonged high supersaturation, 

may extend growth of meta-stable CaCO3 minerals, such as amorphous CaCO3 or vaterite, 

which was demonstrated by Al-Thawadi & Cord-Ruwisch (2012) or van Paassen (2009). 

In this study we used a simplified model to predict the cumulative volume of 

precipitated minerals, following (e.g. Connolly et al., 2013; Fidaleo & Lavecchia, 2003; 

Lauchnor et al., 2015; van Paassen, 2009; van Wijngaarden et al., 2011). Using the applied 

amount of substrates and enzymes and the urease activity provided by the manufacturer as 

input parameters and assuming hydrolysis and precipitation rate are equal, the reaction rate 

is described using the equation: 

𝑟ℎ = 𝑟𝑝 = 𝑣𝑚𝑎𝑥
𝐶𝑠

𝐾𝑚+𝐶𝑠
                        (10) 

in which, rh is the hydrolysis rate, vmax is the maximum urease activity in [mol L-1 hr-1] as 

provided by the manufacturer’s specifications, Cs is the concentration of the substrate urea 

in [mol L-1] and Km is the half saturation coefficient (affinity constant) in [mol L-1]. 

3.3      EXPERIMENTAL STUDY 

3.3.1    Preparation of Reactive Solution 

The reactive solution prepared in this study was based on Nemati & Voordouw’s 

experimental work (2003) and contained 12g (~200 mmol L-1) urea (CO(NH2)2, U5378, 

Sigma-Aldrich), 30g (~200 mmol L-1) calcium chloride dihydrate (CaCl2∙2H2O, C3881, 

Sigma-Aldrich), and 0.1g (~0.01 w%) urease powder (extracted from jack beans, Type III, 

26100 [U g-1], U1500, Sigma-Aldrich) per liter. DI water was used to prepare the solution. 

Consequently, the concentrations of both urea and calcium chloride were at a 1:1 molar 
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ratio and the expected maximum urease activity, vmax ≈ 0.078 [mol-urea L-1 hr-1]. Unlike 

Nemati & Voordouw’s recipe, the solution did not include milk powder. 

3.3.2    Microfluidic Chip Experiment 

A two-dimensional transparent microfluidic chip (Micronit Microfluidics BV, The 

Netherlands) was used, which was designed and fabricated to resemble a homogenized 

circular particle packing (Mahabadi et al., 2016; Zheng et al., 2017). The dimension of the 

microfluidic chip is 21.3 mm×12.7 mm, and the internal thickness (pore depth) is 50 μm. 

The microfluidic chip includes 377 circular mono-sized grains with 800 μm of diameter 

and the size of pore throat between two grains is 140 μm (Figure 3.1a). Figure 3.1b shows 

the configuration of the microfluidic chip experimental set-up. The microfluidic chip with 

injection and extraction ports is fixed in a steel holder and placed vertically. Before the 

first flush, the microfluidic chip was air-filled. The prepared solution was injected into 

from the bottom inlet. After the injection, both inlet and outlet ports were closed to prevent 

evaporation and fluid flow. The solution was left to react for 48 hours. The injection-

reaction process was repeated 10 times. The volume of injected solution in each cycle was 

about 0.5 mL, which is significantly larger than the pore volume of the microfluidic chip 

to ensure the entire system volume would be replaced, including the volume of the tubing 

and inlet and outlet channels. After each flushing and reaction cycle, the microfluidic chip 

was flushed with about 0.5 mL of deionized water, to wash out the retained solution before 

injecting the next batch of EICP solution.  

Time lapse digital photography was performed every 10 minutes for the entire 

reaction process (48 hours each cycle) to continuously monitor the evolution of carbonate  
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(a)  

 (b)  

Figure 3.1. (a) Geometry of the patterned microfluidic chip (Mahabadi et al., 2016; Zheng 

et al., 2017), (b) Experimental configuration of the microfluidic chip test 

 

mineral formation within the entire microfluidic chip. A digital camera (D5200, Nikon) 

equipped with a 60mm micro-lens (AF-S Micro NIKKOR 60mm f/2.8G ED, Nikon) was 

used to capture the growth of precipitated calcium carbonate minerals in high-resolution 

images.  

3.3.3    Image Processing 

A comprehensive image processing algorithm was developed using MATLAB (ver. 

R2017a) to automatically detect and extract the precipitated calcium carbonate crystals 

from the original images and monitor the precipitation process within the microfluidic chip 

over time. The proposed algorithm allows for a consistent detection of the boundaries of 

the different phases, minimizing human error associated with manual detection, thereby 

improving the reproducibility of the detection process, and significantly reduces the time 
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for massive image data analysis. Figure 3.2a shows the raw image of the entire microfluidic 

chip at the end of 4th treatment cycle. Figure 3.2b highlights a cropped area of Figure 3.2a 

including the circular grains, precipitated minerals, and a few air bubbles which were 

trapped along the sides of the microfluidic chip. It should be noted that during the injection, 

some air bubbles were also flushed with the injected solution through the microfluidic chip. 

At the end of the injection, a few air bubbles were trapped in the low accessible pores along 

the left and right boundaries of the domain. Figure 3.2c shows the final processed image 

by an automated algorithm including the detected grains (presented in green color), 

precipitated minerals (presented in red color), and pore space (presented in white color). 

The detailed steps of the proposed image processing algorithm are explained as follows: 

Image binarization: Image binarization is the first prerequisite for multi-phase 

segmentation, which aims to detect the outlines of all different phases such as grains, 

minerals, and pores. Acquisition of desired information from a digital image requires the 

segmentation of objects in it. Every digital color image consists of three n×m Red, Green 

and Blue (RGB) matrixes where n and m define the number of pixels in horizontal and 

vertical directions, and each pixel has a value ranging from 0 to 255. Converting the color 

image (RGB) to the gray-scale format (intensity image) allows to simply store all the 

information into a single matrix that facilitates post image segmentation processes. The 

digital RGB raw images of the microfluidic chip experiment were converted to gray-scale 

image and then turned into black and white (0 and 1) binary image by applying different 

intensity thresholds to classify different target objects (grains, minerals, and air pockets). 

The section below explains the image processing steps applied to detect the three different 

phases (air pockets, circular grains, and precipitated minerals): 
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Step 1. Detection of air pockets: In order to identify the location, size and numbers 

of biominerals, unnecessary objects such as air bubbles and circular grains needed to be 

identified and removed from the images. Air bubbles were detected and stored in a separate 

binary image using the Roberts edge detection method (1965) (Figure 3.2d). However, in 

some cases the detected outlines of air bubbles include discontinuities. For this reason, we 

used another function ‘imdilate’ in MATLAB that allows to reconstruct the continuous 

boundary around the disconnected air bubbles by dilating the boundary pixels (Figure 3.2f). 

The dilated reconstructed boundaries of bubbles were filled and then contracted to compose 

bubbles and return their expanded size to the original size. The detected bubbles were later 

removed from the binary image constructed in step 3 for mineral detection (Figure 3.2j). 

Step 2. Detection of circular grains: The Canny edge detection method (1986) was 

applied to obtain the perimetric boundaries of circular grains (Figure 3.2g). This method 

uses a block to find edges by searching for local maxima of the gradient within the Gaussian 

filtered image. The Canny method finds two threshold values, a higher and lower threshold, 

to detect strong and weak edges, and includes the weak edges in the output only when they 

are connected to strong edges. By applying the Gaussian filter and judging connectivity 

between weak and strong edges, the Canny method is more likely to remove the noise and 

detect a wide range of edges with high sensitivity. Thereafter, the ‘imfindcircle’ function 

in MATLAB was employed to find and record the center’s coordination and diameter of 

circular grains (detected grains presented by red circles in Figure 3.2h). However, due to 

variations of brightness over the grains, the size of detected circles varied. Considering the 

fact that all the grains have a fixed size (800 µm), the size of the detected circular grains  
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Figure 3.2. Phase segmentation performed by the automated image processing (top): (a) 

Original experimental sample image showing the entire domain of microfluidic chip, (b) 

Cropped area from the sample image including different phases, (c) Processed image based 

on the image segmentation. The image processing algorithm mainly consists of three steps 

(bottom): (d~f) Detection of trapped air pockets; (g~i) Detection of circular grains; (j~l) 

Detection of biominerals. 
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was adjusted to satisfy this constraint. Using the detected center and radius, the circular 

grains were mapped out and converted to a separate binary image (Figure 3.2i). 

Step 3. Detection of precipitated minerals: The precipitated minerals have relatively 

smaller size than the circular grains and air bubbles, so edge detection methods are not 

proper to find the minerals. In order to detect the precipitated minerals, the gray-scale 

image was turned into a binary image by using Otsu’s method, which automatically selects 

threshold and replaces all the values above a specified threshold with 1 (white) and all other 

values with 0 (black) (Otsu, 1979). Otsu’s method can be readily carried out by using 

‘imbinarize’ function in MATLAB. However, since the gray-scale image contains an 

illumination gradient, the default Otsu’s method produces a very poor result. Moreover, 

the intensities of some parts of the circular grain boundaries have similar values to those 

of the mineral boundaries. Therefore, Otsu’s binarization method required some 

modification for precise detection of mineral boundaries. In order to minimize the 

illumination artefacts, localized thresholding was applied using the ‘adaptive’ option 

within the ‘imbinarize’ function. The ‘adaptive’ method computes thresholds for each pixel 

using the local mean intensity of the neighborhood of the pixel. The ‘ForegroundPolarity’, 

‘dark’ option was used to detect the pixels occupied by mineral boundaries, considering 

the mineral boundaries have darker intensities than the background values. The threshold 

in this option can be specified by the ‘sensitivity’ parameter, which ranges between 0 and 

1. A higher sensitivity identifies more pixels as mineral boundaries. Due to illumination 

changes during the different cycles, the threshold values may vary slightly and needed to 

be manually selected using a trial and error approach. For the image in Figure 3.2 the 

‘sensitivity’ was determined at 0.54 after trial and error. The resulting image (Figure 3.2j) 
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still contained boundaries of circular grains. The detected circular grains in the previous 

step were redrawn, filled (Figure 3.2i) and overwrapped onto Figure 3.2j, then the result 

was reversed. The reversed image included the circular grains and mineral outlines in black 

and pores in white but left the inside of some relatively big minerals white. These larger 

minerals, which were defined by their pixels size (<100) were filled black using the 

‘bwareaopen’ function to obtain Figure 3.2k. By subtracting redrawn and filled grains 

(Figure 3.2i) from Figure 3.2k, the mineral phase could be generated as a separate phase 

(Figure 3.2l).  

3.3.4    Statistical Analysis of the Mineral Phase  

Quantitative information of the precipitated biominerals, i.e. the size, number and 

volume of crystals, were derived from the processed images (Figure 3.2l). In order to 

determine the individual crystal size, the number of pixels in each crystal were counted to 

determine the crystal area. Based on the size and resolution of the images, each pixel has 

the approximate dimensions of 6.5 µm×6.5 µm. The equivalent diameter, deq, of the 

individual crystals was derived from the total area of pixels (Ap) using: 

𝑑𝑒𝑞 = √
4𝐴𝑝

𝜋
              (10) 

In order to exclude undesirable noises from the results, it was decided to exclude 

the detected crystals which were 3 pixels or less in size. This noise filtering may cause 

underestimating the volume of crystals. 

The volume and crystal surface area of the individual crystals were calculated in 

different ways, depending on the assumption of the crystal shape. Assuming crystals had a 

cylindrical shape and filled up the entire internal thickness of the microfluidic chip, h = 50 
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[μm], crystals can only grow radially and the crystal surface area, Ac in [μm2], and crystal 

volume, Vc in [μm3], are calculated using: 

 𝐴𝑐 = 𝜋ℎ𝑑𝑒𝑞 = 100𝜋𝑟𝑒𝑞    and  𝑉𝑐 = 50𝜋𝑟𝑒𝑞
2           (11) 

Alternatively, assuming that crystals have a semi-spherical shape and are attached 

either to the front or the back of the microfluidic chip, the crystal height varies depending 

on the equivalent crystal radius. When the radius of a semi-spherical crystal is smaller than 

the internal thickness of the microfluidic chip, surface area and volume are calculated 

using: 

𝐴𝑐 =  2 𝜋𝑟𝑒𝑞
2     and  𝑉𝑐 =

2

3 
𝜋𝑟𝑒𝑞

3 .          (12) 

 

 

Figure 3.3. Two hypothetical shapes of calcium carbonate crystal formation in 

microfluidic chip 
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Once the radius of semispherical crystal is bigger than the internal thickness of the 

microfluidic chip, surface area and volume are calculated using: 

𝐴𝑐 = 100𝜋𝑟𝑒𝑞   and  𝑉𝑐 = 𝜋(50𝑟𝑒𝑞
2 −

503

3
).         (13) 

The two hypothetical shapes are shown in Figure 3.3. The total volume of crystals 

and total surface area, At, are obtained by adding up the values for all individual crystals. 

3.4      RESULTS AND DISCUSSION 

Figure 3.4 shows the results of image analysis. On the left side the volume of 

crystals is plotted as a percentage of the initial pore volume of the untreated microfluidic 

chip as a function of time assuming cylindrical crystal shapes. As results of 10 cycles of 

EICP treatment the total volume of crystals filled up about 8.25 % of the pore space. The 

change in crystal volume per cycle varied. From 0.80 % in the first treatment cycle, it 

reached a maximum of 1.41 % in the 4th cycle and then declined to 0.29 % in the 10th cycle. 

The results of 2nd and 8th treatment cycles are not included as the images of these cycles 

were not sharp and could not be processed properly. The repetitive shutter operations of 

the digital camera during these cycles caused a slight movement of the test setup and a loss 

of focus of camera, which demonstrates that even a small disturbance during the image 

capturing process may critically affect the quality of the output images. In order to prevent 

this experimental issue, all imaging equipment including the camera, microfluidic chip and 

light source are required to be completely fixed with a rigid frame during the experiment. 

During each treatment cycle, the volume of crystals increased until a threshold was 

reached, after which no more crystal volume change was recorded. During the 1st cycle a 

lag phase occurred, which lasted for ~5 hours (red hollow circles in Figure 3.4), after which 
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Figure 3.4. Volume of crystals as a percentage of initial pore volume with time for each 

cycle of treatment assuming cylindrical crystal shape (left). Highlighted area of the 

experimental images before and after EICP treatment for cycle 1 (red), 3 (brown), 6 

(green), and 10 (purple) (right) 

 

the first crystals were detected. The volume of crystals gradually increased until about 14 

hours, after which no further significant change in crystal volume was observed. The lag 

phase in the 1st cycle could be interpreted as an induction time in which the supersaturation 

first needs to increase sufficiently in order to trigger crystal nucleation. Another reason for 

the observed lag phase could be that the initial crystals were too small to be detected at the 

given image resolution. In subsequent cycles the time to reach the end of reaction, which 

is indicated by the black-dashed line shown in Figure 3.4, decreased, which indicates that 
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the bulk precipitation rate gradually increased with increasing number of cycles. Most 

significant change in bulk precipitation rate was observed within the first four cycles of 

treatment. After 4th cycle, the precipitation rate remained approximately constant. The 

increase in bulk precipitation rate may be due to the presence of already existing crystals, 

which grow or stimulate heterogeneous nucleation and facilitate immediate precipitation, 

skipping the induction and nucleation phase. The precipitation rate can also be affected by 

differences in urease activity, substrate distribution, or amount of remaining substrates or 

enzymes from the previous cycles of treatment. 

A detail of the original experimental images for the 1st, 3rd, 6th and 10th cycle is 

shown on the right side of Figure 3.4. These images illustrate the formation process of 

biominerals within subsequent treatment cycles. During the initial cycles of treatment, 

nucleation of new crystals is expected to occur. Small nuclei may have settled in the liquid, 

but were too small to detected. As soon has the crystals reached an observable size no 

movement of crystals was observed. Examples of new crystal occurrences are highlighted 

with labelled white circles (labels a and b) for the 1st cycle of treatment. By tracking 

crystals, a and b, it is clear that individual crystals gradually grow as the cycles of treatment 

increase (label a and b from cycle 1 to 3). In some cases, the growth of crystals leads to 

pore clogging. This could either be the result of an agglomeration of multiple crystals (label 

c), or due to a single large crystal (label d). Pore clogging could block pore connectivity 

and affect the distribution of substrates and resulting precipitates in subsequent flushes, 

which can potentially explain the variations in engineering properties of treated soils 

reported in the literature.   
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The size distribution of crystals after each cycle of treatment is presented in Figure 

3.5a. In order to construct these curves, crystals were categorized into bins according to 

their equivalent diameter, with each bin representing a 5 μm range. As the objects with a 

size with 3 pixels or less were filtered out by the image processing, the counting started at 

15 μm, which represents the bin between 15~20 μm. The crystal size distribution typically 

revealed a (truncated) exponential distribution, which gradually changed with multiple 

cycles of treatment. At the 1st cycle of treatment, the range of crystal sizes covered a 

relatively narrow range of equivalent diameters (15~105 μm). Upon subsequent flushes the 

variation in crystal size became wider reaching 20~455 μm at the 9th cycle of treatment. 

Besides an increase in size, the number of crystals also increased with multiple cycles of 

treatment, which implies that nucleation of new crystals and growth of existing minerals 

took place simultaneously throughout each cycle. The number of crystals within the range 

of 20~60 μm increased most significantly from the 1st cycle to 5th cycle, which confirms 

that nucleation of new crystals is most dominant within the first five cycles of treatment. 

After the 5th cycle, the predominant biomineralization mechanism is the growth of pre-

existing crystals. 

The total number of crystals as shown in Figure 3.5(b) and Table 3.1 increased 

mostly within first five cycles, particularly in the 1st, 4th and 5th cycle. In the 6th and 7th 

cycle the number of crystals did not significantly change, whereas in the 9th and 10th cycle 

the total number of crystals increased again, but the increase in the number of crystals was 

smaller than in earlier cycles. This noticeable change in cumulative number of crystals 

affirms that for all cycles of treatment the precipitation mechanism involves both 

nucleation and growth. The results of statistical analysis were confirmed by the checking  
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(a)  

(b)  

Figure 3.5. (a) Crystal size distribution at different flushing cycles and crystal formation-

growth observation within the highlighted area of microfluidic chip (Right upper), (b) 

Cumulative number of crystals for different cycles of treatment 
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the original experimental images (right upper corner images in Figure 3.4(a). The image 

representing cycle 6 (green circle), clearly shows a number of new crystals are formed 

compared to the image of cycle 3 (red circle), whereas the image of cycle 10 (purple circle), 

shows that most of crystals have grown compared to cycle 6, but the number of newly 

formed crystals is less. A reduction of the increase in number of crystals per cycle would 

be expected considering that pre-existing crystals formed in previous cycles would 

stimulate heterogeneous nucleation or allow for crystal growth. Secondly, just like the total 

volume of crystals, the increase in number and size of crystals in each cycle would be 

affected by the accessibility of pore space when flushing substrate solution. After 5 cycles 

of treatment, some areas in the microfluidic chip become completely filled by precipitated 

biominerals, locally clogging the pores and creating inaccessible zones to the substrate 

solution, which would limit the growth or formation of new crystals in zones affected by 

those clogged regions.  

Comparing the results with the numerical simulations showed several 

discrepancies. First, the increase in crystal volume for some of the cycles was significantly 

higher than theoretically possible when assuming cylindrical crystal shapes, particularly 

for cycle 4 (1.41 %) and 5 (1.13 %). Also, the total volume of crystals after 10 treatment 

cycles (8.25 %) was higher than expected. Simple mass and balance calculations indicate 

that for initial urea and calcium concentrations of 0.2 [mol L-1] and assuming complete 

conversion the maximum crystal volume increase is 0.74 % of the initial pore volume. 

Considering that in each treatment cycle the pore volume is reduced by the volume of 

crystals, the theoretical increase in crystal volume reduces slightly each cycle reaching 

0.69 % in the 10th cycle. As a result of pore volume reduction, the total cumulative crystal 



  39 

volume after 10 cycles is expected to reach 7.15 % instead of 7.4 % when assuming a fixed 

pore volume, which was confirmed by the results of the simplified model simulations 

shown in Figure 3.6.  

The crystal volume appeared to be significantly affected by the assumption that the 

precipitated minerals have a cylindrical shape and completely fill up the internal depth of 

microfluidic chip. Considering that smaller crystals may not fill up the entire depth of 

microfluidic chip, the assumption of cylindrical crystal shape may overestimate the crystal  

 

 

Figure 3.6.  The estimated cumulative volume of crystals with increasing number of cycles 

based on the micromodel experiment using either cylindrical or semi-spherical crystal 

shape and the simulated cumulative volume of crystals based on the injected volume and 

concentrations of substrates and enzymes in the reactive solution, assuming either a fixed 

pore volume (model 1) or pore volume reduction as a result of precipitation (model 2) 
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volume. Calculating crystal volume assuming a semi-spherical crystal shape using 

equations 12 and 13 resulted in cumulative crystal volume that was on average 30 % 

smaller compared to the values for cylindrical crystals. This difference may explain why 

the calculated volume increase during cycle 4 and 5 in Figure 3.4 was larger than 

theoretically possible. Particularly, because during these cycles a large increase in the 

amount of new crystals were observed with relatively small sizes. The calculated 

cumulative crystal volume for semi-spherical crystal shapes was even lower than the results 

from the numerical model simulations. The difference between the model predictions and 

experimental observations assuming semi-spherical crystal shapes, could be due to the 

local pore clogging, which creates zones within the pore volume, inaccessible for 

convective supply of substrates and reduces the mobile pore volume, which causes a 

decrease of the amount precipitation. Further analysis on the effect of local pore clogging 

on substrate product distribution and porosity and permeability relationships in relation to 

EICP is required and currently being investigated. Other explanations for the differences 

between observed and predicted volumes may be the formation of alternative types and 

shapes of crystals or observation bias related to the limitations of the set-up and image 

processing and analysis procedure, which is discussed later. 

Table 3.1 provides a summary of the quantitative analysis of the statistical results, 

assuming either cylindrical or semi-spherical crystal shapes. The average bulk precipitation 

rate was calculated by dividing the amount of moles of CaCO3 by the total time to reach 

full conversion (indicated by the black dots in Figure 3.5). The average bulk precipitation 

rate was in most cases lower than predicted, except for cycle 4 assuming cylindrical crystal 

shape. Based on the amount of enzymes added and the specifications of the manufacturer 
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a maximum urease activity of 0.078 [mol m-3 hr-1] was expected. Similarly, Nemati & 

Voordouw (2003) or Whiffin et al. (2007) found that precipitation rates can be significantly 

lower than expected. The difference between the measured and expected precipitation rates 

could be due to various inhibition factors, as discussed in the theoretical background, but 

in this study inaccuracies in the calculation of cumulative crystal volume and observation 

bias could contribute to this error. For example, part of the lag phase in the first cycle could 

be due to the fact that the initial crystals were still too small to be detected at the given 

image resolution. During the later flushes the average precipitation rate may decrease as a 

result of local clogging, which reduces the available pore volume for convective supply of 

new substrates and consequently results in a lower increase in crystal volume.  

Supersaturation was calculated following equation 9 using either a second (S2 with 

n = 2) or first order kinetic model (S1 with n = 1) in which the average bulk precipitation 

rate and total crystal surface area were used as an input. Total crystal surface area was  

 

Table 3.1. The bulk precipitation rate, cumulative crystal surface area, supersaturation, 

increase in number of crystals, and nucleation rate for each treatment cycle 

Cycle 

Cylindrical crystal shape Semi-spherical crystal shape Observation 

rp 

[kmol m-3 h-1] 

AT 

[mm2] 

S2 

[-] 

S1 

[-] 

rp 

[kmol m-3 h-1] 

AT 

[mm2] 

S2 

[-] 

S1 

[-] 

N 

[-] 

‘dN/dt’ 

[m-3 s-1] 

1 0.015 2.16 77.8 5899 0.008 1.3 71.3 4945 298 0.0064 

3 0.024 4.82 65.7 4182 0.015 3.6 59.4 3413 95 0.0026 

4 0.132 7.24 125 15528 0.073 5.4 108.4 11539 273 0.0253 

5 0.066 10.1 75.7 5578 0.029 6.6 62.4 3768 517 0.0359 

6 0.022 10.7 42.8 1747 0.034 7.2 64.3 4007 20 0.0009 

7 0.024 11.5 43.1 1776 0.027 7.9 55.1 2928 30 0.0017 

9 0.026 13.8 41.4 1633 0.047 9.6 65.5 4166 127 0.0118 

10 0.020 15.0 34.6 1127 -0.001 10.4 <1 <1 113 0.0105 

  



  42 

calculated using either equation 11 for cylindrical crystal shape or equation 12 and 13 for 

semi-spherical crystal shape. The nucleation rate, ‘dN/dt’, was determined by dividing the 

increase in the number of observable crystals in each cycle, N, by the reaction time. It must 

be emphasized that the resolution of the images does not allow to observe the actual crystal 

nuclei as these would be far too small to be detected. Hence the calculated ‘dN/dt’ does 

represent the increase in number of crystals and not an actual nucleation rate. However, 

considering that each new crystal must have nucleated, the number of crystals may be 

indicative for the amount of nuclei formed in each treatment cycle.  

Figure 3.7 presents the calculated ‘nucleation rate’ as a function of the calculated 

supersaturation for the different selected model scenarios and compares them with the 

theoretically expected nucleation rates based on classical nucleation theory according to 

equation 7 for different values of interfacial tension based on the values provided by Dalas 

et al. (1988), Liouliou et al. (2007) and Söhnel & Mullin. (1982). The results of this 

comparison show that the calculated supersaturation is relatively high, particularly when 

considering first order growth kinetics (S1). The fact that in each cycle new crystals were 

observed indicates that supersaturation must have been sufficiently high to allow for 

spontaneous nucleation. However, at the calculated supersaturations higher nucleation 

rates would be expected.  

Besides observation bias which are discussed later the low ‘nucleation rates’ (or 

high supersaturations) may due to inhibition of crystal nucleation. A minuscule amount of 

additives can significantly inhibit both of the nucleation and growth of calcium carbonate 

crystals (Bernard et al., 1992; Lin et al., 2005; Matty & Tomson, 1988; Söhnel & Mullin, 

1982). Presence of dissolved organic matter may inhibit growth, but favor nucleation 
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(Lebron & Suarez, 1996). Proteins may also act as chelating compounds, lowering the 

concentration of free calcium ions, available for precipitation (Almajed et al., 2019).  

Since, the substrate solutions used in EICP experiments contain enzymes (i.e. 

organic polymers) of which the interaction with ions is not fully understood and 

precipitation in porous media takes place in a confined space, with limited convective 

mixing conditions and in presence of heterogeneous surfaces. Hence, ion concentrations 

vary in space and time and often cannot be measured at pore scale. Therefore, for EICP 

both measurements and direct predictions of the supersaturation and the resulting 

precipitation characteristics should be interpreted with caution. 

 

 
Figure 3.7. The theoretical and experimental nucleation rate for homogeneous nucleation 

of calcite crystals in S-J plot for various temperature and surface tension 
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Quantitative interpretation of the results in this study is affected by significant 

observation bias and limitations in the set-up or image analysis. Firstly, the resolution of 

the images and the accuracy of the image analysis algorithm are limited. The resolution of 

the imaging setup used in this study does not allow to identify the small crystals or crystal 

nuclei. Hence, fluctuations in the volume, size and number of crystals and derived 

parameters may be due to the inaccuracy of the processed images. Secondly, during the 

course of the experiment more air bubbles got trapped during the injection of substrates, 

partly attributed to local clogging by the increased number and amount of biominerals. As 

a result, it became difficult to separate air bubbles from minerals, as the bubble-liquid 

meniscus were overlapping with crystal boundaries. 

Another type of observation bias relates to the definition of nucleation versus 

growth. Crystal growth may occur as individual calcium and carbonate molecules are 

incorporated in the crystal lattice, but also by heterogeneous nucleation in which new 

individual crystals start growing on existing crystal surfaces. Once multiple crystals 

agglomerate, they cannot be distinguished as individual crystals as the image processing 

and quantitative analysis treats the agglomerated crystals as a single particle. As a result, 

the analysis may underestimate the number of individual crystals and the cumulative 

surface area. The resulting supersaturation and nucleation rate may also be underestimated. 

Finally the actual crystal shape may differ from the assumed cylindrical or semi-

spherical crystal shapes, which is illustrated in Figure 3.8 showing a microscopic image of 

a section of the microfluidic chip. The actual crystal shape depends on type of mineral, 

calcite, vaterite or aragonite and the precipitation conditions. Vaterite typically shows 

spherical or ‘cauliflower’ crystal shapes, while calcite typically forms single or clusters of  
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Figure 3.8. Microscopic image of a section of the microfluidic chip, illustrating the actual 

shape and surface area of the precipitated crystals 

 

 

rhombohedral crystals (e.g. Al-thawadi & Cord-Ruwisch, 2012; van Paassen, 2009), but 

also dendritic calcite or aragonite crystal shapes have been observed (e.g. Pham et al., 

2016). These different crystal shapes typically increase the surface area, which lowers the 

calculated supersaturation. 

3.5      CONCLUSIONS 

Enzymatically induced calcium carbonate precipitation (EICP) by urea hydrolysis 

has been studied using a microfluidic chip experiment. The reactive solution was flushed 

10 times through a microfluidic chip and was allowed to react for 48 hours. The 

precipitation of CaCO3 minerals was monitored by time sequential images. An image 

processing algorithm was developed to analyze the experimental images, assess the 
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characteristics of the biominerals, and gain insight in the precipitation mechanisms and the 

kinetics of crystal nucleation and growth.  

Despite a limited resolution, the cumulative crystal volume and bulk precipitation 

rate could be determined and corresponded reasonably well with values predicted with a 

simplified numerical model. The assumed crystal shape in the image analysis procedure 

significantly affected the calculated volume of crystals. Assuming a cylindrical crystal 

shape overestimates the crystal volume, particularly when the crystals are smaller than the 

internal thickness of the microfluidic chip. Assuming a semi-spherical crystal shape, the 

cumulative crystal volume and bulk precipitation rate, were lower than expected and 

gradually decreased with an increasing number of cycles. This decrease can partly be 

attributed to local pore clogging, which reduces the mobile porosity allowing a lower 

amount of substrate solution to be retained in the pore volume.  

Also, the amount and size distribution of crystals could be determined. The 

calculated supersaturation was relatively high, which could explain the fact that new 

crystals were observed in each treatment cycle. However, when comparing the results with 

classical nucleation theory, it was found that for the calculated supersaturation the observed 

‘nucleation rate’ was lower than expected. The difference between theoretical predictions 

and experimental data emphasizes the difficulty to accurately predict the pore-scale 

characteristics of biominerals directly. Still, this study has shown that despite its 

limitations, microfluidic chips are useful tools to assess the pore scale characteristics of 

precipitated minerals in porous media. The proposed procedure can be used to optimize 

MICP or EICP treatment strategies or validate numerical models, by analyzing the effect 

of different substrate and enzyme concentrations and quantify relationships between pore 
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scale crystal characteristics and continuum scale ‘engineering’ parameters of porous media, 

such as porosity and permeability. 
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CHAPTER 4 

BIOMINERAL FORMATION IN POROUS MEDIA:  

A HYBRID EXPERIMENT-NUMERICAL STUDY 

 

This chapter will be submitted to Advanced in Water Resources Journal as Mahabadi, N., 

Kim, D., Wang, L., van Paassen, L. A. “Evolution of Porosity-Permeability Relationships 

for Biomineral Precipitation in Porous Media: A Hybrid Experimental-Numerical 

Approach.” 

 

ABSTRACT 

The last decade has seen an exponential growth in research on engineering 

applications of microbially induced carbonate precipitation particularly in soil 

stabilization, subsurface remediation of toxic metals and radionuclides, and sealing of 

porous and fractured media to enable CO2 storage. In this study, pore-scale characteristics 

of biogeochemically induced carbonate precipitation and its impact on the hydraulic 

properties of porous media are studied using a hybrid experimental-numerical approach. A 

two-dimensional transparent microfluidic chip is employed to visualize the 

biomineralization process at pore-scale. A reactive solution is flushed in 10 cycles through 

the microfluidic chip. During each cycle the formation of calcium carbonate crystals is 

monitored by time sequential images. An image processing algorithm is developed to 

analyze the experimental images and detect the carbonate minerals within the pore space. 

Based on the processed images, a finite element CFD model is developed using COMSOL 

Multiphysics to explore the evolving hydrodynamics of transported solutes in the treated 
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pore space. The numerical simulations verified that biomineral precipitation reforms the 

pore structure morphology, porosity, and permeability of porous media. Local pore-

clogging by precipitated carbonate minerals leads to the development of isolated pore 

clusters and impermeable zones. The evolution of impermeable zones results in the 

formation of preferential flow paths towards the mobile zones, which also affects the 

mineral precipitation patterns in multi-cycle treatment strategies. The results suggest that 

simple porosity-permeability reduction relationships dramatically overestimate the 

permeability in biomineral precipitated sediments. The distinction between porosity and 

mobile porosity must be taken into consideration when predicting the hydraulic fields in 

biochemically altered sediments. The results of this study can be used to validate numerical 

models, which aim to predict the impacts of biomineralization on the permeability and fluid 

flow regimes in sediments. 

4.1      INTRODUCTION 

Microbially or Enzymatically Induced Carbonate Precipitation (MICP/EICP) has 

attracted great interest in recent years for its potential in geo-environmental and 

geotechnical engineering applications. MICP can be exploited for various engineering 

applications, e.g. improving soil strength (DeJong et al., 20010; Whiffin et al., 2007; van 

Paassen, 2009), entrapping groundwater contaminants (Ferris et al., 2004, Fujita et al., 

2004), enhancing oil recovery (Cunningham et al., 2009), and increasing storage security 

of CO2 (Cunningham et al., 2011).  

Biogeochemistry and hydrodynamics are coupled processes in MICP, and include 

non-linear reaction kinetics, multi-phase transport of solutes, micro-organisms and solids, 
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biomass growth and decay and mineral precipitation, which result in varying properties of 

the liquid phase, such as density and viscosity and of the pore structure, such as porosity 

and permeability (Al Qabany et al., 2012; Fauriel & Laloui, 2012; Hommel et al., 2016). 

Due to this complexity, numerical modeling plays a critical role in quantifying the interplay 

between these coupled processes and properties as well as predicting the performance of 

MICP for different engineering applications.  

Several numerical models have been developed in the past years to simulate MICP 

performance. They simulate MICP at different scales, including large-scale (Cuthbert et 

al., 2012; van Wijngaarden et al., 2011, 2012, 2013), meter-scale (Nassar et al., 2018), 

column-scale (Ebigbo et al., 2012; Martinez et al., 2014), and pore-scale (Qin et al., 2016). 

Different approaches have also been used including pore network models (Qin et al., 2016), 

finite element or finite difference methods in which fluid flow can be modelled by using 

either Navier-Stokes equation (Helmig et al., 2013) or Darcy’s models at continuum scale 

(Ebigbo et al., 2012).  

The biogeochemical processes can be modelled with different levels of complexity. 

Simplified models generally adopt a single chemical reaction equation (Cuthbert et al., 

2012; Hommel et al., 2015; Qin et al., 2016), while more advanced models include 

geochemical speciation reactions of multiple solute species. These models often use 

specific geochemical speciation software such as PHREEQC (Charlton & Parkhurst, 

2011; Parkhurst & Appelo, 2013), ORCHESTRA (Salek et al., 2016; Ubbink, 2013), and 

TOUGHREACT (Barkouki et al., 2011). Each of these packages uses geochemical 

databases, which include information about section equilibrium reactions. More advanced 

models may include kinetics of biomass growth or carbonate mineral nucleation and 
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growth at different levels of complexity (Cunningham et al., 2009; Fauriel & Laloui, 2012; 

Hommel et al., 2016; Mitchell & Ferris, 2006; van Paassen, 2009). 

Continuum-scale models are popular due to their potential to simulate real world 

field applications. However, the efficiency of continuum-scale models relies on the up-

scaled properties of porous media. In this context, continuum-scale models use an 

averaging concept in which the pore-scale characteristics of porous media such as pore 

size, shape and geometry and surface characteristics can be substituted with generalized 

up-scaled properties, such as permeability or porosity. Using up-scaled parameters avoids 

the need for a detailed description of the fluid–solid interface at the expense of losing 

information regarding pore-scale details.  

Mineral precipitation via MICP reduces porosity and permeability. Numerical 

models commonly employ methods, which relate changes in the permeability to changes 

in porosity. A broad variety of porosity-permeability relations can be found in the literature 

that each are derived under specific circumstances and assumptions (Hommel et al., 2018). 

Kozeny-Carman equation is one of the most widely accepted derivations of permeability 

as a function of the characteristic of porous media. This equation was originally proposed 

by Kozeny (1927) and was then modified by Carman (1937) to become the Kozeny-

Carman equation. Based on the Kozeny-Carman equation the permeability k of a porous 

system can be expressed in terms of the intrinsic properties of the medium as:  

𝑘 =
∅3

2𝜏(1−∅)2𝑎𝑣
2                (1) 

where the permeability k is calculated using the porosity ∅, tortuosity τ, and the 

specific surface area αv of the porous medium. While the permeability in the Kozeny-

Carman theory relies on porosity, specific surface area, and tortuosity, until recently only 
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the porosity could be measured relatively easily in practice, which left the tortuosity and 

surface area as substantially indeterminate quantities.  

In addition to the Kozeny-Carman type of relations, power law relationships are 

commonly used to estimate porosity-permeability changes (Aharonov et al., 1997; Bear, 

1988; Bernabé et al., 2003; Carroll et al., 2013; Clement et al., 1996; Civan, 2001; Colón 

et al., 2004; Doyen, 1988; Garing et al., 2015; Hao et al., 2013; Knapp and Civan, 1988; 

Luhmann et al., 2014; Luquot et al., 2014; Luquot & Gouze, 2009; Menke et al., 2015; 

Noiriel et al., 2004, 2005; Pereira Nunes et al., 2016; Smith et al., 2013; Vandevivere et 

al., 1995; Zhang et al., 2015). In power-law type of relations, the change of permeability 

is related to changes in porosity, by using a fitting factor, η:  

𝑘

𝑘0
= (

𝜙

𝜙0
)
𝜂

                    (2) 

where the fitting factor, η, is an empirical value that can be determined from the available 

experimental data. However, the reported values for η vary significantly with regards to 

the nature of bio-geochemical processes (e.g. biomineral precipitation or dissolution, 

biomass accumulation) and the pore-scale characteristics of the porous medium (Bernabé 

et al., 2003). Despite the convenience of using a single fitting parameter to determine the 

changes in permeability, power law equations are often criticized, as they are not precisely 

representing the complex biogeochemical processes and the related changes of the porous 

media characteristics.  

For MICP or EICP the change in the overall porosity can be easily estimated based 

on the volume of product formation via the biochemical reaction stoichiometry. However, 

the characteristics of the precipitated minerals, such as the crystal size, shape, amount and 

spatial distribution, may vary as a result of the imposed process and environmental 
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conditions (El Mountassir et al., 2018; Kim et al., under review; van Paassen, 2009). 

Variations in crystal characteristics, including size, shape and spatial distribution, may 

affect the results. However, not all the pore space contributes to flow; the most obvious 

example of this being isolated pores. Although, the prediction of effective porosity 

contributing to the fluid flow is challenging. To determine the impacts of biogeochemical 

processes on the changes in pore space geometry and associated hydrodynamics, pore-scale 

modeling can be useful. The aim of this study is to gain insight about the impacts of 

biomineralization on the evolution of pore structure and associated porosity-permeability 

relationships using a pore-scale hybrid experimental-numerical approach. A reactive 

solution, which results in enzymatic induced carbonate precipitation is flushed 10 times 

through a microfluidic chip, while the mineral formation is monitored by time sequential 

images. An image processing algorithm is developed to analyze the experimental images 

and detect the carbonate minerals within the pore space (Kim et al., under review). Based 

on the processed images, a finite element CFD model is developed using COMSOL 

Multiphysics to explore the evolving hydrodynamics of the treated porous media, its 

impacts on the transport and distribution of substrate solution through the porous domain 

and the relationships between mineral precipitation, porosity and permeability. The results 

of this work highlight the need of micro-scale studies of bio-geochemical processes in 

porous media and provide guidance to interpret and scale-up the behavior of 

biogeochemical processes and evaluate the performance of MICP or EICP at continuum 

scale and determine the flow fields in biomineral treated soils, particularly in multiple 

treatment strategies.  
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4.2      MICROFLUIDIC CHIP EXPERIMENT 

A two-dimensional transparent microfluidic chip (Micronit Microfluidics BV, 

Netherlands) was designed and fabricated to resemble a homogenized circular particle 

packing. The dimension of the microfluidic chip is 21.3 mm×12.7 mm, and the internal 

thickness (pore depth) is 50 μm. The microfluidic chip includes 377 circular mono-sized 

grains with 800 μm of diameter and the size of pore throat between each two grains is 140 

μm (Figure 4.1a). Figure 4.1a and 1b present the configuration of the microfluidic chip set-

up. The microfluidic chip with injection and extraction ports is fixed in a steel holder and 

placed vertically. A reactive solution was prepared based on Nemati & Voordouw’s 

experimental work (2003), which contained 12g (~0.2 M) urea (CO(NH2)2, U5378, Sigma-

Aldrich), 30g (~0.2 M) calcium chloride dihydrate (CaCl2∙2H2O, C3881, Sigma-Aldrich), 

and 0.1g (~0.01 w%) urease powder (extracted from jack beans, Type III, 26100U/g, 

U1500, Sigma-Aldrich) per liter. The concentrations of both urea and calcium chloride 

were at a 1:1 molar ratio. Unlike Nemati & Voordouw’s recipe, the solution did not include 

milk powder. The prepared solution was injected from the bottom inlet.  

The injection-reaction process was repeated 10 times. After each injection, both 

inlet and outlet ports were closed to prevent evaporation and fluid flow. The solution was 

left to react for 48 hours. Time lapse digital imaging was performed every 10 minutes using 

a digital camera (D5200, Nikon) equipped with a 60mm micro lens (AF-S Micro NIKKOR 

60mm f/2.8G ED, Nikon) was used to capture the nucleation and growth of precipitated 

calcite within the pores of microfluidic chip. After each injection-reaction cycle, the 

retained solution in the microfluidic chip was rinsed with de-ionized (DI) water, before 
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injecting a next cycle. For all cycles, the volume of the injected solution was kept constant 

at about 4.05μL, which was similar to the initial pore volume of the micromodel.  

An image processing algorithm was developed using MATLAB to automatically 

detect and extract the precipitated calcium carbonate crystals from the original images and 

monitor the precipitation process within the microfluidic chip over time. Raw images of 

microchip experiment were converted to digital RGB matrixes. Different phases existing 

in the microfluidic chip including circular grains, precipitated calcium carbonate minerals, 

some trapped gas bubbles and pore space were detected by applying different intensity 

thresholds for each phase. The proposed algorithm minimizes the risk of subjective bias or 

missing information by manual detection, maximizing the accuracy of the detection 

process and significantly reducing the image analysis time. Figure 4.1c shows the raw 

image of the entire microfluidic chip at the end of the 4th treatment cycle. Figure 4.1d 

highlights a cropped area of Figure 4.1c including the circular grains and precipitated 

minerals. Figure 4.1e shows the final processed image by the automated image processing 

algorithm including all the detected circular grains (presented in green color), precipitated 

minerals (presented in red color), and pore space (presented in white color). With image 

processing it was assumed that the precipitated calcium carbonate crystals form cylinders, 

which fill up the entire height of the pore space. The image processing is limited by the 

resolution of the images. Based on the image resolution of about 6.5µm per pixel and 

considering that crystals comprised of less than 2 by 2 pixels were regarded as noise, 

crystals with an equivalent diameter lower than 15µm could not be detected and were 

ignored. More details about the image processing algorithms are described by Kim et al. 

[under review].     
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(a)    

(b)                        

 

 
       (c)               (d)                                         (e) 

Figure 4.1. (a) Microfluidic chip geometry (Mahabadi et al., 2016; Zheng et al., 2017), b) 

the configuration of microfluidic chip experimental setup, (b) Raw image of the entire 

microfluidic chip after the 3rd cycle of treatment, (c) Zoom-in area of the precipitated pore 

space, (d) Processed image of the zoom-in area that detects circular grains and biomineral 

particles 

4.3      CFD MODEL AND SIMULATION 

4.3.1    Model Development 

The processed binary images of the cemented microfluidic chip were used as the 

input geometry to develop a CFD model using the finite element software package 

precipitated minerals
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COMSOL Multiphysics (version 5.0). Figure 4.2 demonstrates the preparation process of 

the geometry development from the images of the cemented microfluidic chip. In order to 

prepare a compatible format of geometry for COMSOL, the processed binary images were 

converted to “.dxf” format (vector image format). Due to the vectorization, the “.dxf” 

format included several undesirable objects, which needed to be trimmed prior to the 

geometry development. The trimming of unwanted objects was achieved using the “PLD” 

command in AUTOCAD, with which the vertices and segments were removed. The 

trimmed vectorized format including both channels and particles was then exported to 

COMSOL and subtracted from the entire rectangular domain of the microfluidic chip. The 

difference of microchip domain and vectorized domain provides only the flow channels, 

which can then be employed as the geometry for the CFD simulations. The mesh elements 

were generated within the model using the automatic physics-controlled meshing setup. 

However, highly precipitated cases (higher precipitation cycles) contain thousands of 

(small) calcite particles in which manual mesh size refinements needed to be considered. 

Particularly, when the formation of crystals created extremely sharp corners, further 

modification schemes needed to be examined for the mesh generation of the domain. The 

number of mesh elements to be compiled increased with the increased number of treatment 

cycles, due to the complex geometry caused by the formation of biominerals. The number 

of elements allocated for the non-treated pore space was 21,871, while the cycle 10th of 

treatment required 1,836,494 elements. Table 4.1 presents the general information about 

the geometry in different treatment cycles. 
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    (a)                 (b)                                         (c) 

 

      
    (d)                     (e)                                         (f) 

 

Figure 4.2. Development of the geometry of finite element model: (a) Binary image from 

the experiment, (b) Vectorized binary image, (c) Extraction of flow channels, (d-f) Meshed 

numerical model 

 

 

 

Table 4.1. Information of microfluidic chip pore space model before treatment and after 

3rd, 6th and 10th cycle of treatment  

 Non-treated Cycle 3rd Cycle 6th Cycle 10th 

Precipitation content (%)** 0 2.64 5.89 8.67 

Total porosity 0.3 0.29 0.28 0.27 

Mobile porosity 0.3 0.26 0.22 0.16 

Normalized permeability*  1 0.58 0.38 0.20 

Tortuosity 2.25 3.15 4.51 5.97 

Total simulation time (min) 0.92 29.3 63.3 117.5 

Number of elements 21,871 529,835 1,161,013 1,836,494 

* Normalized permeability (relative permeability) is the permeability relative to the maximum permeability 

occurred in the non-treated case.    

* Precipitation content (%) is defined as the total volume of biominerals proportional to the initial total 

volume of pores.    

Flow Channel 

Calcium Carbonate 

particle 

Grain 
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4.3.2    Flow and Transport Simulation 

Once the geometry was defined and the mesh was generated, two simulation steps 

and the required boundary conditions were assigned to the model:  

Stationary flow field simulation: It was assumed that the flow field follows Stokes’ 

flow (creeping flow) in which the fluid is incompressible and the internal term of stokes 

flow is negligible. The governing equation for the stationary flow field simulation is as 

follow:  

𝜇∇2𝑢 − ∇𝑝 + 𝑓 = 0                (3) 

where u is the velocity of the fluid, ∇𝑝 is the gradient of the pressure, 𝜇 is the dynamic 

viscosity of the fluid, and f is the applied body force which is assumed to be 0 in this study. 

A constant velocity of 1 mm/s was defined at the inlet boundary located at the bottom of 

the microfluidic chip; a constant pressure (atmospheric pressure) was specified at the outlet 

located at the top of the microfluidic chip. The result of the stationary flow simulation was 

then used as the initial conditions for the next simulation step, the time dependent mass 

transport.  

Time dependent solute mass transport: a constant concentration was imposed at the 

inlet boundary; zero concentration gradient was specified at the outlet. The total time of 20 

seconds and time-intervals of 0.1 sec were selected for the time-dependent simulation of 

substrate transport.  The governing equation for the simulation of the time dependent 

transport of species is as follows:  

∇. (−𝐷∇𝑐) + 𝑢. ∇𝑐 = 0              (4) 

where ∇. (−𝐷∇𝑐) describes diffusive flux, D is the diffusion coefficient, c is the 

concentration of the substrate, and 𝑢. ∇𝑐 describes the convective flux.  
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Numerical simulations were performed for four different precipitation levels: non-

treated, cycle-3, cycle-6 and cycle-10. All the input parameters including the concentration 

and diffusivity of substrate were maintained constant for all the treatment cycles, while the 

geometry of the flow channels as the results of different levels of precipitation was the only 

difference. Table 1 shows general information regarding the pore space geometry achieved 

in this study. 

4.4      RESULTS AND DISCUSSION 

4.4.1    Flow Field, Total Porosity and Mobile Porosity 

The precipitation of calcium carbonate minerals during each cycle, in which a 

reactive solution is injected into the microfluidic chip, fills up part of the pores, which 

reduces the total pore volume. Local pore-clogging by single crystal or agglomeration of 

multiple crystals creates isolated pore clusters inaccessible to the fluid flow. The mobile 

pore volume (or effective pore volume), which is defined as the portion of pore space that 

contributes to the fluid flow, reduces faster than the actual pore volume as a result of local-

pore clogging. The reduction in mobile pore volume affects the flow field and the 

transportation of solutes, and consequently results in an irregular distribution of minerals, 

which eventually reforms the hydrodynamics of the porous media even further. In a few 

cases, the hydrodynamic forces were large enough to break the weak bonding between the 

crystals and grains and reopen blocked pore throats. Figure 4.3 shows a selected zone in 

the microfluidic chip for cycle-3 and cycle-6 which illustrates the evolution of pore 

structure and flow fields as a result of the nucleation and growth of calcium carbonate 

crystals within the pore space.  
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   (a)       

                Cycle-3 (Numerical Simulation)                   Cycle-3 (Experimental Image) 

 

   (b)       

                Cycle-6 (Numerical Simulation)                   Cycle-6 (Experimental Image) 

 

Figure 4.3. Flow fields from the numerical simulation results and raw images of the 

calcium carbonate precipitated microfluidic chip: a) Cycle-3, b) Cycle-6.  

 

The mobile porosity within the microfluidic chip was calculated from the resulting 

velocities of the stationary flow field simulations, in which the velocity of 0.001 mm/s 

(0.1 % of the inlet velocity) was selected as a threshold to distinguish immobile zones. The 

areas with flow velocities below the threshold were subtracted from and divided by the 

initial total pore volume of the microfluidic chip to obtain the mobile porosity, that 

contributes to the flow and convective transport. Figure 4.4a shows the total pore space, 

which includes all flow velocities, while Figure 4.4b presents the mobile pore volume, 

which only shows the pores with a velocity range of 0.001vmax < v < vmax. The results 
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clearly show that the divergence between total porosity and mobile porosity builds up as 

the degree of biomineralization increases. 

The relation between the amount of precipitation and the evolution of porosity can 

be found by comparison between the results of different biomineralization cycles. The total 

and mobile porosity of the microfluidic chip for different treatment cycles is presented in 

Figure 4.5a. The single-colored fluid flow fields presented in Figure 4.4 were used to 

quantify the porosity of the microfluidic chip. The total and mobile porosity of the 

microfluidic chip were calculated for different precipitation levels by dividing the surface 

area of the flow channels (row-a in Figure 4.4 for total porosity, and row-b for mobile 

porosity) by the surface area of the entire domain (total volume) of the non-treated 

microfluidic chip. The total porosity linearly decreases with the increase in the number of 

treatment cycles while the mobile porosity reduces following a parabolic function. The 

best-fit equations determining the change of total and mobile porosity with the cycles of 

treatment were calculated as follows:  

∅𝑡 = ∅𝑡𝑜 − 0.0028𝑁               (5) 

∅𝑚𝑜𝑏𝑖𝑙𝑒 = ∅𝑡𝑜 − 0.0108𝑁 − 0.0003𝑁
2                  (6) 

where ∅𝑡 is the total porosity, ∅𝑡𝑜 is the initial total porosity (non-treated sample), 

∅𝑚𝑜𝑏𝑖𝑙𝑒 is the mobile porosity, and N is the number of treatment cycles. Based on the best 

fit equations, the total porosity has a linear relationship with the cycles of injections while 

the mobile porosity follows a parabolic equation. After 10 cycles of treatment the total 

porosity is reduced by 9 % from 0.3 to 0.273, while the mobile porosity decreased 

significantly by 47 % from 0.3 to 0.159. In other words, although 91 % of the pore space 



  63 

is still unoccupied by the biomineral crystals, only 53 % of the pore space is accessible to 

the fluid flow.  

Figure 4.5b shows the total and mobile porosity in terms of precipitation contents. 

Here, the precipitation content (%) is defined as the total volume of biominerals 

proportional to the initial total volume of pores. Since, the precipitation content increases 

by approximately 1 % after each treatment cycle, the total and mobile porosity can be 

estimated by substituting number of cycles, N, with the precipitation content (%) in the 

equations 5 and 6.  

(a)         

 

 (b)            

 

Figure 4.4. Pore space shown with blue color for different cementation levels: (a) Total 

pore space, (b) Mobile pore space (effective pore space that contributes to the fluid flow)   
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(a)  

(b)  

 

Figure 4.5. Numerical simulation results: (a) Total and mobile porosity for different 

treatment cycles, (b) Total and mobile porosity for different precipitation content (%) 

 

 



  65 

4.4.2    Mass Transport and Residence Time 

The reduction in mobile porosity due to calcium carbonate precipitation, and the 

resulting changes in the hydraulic flow field significantly affect the transport and 

distribution of solute substrates during subsequent injections. Figure 4.6 shows the spatial 

concentration profile after 1, 2 and 3 seconds of injection for the non-treated microfluidic 

chip, and for the 3rd, 6th and 10th treatment cycle. The results show that the concentration 

profile forms a completely uniform front displacing the water out of the crystal-free porous 

media in the non-treated case, while as the level of mineral precipitation increases, the 

heterogeneity of the transport patterns increases. The simulation results demonstrate that 

higher degree of calcite precipitation results in development of fringe patterns and faster 

transport of substrate through the porous media. For example, after 1 second of injection 

the substrate in the non-treated case is distributed only within the first quarter of the pore 

space, while at the same time in the 10th cycle some part of substrate has already reached 

to the outlet boundary.  

Figure 4.7 presents the breakthrough curves of the normalized average 

concentration along the outlet boundary of the microfluidic chip, which are an indicator of 

the substrate residence time. As the biomineral content increases, the residence time of the 

substrate decreases. The normalized average concentration after 3 seconds of injection is 0 

for the non-treated pore space, 0.18 for the cycle, 0.34 for the 6th cycle and 0.83 for 10th 

cycle.  
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 Non-treated  Cycle-3                         Cycle-6     Cycle-10 

              

              

              

Figure 4.6. Numerical simulation results: the concentration of the substrate after 1, 2 and 

3 seconds of injection into the microfluidic chip for non-treated, cycle-3, cycle-6, and 

cycle-10 of treatment 
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Figure 4.7. Normalized average concentration along the outlet boundary of the 

microfluidic chip over time for different cycles of treatment 

 

4.4.3    Porosity-Permeability Relationship 

In this study we aim to explore the validity of Kozeny-Carman and Power-Law 

equations, and their associated parameters in prediction of the porosity-permeability 

relationships in porous media affected by biomineralization process.  

Three different approaches are considered to calculate the precipitation induced 

permeability reduction relationships:  

1) Numerical simulation: The permeability of the microfluidic chip is calculated for 

different cycles of treatment directly using the CFD simulations and normalized by the 

maximum permeability simulated in the case of unaltered porous media (mineral free 

microfluidic chip). The CFD numerical results were considered as the baseline for 

comparison.  
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2) KC equation: Using the Kozeny-Carman equation, three different paths were used to 

calculate the change in permeability; a) KC-General: where only changes in total porosity 

was considered to calculate the permeability change (the tortuosity remained unchanged); 

b) KC-Effective Porosity: where the changes in effective porosity were used to calculate 

the permeability change while the tortuosity remained unchanged; c) KC-Tortuosity: where 

both the changes in total porosity and tortuosity were considered for permeability change 

calculations. The tortuosity of the non-cemented and cemented microfluidic chip were 

calculated using the results of the CFD simulations. To do this, the length of flow paths 

were calculated and divided by the straight length of the domain connecting the inlet to the 

outlet boundary.  

3) Power-law equation: The power-law equation was fitted to the numerical simulation 

and KC equation results to achieve the best fitting parameter, η, with the minimum RMSE.  

Figure 4.8a presents the normalized permeability values calculated based on the 

mentioned methods for the non-treated, cycle-3, cycle-6 and cycle-10 treatment cycles. 

The result presents that using only the total porosity in Kozeny-Carman equation (KC-

General: solid blue line in Figure 4.8) leads to a significant overestimation of permeability. 

The estimated reduction in permeability by KC-General model is only 25 % after 10 cycles 

of treatment while the numerical results shows up to 80 % permeability reduction. 

Although adding the tortuosity change to the Kozeny-Carman equation (KC-Tortuosity: 

yellow triangles in Figure 4.8) improves the accuracy of the results, still there is a 

meaningful discrepancy between the permeability values. Particularly, as the level of 

precipitation increases, the difference between the direct calculation of permeability (CFD 

numerical results) and the predicted permeability by KC-Tortuosity escalates.  
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(a)  

(b)  

Fig 4.8. Numerical results compared to the different forms of Kozeny-Carman (KC-

General, KC-Effective Porosity and KC-Tortuosity) and power law equations (η=3.6 and 

η=20.2).  
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This is in agreements with the agreements with the results of Mostaghmi et al. 

(2013) who showed that the Kozeny-Carman equation may significantly overestimate the 

permeability, particularly in complex, heterogeneous, and poorly connected porous media. 

However, the results reveal that by inserting the mobile porosity into the Kozeny-Carman 

equation, even by ignoring the tortuosity changes, the permeability can be estimated 

accurately. In the field scale, the mobile porosity can be measured relatively easy by 

injecting a trace fluid and recording the residence time of the effluent. The fitting 

parameters of the power-law equation were calculated to be η=3.6 for the KC-General 

while the realistic fitting parameter is considerably higher (η=20.2).  

4.5      CONCLUSIONS 

A hybrid experimental-numerical approach is used in this study to get insight about 

micro-scale processes of biomineralization and its associated impacts on the behavior of 

porous media such as the evolution of pore structure and development of immobile pore 

zones. 

The total porosity linearly decreases with the increase in the number of treatment 

cycles while the mobile porosity significantly reduces following a parabolic function. The 

reduction in mobile porosity due to calcium carbonate precipitation, and the resulting 

changes in the hydraulic flow field significantly affect the transport and distribution of 

solute substrates during subsequent injections. The concentration profile forms a 

completely uniform front displacing the water out of the crystal-free porous media in the 

non-treated case; while as the level of mineral precipitation increases, the heterogeneity of 

the transport patterns increases. The simulation results demonstrate that higher degree of 
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calcite precipitation results in development of fringe patterns and faster transport of 

substrate through the porous media. 

Using only the total porosity in Kozeny-Carman equation leads to a significant 

overestimation of permeability. The estimated permeability by KC-General model is 

reduced by only 25 % after 10 cycles of treatment while the numerical results shows up to 

80 % permeability reduction. Although adding the tortuosity change to the Kozeny-Carman 

equation (KC-Tortuosity) improves the accuracy of the results, still there is a meaningful 

discrepancy between the permeability values. Particularly, as the level of precipitation 

rises, the difference between the direct calculation of permeability (CFD numerical results) 

and the predicted permeability by KC-Tortuosity escalates. This is in agreements with that 

the Kozeny-Carman equation may significantly overestimate the permeability, particularly 

in complex, heterogeneous, and poorly connected porous media. By inserting the mobile 

porosity into the Kozeny-Carman equation, even by ignoring the tortuosity changes, the 

permeability can be estimated accurately. In the field scale, the mobile porosity can be 

measured relatively easy by injecting a trace fluid and recording the residence time of the 

effluent. The fitting parameter of power-law equation were calculated η=3.6 for the KC-

General while the realistic fitting parameter is considerably higher, η=20.2.  
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CHAPTER 5 

BIOGENIC GAS FORMATION IN POROUS MEDIA: A COMPARATIVE STUDY 

WITH CO2 GAS FORMATION VIA DEPRESSURIZATION 

 

This chapter will be submitted to ‘Environmental Science & Technology Journal’ or ‘Lab 

on a Chip’ as Kim, D., Mahabadi, N., Wang, L., Jang, J., & van Paassen, LA. (2019). 

“Visualization Biogenic N2 Gas Formation in Synthetic Porous Media: A Comparative 

Study with CO2 Gas Formation via Depressurization.” 

 

ABSTRACT 

In this study experiments were performed using a glass microfluidic chip, in order 

to investigate the effect of gas formation rate on the gas formation mechanism and residual 

gas distribution and saturation in porous media. Biogenic gas formation via microbial 

denitrification was stimulated inside the microfluidic chip and compared with abiotic 

depressurization of a supersaturated CO2 solution at two different depressurization rates. 

Time lapse imaging, and image analysis were used to observe and quantitatively 

characterize the gas phase. Visual observations indicated that the biogenic N2 gas did not 

homogeneously desaturate the microfluidic chip, but started from a single nucleation point, 

which expanded to form a big gas pocket, gradually migrating upward or through channels 

mainly along the edges of porous domain. The two experimental cases of CO2 gas 

formation showed completely different patterns, affected by the depressurization rate and 

initial pressure. The equilibrated degree of saturation levels of two CO2 cases were 

comparable (~40 %) but much lower than that of biogenic N2 gas case (~80 %). 
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5.1      INTRODUCTION 

Stimulating indigenous micro-organisms or augmenting soil with exogenous 

micro-organisms, biochemical conversion in the subsurface can be catalyzed, which lead 

to formation of biomass, biominerals or biogas. These processes can significantly alter 

hydro-mechanical behavior of soil, and have been investigated as new technologies for soil 

improvement or modification. In particular, desaturation of soils through biogas formation 

during denitrification has been suggested as an application to mitigate earthquake-induced 

liquefaction (He, 2013; Kavazanjian et al., 2015; Rebata-Landa & Santamarina, 2012; van 

Paassen et al., 2010). Denitrifying bacteria are being considered, which reduce nitrate to 

nitrogen gas, while oxidizing an organic carbon source to form dissolved inorganic carbon, 

which may partly transfer to carbon dioxide gas. Trapped bubbles of nitrogen and carbon 

dioxide gas desaturate the soil and may dampen pore pressure build up during earthquake 

events.  

A small reduction of soil water saturation (less than 10 %) is sufficient to 

significantly increase the cyclic resistance of soils (Arab et al., 2011; Tsukamoto et al., 

2002; Yang et al., 2004; Yegian et al., 2007; O’Donnell, 2016). Recent studies have shown 

that the saturation level could be reduced to 80~95 % via microbial denitrification due to 

the nitrogen gas formation within several days (Nakano, 2018; O’Donnell et al., 2017; 

Pham et al., 2016). The degree of saturation has been determined experimentally by 

monitoring depletion of substrate concentrations or measuring the volume changes of the 

soil and expelled water as a result of gas production at soil column scale. There also have 

been efforts to develop numerical models to predict the desaturation of soils via microbially 

induced denitrification, which theoretically estimate the amount of nitrogen gas formation 
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at different depth or pressure levels using the Henry’s law and ideal gas law (Hall et al., 

2018, van Paassen et al., 2018). However, these models and experiments assume 

homogeneous gas distribution throughout the soil. Information about the spatial 

distribution and persistence of the biogenically formed gas is limited and requires further 

studies.  

In studies on biogenic or abiotic gas formation or exsolution, three mechanisms are 

distinguished: bubble nucleation, bubble growth and migration or invasion. These 

mechanisms depend on the gas and liquid properties, energy potential for phase change, 

gas solubility, and heterogeneity of the porous system. Nucleation of new gas bubbles 

occurs when the concentration of dissolved gas exceeds a threshold, in order to allow a 

bubble to form and continue to grow. This threshold concentration is often significantly 

larger than the equilibrium concentration, which is defined by Henry’s law.  

𝐶∗ =
𝑃

𝐾𝐻
                 (1) 

In which C* is the equilibrium concentration of the gas in the solute phase, P is the 

partial pressure of the gas in the gas phase and KH is Henry’s constant, which varies for 

different types of gas and temperature. The nucleation threshold in a homogeneous solution 

is higher than in presence of rough surfaces, as these surfaces may act as a nucleation site. 

A nucleating bubble has to reach a critical size in order to remain stable, as the partial 

pressure of the gas depends on the bubble radius, following the Young-Laplace equation: 

∆𝑃 = 𝑃𝑔 − 𝑃𝑤 =
2𝛾

𝑅
                          (2) 

In which Pg and Pw are the gas and water pressure, γ is the surface tension at the 

liquid gas interface and R is the radius of the bubble.  
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Once a stable bubble is formed it may grow, either due to changes in pressure or 

through gas transfer. A drop in pressure (both water and gas pressure) would cause an 

existing bubble to increase in volume following Boyle’s law, which postulates that volume, 

V, is inversely proportional to pressure: 

𝑉 ∝
1

𝑃
                 (3) 

  However, a drop in pressure also reduces the gas solubility, following Henry’s 

law. This could stimulate gas transfer from the solute to the gas phase, as gas transfer is 

driven by a concentration gradient over the gas-liquid interface 

 𝐽 = 𝑘𝐿𝐴(𝐶𝐿 − 𝐶
∗)               (4) 

In which J is rate of gas transfer from the liquid to the gas phase, kL is the gas 

transfer coefficient, A is the gas-liquid interfacial area and CL is the concentration of the 

gas in the liquid. In non-mixed systems the gas transfer rate may be limited by diffusion.   

Different approaches have been used to study or simulate formation and migration 

of gas in porous media. For example, Mahabadi et al. (2016) simulated gas formation in 

porous media using a pore network model, assuming that gas bubbles would start as 

randomly distributed micro-sized bubbles, which migrated upward through the pore space 

due to buoyancy and which grow through diffusion and gas transfer from the solute to the 

gas state or while they move upward due to a decrease in hydraulic pressure or by 

coalescing with other. When bubbles are still smaller than the pore throat size they can 

freely migrate upwards, but once the bubbles get bigger than the pore throats, the mobility 

of gas bubbles is restricted and gas bubbles may get trapped (Zuo et al., 2013).  

Further increase in gas volume would force cause the gas bubbles to get trapped in 

the pore space. Still the trapped gas bubbles can migrate and displace the water phase. 
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Displacement of a liquid phase by a gas phase in porous media (or displacement of two 

immiscible fluids such as oil and water) has been extensively studied in relation to various 

engineering applications such as enhanced oil and gas production, CO2 sequestration or 

soil remediation (Mahabadi et al., 2019). Three different displacement patterns are 

distinguished: stable displacement, viscous fingering and capillary fingering. The 

displacement patterns are affected by the viscosity ratio of the two fluids, interfacial 

tension, the displacement velocity, the wettability of the solid phase and the characteristics 

and geometry of the porous medium (Lenormand et al., 1988; Zhang et al., 2011). To 

describe migration of gas bubbles or distinguish different displacement mechanisms in 

multiphase flow systems various dimensionless numbers are used, including Capillary 

number (Ca), viscosity ratio (M) and Bond number (Bo). The Capillary number relates the 

viscous forces to the surface tension: 

𝐶𝑎 =
𝑣𝜇𝑖𝑛𝑣

𝛾
                (5)   

In which v is the flow velocity in [m3/s] and μinv is the viscosity of the invading 

fluid. High capillary numbers would favor stable displacement resulting efficient 

displacement, whereas low capillary numbers would result in capillary fingering. The 

viscosity ratio relates the viscosity of the invading fluid with the viscosity of the defending 

fluid: 

𝑀 =
𝜇𝑖𝑛𝑣

𝜇𝑑𝑒𝑓
                (6)    

A high viscosity ratio would result in stable displacement, whereas a low viscosity 

ratio would result in viscous fingering. Both viscous fingering and capillary fingering 

would result in a less efficient displacement of the defending fluid by the invading fluid 
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than stable displacement. In the case that gas is displacing water, the viscosity ratio is lower 

than 1, since the viscosity of gas is significantly lower than the viscosity of water. Hence, 

viscous fingering can be expected. The Bond or Eötvös number relates gravitational or 

buoyant forces with capillary forces: 

 𝐵𝑜 =
∆𝜌𝑔𝐿2

𝛾
                (7) 

In which Δρ is the difference in density, g is the gravity acceleration, L is the 

characteristic length, i.e. the radius of curvature of the gas-water interface. A low value for 

the Bond number (typically less than one) indicates that surface tension dominates, e.g. 

that bubbles remain spherical, whereas a large value for the Bond number indicates that the 

system is relatively unaffected by surface tension, and bubbles may easily deform or break 

up into smaller bubbles. The Bond number also affects the movement of trapped gas 

bubbles. In case a bubble entirely fills a pore, it shows ‘slug’ movement as it squeezes 

through the pore throats.  Experimental results described in literature showed that a slug 

does not move in water-filled capillary tubes for Bond numbers smaller than 3.37 

(Bretherton, 1961; White & Beardmore, 1962).  

  Some researchers have looked at the distribution patterns in biogenic gas 

formation through denitrification. He (2013) observed that large gas pockets were 

produced during microbial denitrification and non-uniformly distributed using X-ray CT 

cross section images. Pham et al. (2016) visualized produced biogenic gas within PVC 

sand column using 3D X-ray CT tomography. Most of the gas appeared to be present in 

coarser grained sand at the top and bottom of the column, while in a finer grained sand the 

produced gas created cracks mostly in the upper half of the sand column. Although it has 

been found that a small fraction of gas in the pores can significantly affect the mechanical 
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behavior of soils, it is unclear how the mechanism of biogenic gas formation within a soil 

system will affect the spatial distribution, and how the equilibrated degree of saturation 

after treatment affects the mechanical response and persistence of the gas phase. 

 We hypothesize that the mechanisms of biogenic gas formation i.e. nucleation, 

growth, migration and displacement mechanisms, and resulting distribution and saturation 

of the soils, are affected by the rate of gas formation. In this study gas formation 

experiments were performed using microfluidic chip, in which the rate of gas formation 

and pressure conditions were varied, in order to test this hypothesis and improve 

understanding about these mechanisms.  

5.2      EXPERIMENTAL STUDY 

5.2.1    Microfluidic Chip 

A two-dimensional transparent microfluidic chip (Micronit Microfluidics BV, 

Netherlands) was designed and fabricated to resemble a homogenized circular particle 

packing. The dimensions of the microfluidic chip are 21.3 mm×12.7 mm, and the internal 

thickness (pore depth) is 50 μm. The microfluidic chip includes 377 circular mono-sized 

grains with 800 μm of diameter and the size of pore throat between two grains is 140 μm 

(Figure 1a).  

5.2.2    Biogenic N2 Gas Formation in the Microfluidic Chip 

The reactive solution for biogenic gas formation was prepared and consisted of a 

mixed bacterial culture and a growth medium containing 12 mM of calcium acetate 

(Ca(C2H3O2)2), 10 mM of calcium nitrate (Ca(NO3)2), and 0.5 mL/L of trace mineral 
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solution Figure 1b shows the configuration of the microfluidic chip experiment. The 

microfluidic chip was fixed in a steel holder and placed vertically.  The prepared solution 

was injected into the microfluidic chip from the bottom inlet. The volume of the injected 

solution was about 5 mL, which was sufficient to flush the pore volume of the microfluidic 

chip. After injection of solution, both inlet and outlet ports were closed to prevent 

evaporation and fluid flow. The solution was left to react for a month.  

5.2.3    CO2 Gas Formation via Depressurization in the Microfluidic Chip 

A high-pressure resistant system was designed and built for CO2 gas formation in 

a microfluidic chip (Figure 1b). The system consisted of a CO2 gas tank, a high pressure 

chamber for dissolving CO2 gas into water, a syringe pump for taking water with dissolved 

CO2 from the high pressure chamber and injecting it into the microfluidic chip, the 

microfluidic chip, and a second high pressure chamber for collecting remainder liquid and 

gas from the microfluidic chip outlet. The entire system was closed from the atmosphere 

and valves were used to open and close different compartments. CO2 gas was dissolved in 

de-ionized (DI) water and stored in the high pressure chamber #1. By opening all valves, 

the entire system is connected. CO2 gas from the tank was released to the system at a 

pressure of 1 MPa. The system was left at constant pressure for 24 hours to allow the CO2 

gas to dissolve in the DI water in high pressure chamber 1. By closing valve #1, the CO2 

gas tank was disconnected from the system. In order to isolate the pressure chamber 1 and 

syringe from the microfluidic chip and take water with dissolved CO2, valve #3 was closed. 

By closing valve #2 and opening valve #3, the solution was injected through the 

microfluidic chip. The solution was injected through the bottom inlet channel of the  
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       (a)  

 

 

 

       (b)            

 

 

 

       (c)   

 

Figure 5.1. (a) Geometry of a patterned microfluidic chip (Mahabadi et al., 2016; Zheng 

et al., 2017), (b) Experimental configuration for biogenic gas formation in the microfluidic 

chip, (c) Experimental configuration for CO2 gas formation in the microfluidic chip 
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microfluidic chip, and remaining liquid was expelled through the top outlet channel into 

the high pressure chamber #2. The total injected volume was significantly larger than the 

volume of the microfluidic chip (including connected tubings) to ensure that the entire 

volume of the chip was filled with the saturated CO2 solution. Two pressure transducers 

(presented as PT in figure 1b) were connected to both inlet and outlet channels of the 

microfluidic chip. DC power supply (E3645A, Agilent) provided electric power source 

with 28V to operate pressure transducers. A data logger (34972A, Keysight) and computer 

were used to record pressure every 5 seconds. Depressurization of the system was initiated 

by opening valve #4. 

5.2.4    Image Capture 

Time-lapse imaging was performed using a digital camera (D5200, Nikon) 

equipped with a 60mm micro lens (AF-S Micro NIKKOR 60mm f/2.8G ED, Nikon). Four 

light sources (JANSJÖ flexible LED light, IKEA) and a white colored light reflecting panel 

were used to optimize light illumination. For the biogenic gas formation images were taken 

every 10 minutes at a resolution of 1920×1080 pixels, to allow for continuous monitoring 

of the evolution of gas formation within the microfluidic chip. Depressurization 

experiments were recorded using video mode at 25 frames per second and a full HD 

resolution of 1920×1080 pixels.  

5.2.5    Image Processing Algorithm 

Figure 5.2a shows the raw image from the biogenic gas formation experiment after 

denitrification reaction had been ongoing for 244 hours. The raw experimental images 

showed different phases, such as produced the gas bubbles or pockets, circular grains, and 
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pore space filled with reactive liquid solution. These features are highlighted in the cropped 

area from the original image (Figure 5.2b). In order to detect the gas bubbles and extract 

the volume information for the estimation of degree of saturation, a comprehensive image 

processing algorithm was developed using MATLAB (ver. R2017a). Figure 5.2c presents 

a sample of processed image in which the gas pocket within the pore space is well detected 

and is filled with green color. The detailed algorithm contained different stages. First the 

gray scale images were converted to binary images and consequently the different phases, 

solid, liquid and gas were separated in three steps: circular grains detection, gas bubble 

cluster detection, and gas bubble segmentation. 

Image binarization. Acquisition of desired information from the image requires the 

detection and segmentation of targeting objects in it. The original (raw) image (24-bit RGB 

color image) from the experiment consists of three n×m matrixes which includes values 

presenting three colors (Red, Green and Blue) and each matrix has a range of values from 

0 to 255. Image binarization is one of the effective ways for building the base image for 

detection of targeting objective. Converting the RGB color image to the gray-scale image 

(8-bit intensity image) allows to store all the information into a single matrix that facilitates 

post image segmentation processes. In order to solidify the outlines of gas bubbles, the 

converted gray-scale image was turned into a black and white (0 and 1) binary image by 

using Otsu’s method [1979]. Otsu’s method selects a threshold and replaces values above 

this threshold with 1 (white) and values below the threshold with 0 (black) and can be 

carried out by using ‘imbinarize’ function in MATLAB (Figure 5.2d). Since the intensity 

values varied throughout the domain due to the inconstant illumination, threshold values 
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were selected locally using the ‘adaptive’ option, which results in automatic adjustment of 

the brightness. 

Step 1: Circular grains detection. The boundaries of the gas bubbles were clearly 

outlined in the binarized image (Figure 5.2d). But, the outlines also included the boundaries 

of circular grains, which needed to be removed. In order to do so, the binarized image was 

reversed (Figure 5.2e), then the ‘imfindcircle’ function in MATLAB was used to find 

circular grains (detected grains presented by red circles in Figure 5.2f). The center 

coordinates and diameter of circular grains were recorded and used for re-mapping the 

circular grains out on the same dimension matrix and generating a separate binary image 

containing the grains only (Figure 5.2h). The size of re-built circles slightly varies due to 

differences in the light intensity. 

Step 2: Gas bubble cluster detection. The gas bubble cluster located on the middle 

of the Figure 2d has a relatively large continuous skin boundary. This big cluster can be 

detected by using ‘bwareaopen’ function, which removes all connected objects fewer than 

a specified size (Figure 2g). The redrawn detected circular grains were masked onto the 

reversed image of Figure 2g. The resulting big bubble cluster without circular grains is 

plotted in Figure 2i. 

Step 3: Noise filtering. Small noises, which remained after detecting the circular 

grains and the gas bubble clusters in steps 1 and 2, were removed from Figure 2i by defining 

a size threshold value (Figure 5.2j). Few minor noises were still remained (see the circled 

area in Figure 5.2j), which potentially could affect the estimation of the gas volume. This 

noise is difficult to be removed by size thresholding since the noise is tiny and connected 

to an existing gas bubble cluster. Factitial noise was added (Figure 5.2k) and a 2D median  
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Figure 5.2. Gas bubbles extraction performed by the automated image processing (upper): 

Original experimental sample image (after 244 hours) showing the entire domain of 

microfluidic hip, cropped area from the sample image, and processed image based on the 

image segmentation (from the left to right). Image processing algorithm (lower): The 

algorithm mainly consists of three steps, circular grains segmentation, gas bubble phase 

detection, and noise filtering. 
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filter was used to remove this noise resulting in the final processed image shown in Figure 

5.2l showing the bubble clusters in white color. 

The number of pixels in all bubble clusters were counted and accumulated, then 

converted into the total bubble volume. It was assumed that the bubbles completely filled 

the entire depth of the microfluidic chip in this study. By using the automated image 

processing algorithm, several advantages were expected compared to the manual detection. 

As this algorithm kept the consistency for the phase segmentation and saved some 

processing time when analyzing a large number of images.  

The constants used for the functions within this algorithm and some minor 

operations, needed some manual adjustments during the image analysis based on the color 

variation of experimental images and the characteristics of different bubbles. The 

developed MATLAB codes and constants used are provided in the supplementary material. 

5.3      RESULTS AND DISCUSSION 

5.3.1    Biogenic N2 Gas Formation via Denitrification 

Figure 5.3 shows a selection of images at several times and degrees of saturation 

with significant observations illustrating the different gas formation mechanisms that 

occurred during biogenic gas formation within the microfluidic chip. After 24 hours a first 

gas bubble appeared in the upper half of the domain, which is magnified in the black circle 

(Figure 5.3a). The gas bubble nucleated at the surface of circular grain, which was expected 

considering that the energy barrier for heterogeneous nucleation of gas bubbles on surfaces 

is significantly lower than homogeneous nucleation from solution. (e.g. Jones et al., 1999; 

Vachaparambil et al., 2018). The nucleated bubble grew as denitrification proceeded with 
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time. The initial nucleation had a circular shape in 2D plane view, and it kept the shape 

until it filled the entire pore space between three grains. Then, the bubble continued to  

 

Figure 5.3. Visualization of the mechanisms of biogenic gas bubble formation and growth 

within the microfluidic 

 

expand in all three directions and gradually fill up the connected pore throats (Figure 5.3b 

~ 5.3d). Once the bubble reaches the gas pressure and tends to go up as the radius of the 

bubble needs to decrease in order to squeeze through the pore throat. Follow the Young-

Laplace equation the capillary pressure is inversely proportional to the bubble radius. Once 

bubble reaches the narrowest point of the pore throat, the bubble was expected to expand 



  87 

rapidly filling up the neighboring pore, while the capillary pressure decreases, through a 

process referred to as Haines jumps (e.g. Armstrong et al., 2015). However, in this 

experiment the expansion was more gradual, which could be attributed to the relatively 

large pore throat size in comparison to the thickness of the microfluidic chip. Since the 

pore throat width is larger than the thickness of the microfluidic chip, the capillary pressure, 

which is controlled by the smallest radius remains constant. The direction of the gas phase 

expansion is affected by the pore throat size and buoyancy. Similar pore and pore throat 

sizes in the micromodel stimulate a gradual isotropic expansion, while buoyancy may cause 

bubbles to gradually migrate upward.  

In the meantime, other gas bubbles appeared at the top (outlet) and bottom (inlet) 

channels. These channels were relatively larger pore spaces designed for the homogenous 

distribution of injection fluid (Figure 5.1a). As these bubbles were expanding laterally 

along the boundaries they were forming a large gas pocket filling up the entire inlet 

channel. After the inlet channel at the bottom was completely filled, the big gas pocket 

expanded relatively fast upwards along the side boundaries. These observations 

corresponded with previous studies on biogenic gas formation via denitrification within the 

soil columns, which showed that the produced gas pockets were predominantly in coarser 

layers and in limited wider channels from the top and bottom through the finer sand 

(Mahabadi et al., 2018; Nakano, 2018; Pham et al., 2016). Once the gas filled channels 

along the sides of the microfluidic chip reached the channel at the top, the gas rapidly 

vented upward, leaving some disconnected gas pockets along the side of the microfluidic 

chip, which gradually reconnected again, while the gas continued to be formed. This 
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process of rapid venting followed by gradual upward displacement and reconnection of 

disconnected gas pockets repeated several times until the end of the experiment.  

As the volume of gas increased with time the degree of saturation decreased. The 

initial degree of saturation starts from 100 % since the microfluidic chip was fully saturated 

with the substrate solution at the start of the experiment. The degree of saturation with time 

is presented in Figure 5.4. The decrease in saturation during the first 124 hours could be 

attributed to the growth of a single bubble. The bubble size increased exponentially as 

expected for the biological conversion, which results in an increase in biomass catalyzing 

the formation of biogas. After 125 hours (Figure 5.3f), the degree of saturation rapidly 

decreased corresponding to the rapid gas invasion along the sides of the chip. This faster 

gas formation is clearly observed in Figure 5.4, in which the degree of saturation is 

significantly drops to reach a minimum value of 75 %. The invasion of gas along the sides 

 

Figure 5.4. Degree of saturation with time by biogenic N2 gas formation within the 

microfluidic chip 
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could be driven by biological activity in the tubing upstream of the microfluidic chip, in 

which any generated gas would expel the liquid or gas downstream through the 

microfluidic chip towards the outlet. The degree of saturation started fluctuating, after the 

invading gas reached the gas pocket at the top boundary at which rapid increase in 

saturation level corresponding to venting of the gas were followed by gradual decrease, 

when the gas was gradually migrating upward again. The first and following peaks during 

the reaction are masked by blue diamonds in Figure 5.4. During these fluctuations the 

degree of saturation remained between 75 and 85 %. 

5.3.2    CO2 Gas Formation via Depressurization 

CO2 gas formation experiment through rapid depressurization showed significantly 

different gas formation and migration mechanisms than the slow biogenic gas formation, 

which affected the equilibrated degree of saturation and gas distribution pattern. Before the 

pressure was released some air, bubbles were trapped along the side edges of domain 

during the injection phase. These trapped bubbles played a role in phase changes of 

dissolved CO2 gas. As shown in Figure 5.5 rapid depressurization caused nucleation and 

growth of many small air bubbles throughout the microfluidic chip. Within the first 3 

seconds nucleation of new bubbles and growth of existing gas bubbles predominantly 

occurred along the sides of the microfluidic chip. In case of depressurization growth of gas 

bubbles can be attributed to a drop in pressure, causing the gas to expand following the 

ideal gas law. Some of the smaller bubbles migrated upward. Particularly in the center and 

close to the top of the microfluidic chip, migration was faster than near the bottom and 

along the edges migration.  
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Figure 5.5. Visualization of the mechanisms of CO2 gas formation and growth within the 

microfluidic (by quick pressure release) 
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Upward migration of gas bubbles could be attributed to buoyancy, allowing small bubbles 

to pass through freely, pressure gradients, stimulating gas to flow to the outlet or advection 

by the liquid phase being flushed from bottom to top potentially being expelled by gas 

formation in the tubing upstream from the microfluidic chip. Also splitting of bubbles into 

multiple smaller bubbles coalescence of bubbles and formation of larger bubbles was 

observed (Black box in Figure 5.5a), similar to observations by Mahabadi & van Paassen 

(2018). As the pressure dropped down with time, more gas bubbles were nucleating, also 

in the upper part of the domain (Figure 5.5b and 5.5c). During the first 4.8 seconds the 

degree of saturation gradually decreased to 90.3 % as a result gas nucleation and growth 

(Figure 5.6). However, between 4.8 and 6 seconds the degree of saturation remained 

constant as the volume of newly formed gas was equal to the volume of gas venting through  

 

 

Figure 5.6. Degree of saturation change by CO2 gas formation (by quick pressure release) 

within the microfluidic chip 
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the outlet. Between 6 and 6.4 seconds rapid upward migration of upstream invasive gas 

was observed (Figure 5.5f), which caused a sudden drop in the degree of saturation from 

92 to 41.2 %. Migration took place through several channels (Figure 5.5g). After the 

displacing gas reached the outlet, a continuous gas phase was formed from bottom to top 

(Figure 5.5h & i). Although some minor migration of gas was still observed, the saturation 

did not change upon further pressure drop after 6.4 second. The degree of saturation 

remained about 40 % during the remainder of the experiment.  

Compared to the fast depressurization experiment, the slow depressurization 

experiment showed a system, which was dominated by gas displacement (Figure 5.7). 

However, the gas displacement pattern was different than the displacement in the case of 

biogenic gas formation or the fast depressurization. Similar to the fast depressurization 

some gas bubbles were trapped during the injection phase, which started to grow when the 

depressurization was initiated. However, after 15 seconds gas bubble formation was 

observed at the bottom of the domain. A stable gas front migrated upward displacing most 

of the liquid, until it reached the top side of the microfluidic chip after 33 seconds, forming 

a continuous gas phase from bottom to top and reaching an equilibrated degree of saturation 

of about 35.6 %. 
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Figure 5.7. Visualization of the mechanisms of CO2 gas formation and growth within the 

microfluidic (by slower pressure release) 
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Figure 5.8. Degree of saturation change by CO2 gas formation (by slower pressure release) 

within the microfluidic chip 

 

5.3.3    Comparison, Interpretation and Limitations 

Comparing the three experiments clearly shows differences in the gas bubble 

formation and migration mechanisms:  

1. Biogenic gas production showed a single nucleated bubble and slow growth, 

followed by displacement along the sides, resulting in heterogeneous gas 

distribution at 75 to 80 % of equilibrated water saturation. 

2. Rapid depressurization resulted in rapid nucleation and growth of many bubbles 

and migration of single bubbles, followed by rapid displacement through 

several branches, resulting in a homogeneously distributed gas phase, at an 

equilibrated water saturation of about 40 %. 
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3. Slow depressurization did not show any nucleating gas bubbles and showed 

limited growth, followed by stable displacement and resulting in a 

homogeneous gas distribution at an equilibrated degree of saturation of 35.6 %  

In all three cases gas displacement appeared to be the dominant mechanism 

reducing the degree of saturation. The gas displacement mechanism depends on capillary 

number, viscosity ratio and bond number. Assuming the viscosity of water at 8.9×10-4 [Pa 

s] (Korson et al., 1978) and viscosities of nitrogen gas and carbon dioxide gas at 1.76×10-

5 [Pa s] (Johnston et al., 1951) and 1. 74×10-5 [Pa s] (Phillips, 1912), the viscosity ratio is 

estimated at 1.57×10-2. Considering gas displacement velocities can be estimated at  

9.3×10-11, 2.5×10-7, 1.4×10-4 [m s-1] for the three listed experiments by dividing the change 

in gas volume during displacement, by the cross-sectional area of the microfluidic chip and 

the total displacement time and assuming a surface tension of 72 [N m-1], capillary numbers 

are estimated at 2.30×10-12, 6.20×10-9, and 3.41×10-6 for case 1, 2 and 3 respectively. At 

these low capillary numbers and low viscosity ratios capillary fingering or viscous 

fingering is expected to be the dominant displacement mechanism (Cao et al., 2016; 

Mahabadi et al., 2019). Assuming the characteristic length L is 2.5×10-5 m, equal to 

minimum radius of the gas bubbles, which is limited by the thickness of the microfluidic 

chip, and a gas density of 0.8 [kg m-3] and water density of 1×103 [kg m-3], the Bond 

number is estimated at 8.5×10-5, which is significantly lower than 3.37, indicating that once 

a gas bubble gets trapped it will not migrate due to buoyancy alone. Instead it is expected 

that migration of larger gas bubbles is the result of bubble growth or induced inertia or 

hydraulic pressure of upstream invading fluids.  
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Although different formation and migration mechanisms and a relation between the 

gas formation rate, the different mechanisms and equilibrated degree of saturation and gas 

distribution have been identified, the observed displacement mechanisms do not fully 

correspond with the expectations. Further study and experiments are required to explain 

the observed displacement mechanisms.  

Part of the discrepancy between theory and observation may be attributed to 

limitations of the experimental set up and procedure. For example, the thickness of the 

microfluidic chip is smaller than the pore throat radius, which may affect the migration of 

the gas phase, resulting in a gradual displacement, without irregular Haines jumps. The 

regular pore geometry and extremely uniform pore throat size distribution may affect the 

displacement mechanism, as shown by Mahabadi et al. (2019). The pore geometry should 

be modified in other to better reflect the pore size distribution in an actual soil and establish 

a more quantitative assessment of the relation between gas production rate and equilibrated 

degree of saturation. Another aspect which is not taken into account is the limited pore size 

in fine grained soils and likely stratification in natural sediments. Biogenic gas bubbles 

may not be able to form in fine grained soils, since there may be a mechanical constraint 

limiting the activity or penetration of gas producing bacteria (Rebata-Landa & 

Santamarina, 2006) and the pore size may not allow bubbles to remain stable since the gas 

pressure and related equilibrium concentration increase with a decreasing bubble radius. 

On the other hand, formation of gas may also generate macro-pores, fractures or cracks in 

sediments, as shown by Pham et al. (2017), allowing the gas to fill larger pockets. 

Stratification in soils may prevent gas to migrate upward through finer grained soil layers 
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and spread downward sideways through coarser grained layers, resulting in variable 

degrees of saturation related to pore size. 

5.4      CONCLUSIONS 

Experiments in a microfluidic chip have demonstrated that the gas formation 

mechanism and resulting gas distribution and degree of saturation are affected by the gas 

formation rate. In a regular porous medium biogenic gas formation is relatively slow, which 

limits the amount of nucleating gas bubbles and stimulates growth of existing gas bubbles 

filling multiple pores and gradually reducing the degree of saturation and migrating upward 

as a result of buoyancy. Displacement of water by invading gas from the bottom is the 

major factor reducing the equilibrated degree of saturation, fluctuating between 75 and 

85 %, which corresponds to other experiments using sand columns. Fast gas formation due 

to depressurization of a saturated CO2 solution resulted in a more homogeneously 

distributed gas phases and lower degree of saturation, in which the displacement was also 

the dominant factor reducing the degree of saturation.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1      OVERVIEW 

The potential of using bio-geo-chemical processes for applications in geotechnical 

engineering has been widely explored in order to overcome the limitation of traditional 

ground improvement techniques. Pioneers in this field of research have found opportunities 

to use microbial activities in the subsurface. Biomineralization via urea hydrolysis, referred 

to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been 

shown to increase soil strength by stimulating precipitation of calcium carbonate minerals, 

bonding soil particles and filling the pores. Microbial Induced Desaturation and 

Precipitation (MIDP) via denitrification has also been studied for its potential to stabilize 

soils through mineral precipitation, but also through production of biogas, which can 

mitigate earthquake induced liquefaction by desaturation of the soil.  

The processes of MICP, EICP or MIDP have been extensively studied and 

empirical relationships have been established between the engineering properties of treated 

soils such as soil strength and permeability and the overall amount of biomineral and biogas 

formation. However, these empirical relationships may significantly vary depending on the 

biomineral and biogas formation patterns including the location, size, and distributions, 

which require to be examined with pore-scale studies. This research will focus on the pore-

scale characterization of biomineral and biogas formations in porous medium. 

In this study, the pore-scale characteristics of calcium carbonate precipitation via 

EICP and biogenic gas formation via MIDP were explored by visual observation in a 
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transparent porous media using a microfluidic chip at a larger scale. For this purpose, an 

imaging system was designed and image processing algorithms were developed to analyze 

the experimental images and detect the nucleation and growth precipitated minerals and 

formation and migration of gas bubbles within the microfluidic chip. Statistical analysis 

was performed based on the processed images to assess the evolution of biomineral size 

distribution, the number of precipitated minerals and degree of saturation over time due to 

the gas formation. The experimental results and image analysis provide insight in the 

kinetics of the precipitation process and gas formation and distribution.  

6.2      CONCLUSIONS 

Biomineral formation in porous media: An experimental study 

▪ Enzymatically induced calcium carbonate precipitation (EICP) by urea hydrolysis 

has been studied using a microfluidic chip experiment. The precipitation of CaCO3 

minerals was monitored by time sequential images. An image processing 

algorithm was developed to analyze the experimental images, assess the 

characteristics of the biominerals, and gain insight in the precipitation mechanisms 

and the kinetics of crystal nucleation and growth. 

▪ Despite a limited resolution, the cumulative crystal volume and bulk precipitation 

rate could be determined and corresponded reasonably well with values predicted 

with a simplified numerical model.  

▪ The assumed crystal shape in the image analysis procedure significantly affected 

the calculated volume of crystals. Assuming a cylindrical crystal shape 

overestimates the crystal volume, particularly when the crystals are smaller than 
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the internal thickness of the microfluidic chip. Assuming a semi-spherical crystal 

shape, the cumulative crystal volume and bulk precipitation rate, were lower than 

expected and gradually decreased with an increasing number of cycles. This 

decrease can partly be attributed to local pore clogging, which reduces the mobile 

allowing a lower amount of substrate solution to be retained in the pore volume.  

▪ The calculated supersaturation was relatively high, which could explain the fact 

that new crystals were observed in each treatment cycle. However, when 

comparing the results with classical nucleation theory, it was found that for the 

calculated supersaturation the observed ‘nucleation rate’ was lower than expected. 

The difference between theoretical predictions and experimental data emphasizes 

the difficulty to accurately predict the pore-scale characteristics of biominerals 

directly.  

Biomineral formation in porous media: A hybrid experiment-numerical study  

▪ A hybrid experimental-numerical approach is used in this study to get insight 

about micro-scale processes of biomineralization and its associated impacts on the 

behavior of porous media such as the evolution of pore structure and development 

of immobile pore zones. 

▪ The total porosity linearly decreases with the increase in the number of treatment 

cycles while the mobile porosity significantly reduces following a parabolic 

function. The reduction in mobile porosity due to calcium carbonate precipitation, 

and the resulting changes in the hydraulic flow field significantly affect the 

transport and distribution of solute substrates during subsequent injections. The 

concentration profile forms a completely uniform front displacing the water out of 
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the crystal-free porous media in the non-treated case, while as the level of mineral 

precipitation increases, the heterogeneity of the transport patterns increases. The 

simulation results demonstrate that higher degree of calcite precipitation results in 

development of fringe patterns and faster transport of substrate through the porous 

media. 

▪ Using only the total porosity in Kozeny-Carman equation leads to a significant 

overestimation of permeability. The estimated permeability by KC-General model 

is reduced by only 25 % after 10 cycles of treatment while the numerical results 

shows up to 80 % permeability reduction. Although adding the tortuosity change 

to the Kozeny-Carman equation (KC-Tortuosity) improves the accuracy of the 

results, still there is a meaningful discrepancy between the permeability values. 

Particularly, as the level of precipitation rises, the difference between the direct 

calculation of permeability (CFD numerical results) and the predicted permeability 

by KC-Tortuosity escalates. This is in agreements with that the Kozeny-Carman 

equation may significantly overestimate the permeability, particularly in complex, 

heterogeneous, and poorly connected porous media. By inserting the mobile 

porosity into the Kozeny-Carman equation, even by ignoring the tortuosity 

changes, the permeability can be estimated accurately.  

▪ In the field scale, the mobile porosity can be measured relatively easy by injecting 

a trace fluid and recording the residence time of the effluent. The fitting parameter 

of power-law equation were calculated η=3.6 for the KC-General while the 

realistic fitting parameter is considerably higher, η=20.2.  
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Biogenic gas formation in porous media: A comparative study with CO2 gas formation via 

depressurization  

▪ Experiments in a microfluidic chip have demonstrated that the gas formation 

mechanism and resulting gas distribution and degree of saturation are affected by 

the gas formation rate.  

▪ In a regular porous medium biogenic gas formation is relatively slow, which limits 

the amount of nucleating gas bubbles and stimulates growth of existing gas 

bubbles filling multiple pores and gradually reducing the degree of saturation and 

migrating upward as a result of buoyancy.  

▪ Displacement of water by invading gas from the bottom is the major factor 

reducing the equilibrated degree of saturation, fluctuating between 75 and 85 %, 

which corresponds to other experiments using sand columns.  

▪ Fast gas formation due to depressurization of a saturated CO2 solution resulted in 

a more homogeneously distributed gas phases and lower degree of saturation, in 

which the displacement was also the dominant factor reducing the degree of 

saturation.  

6.3      RECOMMENDATIONS FOR FURTHER STUDY 

In this study, the microfluidic chip simulating a homogenous porous media was 

used. The microfluidic chip can also be designed to represent a realistic pore distribution 

of soils using a cross section of X-ray CT image. Based on the objectives, various designs 

and types of microfluidic chip can be selected. 
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The imaging system using a digital camera with micro-lens in this study has a 

limitation on the resolution to observe a single bacteria or tiny nucleation of crystal or 

bubble. Depending on the targeting observation objectives, different imaging tool can be 

used, such as confocal microscope or high-speed video camera. 

This study has shown that despite its limitations, visualization using microfluidic 

chip is a useful method to assess the pore scale characteristics of mineral and gas 

formations in porous media. The proposed procedure can be used for: 

▪ Optimization in MICP/EICP/MIDP treatment strategies or validation of numerical 

models by analyzing the effect of different substrates and bacteria/enzyme 

activity/concentrations. 

▪ Quantification of relationships between pore-scale crystal/gas characteristics and 

continuum scale ‘engineering’ parameters of porous media, such as porosity and 

permeability. 

▪ Combined experimental studies with conventional compressive testing in order to 

correlate pore-scale crystal/gas characteristics to column-scale ‘engineering’ 

parameter of soils, such as compressive and shear strength. 
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