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Roughness-induced transition by
quasi-resonance of a varicose global mode
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2Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, D-70569 Stuttgart,

Germany
3DMMM, Politecnico di Bari, via Re David 200, 70100 Bari, Italy

The onset of unsteadiness in a boundary-layer flow past a cylindrical roughness
element is investigated for three flow configurations at subcritical Reynolds numbers,
both experimentally and numerically. On the one hand, a quasi-periodic shedding of
hairpin vortices is observed for all configurations in the experiment. On the other
hand, global stability analyses have revealed the existence of a varicose isolated
mode, as well as of a sinuous one, both being linearly stable. Nonetheless, the
isolated stable varicose modes are highly sensitive, as ascertained by pseudospectrum
analysis. To investigate how these modes might influence the dynamics of the flow,
an optimal forcing analysis is performed. The optimal response consists of a varicose
perturbation closely related to the least stable varicose isolated eigenmode and
induces dynamics similar to that observed experimentally. The quasi-resonance of
such a global mode to external forcing might thus be responsible for the onset of
unsteadiness at subcritical Reynolds numbers, hence providing a simple explanation
for the experimental observations.

Key words: boundary layer receptivity, instability, transition to turbulence

1. Introduction
Understanding, predicting and eventually delaying the laminar–turbulent transition in

boundary-layer flows has long been a challenge for researchers. For small-amplitude
disturbances and supercritical Reynolds numbers, the linear stability theory predicts a
slow transition process due to the generation, amplification and secondary instability
of Tollmien–Schlichting (TS) waves. It is however known that this transition process
can be greatly modified by environmental noise or by the presence of localized or
distributed surface roughness. Depending on the flow’s characteristics and the nature
of the surface roughness, the transition process can either be promoted or delayed.

Klebanoff & Tidstrom (1972) have shown experimentally that this natural transition
could be promoted using spanwise invariant roughness elements. This transition is
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related to the modified stability properties of the boundary-layer flow developing
downstream of the roughness element, enhancing the unstable TS waves. More
recently, Perraud et al. (2004) have shown that the higher the two-dimensional
roughness element, the closer to it does transition to turbulence take place. The
influence of fully three-dimensional roughness elements on the transition to turbulence
differs quite significantly. While fully three-dimensional roughness elements hardly
promote flow separation, they induce streamwise high-speed and low-speed streaks.
In their seminal paper, Cossu & Brandt (2004) have shown that these streaks may
stabilize the TS waves and thus delay the natural transition process. Experimental
confirmation of the stabilization capabilities of such roughness elements have been
provided by Fransson et al. (2004) and Shahinfar, Fransson & Talamelli (2012),
making these an interesting device for passive flow control. Despite their stabilizing
effect on TS waves, in certain flow conditions (Reynolds number, height, shape and
aspect ratio of the protuberance) transition to turbulence can occur right downstream
of the roughness elements, a detrimental effect for control purposes.

The flow pattern induced by an isolated three-dimensional roughness element
has been known for almost 60 years (Gregory & Walker 1955). When impinging
the three-dimensional roughness element, the spanwise vorticity of the incoming
boundary layer wraps around it, thus creating horseshoe vortices. As shown by
Baker (1978), their characteristics and number are essentially dependent on the
aspect ratio of the roughness element considered. Nonetheless, they all give birth
further downstream to quasi-aligned streamwise vortices. Due to the lift-up effect
(Landahl 1975), these streamwise aligned vortices can trigger strong transient
growth of the boundary-layer streaks (Joslin & Grosch 1995), strong enough to
yield their breakdown and subsequent transition to turbulence. The receptivity of
the boundary-layer flow to three-dimensional roughness elements and the associated
transient growth of the velocity streaks have been thoroughly investigated by various
authors such as Fischer & Choudhari (2004), Tumin & Reshotko (2005), Ergin &
White (2006) as well as Denissen & White (2008, 2009). Their major finding is that
the streamwise transient growth of the induced streaks roughly scales with the square
of the roughness Reynolds number, Re2

h (where Reh = UBl(h)h/ν, UBl(h) being the
value of the Blasius velocity profile evaluated at the roughness element’s position and
height h, and ν is the kinematic viscosity). The crucial importance of the roughness
Reynolds number in the roughness-induced transition to turbulence had already been
outlined many years earlier.

In an effort to provide thresholds for transition, von Doenhoff & Baslow (1961)
compiled a transition diagram correlating the roughness element’s aspect ratio to the
roughness Reynolds number, Reh, beyond which the induced flow would transition to
turbulence. However, such a transition diagram shows a rather wide transition region
within which some experiments have reported transitioning flows (Tani, Komoda &
Komatsu 1962) whereas others have observed laminar flows (Klebanoff, Cleveland &
Tidstrom 1992).

Vermeersch (2009) and Arnal et al. (2011) have shown that the onset of transition
may be explained by the optimal perturbation theory. Although promising, their
approach relies on the strong assumption of quasi-parallelism of the flow induced
by the three-dimensional roughness element and on the empirical N-factor (van
Ingen 1956; Smith & Gamberoni 1956). Cherubini et al. (2013) have used the
optimal perturbation theory as well but applied it to the fully three-dimensional
flow field surrounding a relatively large smooth-edged roughness element. In
this three-dimensional framework, the optimal perturbation takes the form of a
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wavepacket-like structure initially localized in the vicinity of the separation line on
the top of the roughness element. As it travels downstream, this perturbation can
trigger localized transition and induce hairpin vortices once nonlinearities are taken
into account. However, due to the linearly stable nature of the flow considered, the
unsteadiness observed is not self-sustaining once these linear transients have been
washed out from the computational domain. In the meantime, de Tullio et al. (2013)
have investigated the roughness-induced transition in the case of a compressible
boundary-layer flow using the joint application of local stability analysis, parabolized
stability equations and direct numerical simulations. These authors have shown that
the flows they have investigated are much more convectively unstable, be it to varicose
or sinuous perturbations, than the classic boundary-layer flow. Such analyses however
still do not provide a transition threshold.

With the aim of providing a more accurate estimate of the critical Reynolds
number for transition, global stability analyses have been recently performed in
the case of cylindrical (Loiseau et al. 2014) and hemispherical (Citro et al. 2015)
roughness elements. As discussed in Loiseau et al. (2014), the critical Reynolds
numbers computed by stability analysis lie close to the upper limit of the transition
band of the diagram, suggesting that a fully three-dimensional global instability
analysis might be able to provide an estimate for the upper threshold. However,
despite the many numerical (de Tullio et al. 2013), experimental (Ye, Schrijer &
Scarano 2016) and instability (Cherubini et al. 2013) studies on this subject, how
and why transition is triggered close to the lower limit of the stability diagram
remains to be understood. Note finally that similar analyses have been conducted for
roughness-induced compressible boundary-layer flows. One can cite for instance the
works of Bernardini, Pirozzoli & Orlandi (2012), Subbareddy, Bartkowicz & Candler
(2014), Kurz & Kloker (2016) and references therein for more details.

In this paper, we aim at giving an explanation for the onset of unsteadiness and
subsequent transition to turbulence at subcritical values of the Reynolds number, where
the critical value is that provided by a global stability analysis. In order to validate
the predictions of the stability analysis, the flow behind a roughness element has also
been investigated experimentally in a water channel and numerically by means of
direct numerical simulation (DNS). As to reduce the parameter space of this study
and referring to results in the literature (Tani et al. 1962; Loiseau et al. 2014), our
attention has been focused on cylindrical roughness elements of aspect ratio 1 and
3. These configurations are particularly interesting since the global stability analysis
performed by Loiseau et al. (2014) has shown the existence of global eigenmodes
with different symmetries, a varicose and a sinuous one. The paper is structured as
follows: in § 2, the experimental set-up and numerical methods are presented; global
stability and optimal forcing analysis are discussed in § 3.1; whereas, in § 3.2 direct
numerical simulations provide insights into the nonlinear evolution of the flow. Finally,
concluding remarks and perspectives are given in § 4.

2. Experimental set-up and observations
This section introduces the experimental facility, set-up and experimental observa-

tions. Three subcritical roughness configurations have been analysed and respective
parameters are given in this section.

2.1. Facility and flow configuration
The laminar water channel (Laminarwasserkanal) is a closed circuit water channel at
the Institute of Aerodynamics and Gas Dynamics (IAG) at the University of Stuttgart.
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FIGURE 1. Sketch of experimental set-up and computational domain. Domain size: Lx =

115, Ly = 40, Lz = 10, l=−25, L=−57.1. 1z is varied during experiments.

The turbulence intensity is 0.089 % of the free-stream velocity in the frequency range
0.1–10 Hz at 0.0745 m s−1 and the test section is 8 × 1.2 × 0.2 m. To maintain
the turbulence intensity even at very low free-stream velocities, an additional screen
is installed if the free-stream velocity is below 0.06 m s−1 as described in Puckert,
Dieterle & Rist (2017). A steady two-dimensional laminar boundary layer of Blasius
type is created by a flat plate with an elliptical leading edge. The experimental set-up
and the corresponding computational domain are sketched in figure 1. All length
scales are non-dimensionalized by the constant roughness height h, which equals
10 mm in the physical experiment and 1 in the numerical simulation. The roughness
position is constant at L= 57.1h from the leading edge. Three different configurations
are investigated with parameters reported in table 1. The aspect ratio η= d/h is given
by the roughness diameter d and the Reynolds number Re= hUe/ν is determined by
the (variable) free-stream velocity Ue and the dynamic viscosity ν of water. Due to
the temperature dependency of the dynamic viscosity, its value is determined prior
to each individual experiment. The coordinate system originates from the bottom
centre of the roughness with non-dimensional x-, y- and z-coordinates extending in
streamwise, wall-normal and spanwise direction, respectively.

Hot-film measurements have been performed with a Dantec Streamline 90N10
system and two single-wire probes 55R15 which were calibrated with a traverse
system in resting water as described in Subasi et al. (2015). The voltage signals are
recorded by a 16-bit A/D-converter at 100 Hz and digitally filtered between 0.1 and
10 Hz. The voltage signal is converted into a streamwise velocity by applying King’s
law and decomposed into mean velocity u and disturbance signal u′. Particle image
velocimetry (PIV) has been performed with dual-pulse Nd:YAG Quantel Twin lasers
(532 nm), a PCO Sensicam system for image acquisition and the flow has been
seeded with 4.2 µm nylon particles.

2.2. Experimental observations
The effect of the cylinder on the laminar boundary layer for the configuration
(η, Re)= (1, 700) is visualized with potassium permanganate crystals on top of and
around the roughness, which dissolve in water and draw dye streaklines into the flow
field. In figure 2(a), crystals upstream of the roughness visualize the contour around
a steady horseshoe vortex wrapping around the roughness with nearly straight trailing
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(a)

(b)

FIGURE 2. Flow visualization for the case (η, Re) = (1, 1700) with potassium
permanganate crystals placed upstream of roughness and in recirculation zone. (a) Top
view and (b) side view with 5 mm grid background.

η h/(mm) Re Reh h/δ1 ωexp ωth λx,exp λx,th

1 10 700 639 2.03 1.05± 0.11 1.02 4.8± 0.5 4.7
3 10 500 420 1.72 0.82± 0.08 0.77 5± 0.5 4.78
3 10 550 474 1.8 0.90± 0.09 0.8 5± 0.5 4.53

TABLE 1. Summary of the flow parameters, circular frequencies and wavelengths.

legs. Similarly, the recirculation zone can be seen as a dark region downstream of the
roughness followed by regular ejection of hairpin vortices. These unsteady vortices
consist of an omega-shaped head in the upper region of the boundary layer and legs
in the lower region and have been analysed in detail by Acarlar & Smith (1987)
for instance. Figure 2(b) shows the shedding of hairpin vortices from a side view.
From this picture, the vortex wavelength can be estimated by the spacing of the
heads, which is approximately λx ' 4.8. In both figures 2(a) and 2(b), the shape of
the hairpin vortices becomes less pronounced as they travel downstream, which is
a manifestation of transition to turbulence. As proposed by Klebanoff et al. (1992),
the lower part is more affected by turbulent mixing than the upper part, therefore
the hairpin heads preserve their shape for a longer distance than the legs. The same
visualizations have been repeated for the other configurations and visual estimates
of the wavelength are provided in table 1. The spanwise symmetry property of the
unsteady disturbances has been measured for the same configuration (η,Re)= (1, 700)
by two single-wire hot-film probes located symmetrically with respect to the z = 0
plane in the wake of the roughness element. Their separation 1z was increased from
0.5 to 6.5 in steps of 1(1z)= 0.5 and traversed vertically in increments of 1y= 0.2
at three downstream positions x = 10, x = 20 and x = 30. At each position, the two
disturbance signals u′1 and u′2 of the probes have been acquired for 30 s and separated
into a symmetric (varicose, uv) and antisymmetric (sinuous, us) component according
to the following approach (Shin, Rist & Krämer 2015):

uv =
(

u′1 + u′2
2

)
rms

, us =

(
u′1 − u′2

2

)
rms

, (2.1a,b)

where rms refers to the root mean square value.
The result of this decomposition is shown in figure 3. Here, the varicose (sinuous)

component is plotted on the left (right) of the spanwise symmetry plane for x = 10,
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FIGURE 3. Grey scales for the case (η,Re)= (1, 1700) showing varicose (v.) and sinuous
(s.) disturbance components according to (2.1) on left and right side of the spanwise
symmetry plane (dash-dotted line), respectively, at three downstream positions: (a) x= 10,
(b) x= 20 and (c) x= 30.

20 and 30. Note that both components actually exist on both sides and that the
probe spacing leads to an inevitable gap around the spanwise centre. For all three
downstream positions, the varicose disturbance dominates over the sinuous one. The
position of maximum varicose disturbance is in agreement with the position of the
heads and legs of the hairpin vortices in figure 2 and its amplitude grows in the
downstream direction. The leading unsteadiness of the flow is therefore of varicose
nature, as also found in the other configurations considered here. The increasing
amplitude of the sinuous component with increasing x is likely due to nonlinear
interaction of unsteady disturbances, typical for laminar–turbulent breakdown. In the
limit of fully developed turbulence, the quantities in (2.1) should become identical.

Figure 4(a,c,e) shows time traces of the streamwise velocity fluctuations for each
configuration measured downstream of the respective roughness element. Only the
first 20 out of 1200 s are shown, but the signals look similar in the remaining
parts. In all cases, the time traces show fluctuations at a distinct frequency with
temporally varying amplitudes. The amplitude fluctuations are typical for experiments
where the background noise is inevitably uncontrolled and thus different from typical
numerical time traces. The sensitivity to background noise is an important feature
with major implications on the roughness-induced transition. This will be discussed
from a theoretical perspective in the following sections. Note that the ordinate of the
configuration (η, Re)= (3, 550) is not identical to the other two configurations. This
case is close to the critical Reynolds number Rec = 564 determined by Loiseau et al.
(2014) and therefore fluctuates stronger and with more constant amplitude. On the
contrary, for (η,Re)= (3, 500), the oscillations have a significantly smaller amplitude.
They moreover sustain themselves only transiently, rapidly fading away before being
regenerated again. Figure 4(b,d, f ) shows Fourier spectra of the respective signals
with non-dimensional abscissas ω = 2πf hU−1

e , where f is the physical frequency in
Hertz. Spectral peaks can clearly be distinguished from background noise and in all
configurations also higher harmonics of the fundamental fluctuation can be observed.
The fundamental frequencies are summarized in table 1.

The unsteadiness is further illustrated by PIV snapshots in wall-normal planes
at y = 1 in figure 5. Grey scales indicate the in-plane velocity magnitude and
black vectors indicate the vector sum of streamwise and spanwise velocities. In
both snapshots one can see the streaky wake of the roughness elements with
quasi-symmetrical oscillations around the spanwise centreline. Again, this unsteadiness
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FIGURE 4. (a,c,e) Time signals and (b,d, f ) power spectral densities (PSD) of streamwise
velocity fluctuations u′/Ue. Probe located at (x, y, z) = (5, 1.5, 0) for case (η, Re) =
(1, 1700) and (x, y, z) = (10, 1.5, 0) for the remaining cases. Grey lines in the spectra
represent free-stream turbulence spectrum at (x, y, z)= (0, 6, 0).

belongs to the observation of hairpin vortices for both configurations. The question
to be answered by theory is how this unsteadiness can be triggered and self-sustained
despite the globally stable nature of the flow for the range of parameters considered
herein (Loiseau et al. 2014).

3. Numerical investigation

The three experimental cases listed in table 1 are investigated by the joint use
of direct numerical simulations, linear stability analysis and optimal forcing analysis
with the aim of shedding some light on the onset of unsteadiness downstream of the
roughness element. As sketched on figure 1, the computational domain considered
is given by Lx = [−25, 90] (x = 0 being the cylinder position), Ly = [0, 40] and
Lz = [−5, 5], x, y and z being the streamwise, wall-normal and spanwise directions,
respectively. The dynamics of the incompressible flow is assumed to be governed by
the Navier–Stokes equations

∂U
∂t
+ (U · ∇)U=∇P+

1
Re
∇

2U,
∇ ·U= 0,

}
(3.1)

where U(x, t) = (U, V, W)T is the three-dimensional velocity field and P(x, t) the
pressure field. A Neumann boundary condition is used at the upper boundary of
the computational domain while a no-slip condition is prescribed at the wall. In
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FIGURE 5. PIV snapshots at y= 1 for (a) (η, Re)= (1, 700), (b) (η, Re)= (3, 500).

the spanwise direction, periodicity is imposed. Despite these periodic conditions, the
spanwise extent of the domain is sufficiently large so that the roughness element
almost behaves as though it is isolated (Braslow 1960). Finally, the conditions
prescribed at the inflow and outflow boundaries of the computational domain
depend on the analysis considered and will be stated whenever needed in the next
sections. The Navier–Stokes equations are solved using the incompressible flow solver
NEK5000 (Fischer et al. 2008) which is based on the spectral element method (Patera
1984; Deville, Fischer & Mund 2002). A PN − PN−2 formulation has been used: the
velocity field is discretized using Nth degree Lagrange interpolants, defined on the
Gauss–Legendre–Lobatto quadrature points, as basis and trial functions, while the
pressure field is discretized using Lagrange interpolants of degree N − 2 defined on
the Gauss–Legendre quadrature points. All results presented hereafter are based on the
polynomial degree N= 8, see appendix A for details about the grid convergence study.
Finally, time integration is performed using the BDF3/EXT3 scheme: integration of
the viscous terms relies on backward differentiation (BDF3), while the convective
terms are integrated explicitly using a third-order accurate extrapolation (EXT3).

Owing to their linearly stable nature, see § 3.1, no selective frequency damping
(Åkervik et al. 2006) or Newton method were required to compute most of the base
flows Ub(x) considered in the rest of this work. These have simply been computed by
time marching the Navier–Stokes equations until the norm of the residual drops below
a given tolerance, in the present case ‖∂U/∂t‖6 10−9. This linearly stable nature of
the flow is in apparent contradiction with the experimental observations reported in
§ 2.2. The following sections are devoted to the explanation of these differences.
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3.1. Linear dynamics
The dynamics of infinitesimal perturbations evolving in the vicinity of a given base
flow Ub is governed by the linearized Navier–Stokes equations

∂u
∂t
+ (u · ∇)Ub + (Ub · ∇)u=−∇p+

1
Re
∇

2u,
∇ · u= 0,

}
(3.2)

while their adjoint counterparts are given by

∂u†

∂t
+ (∇Ub)

Tu†
+ (Ub · ∇)u†

=−∇p†
+

1
Re
∇

2u†,

∇ · u†
= 0,

 (3.3)

where Ub is the base flow velocity field, while (u, p) and (u†, p†) are the direct
and adjoint velocity and pressure perturbations, respectively. Although one should
traditionally use a Neumann condition at the outflow (inflow) for the direct (adjoint)
equations, a zero velocity condition has been prescribed at both the inflow and
outflow in all cases for the sake of computational simplicity during the optimal
forcing analysis. Additionally, fringe regions have been used as to kill the (adjoint)
perturbation once it reaches the outflow (inflow). Note that the streamwise extent of
the domain and the characteristics of the fringe regions have been chosen so that
our results are hardly influenced by the inflow–outflow boundary conditions, see
appendix B for more details.

3.1.1. Eigenspectrum and eigenmodes
The linear stability of a base flow Ub is dictated by the fate of an infinitesimal

perturbation u evolving in its vicinity. Once projected onto a divergence-free vector
space, the linearized Navier–Stokes equations can be compactly written as

∂u
∂t
= Au, (3.4)

with A being the projection of the linearized Navier–Stokes operator onto the
divergence-free vector space. The asymptotic time evolution of an infinitesimal
perturbation u is then governed by the eigenspectrum of A. Due to the very large
dimensions of A once the linearized Navier–Stokes equations are discretized in space,
its leading eigenpairs cannot be readily obtained using direct eigenvalue solvers. In
order to circumvent this problem, a time stepper approach, popularized by Edwards
et al. (1994) and Bagheri et al. (2009), is used. This method aims at computing
approximations of the leading eigenpairs of the exponential propagator M = eA1t,
whose action onto an initial vector is easily computed by time marching the linearized
Navier–Stokes equations from t = 0 to t = 1t. Iterative eigenvalue solvers, such as
the implicitly restarted Arnoldi method (Sorensen 1992; Lechoucq & Sorensen 1996)
or the Krylov–Schur decomposition (Stewart 2001), can then be used to project the
propagator M onto an orthonormal set of vectors spanning a Krylov subspace of
dimension k, hence resulting in a low-dimensional k × k Hessenberg matrix H. The
eigenvalues λ = σ + iω of H provide a good approximation to those of M. In this
work, an in-house Krylov–Schur algorithm with a Krylov subspace dimension k= 400
and a sampling period 1t= 0.748 has been used.

Figure 6(a) provides the eigenspectrum for case (η, Re) = (1, 700) which does
not present any unstable mode. At the bottom of the spectrum, one can observe a
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FIGURE 6. (Colour online) Eigenspectra of the linearized Navier–Stokes operator for
η = 1 and Re = 700 (a), 900 (b), 1200 (c). The circles represent the modes of the
convective branch, whereas the (×) indicate the varicose and (+) the sinuous isolated
modes, respectively.

branch of modes characterized by a varicose symmetry (circles). On top of them, two
isolated modes, characterized by different symmetries, can be seen: a varicose mode
with ω = 1.02 lying close to the instability threshold (magenta cross), along with a
more stable sinuous one (red plus) with ω = 0.68. The varicose leading eigenvector,
depicted in figure 7(a), shows patches of spanwise-symmetric streamwise velocity
perturbations, which are alternated in the streamwise direction. They are placed on
top of the near-wake central low-speed streak of the base flow, as well as on the
low-speed streaks placed at the sides of the central one further downstream (black
isocontours). The sinuous one, shown in figure 7(b) exhibits a very similar shape,
except for its opposite symmetry and its longer streamwise extent. The fact that the
varicose mode lays much closer to the stability threshold than the sinuous one might
suggest that, increasing the Reynolds number, the former will become unstable before
the latter, driving the destabilization of the flow. However, a surprising behaviour can
be inferred by inspecting figure 6, showing the spectra obtained for Re = 700, 900
and 1200 (from left to right). When increasing the Reynolds number, the sinuous
mode quickly rises in the ω–σ plane, becoming unstable for 700 < Rec < 900,
whereas the isolated varicose mode moves down, joining the convective varicose
branch at 900 < Re < 1200. This suggests that the varicose unsteadiness observed
in the experiments for the η = 1 case cannot be simply interpreted as a remnant of
the global instability of the varicose mode triggered at larger value of the Reynolds
number. For the sake of completeness, it is worth noting that, in the present work,
the Reynolds number has been increased maintaining the ratio h/δ1 constant and
equal to 1.03, while this ratio was set to 1.66 by Loiseau et al. (2014) (see figure 8
of the aforementioned paper for case (η, Re) = (1, 1200)). However, this difference
between the two configurations does not change the sinuous nature of the unstable
mode observed at this Reynolds number.

Regarding the η = 3 cases, only varicose modes are recovered in the spectra, as
also found by Loiseau et al. (2014) for different values of the Reynolds number.
Figure 8(a) provides the eigenspectrum (coloured symbols) for Re = 550, which is
mostly made of stable modes with varicose symmetry. The least stable (isolated)
mode oscillates at a circular frequency ω = 0.8. The corresponding eigenvector is
depicted in figure 11(a), showing a structure very similar to that of the least stable
mode recovered for η = 1, although it has a longer extent in both the streamwise
and spanwise directions. A similar structure also characterizes the corresponding
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FIGURE 7. (Colour online) Eigenvector associated with (a) the isolated varicose and
(b) the sinuous mode for case (η, Re) = (1, 700). Isosurfaces of streamwise velocity
perturbation (±10 % of maximum amplitude, yellow for positive, blue for negative values).
Grey scales are related to base flow streamwise velocity deviation from Blasius flow,
extracted at y= 0.8 (black for negative, white for positive values).
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FIGURE 8. (Colour online) (a) Eigenspectrum (coloured symbols) and pseudospectrum
(solid lines) of the linearized Navier–Stokes operator for (η, Re) = (1, 700). Circles
(squares) represent varicose (sinuous) modes. The isolines represent pseudospectrum given
by log10 ε

−1 contours, with ε ranging from 10−6 to 10−3. (b) Approximation of the
resolvent norm extracted from the pseudospectrum.

isolated mode for (η, Re) = (3, 500) (figure 9a), despite having a smaller growth
rate, while its circular frequency only slightly decreases (ω = 0.77). In all of the
cases considered herein, the dominant frequencies in the spectra as well as the main
streamwise wavelength of the associated eigenvectors are very close to those measured
experimentally (see table 1).

3.1.2. Pseudospectrum
For the range of parameters considered experimentally, all the modes in the

spectrum are stable. Hence, the unsteadiness observed experimentally cannot be
explained by a linear instability of the underlying base flow. It might however result
from a large receptivity of the flow, which can be either linked to a strong transient
growth of perturbations due to the non-orthogonality of the eigenvectors, or to a
strong sensitivity of specific modes to external forcing. In the first case, the flow
will act as an amplifier of a large range of frequencies, whereas in the latter case,
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FIGURE 9. (Colour online) Same as in figure 8 for (η, Re)= (3, 500).
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FIGURE 10. (Colour online) Same as in figure 8 for (η, Re)= (3, 550).

it will ‘resonate’ at a precise frequency. To quantify the receptivity of the flow,
the pseudospectrum of the linearized Navier–Stokes operator is evaluated using the
Hessenberg matrix as in Toh & Trefethen (1996)

Λε(A)= {z ∈C : ‖(z I − A)−1
‖> ε−1

} ≈ {z ∈C : λmin(zI − log(H)/1t) < ε}, (3.5)

where the quantity (zI − A)−1 is known as the resolvent of A (Trefethen & Embree
2005), measuring how sensitive the eigenvalues of A are to some perturbations of A,
and λmin is the smallest singular value of a matrix, approximating its norm.

The pseudospectrum of A for (η, Re)= (1, 700) is shown in figure 8(a). The solid
lines depict the log10(ε

−1) contours, representing the response of the system to a
perturbation zI . As can been seen, very high levels of log10(ε

−1) are reached in the
vicinity of the eigenvalue associated with the varicose isolated mode, hence indicating
that this particular eigenpair is highly sensitive to disturbances: even a disturbance
as small as ε ≈ 10−5 is sufficient to destabilize the system. Concerning the η = 3
cases, the same comments can be made on the pseudospectrum obtained for Re= 550,
shown in figure 10(a), whereas a slightly lower receptivity (ε ≈ 10−4) is found at
Re= 500, the least stable eigenmode being farther from the real axis (see figure 9a).

The isolated varicose modes being very sensitive no matter the case considered
here, it is worth investigating how much its frequency, as well as other frequencies,
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can be amplified by the system. This can be easily evaluated from the pseudospectrum
considering a purely imaginary perturbation z and extracting the values of ε−1 along
the σ = 0 axis, thus providing a proxy for the resolvent norm. Figure 8(b) shows the
amplification factor of purely imaginary forcing at different frequencies found using
(3.5), for the case (η, Re) = (1, 700). The maximum gain is reached for ω = 1.02,
i.e. the circular frequency of the isolated varicose mode, very close to that measured
experimentally. Moreover, the associated gain is very high (≈105), indicating that the
energy of the response to a harmonic forcing at ω = 1.02 can be amplified by up
to 5 orders of magnitude. A similar value of the gain (≈1.4× 105) can be obtained
by forcing a linear numerical simulation using the adjoint counterpart of the varicose
mode with its associated frequency and marching it to long times, allowing the
establishment of an asymptotical behaviour. The isolated varicose mode thus appears
to be almost orthogonal to the other modes of the eigenspectrum, strongly suggesting
that, in the case considered herein, non-normality of the linearized Navier–Stokes
operator does not play a significant role. Similar conclusions can be drawn for the
η= 3 cases. Figure 10(b) shows the amplification factor of purely imaginary forcing
for the case at Re= 550, which has a strong peak (≈393 400) at ω= 0.8, the circular
frequency of the isolated varicose mode. The same can be said about the case at
Re= 500 depicted in figure 9(b), although the peak associated with the isolated mode
is no longer the global maximum of the amplification curve and is less pronounced
(O(104)) with respect to the previous cases, the global isolated mode being more
stable.

3.1.3. Optimal forcing and response
The previous analysis has shown that a small perturbation is sufficient to make the

system resonate at the circular frequency of the varicose isolated mode. It provides
however no information regarding the spatial evolution of the perturbations induced by
this quasi-resonance phenomenon. To gain some insights, we investigate which kind
of harmonic forcing, characterized by the frequency of the global isolated mode, is
able to induce the largest possible response. Towards this aim, a forcing is introduced
in the linearized Navier–Stokes equations such that

∂u
∂t
= Au+ f . (3.6)

Assuming a periodic forcing f (x, t)= f̂ (x)eiωt
+ c.c., the response of the system takes

the form u(x, t)= û(x)eiωt
+ c.c. Introducing this ansatz in (3.6), the relation between

f̂ and û is given by

û= (iωI − A)−1f̂ , (3.7)

where the resolvent (iωI − A)−1 has the role of a transfer function between the
harmonic forcing f̂ and the asymptotic response û. In order to find the forcing field
at a given frequency ω maximizing the response of the system, the quantity

R(ω)=max
f

‖(iωI − A)−1f‖
‖ f‖

= ‖(iωI − A)−1
‖ (3.8)

has to be optimized. The solution to this convex optimization problem is found
iteratively by a direct-adjoint loop (Monokrousos et al. 2010) which has been
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FIGURE 11. (Colour online) (a) Eigenvector associated with isolated varicose mode, and
(b) its adjoint counterpart for case (η, Re)= (3, 550). Grey scales and isosurfaces are the
same as in figure 7.

implemented in the Nek5000 code. For more details about the resolvent analysis,
the reader is refereed to Schmid (2007), while Luchini & Bottaro (2014) provide a
detailed explanation of the derivation of the adjoint Navier–Stokes equations and their
use in fluid mechanics.

The shapes of the optimal forcing and response at ω = 1.02 for the case
(η, Re)= (1, 700) are shown in figure 12(a and b, respectively). The optimal forcing
is constituted by streamwise-alternated patches of velocity perturbations, placed
upstream of the cylinder. Remarkably, it shows a varicose symmetry, similarly to the
most sensitive isolated mode previously analysed. As might be expected, the shape
of the optimal response induced by such a forcing is very close to the shape of the
isolated varicose mode, as one can observe by comparing figure 12(b) to figure 7(a).
Again, this behaviour can be ascribed to the quasi-orthogonality of the varicose mode
with respect to the other modes. Note finally that the optimal gain R(ω) = 149 170
is in good agreement with the estimate obtained from the pseudospectrum analysis in
§ 3.1.2.

The optimal forcing and response at ω = 0.8 are provided in figure 13(a and b,
respectively) for the case (η, Re) = (3, 550). As before, the shape of the optimal
response (forcing) almost coincides with the shape of the isolated (adjoint) varicose
mode, as one can infer when comparing figures 11 and 13. Despite the linearly
stable nature of the underlying base flows, these observations strongly suggest that
the unsteadiness observed experimentally results from a quasi-resonance of the least
stable varicose eigenmode due to the external forcing inherent to an experimental
facility.

3.2. Nonlinear analysis
The different analyses presented in § 3.1 have demonstrated how sensitive the flow
is despite its linearly stable nature. More specifically, the pseudospectrum analysis
(§ 3.1.2) and the optimal forcing analysis (§ 3.1.3) have strongly underlined the
receptivity of the flow at the frequency of the least stable varicose eigenmode and its
quasi-resonant response. Despite their success, these analyses rely on the linearized
Navier–Stokes equations and, as such, do not provide any insight into the nonlinear
evolution of the perturbation. In order to properly quantify this response, one would
need to perform a nonlinear resolvent analysis. Such an analysis is however beyond
the scope of our current capabilities. One can nonetheless gain some insights into
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FIGURE 12. (Colour online) Shape of (a) the optimal forcing and (b) the optimal response
for the case (η, Re)= (1, 700). Grey scales and isosurfaces are the same as in figure 7.
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FIGURE 13. (Colour online) Shape of (a) the optimal forcing and (b) the optimal response
for case (η, Re)= (3, 550). Grey scales and isosurfaces are the same as in figure 7.

the nonlinear evolution of the perturbation by means of direct numerical simulations.
For that purpose, two different types of direct numerical simulations are considered
hereafter:

(i) an impulse-response direct numerical simulation;
(ii) direct numerical simulations forced by the optimal forcing obtained from the

resolvent analysis with three different amplitudes.

Regarding the boundary conditions, a Blasius velocity profile is now prescribed at
the inflow boundary while a classical outflow condition is used at the other end of
the domain. Note furthermore that the fringe regions included in the linear analyses
are no longer used.

3.2.1. Impulsively forced DNS
The pseudospectrum and optimal forcing analyses provided in the previous sections

suggest that the flow can be highly receptive at the frequency of the isolated global
mode. Thus, even a direct numerical simulation initialized by a generic perturbation
can be expected to give rise to a response dominated by the frequency of that mode,
as observed in the experiments presented in § 2.2. To ascertain this hypothesis, we
focus our attention on the case (η, Re)= (1, 700) and perform a DNS initialized by
a superimposition of the linearly stable base flow and of an impulsive wavepacket
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FIGURE 14. (Colour online) Time evolution of the wall-normal velocity perturbation v
measured at (y, z) = (1.2, 0) for the impulsively perturbed DNS. The inset provides the
shape of the wall-normal perturbation added to the base flow at t = 0. The red dashed
line indicates the cylinder position. The case considered is (η, Re)= (1, 700).

of the form v(x, 0) = sin(πx/5) sin(πx/20), shown in the inset of figure 14. The
wavepacket, placed downstream of the cylinder in the region 0< x< 20, has an initial
amplitude A= 5× 10−5, which is sufficiently low to allow a (mostly) linear evolution
of the flow response. The main frame of figure 14 provides a space–time diagram
showing the evolution of the wavepacket. It is initially amplified and stretched in the
streamwise direction up to x ≈ 40. After its initial transient growth, the wavepacket
begins to decrease its amplitude and streamwise extent, slowly fading away as
time is increased, as it might have been anticipated by the initial low amplitude
of the wavepacket and linearly stable nature of the flow. Figure 15 provides the
time trace of the perturbation’s vertical velocity component monitored by a probe
located at (x, y, z)= (10, 1.2, 0). After a relatively short transient, the signal oscillates
at a preferential frequency, followed by an exponential decay. This decay is well
approximated by an exponential function characterized by a decay rate −0.01 in
close agreement with the decay rate of the isolated varicose mode (see figure 8a).
Moreover, a Fourier transform of that signal highlights the existence of a dominant
peak at ω = 1.02, demonstrating that the most unstable mode of the spectrum can
indeed be triggered by a generic perturbation injected impulsively into the flow.

3.2.2. Optimally forced DNS
Once ascertained that the dominant frequencies observed within the flow are likely

to result from a quasi-resonance of the isolated varicose mode, it is interesting to
shed light onto the transition scenario induced by this phenomenon, with the final aim
of comparing the generated coherent structures with those observed experimentally.
We thus focus once again on the case (η, Re) = (1, 700), using the optimal forcing
at ω = 1.02 to force a DNS. The optimal forcing is scaled with three different
initial amplitudes (A = 10−5, 10−4, and 10−3) in order to investigate the effect of
nonlinearity on the time evolution of the flow. The resulting wall-normal velocity
fluctuations, given by the instantaneous velocity minus its temporal mean value, are
monitored by a probe located at (x, y, z)= (10, 1.5, 0). The time traces (a,c,e) obtained
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FIGURE 15. (Colour online) Time evolution of the wall-normal velocity perturbation
v extracted at (x, y, z) = (10, 1.2, 0). The inset shows the Fourier transform of that
time signal, showing that the response of the flow to a generic perturbation is indeed
dominated by the most receptive global mode (σ , ω)= (−0.01, 1.02). The case considered
is (η, Re)= (1, 700).
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FIGURE 16. (Colour online) (a,c,e) Time evolution of the wall-normal velocity fluctuation
for initial amplitudes A= 1× 10−5 (a,b), A= 1× 10−4 (c,d) and A= 1× 10−3 (e, f ) and
related Fourier transform (b,d, f ). The case considered is (η, Re)= (1, 700).

for the three amplitudes considered and their frequency spectra (b,d, f ) are provided
in figure 16.

For the lowest amplitude (a,b), a time-periodic behaviour appears to settle after a
short initial phase characterized by a transient growth of the perturbation. After this
initial phase, a periodic signal with associated circular frequency equal to that of the
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FIGURE 17. (Colour online) Streamwise evolution of the skin friction factor Cf (x) for four
different amplitudes of the optimal forcing. The case considered is (η, Re)= (1, 700).

varicose mode is observed. Increasing the amplitude of the forcing begins to trigger
the nonlinearities, hence resulting in the emergence of smaller-amplitude harmonics
which rapidly fade away leading, again, to the establishment of a quasi-periodic signal
(figure 16c,d). For the largest amplitude considered herein, an even larger number
of harmonics are generated by the nonlinearities, inducing a saturation of the signal
amplitude as shown in figure 16(e, f ).

In order to obtain a quantitative criterion defining whether transition to turbulence
has occurred or not, the skin friction coefficient Cf (x) is computed. Figure 17
depicts the streamwise evolution of Cf (x) for the optimally forced DNS at the three
amplitudes considered. Note that the evolution of Cf (x) for the unperturbed steady
base flow is also reported for the sake of reference. For the lowest value of the
forcing amplitude, the flow remains laminar behind the roughness, as indicated by
the Cf curve which is superimposed to that of the base flow (compare the dashed and
the solid lines). For A= 10−4, the skin friction begins to deviate from the reference
state, while for A= 10−3, it strongly increases. Such an increase of the skin friction
typically indicates the onset of transition towards a turbulent flow, although the values
of Cf typical of high Reynolds number turbulent boundary-layer flows have not been
reached yet in the computational domain considered.

Figure 18 provides a snapshot of the instantaneous flow where the vortical structures
are highlighted using the λ2 criterion (Jeong & Hussain 1995). One can observe the
generation of hairpin vortices right downstream of the roughness element, the first
one being placed at x≈ 2. Up to x≈ 30, a train of hairpin vortices can be observed,
whose heads appear to have a streamwise spacing of 1x≈ 4.7. The vortical structures
also spread in the spanwise direction generating Λ vortices at their spanwise sides.
These primary hairpin vortices then start to break down at x ≈ 30, corresponding to
the streamwise position at which the skin friction Cf reaches its highest value. This
transition scenario closely resembles the one observed experimentally, showing the
shedding of hairpin vortices having a varicose symmetry with streamwise wavelength
≈ 5. However, due to the nature of the optimal forcing, the flow remains symmetric
up to the end of the domain (see figure 18) and the associated spatial and temporal
Fourier spectra remain characterized by a limited number of different wavelengths.

Finally, to further characterize the spatial spreading of the fluctuation, a spanwise
Fourier transform of the urms field for different selected y and x positions has been
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FIGURE 18. (Colour online) Hairpin vortices highlighted by lambda-2 criterion as defined
by Jeong & Hussain (1995) (λ2 =−0.02) and coloured by streamwise velocity. The case
considered is (η, Re)= (1, 700).

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1.0

x

y

0

0.2

0.4

0.6

0.8

1.0

FIGURE 19. (Colour online) Variation in the streamwise direction of the wall-normal
position of the maximum amplitude mode of the spanwise Fourier transform of the urms.
Colour bar indicates the spanwise wavenumber of the dominant Fourier mode. Red dashed
line provides the analytical displacement thickness of the Blasius solution whereas the blue
dashed-dotted line indicates the height of the cylinder. The case considered is (η, Re)=
(1, 700).

performed. The wall-normal position of the dominant Fourier mode in the y-direction
for a fixed x position (circles) and the associated spanwise wavenumber (colours of the
circles as specified by the colour bar) are shown in figure 19. The first peak (x= 9) is
associated with the generation of the train of hairpin vortices behind the cylinder, the
corresponding spanwise wavelength, β = 0.63, being close to the spanwise dimension
of the first hairpin. For x > 10, the first hairpin vortex starts to disappear, whereas a
second one is generated downstream, inducing a second peak at x = 23 due to the
growth of a second perturbation that wraps the two low streaks. For x> 26, the wall-
normal position of the dominant Fourier mode of urms rapidly moves towards the wall,
where the flow starts to become turbulent (see figure 17). Further downstream, the
maximum amplitude of the Fourier transform is characterized by β = 0, but, due to
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the spanwise symmetry of the flow field, a second peak at β=1.26 is observed, which
becomes predominant for 85 6 x 6 90.

4. Summary and conclusions
Following the work of Loiseau et al. (2014), the properties of the incompressible

flow induced by three-dimensional cylindrical roughness elements of various aspect
ratios have been studied by the joint use of experimental investigations, linear
stability analyses, direct numerical simulations and optimal forcing analysis. Despite
the linearly stable nature of the base flows (§ 3.1.1) for the range of parameters
considered herein, the experiments conducted in the Laminarwasserkanal at IAG
have highlighted the quasi-periodic shedding of hairpin vortices downstream of the
roughness elements (§ 2.2).

In all cases considered, counter-rotating pairs of horseshoe vortices wrapped
around the roughness element are created by the impinging boundary layer. Further
downstream, the legs of these horseshoe vortices create several high- and low-speed
streamwise streaks due to the lift-up effect. As shown by Loiseau et al. (2014), the
properties of these streaks are crucial for the streamwise development of the global
instability stemming from the near wake of the roughness element. In the present
work however, the unsteadiness observed in the experiments cannot be explained by
the existence of a linearly unstable eigenmode for the range of parameters considered
herein. A pseudospectrum analysis has nonetheless revealed the high sensitivity
to external disturbances of the least stable varicose eigenmode whose frequency
closely matches the frequency measured experimentally. Depending on the exact case
considered, disturbances at the frequency of this isolated varicose eigenmode can be
amplified by four to six orders of magnitude. The shape of the optimal forcing and
associated response at this particular frequency have been obtained by means of a
fully three-dimensional resolvent analysis. Surprisingly, the optimal forcing closely
resembles the isolated adjoint varicose eigenmode while the associated response is
almost indistinguishable from the direct eigenmode. Such a resemblance between the
optimal forcing (response) and the adjoint (direct) eigenmode and the good agreement
between the most amplified frequency and the one observed experimentally strongly
suggests that the unsteadiness observed experimentally results from a quasi-resonance
of the least stable varicose eigenmode rather than being due to the non-normality of
the linearized Navier–Stokes operator.

Although the analyses presented herein have provided a relatively simple explanation
of the origin of unsteadiness in the experiment, it has to be noted that we have
considered only a small portion of the parameter space. The influence of the shape
of the roughness element, its aspect ratio, as well as the boundary-layer thickness of
the incoming flow on the properties (frequency, symmetry) of the resonant mode still
need to be determined. With the aim of determining the lower bound for transition
in the von Doenhoff–Braslow diagram, direct numerical simulations in the presence
of free-stream turbulence might also be a valuable tool to investigate the receptivity
of the flow in more realistic conditions.

4.1. Concluding remarks
In their original work Loiseau et al. (2014) have shown that the upper bound for
transition in the von Doenhoff–Braslow diagram could potentially be explained by
a global instability of the underlying base flows. Their attention has however been
mostly focused on the η=1 roughness element and the evolution of the sinuous global
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instability it experiences due to a supercritical Hopf bifurcation, leaving two questions
unanswered:

(i) What is the nature of the bifurcation giving rise to a linearly unstable varicose
eigenmode?

(ii) Can these flows experience subcritical transition to turbulence, thus providing
an explanation for the lower bound for transition in the von Doenhoff–Braslow
diagram?

Although this work does not provide a definite answer to the first question, the
direct numerical simulations (§ 3.2) clearly demonstrate that subcritical transition can
indeed be induced by a relatively small external forcing. While the characteristics of
the unsteadiness in case of a subcritical transition to turbulence usually differs quite
significantly from the spectral properties of the linearized Navier–Stokes operator in
most wall-bounded shear flows, it is surprising that, herein, these characteristics are
well predicted by the simple use of linear stability and pseudospectrum analyses. In
particular, the pseudospectrum analysis can provide approximations of the lower bound
for transition as it estimates the required amplitude of an external forcing in order to
trigger the resonant mode. In the present case, a disturbance of order 10−3 is found
sufficient for initiating the quasi-resonance phenomenon leading to transition. This
order of magnitude is similar to the turbulence intensity measured in the water channel.
Such an observation might greatly reduce the computational burden of investigating
the properties of roughness-induced transition, even when a turbulent mean flow is
taken as the base flow as it would require only a limited number of stability and
pseudospectra analyses. Note that it is still unclear at present time whether this
observation remains true for all flows induced by a fully three-dimensional geometry.
One may however hypothesize that it remains valid if the leading isolated modes are
almost orthogonal to the rest of the eigenmodes.
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Appendix A. Grid convergence study
Within the spectral elements framework, two types of grid refinement can be

undertaken:

(i) h-type: keep the number of spectral element constant and increase the order of
the Lagrange interpolants;

(ii) p-type: keep the order of the Lagrange interpolants constant and increase the
number of spectral elements used.

In the present work, the grid convergence analysis has been performed using a
h-type refinement due to its simplicity. Figure 20(a) depicts the eigenspectrum of the
linearized Navier–Stokes operator for the case (η, Re) = (1, 700) for three different
polynomial orders, namely N= 6, 8 and 10. For the present configuration, the spectral
element mesh is kept constant and is made of 23 544 elements (figure 21 depicts
the coarse grid distribution of the spectral elements in a given horizontal plane).
As shown, the eigenvalues of interest are hardly influenced by the mesh refinement.
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FIGURE 20. (Colour online) Grid convergence analysis for the case (η, Re) = (1, 700).
(a) Evolution of the linearized Navier–Stokes operator as the degree of the Lagrange
interpolants is increased from N = 6 up to N = 10. (b) Same as (a) for the approximation
of the resolvent norm based on the pseudospectrum analysis.

X

FIGURE 21. Coarse grid distribution of the spectral elements in a given horizontal plane
for the aspect ratio η = 1 case. Note that in the simulation N Lagrange interpolants are
used in the three directions of space within each of these elements.

On the other hand, figure 20(b) depicts the approximation of the resolvent norm
R(ω) as obtained by the pseudospectrum analysis. Although the peak frequency and
gain do not seem to be greatly influenced by the polynomial order of the Lagrange
interpolants used, the low-frequency part of this resolvent (i.e. ω < 0.75) appears to
be significantly stabilized as the polynomial order is increased. Similar observations
have been made for other aspect ratio cases. In all of this work, the results presented
have been obtained with a polynomial degree N = 8.

Appendix B. Fringe regions

The use of a fringe region was deemed necessary for the calculation of the optimal
forcing and optimal response using the direct-adjoint looping procedure described
in Monokrousos et al. (2010). For that purpose, a force is added in the momentum
equations, given by

F(x)=−λ(x)u(x), (B 1)

where u is the perturbation velocity field and λ(x) is a streamwise-dependent non-
negative fringe function. This force is applied in the region [xstart; xend] = [75; 90] and
is given by

λ(x)= λmax

[
S
(

x− xstart

∆rise

)
− S

(
x− xend

∆fall
+ 1
)]

, (B 2)
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FIGURE 22. (Colour online) Visualization of the λ(x) function and relevant parameters in
the fringe region.

where S(x) is a regularized step function defined as

S(x)=

0, x 6 0,
1/[1+ exp(1/(x− 1)+ 1/x)], 0< x< 1,
1, x > 0,

(B 3)

with λmax = 2.6, ∆rise = 60 %, ∆fall = 10 %. See Lundbladh et al. (1999) for an
investigation on how the fringe parameters affect the disturbance in the fringe. The
influence of this zone has been verified, and its location and characteristics have been
chosen so as not to have any significant influence on the results. Note finally that, for
the adjoint simulations, a similar fringe zone is also used upstream of the roughness
element, between [xstart; xend] = [−25; 10]. Figure 22 depicts the spatial extent of the
fringe region as well as summarizing the different numerical parameters.
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