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A Priori Tests of RANS Models for Turbulent Channel
Flows of a Dense Gas

Luca Sciacovelli1 ·Paola Cinnella2 ·Xavier Gloerfelt2

Abstract Dense gas effects, encountered in many engineering applications, lead to uncon-
ventional variations of the thermodynamic and transport properties in the supersonic flow
regime, which in turn are responsible for considerable modifications of turbulent flow
behavior with respect to perfect gases. The most striking differences for wall-bounded tur-
bulence are the decoupling of dynamic and thermal effects for gases with high specific heats,
the liquid-like behavior of the viscosity and thermal conductivity, which tend to decrease
away from the wall, and the increase of density fluctuations in the near wall region. The
present work represents a first attempt of quantifying the influence of such dense gas effects
on modeling assumptions employed for the closure of the Reynolds-averaged Navier–Stokes
equations, with focus on the eddy viscosity and turbulent Prandtl number models. For that
purpose, we use recent direct numerical simulation results for supersonic turbulent channel
flows of PP11 (a heavy fluorocarbon representative of dense gases) at various bulk Mach
and Reynolds numbers to carry out a priori tests of the validity of some currently-used mod-
els for the turbulent stresses and heat flux. More specifically, we examine the behavior of
the modeled eddy viscosity for some low-Reynolds variants of the k − ε model and com-
pare the results with those found for a perfect gas at similar conditions. We also investigate
the behavior of the turbulent Prandtl number in dense gas flow and compare the results with
the predictions of two well-established turbulent Prandtl number models.
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1 Introduction

Turbulent dense gas flows –i.e. flows of molecularly complex organic gasses working at
temperatures and pressures of the general order of magnitude of the thermodynamic liq-
uid/vapor critical point–, are of interest for a wide range of engineering applications. These
include chemical transport and processing [1], heat pumps [2], and organic Rankine cycles
[3, 4]. The dynamics of dense gasses is governed by the fundamental derivative of gas

dynamics [5] Γ ≡ 1 + ρ
c

∂c
∂ρ

∣
∣
∣
s
(where ρ is the density, p the pressure, s the entropy, and

c the sound speed), a measure of the rate of change of the sound speed in isentropic trans-
formations. For dense gasses, Γ < 1 for a range of thermodynamic conditions close to the
saturation curve. As a consequence, the speed of sound increases in isentropic expansions
and decreases in isentropic compressions, an opposite behavior with respect to the case of
perfect gasses. Even larger deviations from the perfect gas behavior are expected for a class
of dense gasses known as Bethe–Zel’dovich–Thompson (BZT) fluids, for which a region
of Γ < 0 exists. The reader is referred to [6] and references cited therein for more infor-
mation about dense gas dynamics. The peculiar thermodynamic behavior of dense gasses
requires using advanced equations of state in place of the simple perfect gas law. Moreover,
in the dense gas regime, the dynamic viscosity μ and the thermal conductivity λ exhibit a
significant dipendency on both temperature and pressure, instead of temperature only. Sim-
ilarly, the approximation of nearly constant molecular Prandtl number is no longer valid.
Numerical simulations of turbulent dense gas flows of engineering interest are based on
the Reynolds-Averaged Navier–Stokes (RANS) equations, which need to be supplemented
by a model for the Reynolds stress tensor and turbulent heat flux. The accuracy of RANS
models for dense-gas flows has not been properly assessed up to date, due to the lack of
both experimental and numerical reference data. DNS databases are then needed to quan-
tify the deficiencies of existing turbulence models and to develop and calibrate improved
ones. First contributions to the DNS of decaying homogeneous isotropic turbulence were
reported in [7, 8], while the influence of dense gas effects in wall-bounded turbulent flows
was investigated in [9].

Past attempts to assess RANS modeling approximations against direct numerical simu-
lation (DNS) are restricted to perfect gas flows and are relatively recent, due to the need
for sufficiently high-Reynolds number DNS. Huang et al. [10] use DNS results for com-
pressible turbulent channel flows at bulk Mach numbers of 1.5 and 3 and bulk Reynolds
numbers of 3000 and 4880, respectively, to discuss deviations between Reynolds and Favre
averages of various flow properties and found that differences are rather small, except in
the near-wall region, where moderate deviations are observed. The authors also investigate
the crosswise distribution of the exact turbulent Prandtl and show that it is globally simi-
lar to the one found in incompressible flow, with a plateau at about y∗ ≈ 50 (see Eq. 6
for a definition), i.e. farther away from the wall than in the incompressible case. Patel et
al. [11] review several near-wall and low-Reynolds turbulence models for incompressible
flows. Experimental data in the near wall region are limited and suffer from probe inter-
ference effects and the determination of the wall shear-stress. They show that experimental
data for the average velocities, turbulent kinetic energy k, shear stress, eddy viscosity νt

and dissipation ε are in good agreement with the asymptotic behavior predicted by Laun-
der [12] by expanding the exact incompressible equations. On the other hand, they consider
seven variants of the k − ε model and the Wilcox–Rubesin k − ω model. For the former
class of models, νt = Cμfμk2/̃ε, where usually Cμ = 0.09, fμ is a near-wall damping
function and ε̃ is a near wall dissipation, while for k − ω one has νt = fμk/ω. A posteriori
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tests of the models for a set of turbulent boundary layer flows show that the scatter in the
results is very high and that no model is clearly better than the other ones for all cases. The
authors conclude that most modifications to high-Reynolds models lack a physically sound
basis. All models are highly sensitive to the closure coefficients. The damping function fμ

is also found to have a predominant influence on the model performance compared to other
damping functions and low-Reynolds extra terms in the transport equations of the turbulent
variables. Similar remarks can be found in the work of Shih [13], who presents an improved
k − ε model for the near-wall region and carries out a posteriori tests against DNS data for
an incompressible turbulent channel flow (TCF) [14]. The author observes that most low-
Reynolds k − ε models do not verify the theoretical asymptotic behavior near the wall. He
also finds that the agreement with the DNS data tends to improve when the Reynolds num-
ber is increased. Durbin [15] investigates near-wall turbulence models providing the correct
asymptotic behavior without need for damping functions. A priori tests of νt values obtained
by using DNS data and the classical eddy viscosity formulation based on k and ε show
large discrepancies with respect to the “exact” eddy viscosity (estimated from DNS data for
TCF as the ratio of the turbulent shear stress to the wall normal derivative of the streamwise
velocity) for any choice of the constant Cμ. To recover the correct trend, Durbin suggests
the use of an alternative energy scale based on the wall-normal fluctuating speed, leading to
νt = Cμv′2k/ε. Although such a choice does not ensure the theoretical y+3 trend near the

wall (νt ∼ y+4 instead), it accounts effectively for the blocking effect of the wall, which
has a major influence on near-wall behavior. A priori tests of eddy viscosity models against
incompressible TCF data (and specifically the high-Reynolds DNS of [16]) are carried out
by Karimpour and Venayagamoorthy [17], where Durbin’s formulation is revisited by intro-
ducing a length scale based on the dissipation and the mean shear for the near wall region.
The models under investigation are found to agree better and better with DNS data as the
Reynolds number is increased. He et al. [18] investigate the validity of RANS models for
supercritical fluid flows, characterized by strong variations of the fluid properties both with
temperature and pressure (a feature also found in dense gases) that may affect turbulence
production, loss and heat transfer mechanisms. A posteriori tests of various popular low-
Reynolds RANS models against DNS data for supercritical fluid flows of carbon dioxide in
ducts show a large scatter of the results. Among the considered models, Durbin’s v2f model
is found to produce the best predictions. On the other hand, none of the models is found
to provide satisfactory predictions of the heat transfer for strongly buoyant cases. This is
attributed to the use of a constant turbulent Prandtl number for modeling the turbulent heat
flux. Pecnik and Patel [19] investigate the effect of variable mean properties on turbulence
modeling. More specifically, they reformulated the kinetic energy equation for a variable-
property fluid and showed that semi-local scaling can be used to recast the turbulent kinetic
energy equation into the classical form for incompressible flows, provided the production
term is rewritten in terms of the van Driest velocity and the dissipation tensor rescaled with
the semi-local friction Reynolds number. Their a posteriori tests (using DNS data to rule out
errors coming from the closure terms in the energy equation) indicate that solving RANS
equations in the semi-locally scaled form improves the agreement with reference DNS data.
Finally, Irrenfried and Steiner [20] review the P-function approach for heat-transfer model-
ing in the case of (constant) high Prandtl-number incompressible flows. The role of the eddy
viscosity model and of the Prandtl number model are investigated by means of comparisons
with DNS data for turbulent pipe flows at Prandtl numbers ranging from 1 to 20.

In this work, we use recent DNS results [9] for supersonic turbulent channel flows of
PP11 (a heavy fluorocarbon representative of dense gases) to carry out a priori tests of the
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validity of some currently-used models for the turbulent stresses and heat flux. Specifically,
we examine the behavior of the modeled eddy viscosity for some low-Reynolds variants of
the k − ε model for dense gas flows at various bulk Mach and Reynolds numbers and com-
pare the results with those found in perfect gas TCF at similar conditions. It should be noted
that many eddy viscosity models sacrifice the accurate representation of transported turbu-
lent quantities such as turbulent kinetic energy or dissipation in favor of a better match of the
computed eddy viscosity with reference (mostly experimental) data. Indeed, some models
are specifically tuned for “unphysical” values of the turbulent properties, although they may
lead to reasonably accurate a posteriori results for many classes of flows. In this respect, a
priori tests are useful to check the physical soundness of such models and to evaluate their
ability to reproduce exact trends derived from DNS data more than to assess their predic-
tive accuracy. We also investigate the behavior of the turbulent Prandtl number in dense gas
flow and compare the results with the predictions of two well-established turbulent Prandtl
number models. For this purpose, in Section 2 we briefly recall the numerical models and
methods used to generate the DNS database, then in Section 3 we provide an overview of
the most relevant DNS results with focus on dense-gas effects. Finally, in Section 4 we
examine the validity of some low-Reynolds eddy viscosity models and turbulent Prandtl
number models and show how the results are affected by the peculiar thermodynamic and
transport-property variations typical of dense gas flows.

2 Governing Equations and Numerical Method

Dense gas flows are governed by the single-phase compressible Navier-Stokes equations.
For the present channel flow calculations, a source term fui

is added to the streamwise
momentum equation to counteract wall friction and maintain a target bulk mass flow [21].
A corresponding term is introduced in the energy equation.

The governing equations are supplemented by thermal and caloric equations of state,
respectively:

p = p(ρ, T ) and e = e(ρ, T ), (1)

related by means of the compatibility condition:

e = er +
∫ T

Tr

cv,∞(T ′)dT ′ −
∫ ρ

ρr

[

T
∂p

∂T

∣
∣
∣
∣
ρ

− p

]

dρ′

ρ′2 , (2)

where the subscript (•)r indicates a reference state, cv,∞(T ) is the specific heat at constant
volume in the ideal-gas limit, and the superscript (•)′ denotes auxiliary integration variables.

The present calculations are based on the Martin–Hou (MAH) thermal equation of state
[22], which is reasonably accurate for the fluid of interest and requires a minimum amount
of experimental information for setting the gas-dependent coefficients. The MAH equation
involves five virial terms and reads:

p = RT

(v − b)
+

5
∑

i=2

fi(T )

(v − b)i
, (3)

with b = vcr [1 − (20.533 − 31.883Zcr)/15] and fi(T ) = Ai + BiT + Ci exp (−kT /Tcr ),
where v = 1/ρ denotes the specific volume, vcr , Tcr and Zcr are the critical specific vol-
ume, temperature and compressibility factor, and k = 5.475. The coefficients Ai , Bi and
Ci depend on the critical temperature and pressure, the critical compressibility factor, the
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Boyle temperature and one point on the vapor pressure curve. Variations of the low-density
specific heat with temperature are modeled by means of a power law:

cv∞(T ) = cv∞(Tcr )

(
T

Tcr

)n

(4)

where n is a material-dependent parameter. In addition to the equations of state, suitable
models for the dynamic viscosity μ and thermal conductivity λ of dense gases, which
depend on both the gas temperature and pressure, have to be specified. The present results
are based on the model of Chung et al. [23], which incorporates a correction term in the
dense-gas region. Such a model has been extensively used in previous works on dense gases
(e.g. [24, 25]) and is considered to be a reasonably accurate semi-theoretical model for cal-
culating the viscosity based on the knowledge of a few thermophysical input parameters (see
[26] for more details). A full description of the model equations is given in [9], Appendix A.

The dense fluid considered in the following simulations is the perfluoro-perhydro
phenanthrene, (chemical formula C14F24), called hereafter with its commercial name PP11.
Its main thermodynamic properties, extracted from [27], are provided in Table 1. DNS
results are also presented for air, modeled as a polytropic perfect gas. In the latter case, the
viscosity is assumed to follow a power law of the temperature and the thermal conductivity
is computed according to a constant Prandtl number assumption (Pr = 0.7).

The simulations are carried out by means of an in-house CFD code [28] based on
high-order dispersion-relation preserving finite difference schemes. The derivatives of the
convective fluxes are approximated by using a fourth-order optimized scheme on an eleven-
point stencil [29]. Standard fourth-order finite differences are used for the discretization of
the viscous fluxes. Non-uniform mesh sizes are taken into account by means of coordinate
transforms. The mesh stretching rate in the wall-normal direction is kept below 1.5% to
ensure accuracy. An optimized selective sixth-order filter [30] is applied in each direction
to eliminate grid-to-grid oscillations. Time integration is based on a low-storage optimized
six-step Runge-Kutta scheme [29].

3 Summary of DNS Results

In [9] the TCF configuration was simulated for a dense and a perfect gas at various Mach
and Reynolds numbers. The computational domain (sketched in Fig. 1) has dimensionsLx×
Ly ×Lz = 8πh×2h×2πh for all cases. Periodic conditions are applied in the streamwise
(x) and spanwise (z) directions, and isothermal no-slip wall conditions are applied at the
lower and upper walls.

Table 1 Thermodynamic properties of PP11 (C14F24): molecular weight (M), critical temperature (Tcr ),
critical density (ρcr ), critical pressure (pcr ), critical compressibility factor (Zcr ), acentric factor (ωac), dipole
moment of the gas phase (ξ ), boiling temperature (Tb), ratio of ideal-gas specific heat at constant volume
over the gas constant (cv(Tcr )/R) at the critical point, and parameter for the low-density specific heat power
law (n)

M Tcr ρcr pcr Zcr ωac ξ Tb cv(Tcr )/R n

g mole1 K kg m3 MPa − − D K − −
624.11 650.2 627.14 1.46 0.2688 0.4963 0.0 488.15 97.3 0.5776
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Fig. 1 Sketch of the computational domain

In the following, the subscripts (•)B , (•)w and (•)cl denote averaging over the whole
computational domain, the walls and centerline, respectively; (•) indicates Reynolds aver-
aging over the homogeneous spatial directions and in time, whereas (•)′ are Reynolds
fluctuations; similarly, (̃•) and (•)′′ denote Favre averaging and Favre fluctuations. In the
following, we also use the centerline Reynolds and Mach numbers, respectively defined as
Recl = ρcluclh/μcl and Mcl = ucl/ccl . The DNS conditions are defined by setting the bulk
Reynolds number ReB and the bulk Mach number MB , defined as:

ReB = ρBũBh

μw

, MB = ũB

cw

, (5)

where ρB is the bulk density, h is the channel half-height, μw and cw are the dynamic vis-
cosity and the sound speed at the walls, respectively. In the definition of the bulk reference
numbers, wall values for viscosity and speed of sound are usually considered since they
can be easily controlled through the wall temperature in the case of a perfect gas. Unfortu-
nately, this is no longer possible when using more complex thermodynamic models, since
the speed of sound and the transport properties depend on both temperature and density val-
ues and ρw is not known a priori. In these cases, the conditions are adjusted iteratively by
starting with a reasonable guess for the ratio ρw/ρB . Once this preliminary calculation is
converged, the ρw obtained from the simulation is used to compute the updated values of
μw and cw , and the flow field is interpolated onto a new grid (adapted to the updated value
of the Reynolds number). In order to achieve convergence to the desired state, about 3 to 4
iterative cycles are needed.

The main numerical parameters of the DNS databases are reported in Table 2, where
each case is assigned a tag of the form XMαRβ. The first letter indicates the fluid (A for air
and P for PP11), α refers to MB (α = 1, 2, 3 for MB = 1.5, 2.25, 3, respectively) and β to
ReB (β = 3, 7, 12 for ReB = 3000, 7000, 12000, respectively). A smaller set of cases with
respect to that presented in [9] is retained here for the purpose of clarity. This subset allows
indeed to study the influence of a fixed MB with varying ReB , and vice-versa.

DNS results are presented in semi-local scaling [10], based on both wall and centerline
quantities

y∗ := ρ(y)u∗
τ (y − yw)

μ(y)
; Re∗

τ,cl := ρclu
∗
τ h

μcl

= y∗(y = h) (6)

(being u∗
τ = √

τw/ρ(y) the semi-local friction velocity and τw =
(

μ∂u
∂y

)

w
the shear

stress at the wall), which has proven to give quite satisfactory results in collapsing first- and
second-order moments [31–33] obtained from a wide range of MB and ReB .

The computational grids are chosen accordingly in order to provide a good spatial reso-
lution in all directions. Specifically, the chosen spatial resolutions, expressed in semi-local
units, are in the ranges Δx∗ ∈ [10, 16], Δy∗

w ∈ [0.5, 0.8], and Δz∗ ∈ [4, 6]. The spa-
tial resolution is also evaluated with respect to the wall-normal distribution of the local
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Table 2 Numerical parameters and DNS results for air and PP11 cases

Air PP11

Case AM1R3 AM1R7 AM2R7 AM3R7 AM3R12 PM1R3 PM1R7 PM2R7 PM3R7 PM3R12

MB 1.5 1.5 2.25 3.0 3.0 1.5 1.5 2.25 3.0 3.0

ReB 3000 7000 7000 7000 12000 3000 7000 7000 7000 12000

Nx 512 768 768 1024 1536 512 768 768 768 1280

Ny 256 384 384 512 768 256 384 384 384 768

Nz 256 512 512 768 1024 256 512 512 512 1024

Reτw 218.7 466.5 538.6 627 1017 191.3 401.6 404.6 425.1 692.8

Re∗
τ,cl 147.1 314.8 252.0 199.7 324.7 196.4 412.1 428.0 492.1 800.2

Mcl 1.5 1.47 1.9 2.18 2.16 1.62 1.60 2.25 2.61 2.58

Mτw 0.08 0.07 0.09 0.11 0.1 0.09 0.08 0.12 0.15 0.14

Recl 2740 6319 5071 4035 6905 3659 8423 8866 10256 17618

ReBb 2417 5627 4582 3690 6416 3148 7346 7728 8944 15498

−Bq × 103 48.8 44.6 87.0 133 126 0.26 0.24 0.44 0.58 0.56

ρw/ρB 1.36 1.37 1.84 2.49 2.51 1.05 1.05 1.11 1.25 1.25

ρcl/ρB 0.98 0.99 0.97 0.96 0.97 1.00 1.00 1.00 0.99 0.99

T cl/Tw 1.39 1.39 1.88 2.59 2.58 1.00 1.00 1.00 1.01 1.01

μcl/μw 1.26 1.26 1.56 1.95 1.94 0.95 0.95 0.90 0.77 0.77

ccl/cw 1.18 1.18 1.37 1.61 1.61 1.07 1.07 1.14 1.32 1.32

PrB 0.7 0.7 0.7 0.7 0.7 2.39 2.39 2.36 2.31 2.31

MB and ReB are the bulk Mach and Reynolds numbers; Nx , Ny and Nz are the numbers of grid points
in the streamwise, wall-normal and spanwise directions; Reτw is the friction Reynolds number; Re∗

τ,cl is
the centerline semi-local friction Reynolds number; Mcl = ucl/ccl is the centerline Mach number; Recl =
ρcluclh/μcl the centerline Reynolds number; ReBb = ρBũBh/μB the Reynolds number based on bulk
conditions; Bq = qw/(ρwuτ hw) the heat flux coefficient at the walls, with hw the averaged specific enthalpy
at the wall; ρw/ρB and ρcl/ρB the wall and centerline normalized density values; T cl/T w , μcl/μw and
ccl/cw the normalized centerline temperature, viscosity and speed of sound; and PrB = μBcp,B/λB the
bulk Prandtl number

Kolmogorov scale ηK = [(μ/ρ)3/ε]1/4 for the dynamic turbulent structures, and the local

Batchelor scale ηθ = ηK/Pr
1/2

for the thermal structures. The definitions of the two
length-scales show that they depend on the turbulent kinetic energy dissipation ε, and the
thermal scales become smaller than the dynamic ones for Prandtl numbers higher than
unity. According to [34] and [35], resolution requirements for well-resolved DNSs are
Δx < 12ηK , Δy < 2ηK and Δz < 6ηK . Figures 2 and 3 show the streamwise and wall-
normal grid sizes for the different simulations in terms of ηK and ηθ , respectively (the line
legend associated with each (MB,ReB) couple is given in Table 3). Very good resolutions
are obtained in terms of dynamic scales with the selected grids, in particular, for the dense
gas realizations where Δx/ηK < 10 and Δy/ηK < 1.5 throughout the channel. By analyz-
ing the Batchelor scale, thermal requirements are seen to be less stringent for air (for which
Pr = 0.7 = const .) and more severe for high-MB PP11 cases, due to the high molecular
Prandtl number values that are reached at the wall (as shown later). Nevertheless, except for
a few cells close to the walls for the MB = 3 cases, the profiles of Δx/ηθ are within DNS
requirements. Additionally, the wall-normal and spanwise (not shown for brevity) grid sizes
ensure an excellent thermal resolution.
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Fig. 2 Streamwise and wall-normal grid size normalized with respect to the local Kolmogorov scale ηK as
a function of y∗ for DNS of air (left) PP11 (right) TCF at various MB and ReB . Line legend as in Table 3

The global DNS results reported in Table 2 illustrate the different behavior of the main
thermodynamic and transport properties between air and PP11. For PP11, due to the large
specific heat of the fluid, the average temperature is almost constant across the channel for
any choice of the Mach and Reynolds numbers, and the centerline temperature differs by
less than 1% of T̃w . Decoupling of dynamic and thermal effects in the dense gas also leads
to smaller mean density variations across the channel. For air, the centerline density is up
to 60% lower than ρw (at MB = 3) whereas variations below 20% are observed for PP11,
as shown by ρw/ρB and ρcl/ρB values in Table 2. The normalized viscosity μ/μw , which
essentially follows temperature variations for air, varies instead like the density for PP11
and tends to decrease toward the channel center. As a consequence, the semi-local friction
Reynolds number Re∗

τ increases toward the channel centerline in PP11, as shown in Fig. 4.
Specifically, the dense gas flow exhibits lower values of Re∗

τ near the wall, compared to a
perfect gas flow at the same bulk conditions, whereas the centerline value of Re∗

τ is much
higher in the dense gas, due to the negligible friction heating in the outer region (Fig. 4). On
the other hand, the average Prandtl number Pr , which is approximately equal to 2.3 in the
outer region for all PP11 cases (against 0.7 for air), tends to increase even further near the
wall (with values as high as ∼3.9 for the highest Mach number), following essentially the
trend of the average specific heat (see Fig. 5). Dense gas effects are stronger at higher MB ,
since the local thermodynamic states spread over a wider range.

The velocity profiles (not reported for brevity) can be collapsed onto the incompress-
ible one by using a scaling accounting for the mean flow property variations [36, 37].
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Fig. 3 Streamwise and wall-normal grid size normalized with respect to the local Batchelor scale ηθ as a
function of y∗ for DNS of air (left) PP11 (right) TCF at various MB and ReB . Line legend as in Table 3

Table 3 Flow cases and associated line legend

MB 1.5 1.5 2.25 3 3

ReB 3000 7000 7000 7000 12000

Line
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200
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Fig. 4 Local friction Reynolds number Re∗
τ as a function of y∗ for DNS of air (left) and PP11 (right) TCF

at various MB and ReB . Line legend as in Table 3
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Fig. 5 From left to right: average Prandtl number Pr , and average isobaric specific heat normalized with the
gas constant cp/R as a function of y∗ for DNS of PP11 at various MB and ReB . Line legend as in Table 3

For PP11, the classical van Driest velocity scaling (developed for adiabatic boundary lay-
ers) is also found to collapse the profiles rather accurately, due to the drastically reduced
wall heat transfer, compared to the perfect gas. Sample results for second-order statis-
tics are reported in Fig. 6, which displays the r.m.s. density values, the Reynolds shear
stress ρu′′v′′+ = τ−1

w ρu′′v′′, as well as the normalized turbulent heat flux −ρv′′h′′q−1
w

(with h′′ the Favre enthalpy fluctuation). The relative density and pressure fluctuations are
of the same order of those observed for air flows (see [9]), whereas temperature fluctua-
tions (not reported) are nearly two orders of magnitude lower. Remarkably, ρ′2 decreases
monotonically from wall to centerline, contrary to light gases. This is due to the pecu-
liar thermodynamic behavior of PP11 at the considered conditions, as demonstrated in [9]
by using the equation of state. In all cases, density fluctuations remain small compared to
the mean value, and Morkovin’s hypothesis is satisfied even at the highest Mach number.
Despite the striking differences in the thermodynamic behavior, Reynolds stress profiles are
similar to those observed, e.g., in [36] for low-Mach TCF with temperature-dependent trans-
port properties. The liquid-like behavior of viscosity leads to an increase of the spanwise,
wall-normal and Reynolds shear stresses with respect to the corresponding incompressible
evolution, whereas the streamwise one decreases. This effect is stronger when increasing
Mach number. Due to the small temperature gradients for PP11, the heat flux at the walls
is strongly reduced with respect to air (values of the wall heat transfer coefficient Bq are
reported in Table 2); similar considerations hold for the wall-normal turbulent heat flux,
which is orders of magnitude smaller in PP11 due to the reduced enthalpy fluctuations.
However, when normalized with qw , the turbulent heat flux shows similar profiles between
air and dense gas cases (Fig. 6e and f): namely, −ρv′′h′′q−1

w peaks at y∗ ∼ 12 ÷ 18 for
both fluids, and the peak increases with Re∗

τ,cl . The higher values of Re∗
τ,cl encountered in

PP11 flows result in higher turbulent heat flux to wall heat flux ratios than in the perfect
gas. Figure 7 shows the ratio of production to dissipation term P/ε of the turbulent kinetic
energy budget. The production peak is located as usual at y∗ ≈ 12. For the higher Re∗

τ,cl

cases, a second production peak is observed in the outer region, like in high-Re incom-
pressible flow, due to the reduced dissipation close to centerline. Lastly, a visualization of
flow structures for PP11 at MB = 3, ReB = 12000 is provided in Fig. 8. The structures are

identified by means of the Q-criterion, Q = 1
2

(

Ω2
ij − S2

ij

)

, where Ωij and Sij denote the

rotation-rate and strain-rate tensors, respectively.
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Fig. 6 a, b Normalized density fluctuations (
√

ρ′2/ρ), c, d Reynolds shear stresses (ρu′′v′′+), and e, f
profiles of ρv′′h′′ normalized with qw as a function of y∗ for DNS of air (left column) and PP11 (right
column) TCF at various MB and ReB . Line legend as in Table 3

4 A Priori Tests of Turbulence Models

4.1 Eddy viscosity models

DNS data are used to investigate the validity of some popular models for the RANS equa-
tions. More specifically, we focus hereafter on the eddy viscosity and turbulent Prandtl
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Fig. 7 Production-to-dissipation ratio of turbulent kinetic energy (P/ε − 1) as a function of y∗ for DNS of
air (left column) and PP11 (right column) TCF at various MB and ReB . Line legend as in Table 3

number assumptions, commonly used to approximate, respectively, the Reynolds stress ten-
sor and the turbulent heat flux. To this end, the “exact” eddy viscosity and turbulent Prandtl
number are computed from DNS data as:

μt = ρu′′v′′
(

du

dy

)−1

; Prt = cpμt/λt (7)

where u is the averaged streamwise velocity and λt = ρv′′h′′cp

(
dh
dy

)−1
is a turbulent

thermal conductivity, with h the averaged static enthalpy. Input quantities required by eddy
models are also based on DNS. In this study we restrict our attention to three low-Reynolds
variants of the k−ε model, namely, the Launder–Sharma (LS) [38], the Chien (CH) [39] and
the Lam-Bremhorst (LB) [40] models, which assume that the eddy viscosity is proportional
to “isotropic” velocity and length scales based on the turbulent kinetic energy k and to the
turbulent dissipation ε. These are corrected in the near-wall region to account for turbulence
decay in the viscous sublayer and for the wall blocking effect by introducing a damping
function fμ:

μt = Cμfμ

ρk2

ε̃
(8)

with Cμ usually taken equal to 0.09, and ε = ε̃ + D. Using ε̃ as the “dissipation variable”
instead of ε was first proposed by Jones and Launder [41] for its computational avantages;
D is indeed chosen such that ε̃ = 0 at the wall. However, the definition of D is not the
same for all authors. The model-dependent damping functions fμ and coefficients D for the
models retained in this study are given in Table 4, where Rt = ρk2/(μ̃ε) and Ry = √

ky/ν.
Durbin (DB) [15] showed that a more appropriate choice for the velocity scale in the inner

Fig. 8 Isosurface of Q(h/uB)2 = 1 colored with streamwise velocity for case PM3R7
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Table 4 Damping function fμ

and coefficient D for the k − ε

low-Re turbulence models
retained in the study

Models fμ D

(LS) exp
( −3.4

(1+Rt /50)2

)

2ν
(

∂
√

k
∂y

)2

(CH) 1 − exp(−0.0115y+) 2ν k

y2

(LB) 1 − exp(−0.0165Ry)
(

1 + 20.5
Rt

)

0

region is represented by the root-mean square of the wall-normal fluctuating velocity, and
reformulated the eddy viscosity as

νt = C

√
˜v′′2k
ε

(9)

with C = 0.2 (the associated line legend is shown in Table 5).
All of the preceding models were initially developed for high Reynolds number and

incompressible flows and their behavior is expected to change in presence of compressibil-
ity effects, which are different for perfect and dense gases. In particular, at least for perfect
gases, friction heating leads to lower effective friction Reynolds numbers than the incom-
pressible case. For this reason, before analyzing the model behavior for compressible flow
data, a priori tests of the preceding models are conducted using the DNS database (based
on a dealiased semi-spectral method) of Hoyas and Jimenez [16] for incompressible TCF
up to Reτ = 2003. This provides reference incompressible results and allows to investigate
the influence of the flow Reynolds number on model performance. The results are reported
in Fig. 9, showing the evolution of eddy viscosity in wall scaling (ν+

t = νt/νw) against the
inner coordinate y+ (the associated line legend is shown in Table 5). Most RANS closures
for the eddy viscosity fail to match the exact eddy viscosity profile in the near wall region,
and may overestimate the eddy viscosity in the outer region. The errors tend to be larger
for low-Re flows, characterized by a thicker viscous layer. The LS model exhibits an incor-
rect trend in the buffer region, where it predicts a locally reversed curvature compared to
the DNS data. This local “hump” is more evident for low Reynolds cases (the worst situa-
tion being observed for Reτw = 180 where it leads to the appearance of a local extremum)
and tends to be damped out at higher Reτw . This incorrect trend is greatly improved by the
CH and LB formulation, for which the hump is still present but is only visible for the low-
est Reynolds number. For the CH model, the D term computed from DNS data results in
a locally slightly negative modified dissipation near the wall, which is unphysical. For this
reason, the tests where conducted by setting D = 0 for this model, which allows at least to
assess the damping function fμ. Among the models using the standard isotropic formula-
tion of νt , CH provides the most accurate results in the viscous sublayer, where it follows
rather closely the DNS curve. The LS, CH and LB models tend to the same solution in the
outer region, at least for sufficiently high Reynolds numbers, since the damping functions
tend to vanish in this region. Durbin’s model provides a much more accurate representation
of the νt distribution for all cases, although the eddy viscosity in the outer region is underes-
timated at low Reτ and tends to be overestimated more and more as Reτ increases. On the

Table 5 Turbulent viscosity models and associated line legend

Models Exact Launder-Sharma Chien Lam-Bremhorst Durbin

Line
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Fig. 9 Normalized turbulent viscosity computed from the DNS databases of [16]. Line legend as in Table 5

other hand, such a trend is also observed for the other models under investigation. In Fig. 10
we report the profiles of ν+

t at selected flow conditions, based on the present compressible
DNS both for air and PP11. These correspond to the lowest, intermediate and highest value
of Re∗

τ,cl , respectively. The results are reported as functions of the semi-local coordinate
y∗. It is interesting to observe that, once the semi-local scaling is applied, results for the
present compressible cases appear to be rather similar to the incompressible ones, provided
that the comparisons are made for similar values of Re∗

τ,cl . For both air and PP11 flows,
the LS model badly overestimates the turbulent viscosity in the viscous sublayer. Chien’s
model captures better the trend of νt but also overestimates the turbulent viscosity in the
outer region for PP11 at the highest Reynolds conditions. Durbin’s model provides a reason-
ably accurate approximation of the νt profile up to part of the logarithmic region. For PP11,
the model remains in rather good agreement with DNS up to y∗ ≈ 150 and strongly over-
estimates νt for higher values of y∗, despite Re∗

τ,cl = 800 for this case, a value for which
the models perform rather well when using incompressible DNS data. This discrepancy is

probably due to the fact that ˜v′′2, used to form the velocity scale in Durbin’s model, tends to
take larger values in PP11 due to the liquid-like behavior of the flow properties. The model
reacts to such an increase, leading to the observed trend.

Figure 11 shows the eddy viscosity profiles in outer scaling for the highest Re∗
τ,cl cases,

both for air and PP11. In this scaling, all models except LS capture reasonably well the
overall trend. The relative error is roughly of the same order (∼ 20%) in all cases. Durbin’s
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Fig. 10 Normalized turbulent viscosity for selected flow cases as a function of y∗. Left column: air; right
column: PP11. Line legend as in Table 5

model over-reacts to the increase of ˜
v′′2 in the outer region for the dense gas case, leading

to a severe overestimation of νt (about 40%). The CH model represents a good compromise
in terms of accuracy both for the inner and the outer region.
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Fig. 11 Normalized turbulent viscosity for cases AM3R12 (left) and PM3R12 (right) in outer scaling. Line
legend as in Table 5

4.2 Turbulent Prandtl number models

In Fig. 12 we report the exact turbulent Prandtl number at various MB and ReB . For air,
Prt follows the trends observed by other authors in the literature [10] and is not constant
throughout the flow, in contrast with the classical assumption Prt ≈ 0.9. In particular, for
the present relatively low-Re flow, Prt exhibits only a small plateau around y∗ ≈ 100 where
its value is close to the standard “constant” value of 0.9. In the outer region, Prt decreases
with y∗, while in the inner region it exhibits a local maximum at about y∗ = 50 and tends
to approximately 1.1 at the wall. The local extremum at y∗ = 50 tends to decrease as the
centerline semi-local friction Reynolds number increases. This is highlighted by the close-
up view in Fig. 12c, where results from the high-Reynolds compressible DNS of Modesti
and Pirozzoli [32] (for whichRe∗

τ,cl = 677) is also reported. In the immediate neighborhood
of the wall (y∗ � 5), Prt tends to increase, the precise behavior depending on MB and (less
markedly) on ReB .

For PP11, the overall behavior is rather close to that of the perfect gas over most of the
channel height (y∗ � 5). Specifically, the 0.9 value remains approximately valid also for
a dense gas flow, at least in the outer region. The dense gas solution exhibits even a larger
’0.9’ plateau than the air flow, located at y∗ ≈ 120, most likely because of the higher local
Re∗

τ . The local maximum around y∗ ≈ 50 is also observed for the dense gas, although the
corresponding Prt value appears to be more sensitive to the flow condition than in the case
of air. Note that in this region the local molecular Prandtl number is comprised between 2.3
and 2.5 for the different flow cases (to be compared with Pr = const = 0.7 for air). A
drastically different behavior is observed in the viscous sublayer (y∗ � 5), where the local
molecular Prandtl number is much higher (varying approximately from 2.6 for MB = 1.5
to 3.9 for MB = 3) and the local Re∗

τ lower than in air (see Fig. 4). In this region (y∗ ≈ 2),
Prt exhibit another local maximum (more or less pronounced according to the flow con-
ditions) and tends to values lower than 1 at the wall (≈ 0.4 at the highest Mach number).
Inspection of the DNS data for νt and λt , reported in Figs. 13 and 14, suggests the follow-
ing explanation: for air, both νt and λt decrease approximately at the same rate (O(y∗p))
when y∗ → 0. The exponent p ≈ 3.1 ÷ 3.9 is higher than the incompressible value due to
friction heating effects that tend to thicken the viscous sublayer. Since cp = const for air,
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Fig. 12 Exact turbulent Prandtl number Prt for air (top left) and PP11 (toright), with close-up view in the
region 20 < y∗ < 80 for air (bottom left) and in the near-wall region (y∗ < 15) for PP11 (bottom right) at
various MB and ReB . Legend as in Table 3, but without symbols for the sake of clarity. Instead, symbols are
for a-priori tests of the models: : Cebeci model, : Kays and Crawford model. Symbol colors denote the
case, in accordance with line colors of Table 3. For air, cyan dashed line ( ) corresponds to data from
[32]. Horizontal line is set at Prt = 0.9

then Prt tends toward a constant nonzero value. For PP11, λt decreases approximately at
the same rate as νt up to the verge of the thermal viscous sublayer. Once again the expo-
nents differ from the classical value for incompressible constant property flows due to flow
property variations in the present compressible DNS. In the dense gas, the mean molecular
viscosity behaves the opposite than in perfect gas, and thus the exponent is slightly lower
than 3 for PP11. In the thermal viscous sublayer the mean enthalpy gradient changes, lead-
ing to a different slope of the turbulent conductivity curve in the near wall region (y∗ � 2).
The near-wall slope depends on the Mach and, to a much lesser extent, on the Reynolds
number. For MB = 1.5, 2.25 and 3 the near-wall slope is approximately equal to 1.1, 1.8
and 2.9, respectively, with small variations for different Reynolds numbers. For the two
highest Mach numbers, the near wall slope for λt is smaller than the one for νt , so that the
ratio of turbulent viscosity to turbulent conductivity tends to vanish at the wall. However,
cp increases abruptly when y∗ → 0 (following an approximately exponential trend). From
the definition of Prt it follows that a local maximum is to be expected in the viscous sub-
layer. A much more pronounced maximum is found for MB = 1.5, for which cp variations
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Fig. 13 Trends of the exact eddy viscosity for air (left) and PP11 (right). Legend as in Table 3

are smaller, but λt varies approximately at the same rate as νt . Simulations with a finer res-
olution of the thermal viscous sublayer are planned in the future to further explore the near
wall behavior of dense gas cases.

In the same figures we also report for comparison the results of two variable turbulent
Prandtl number models. The first one is an analytical model proposed by Cebeci [42], based
on van Driest’s mixing length model for the eddy viscosity and a similar model for the
thermal mixing length:

Prt = κ

κθ

(
1 − exp(−y+/A+)

1 − exp(−y+/B+)

)

(10)

with κ = 0.41 the von Karman constant, κθ = 0.46 the thermal von Karman constant and
A+ and B+ Reynolds-number dependent constants. Here we use the variant of Cebeci’s
model proposed by Na and Habib [43], also considered by [20, 44], where A+ = 26 and
B+ is expressed as a function of the molecular Prandtl number:

B+ =
5

∑

i=1

Ci(log10 Pr)i−1
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Fig. 14 Trends of the exact non dimensional turbulent thermal conductivity λ+
t = λt /λw for air (left) and

PP11 (right). Legend as in Table 3
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The second model is the empirical model developed by Kays and Crawford [45] for air, with
constants rewritten for a generic molecular Prandtl number:

Prt =
[

1

2Prt,∞
+ 0.3Pet

√

Prt,∞
− (0.3Pet )

2

(

1 − exp

(

−1

0.3Pet

√

Prt,∞

))]−1

(11)

where Pet = Pr νt/ν is a turbulent Peclet number and Prt,∞ = 0.9 is the bulk Prandtl
number. In both cases, we plot the models as functions of y∗ to enable comparisons with
our compressible DNS and, for PP11, we use a variable molecular Prandtl number, corre-
sponding to the averaged Prandtl number Pr from the DNS. Both the theoretical and the
empirical model predict a maximum of Prt at the wall and a monotonic decrease toward the
centerline, where the bulk value is reached. None of them predicts the local maximum in
the logarithmic region, which is most probably a low Reynolds number effect, as argued by
[46]. The models tend also to overpredict the wall value of Prt . None of the models captures
the non-monotonic behavior of Prt observed in the thermal viscous sublayer for PP11.

5 Conclusions

A priori tests of the validity of some widely-used modeling assumptions for the eddy viscos-
ity and turbulent Prandtl number were carried out for compressible turbulent channel flows
of a dense gas, based on direct numerical simulation data. The data have been generated for
various bulk Mach and Reynolds numbers and the results were systematically compared to
those obtained for air at the same conditions. For a dense gas, the classical y+ scaling based
on the friction velocity fails to collapse thermodynamic profiles and Reynolds stresses at
high MB , and the semi-local scaling, which accounts for variations of the flow properties,
has to be adopted instead. The coupling between dynamic and thermal effects is very small
for dense fluid characterized by high specific heats, contrary to air which undergoes signifi-
cant friction heating (typical of highly compressible flows). Turbulence structure is shown to
be little affected by dense gas effects. For the adopted thermodynamic conditions, transport
properties exhibit a liquid-like behavior and the local Reynolds number in the outer region
is found to be much higher than in corresponding air flows. A priori analyzes for various
eddy viscosity models, and more precisely for four low-Reynolds variants of the k−ε model
showed that, except for the Launder–Sharma model which predicts incorrect trends of νt in
the near wall region, all of the turbulence models for eddy viscosity are in reasonable quali-
tative agreement with the DNS data. The agreement with DNS is better as the flow effective
Reynolds number increases. In this respect, the modeled eddy viscosity for the dense gas
follows more closely the exact one than in perfect gas (at the present high Mach numbers),
due to the higher local Reynolds number. However, the eddy viscosity in the outer region is
overestimated. An adjustment of the model constants could help improving the results.

Computations of the exact turbulent Prandtl number from the dense gas DNS data high-
lighted a peculiar behavior of this parameter close to the wall, which peaks more or less
abruptely in the thermal viscous sublayer (according to the flow conditions and namely the
flow Mach number), instead of tending to a constant near-wall value as in air. This phe-
nomenon, most likely due to the abrupt increase of the fluid specific heat near to the wall,
is not captured by the existing turbulent Prandtl models developed for standard gases. The
development of more suitable models for Prt in dense gases will be the subject of future
research.
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