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We present a systematic procedure to compute complete, analytic form factors of gauge-invariant
operators at loop level in pure Yang-Mills. We consider applications to operators of the form TrFn where F
is the gluon field strength. Our approach is based on an extension to form factors of the dimensional
reconstruction technique, in conjunction with the six-dimensional spinor-helicity formalism and gener-
alized unitarity. For form factors this technique requires the introduction of additional scalar operators, for
which we provide a systematic prescription. We also discuss a generalization of dimensional reconstruction
to any number of loops, both for amplitudes and form factors. Several novel results for one-loop minimal
and nonminimal form factors of TrFn with n > 2 are presented. Finally, we describe the Mathematica
package SpinorHelicity6D, which is tailored to handle six-dimensional quantities written in the spinor-
helicity formalism.

DOI: 10.1103/PhysRevD.101.026004

I. INTRODUCTION

The aim of this paper is to construct complete, analytic
form factors of gauge-invariant operators at one loop.
In supersymmetric theories, four-dimensional unitarity
[1,2] is sufficient to obtain complete answers for ampli-
tudes at one loop. Without supersymmetry or for form
factors of non-protected operators this is no longer the
case because of the appearance of rational contributions.
In the amplitude context this problem has been addressed
in different ways. In one approach, one makes use of
factorization to establish a recursion relation that allows
to reconstruct rational terms [3,4] (see [5,6] for recent
elegant applications to two-loop amplitudes in pure Yang-
Mills). Another approach is to shift the dimensionality of
internal states in the loop away from four dimensions
[7,8] where rational terms acquire a singularity which
can then be detected using unitarity cuts. Multiple cuts
have also been used efficiently in this context [9–11].
This method requires that the internal lines, correspond-
ing to virtual particles, are kept in d dimensions, while

momenta and polarization vectors of external particles
live in four dimensions.
Having the internal particles in arbitrary, noninteger

dimensions introduces complications, since tree ampli-
tudes are no longer simple and the power of the spinor-
helicity formalism is lost. A solution to this problem is
offered by “dimensional reconstruction” [12–16]. In this
approach, one investigates the dependence of the loop
amplitudes on the dimensionality of spacetime, which
turns out to be polynomial in pure Yang-Mills theory.
Then one computes the amplitudes with virtual particles
kept in integer dimension d > 4 to fix the coefficients
in the polynomial by interpolation, which leads by
analytic continuation to an expression valid for any
non-integer dimension d. The dimensional reconstruc-
tion approach can also be effectively combined with the
spinor-helicity formalism in six dimensions of [17],
which allows for compact expressions of the on-shell
building blocks. At higher loops, these techniques were
used in [18] to derive the five-point all-plus gluon
amplitude integrand in pure Yang-Mills, while a gen-
eralization to incorporate fermions was carried out in
[19]. Recent numerical as well as analytical results for
arbitrary helicity configurations of five partons were
derived in [20–22]. In this framework, a systematic pre-
scription for complete form factors, including rational
terms, is still missing, and bridging this gap is one of
the main goals of this paper.
A form factor FOð1;…; n; qÞ is defined as the overlap of

an n-particle state and the state produced by an operator
OðxÞ acting on the vacuum:
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Z
d4xe−iq·xh1;…; njOðxÞj0i

¼ ð2πÞ4δð4Þ
�
q −

Xn
i¼1

pi

�
FOð1;…; n; qÞ: ð1:1Þ

Notable examples of form factors include the form factor
of the hadronic electromagnetic current with an external
hadronic state, which feature in the eþe− → hadrons and
deep inelastic scattering matrix elements, and as the form
factor of the electromagnetic current, which computes the
(electron) g − 2. The form factors which will be considered
in this paper are related to scattering processes of the Higgs
boson and many gluons. In the large top-quark mass
approximation, these can be described by an effective
theory obtained by integrating out the top quark in
QCD. This generates an infinite series of higher-dimen-
sional interactions of the Higgs with the gluon field
strength and its derivatives, in addition to couplings to
light quarks. More precisely, this effective Lagrangian
reads

Leff ¼ Ĉ0O0 þ
1

m2
t

X4
i¼1

ĈiOi þO
�

1

m4
t

�
; ð1:2Þ

where the leading-order term in the expansion is O0 ≔
HTrF2 [23–26], Oi, i ¼ 1;…; 4 are dimension-7 operators
made of gluon field strengths and covariant derivatives
[27–30], mt is the mass of the top quark, and Ĉ0, Ĉi are
Wilson coefficients.1 After Wick-contracting the Higgs
field, what is left to compute is precisely a form factor
of partons in the theory of interest, which we will take to be
pure Yang-Mills. It is also interesting to note that at zero
momentum transfer, i.e., q ¼ 0 in (1.1), the form factor of
an operator OðxÞ represents the correction to the scattering
amplitude due to the inclusion of a new local interaction
proportional to OðxÞ. On the other hand, in the study of
Higgsþ gluon processes one replaces q2 with the squared
mass of the Higgs m2

H to obtain the amplitudes relevant for
this process.
In this paper we will apply the approach discussed so far

to form factors of operators of the form TrFn, for n ¼ 2, 3,
4, both for minimal and nonminimal form factors up to four
external gluons. Modern amplitude techniques were
applied to form factors of TrF2, which compute the leading
contribution to Higgsþmultigluon amplitudes in the
effective Lagrangian approach, including MHV diagrams
[31,32] at tree level [33,34] and one loop [35], and a
combination of one-loop MHV diagrams and recursion
relations [36]. Recent work [37–41] addressed the compu-
tation of the four-dimensional cut-constructible part of

Higgs+multi-gluon scattering from operators of mass
dimension seven using generalized unitarity [42,43]
applied to form factors [39,40,44–55]. The key point of
this work is that we extend dimensional reconstruction to
any form factor of operators involving vector fields, which
requires the subtraction of form factors of an appropriate
class of scalar operators that we identify. Along the way we
have also found a generalization of this procedure to any
loop order, for amplitudes and form factors.
Loop-level calculations are inherently difficult, and no

matter how effective the method or how simple the
formalism are, sooner or later the complexity of the
problems one wishes to tackle will require the use of
computer software to deal with the algebra. For this reason
we have written a Mathematica package that can handle
quantities and perform computations in the six-dimensional
spinor-helicity formalism. This package has been inspired
by implementations of the analogous four-dimensional
formalism in [56–58] and features analytic as well as
numerical tools.
The rest of the paper is organized as follows. In Sec. II

we review the dimensional reconstruction technique at one
loop and generalize it to form factors involving vector
fields. We also discuss its generalization to any number of
loops, which for one and two loops is in agreement with
known results. In Sec. III we study tree-level form factors
for a wide class of operators involving field strengths in
four and six dimensions. These quantities are needed in the
one-loop unitarity-based calculations of Sec. IV. There, we
begin by reproducing the well-know one-loop form factors
for TrF2 with two and three external gluons. Then we prove
that the minimal form factor for TrF3 has no rational terms,
as argued in the literature. Finally, we calculate for the first
time the nonminimal one-loop form factor for TrF3 and the
minimal form factor for TrF4 with different helicity
configurations. We also generalize some of these results
for a class of form factors of the TrFn operators. A few
appendices complete the paper. In the first three we review
the spinor-helicity formalism in four and six dimensions, as
well as the structure of six-dimensional tree amplitudes.
Appendix D contains detailed calculations of non-minimal
tree-level form factors used as building blocks of loop
amplitudes, while Appendix E lists some useful results on
integral functions. Finally, Appendix F contains a short
description of the SpinorHelicity6D Mathematica package
we have used in our numerical calculations, focusing on the
functions required to replicate our results.

II. THE DIMENSIONAL RECONSTRUCTION
TECHNIQUE

In the first part of the section, we look at the one-loop
case from a different perspective which lends itself to a
systematic generalization to form factors. The new view-
point we adopt presents also a much desirable advantage:
it disentangles the number of dimensions in which

1The Wilson coefficients are proportional to 1=v, where v is
the Higgs field vacuum expectation value. Their precise form will
be of no relevance for this paper.
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amplitudes need to be computed from the loop order.
This feature allows for a natural generalization to any loop
order, for both amplitudes and form factors, which will be
discussed in the second part of the section.

A. One-loop dimensional reconstruction

The first step in our study is to identify the dependence of
the loop amplitude on the dimensionality of the spacetime.
In the literature, a common procedure is to distinguish the
two sources of this dependence:

(i) the first is the number of spin-eigenstates, which
is a function of the dimension of the spacetime ds
(for example, gluons have ds − 2 spin degrees of
freedom (d.o.f.));

(ii) the second is the integration over the loop momen-
tum, which lives in a d-dimensional space.

Specifically, in the following we consider pure Yang-Mills
theory

Lds ¼ −
1

4
ðFa

μνFaμνÞðxÞ; ð2:1Þ

where Aaμ is a vector in a spacetime of dimension ds and x
is defined on a spacetime of dimension d > 4.
As we mentioned earlier, we are interested in calculating

amplitudes (and form factors) involving four-dimensional
external gluons. At one loop it is possible to write a general
amplitude as

Að1Þ
ðds;dÞðfpi; higÞ ¼

Z
ddl
ð2πÞd

N dsðfpi; higÞQ
iDi

; ð2:2Þ

where N dsðfpi; higÞ depends on ds through the number of
spin eigenstates and on d through the loop momentum.
However, since all external momenta are four-dimensional,
the additional components of the loop momentum enter the
amplitude only through its square, which can always be
written as

l2 ¼ l20 − l21 − l22 − l23 −
Xd−1
i¼4

l2i ≔ ðlð4ÞÞ2 − μ2: ð2:3Þ

The dependence of the amplitude on μ2 manifests itself
in a number of additional integrals with nontrivial numer-
ators, which have to be added to the usual master integral
basis. These integrals have the form:Z

ddl
ð2πÞd

μ2p

D1 � � �Dn
≔ Idn½μ2p�; ð2:4Þ

which can be evaluated as ordinary integrals, but in higher
dimensions [8]. The presence of these integrals cannot be
probed using four-dimensional unitarity cuts.
Consider now the explicit dependence of the amplitude

on ds. One-loop amplitudes involving only bosons are
linear in ds, because it appears only in a closed loop of

contracted metric tensors coming from vertices and propa-
gators. Consequently, in order to determine the dependence
of the amplitude on ds, only two constants need to be fixed
and these can be obtained by interpolation. Thus it is
sufficient to compute the amplitude in two integer dimen-
sions, for example d0 and d1 ¼ d0 þ 1, and then write the
analytic continuation to four dimensions in the four dimen-
sional helicity (FDH) scheme [59,60]. The result of the
interpolation is given by [12]:

Að1Þ
ð4;dÞ ¼ ðd1 − 4ÞAð1Þ

ðd0;dÞ − ðd0 − 4ÞAð1Þ
ðd1;dÞ: ð2:5Þ

By definition d are the dynamical dimensions of the
theory and we can always choose d0 ≥ d. By doing so we
can consider the extra dimension in the d1-dimensional
space as non-dynamical. Then a d1-dimensional gluon
behaves as a d0-dimensional one plus a real scalar
Aaμ ¼ ðAaμ̂;ϕaÞ, and the Lagrangian of the system reads2

Ldi ¼ −
1

4
Fa
μνFaμν ¼ −

1

4
Fa
μ̂ ν̂F

aμ̂ ν̂ þ 1

2
Dμ̂ϕ

aDμ̂ϕa; ð2:6Þ

where the hatted quantities refer to d0-dimensional Lorentz
indices. From the Lagrangian (2.6) we arrive at the con-
clusion that the one-loop di-dimensional amplitude Aðdi;dÞ
can be expressed as the sum of two contributions: the first
contribution is given by the equivalent one-loop gluon
amplitude with internal particles living in d0 dimensions
Aðd0;dÞ; the second one, denoted in the following as AS

ðdÞ,
takes into account also scalar interactions coming from the
second term on the right-hand side of (2.6). It is also
important to stress thatAS

ðdÞ is a gauge-invariant quantity in
its own right. As a result of these observations, (2.5) can be
written as:

Að1Þ
ð4;dÞ ¼ Að1Þ

ðd0;dÞ − ðd0 − 4ÞAS
ðdÞ: ð2:7Þ

Since we are considering only the one-loop order, it is easy
to see that AS

ðdÞ can be obtained by trading the gluon loop

for a scalar loop.
Up to some additional considerations, the above dis-

cussion holds true for form factors as well, and so does
(2.7). In particular, the scalar quantity that we have to
subtract from the form factor with d0-dimensional internal
gluons is obtained by trading the gluon loop with a scalar
one. However, in contradistinction with the amplitude case,
there are two sources for scalars when we are dealing with
form factors. Inside the loop, one can have scalars coupled
to gluon lines coming from terms of the form 1

2
Dμϕ

aDμϕa

in the dimensionally-reduced Lagrangian (as in the case of

2The fields are nondynamical in the d1-dimensional direction
of the space-time, thus we can set ∂d0A

aμ ¼ 0 and ∂d0ϕ
a ¼ 0

(∂d0 ¼ ∂d1−1).
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amplitudes), but also scalars coming from the operator
inserted in the form factor. This procedure will be clear in
the calculation of the nonminimal TrF2 form factor,
described in Sec. IV B, where we will emphasize the role
of these two distinct contributions (see also [16]).
Finally, what we need is to identify the scalar operator.

The procedure we follow is reminiscent of dimensional
reduction, which for the operator TrF2 was performed in
(2.6). From this new point of view, the generalization of the
dimensional reconstruction technique to other operators is
straightforward. In particular, for the only two operators
with mass-dimension six involving solely gluons, namely
TrðDFÞ2 and TrF3, the scalar contribution comes from

DμFa
νρDμFaνρ ↦ DμDνϕ

aDμDνϕa; ð2:8Þ
and

fabcFaμ
νFbν

ρFcρ
μ ↦ fabcDμϕ

aDνϕ
bFcμν; ð2:9Þ

where scalar operators associated to each operator come
from the dimensional reduction from d1 to d0. On the other
hand for the TrF4 operator, which we will consider later in
this paper, at one-loop we get

TrFμ
νFν

ρFρ
σFσ

μ ↦ TrDμϕDνϕFν
ρFρμ; ð2:10Þ

where in the last equation the trace is in color space.3 The
proportionality coefficients are still to be fixed and we will
give the right prescription for them within the full tree-level
calculation in Sec. III.

B. An L-loop generalization

The arguments leading to (2.5) can be extended to
arbitrary loop order. Considering pure Yang-Mills theory,
any L-loop amplitude can be written as a degree L
polynomial in the dimension ds,

4

AðLÞ
ðds;dÞ ¼

XL
i¼0

ðds − 4ÞiKi; ð2:11Þ

where Ki are quantities to be determined. In particular,
note that the four-dimensional amplitude in the FDH
scheme [59,60] coincides with the zero-degree coefficient:

K0 ¼ AðLÞ
ð4;dÞ. In order to find the coefficients Ki, we can

interpolate the polynomial in Lþ 1 distinct integer dimen-
sions di > 4. Writing the problem in matrix form, one has

0BBBBBBBB@

AðLÞ
ðd0;dÞ

AðLÞ
ðd1;dÞ

..

.

AðLÞ
ðdL;dÞ

1CCCCCCCCA
¼

0BBBBB@
1 ðd0 − 4Þ ðd0 − 4Þ2 � � � ðd0 − 4ÞL
1 ðd1 − 4Þ ðd1 − 4Þ2 � � � ðd1 − 4ÞL

..

. ..
.

1 ðdL − 4Þ ðdL − 4Þ2 � � � ðdL − 4ÞL

1CCCCCA

0BBBBB@
K0

K1

..

.

KL

1CCCCCA; ð2:12Þ

where we recognize the Vandermonde matrix. Inverting this
matrix, it is possible to express the Ki as functions of the

higher-dimensional amplitudes AðLÞ
ðdi;dÞ for i ¼ 0;…; L. In

particular K0, which is the four-dimensional amplitude we
are interested in, can be written as

AðLÞ
ð4;dÞ ¼K0 ¼

YL
j¼0

ðdj − 4Þ
XL
i¼0

1

ðdi − 4Þ
YL
k¼0
k≠i

1

ðdk − diÞ
AðLÞ

ðdi;dÞ:

ð2:13Þ
We can always choose d0 > 4 to be the smallest

dimension among the di’s, and we also know that at most

d dimensions are dynamical, with 4 < d ≤ d0. Then, we
can write the Lagrangian of pure Yang-Mills theory in
di > d0 dimensions as:

Ldi ¼ −
1

4
Fa
μνFaμν þ 1

2

Xdi−d0
i¼1

Dμϕ
a
i D

μϕa
i

−
λ

2
fabcfade

Xdi−d0
i;j¼1
j>i

ϕb
i ϕ

c
jϕ

d
i ϕ

e
j ; ð2:14Þ

where μ, ν are d0-dimensional Lorentz indices, a, b, c are
color indices and fabc are the structure constants of the
gauge group. The vector field in di dimensions is decom-
posed in a (d0-dimensional) vector Aa

μ and di − d0 scalars
ϕa
i . The coupling of the ϕ4 interaction is given by

λ ¼ g2; ð2:15Þ

and we call it λ for reasons that will be clear in
a moment.

3We emphasize that (2.10) is exactly the scalar operator up to
an overall factor, which has still to be fixed. In particular, the two
scalars in the previous operator have to be adjacent, because the
gluon operator involves only contractions between adjacent field
strength.

4As already mentioned, the ds dependence comes from traces
of η tensors, and there can be at most L closed loops leading to
such a trace.
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From (2.14), we can compute the amplitude with only
external gluons5

AðLÞ
ðdi;dÞ ¼ AðLÞ

ðd0;dÞ þ
XL−1
m¼0

ðdi − d0 − 1Þm

×
XL−m
n¼1

ðdi − d0ÞnASðLÞ
ðd0;d;n;mÞ; ð2:16Þ

where AðLÞ
ðd0;dÞ is the complete L-loop amplitude where all

the internal legs are vectors and ASðLÞ
ðd0;d;n;mÞ are specific

combinations of diagrams with at least one scalar loop.

Specifically, the diagrams contributing to ASðLÞ
ðd0;d;n;mÞ are of

order λm, i.e., they containm four-scalar interactions, and in
addition have n distinct purely scalar subdiagrams.
The coefficients for the scalar contributions in (2.16) can

be understood as follows (see Fig. 1):
(1) The number of distinct flavors of scalars is di − d0

and they all give the same contribution.
(2) Given a set of contiguous scalar propagators inside a

diagram, when we draw the first scalar propagator,
we need to multiply the diagram by a di − d0 factor,
corresponding to the distinct possible flavours.

(3) Inside the same set of contiguous scalar propagators,
each vertex with two scalars and one vector must
preserve the scalar flavor, while the four-scalar
vertex changes it. Thus each power of λ brings a
di − d0 − 1 factor.

(4) Every distinct set of scalar propagators leads to an
additional di − d0 factor.

(5) Since there are no external scalars, the number of
distinct sets of scalar propagators plus the number of
scalar quartic interactions coincides with the number
of scalar loops:

nþm ¼ #scalar loops ð2:17Þ

(6) Clearly the number of scalar loops can be at most L.
We can substitute (2.16) in (2.13) and, for simplicity, we

choose

di ¼ d0 þ i ð2:18Þ

with i ¼ 0;…; L. The final result should not depend on this
choice, because the coefficient of a polynomial cannot
depend on which point we choose for the fitting. After
some manipulations, we find a closed expression which
relates complete L-loop four-dimensional amplitudes to the
same amplitudes in a higher integer dimension d0 up to
subtractions of scalar contribution:

AðLÞ
ð4;dÞ ¼ AðLÞ

ðd0;dÞ þ
XL−1
m¼0

XL−m
n¼1

ð4 − d0Þnð3 − d0ÞmASðLÞ
ðd0;d;n;mÞ;

ð2:19Þ
where, in order to prove this formula, we have used the
identity

XL
i¼0

1

ðdi − 4Þ
YL
k¼0
k≠i

1

ðdk − diÞ
¼
YL
j¼0

1

ðdj − 4Þ : ð2:20Þ

The whole reasoning can be applied to a more generic
scheme where ds ¼ 4 (FHV scheme) is replaced by a
generic ds (e.g., the HV scheme [61] with ds ¼ 4 − 2ϵ). As
long as we keep di > ds and di ≥ d, all the previous steps
are still applicable, and we arrive at

AðLÞ
ðds;dÞ ¼ AðLÞ

ðd0;dÞ þ
XL−1
m¼0

XL−m
n¼1

ðds − d0Þnðds − d0 − 1Þm

×ASðLÞ
ðd0;d;n;mÞ; ð2:21Þ

which at first sight is identical to (2.16). The nontrivial
difference between the two expressions is that ds < d0,
while we need di > d0 (i ¼ 1;…; L) in order to write
(2.16). Moreover, as we stressed before, the quantity ðdi −
d0Þ has a precise physical meaning: it is the number of
distinct flavors of scalars in the dimensional reduced theory
(2.14). On the other hand, ðds − d0Þ takes into account the
number of extra spin d.o.f. in dimensional regularization6.
A posteriori, the fact that the two expressions are exactly

the same is a consequence of our previous considerations.
Indeed, one could have recognized the polynomial depend-
ence of the amplitude on the dimensionality ds already
from (2.16), and further identified (2.21) as its analytic
continuation for ds − d0 < 0. Thus, starting from the
dimensionally reduced Lagrangian (2.14), the dependence
on the dimensionality ds emerges naturally, and the
preceding considerations relating the di to ds through the
Vandermonde matrix may appear redundant. However,
starting from the analysis of the dimensional dependence
of the amplitudes provides a clear physical picture of the
relation between ds, d and di.
Our expression reproduces the known results at one

loop [12]

Að1Þ
ðds;dÞ ¼ Að1Þ

ðd0;dÞ þ ðds − d0ÞASð1Þ
ðd0;d;0;1Þ; ð2:22Þ

and two loops [18]

Að2Þ
ðds;dÞ ¼ Að2Þ

ðd0;dÞ þ ðds − d0ÞΔS
ðd0;dÞ þ ðds − d0Þ2Δ2S

ðd0;dÞ;

ð2:23Þ
5In this section, for the sake of clarity, we reserve the word

vector only for the d0-dimensional vector, whereas we refer to the
four-dimensional equivalents as gluons.

6There is no dynamics in the dimensions di − d0, while this
could be not true for the dimensions d0 − ds.
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where

ΔS
ðd0;dÞ ¼ ASð2Þ

ðd0;d;0;1Þ −ASð2Þ
ðd0;d;1;1Þ; Δ2S

ðd0;dÞ ¼ ASð2Þ
ðd0;d;0;2Þ þASð2Þ

ðd0;d;1;1Þ: ð2:24Þ
Considering the two-loop expression in more detail, one sees that in [18] the four-scalar vertex is interpreted in terms of
three fictitious flavor contributions:

The two continuous lines in the grey blob represent
the color flow inside the vertex. Considering Fig. 2 we
see that, in our interpretation, the only diagram which at
two loops involves this vertex contributes with a factor
ðds − d0Þðds − d0 − 1Þ. However, splitting the vertex
according to colour flow as above, the contribution of
the same diagram can be attributed to terms containing a
factor ðds − d0Þ2 as well as ðds − d0Þ. Taking into account
this different interpretation of the four-scalar vertex, the
two methods perfectly match.

We emphasize that individually each ASðLÞ
ðd0;d;n;mÞ is a

gauge-invariant quantity: indeed, we know that AðLÞ
ðd0;dÞ is

gauge invariant and the same is true for AðLÞ
ð4;dÞ, regardless

of the choice of d0. Since the coefficients of the scalar

contributions depend on d0, the single ASðLÞ
ðd0;d;n;mÞ must be

gauge invariant by themselves.
As in the case of the one-loop procedure, (2.19) can be

applied also to form factors, as far as we bear in mind that
more scalar operators are involved in higher-loop calcu-
lations, in addition to those entering already at one loop.
These additional terms emerge clearly from (2.14). Indeed,
for the operator TrF2, beyond one-loop calculations we
also need to subtract the scalar contribution from the ϕ4

operator:

Fa
μνFaμν ↦ g2fabdfacdϕbϕ̃cϕdϕ̃e; ð2:25Þ

where ϕ and ϕ̃ have to be scalars with different flavor. Its
contribution has to be carefully taken into account in the
subtraction with the right ds-dependence. In particular, in
the form factor equivalent of (2.16), its insertion brings a
ðdi − d0Þðdi − d0 − 1Þ coefficient, because of the flavor
changing.
An equivalent reasoning is also valid for higher-

dimensional operators. For example, from the dimensional
reduction procedure of the TrF3 operator, we find that
the additional scalar operators entering higher-loop calcu-
lations are

fabcFaμ
νFbν

ρFcρ
μ ↦

�
gfabcfadeDμϕ

bDμϕ̃cϕdϕ̃e

g3fabcfadefbfgfchiϕdϕ̃eϕfϕ̂gϕ̃hϕ̂i
;

ð2:26Þ

where the former enters the calculation at two-loop level,
while the latter from three loops. We stress that ϕ, ϕ̃ and ϕ̂
represent three different scalar flavors. Then, in the gen-
eralization of (2.16) to form factors, the insertion of the
scalar operators bring a factor of ðdi − d0Þðdi − d0 − 1Þ and
ðdi−d0Þðdi−d0−1Þðdi−d0−2Þ respectively. Following

FIG. 1. Two of the many possible diagrams contributing to the
scalar amplitudes at six loops. On the left-hand side an example
contribution to ASð6Þ

ðd0;d;2;0Þ is shown. On the right-hand side the
same diagram but with one of the gluon loops involving a four-
point interaction replaced by a scalar. The latter diagram

contributes to ASð6Þ
ðd0;d;2;1Þ.

FIG. 2. Two two-loop diagrams for comparison. In the first case
there are two disconnected scalar loops, and every loop admits
di − d0 different flavors leading to an overall factor ðdi − d0Þ2.
The second diagram represents two scalar loops connected by
a flavor-changing four-scalar vertex (highlighted in green). In
this case there are di − d0 allowed flavors in one loop but only
di − d0 − 1 in the second loop, which leads to an overall
factor ðdi − d0Þðdi − d0 − 1Þ.
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the same procedure one can recover the scalar operators for
TrF4, which we do not write explicitly.
In the following we are going to apply this technique to

one-loop calculations for form factors. We will always
choose d0 ¼ 6, due to the existence of a powerful spinor
helicity formalism in six dimensions [14,17].
A technical comment is in order here. In performing

loop calculations, initially we treat the loop momenta as
living in d0 ¼ 6 dimensions, instead of d. This procedure
is well defined at the integrand level. Indeed, we know the
functional dependence of the integrand on the d − 4 com-
ponents of the loop momenta, which appear only through

rational combinations of lð−2ϵÞi · lð−2ϵÞj and μ2i . Then, once we
identify these combinations, we can treat the loop momenta
as being d-dimensional and integrate over them7.

III. TREE-LEVEL FORM FACTORS

In this section we will provide all the analytic expres-
sions of the tree-level color-ordered form factors required
for loop calculations.
The tensorial structure of the field strength in four

dimensions is given by the antisymmetric product of two
vector representations�

1

2
;
1

2

�
∧
�
1

2
;
1

2

�
¼ ð1; 0Þ ⊕ ð0; 1Þ; ð3:1Þ

where we can choose each component to correspond to the
helicity configurations �1. We then define the self-dual
component of the free field strength as8

FSD;α _αβ _β ≔ λαλβϵ _α _β; ð3:2Þ
which has helicity −1 and transforms in the (1,0) repre-
sentation of the Lorentz group.9 Then, the antiself-dual
component, transforming in the (0,1) representation is

FASD;α _αβ _β ¼ ϵαβλ̃ _αλ̃_β: ð3:3Þ

In terms of SU�ð4Þ representations, the six-dimensional
free field strength transforms in the 6 ∧ 6 ¼ 15, which is
the traceless part of 4 ⊗ 4̄. Thus it can be written as [62]

FAB
a _a CD ¼ αδ½A½CFa _a

B�
D�; ð3:4Þ

where α is a numerical coefficient to be fixed and Fa _a
A
B is

such that Fa _a
A
A ¼ 0.10 In spinor helicity variables this

quantity is [62]

Fa _a
A
B ¼ λAa λ̃ _aB; ð3:5Þ

which is indeed traceless thanks to the six-dimensional
Dirac equation (B10). Upon dimensionally reducing (3.5)
down to four dimensions we match it with (3.2) and (3.3),
which fixes the proportionality coefficient to be α ¼ 2.

A. TrF2 form factors

In this section we consider the operator

O2 ≔ Fa
μνFaμν: ð3:6Þ

In four dimensions O2 splits naturally into the sum of the
traces of the self-dual and the antiself-dual components of
the field strength:

TrF2 ¼ TrF2
SD þ TrF2

ASD: ð3:7Þ

It is trivial to identify these two four-dimensional compo-
nents of the color-ordered form factor:

Fð0Þ
O2
ð1þ; 2þ; qÞ ¼ 2½12�½21�;

Fð0Þ
O2
ð1−; 2−; qÞ ¼ 2h12ih21i: ð3:8Þ

On the other hand, the six-dimensional form factor is

Fð0Þ
O2
ð1a _a; 2b _b; qÞ ¼ 2h1a2_b�h2b1_a�; ð3:9Þ

where the definitions of the spinor brackets, in both four
and six dimensions, and the conventions adopted can be
found in Appendices A and B. Using the particular embed-
ding of the four-dimensional into the six-dimensional space
introduced in Appendix B 3 we find that11

Fð0Þ
O2
ð11_1; 21_1; qÞj4D ¼ Fð0Þ

O2
ð1þ; 2þ; qÞ;

Fð0Þ
O2
ð12_2; 22_2; qÞj4D ¼ Fð0Þ

O2
ð1−; 2−; qÞ: ð3:10Þ

An analogous statement is true also for amplitudes, where
all the four-dimensional helicity configurations can be
recovered from the six-dimensional amplitude.12

7It is worth mentioning that in terms of the six-dimensional
spinor components the quantity mentioned above reads as
follows: lð−2ϵÞi · lð−2ϵÞj ¼ 1

2
ðmim̃j þmjm̃iÞ and μ2i ¼ mim̃i.

8To clarify the abuse of nomenclature, the quantity it is the
field strength in momentum space corresponding to a polarization
vector of given helicity.

9We could have used as definition the following:
FSD;α _αβ _β ≔ pα _αε

−
β _β

− pβ _βε
−
α _α ¼ −

ffiffiffi
2

p
λαλβϵ _α _β. As we can see the

only difference is an overall −
ffiffiffi
2

p
factor.

10A; B;… ¼ 1;…; 4 are indices in the (anti)fundamental
representation of SU�ð4Þ and a, _a are indices of the six-dimen-
sional little group (for a detailed discussion see Appendix B).

11Four-dimensional limit here means choosing appropriate
little-group indices corresponding to the desired helicity con-
figuration in four dimensions, and the taking mi, m̃i → 0 for any
particle i.

12Further details on the relation between four and six-dimen-
sional tree-level quantities can be found in Appendix C.
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The scalar form factor is obtained from (2.6), and we find

Fð0Þ
O2;s

ð1; 2; qÞ ¼ −h1a; 2_b�h1a; 2_b� ¼ 2s12; ð3:11Þ

where

O2;s ∝ ðDϕÞ2 ≔ Dμϕ
aDμϕa: ð3:12Þ

The normalization of (3.11) has been fixed by matching
the four-dimensional limit of this operator with that of the
scalar components of (3.9), which must yield the same
result. Of course, if one starts from the Lagrangian (2.6)
and computes the minimal form factors of the two operators
on the right-hand side, the resulting relative normalization
would be the same. The four-dimensional matching pre-
scription is much faster for more complex operators. Let us
stress that it would not be possible to implement the scalar
subtraction just by excluding the little group components
that in four dimensions behave like scalars. Indeed, this
would bring us to a result which is not invariant under a
little group transformation of the internal six-dimensional
legs. In particular, for the subtraction we need a quantity
that behaves as a scalar in six dimensions and matches the
scalar components of the dimensional-reduced gluon in
four dimensions, as shown in Appendix C.
Using BFCW recursion relation [43,63] in six dimen-

sions [17] we have derived the six-dimensional nonminimal
form factors with three external legs at tree level, both for
the gluon and the scalar operators. The results for O2 with
three gluons reads

Fð0Þ
O2
ð1a _a; 2b _b; 3c_c; qÞ

¼ 2

s23s31
h1a2_b�h2b1_a�h3cj=p1=p2j3_c� þ cyclic

þ 2

�
1

s12
þ 1

s23
þ 1

s31

�
ðh1a2_b�h2b3_c�h3c1_a�

− ½1_a2bi½2_b3ci½3_c1aiÞ; ð3:13Þ

which agrees with the analogous result computed from
Feynman diagrams in [16], upon some algebraic manipu-
lation. As a further consistency check we verified that in the
four-dimensional limit the different helicity components
match the results of [33].
Furthermore, in the scalar subtraction we need to take

into account an additional contribution, namely the form
factor of the operator O2 with two external scalars and one
gluon, which is different from zero. Indeed, this is given by:

Fð0Þ
O2
ð1; 2; 3c_c; qÞ ¼ −

2

s12
h3cjp1p2j3_c�: ð3:14Þ

Finally, the nonminimal scalar form factor ofO2;s can be
shown to be

Fð0Þ
O2;s

ð1; 2; 3c_c; qÞ ¼ −
2q2

s23s31
h3cjp1p2j3_c�: ð3:15Þ

For a detailed derivation of (3.13)–(3.15) see Appendix D.
The sum of (3.14) and (3.15) agrees with the result of [16].

B. TrF3 form factors

Consider now the operator

O3 ≔ TrFμ
νFν

ρFρ
μ: ð3:16Þ

Similarly to the case of TrF2, this operator splits, in four
dimensions, into a self-dual and antiself-dual part

O3 ≔ TrF3 ¼ TrF3
SD þ TrF3

ASD: ð3:17Þ

Consequently, the only possible helicity configurations of
the minimal tree-level form factors are all-plus and all-
minus:

Fð0Þ
O3
ð1þ; 2þ; 3þ; qÞ ¼ −2½12�½23�½31�;

Fð0Þ
O3
ð1−; 2−; 3−; qÞ ¼ 2h12ih23ih31i: ð3:18Þ

In six dimensions the minimal form factor is given by

Fð0Þ
O3
ð1a _a; 2b _b; 3c_cÞ ¼ FAB

1a _aCDF
CD
2b _bEF

FEF
3c_cAB

¼ −h1a2_b�h2b3_c�h3c1_a�
þ ½1_a2bi½2_b3ci½3_c1ai; ð3:19Þ

where FAB
a _a CD is defined in (3.4). We can obtain the

corresponding scalar operator from (2.9), which states that

O3;s ∝ TrðDϕÞ2F ≔ TrDμϕDνϕFμν: ð3:20Þ

Thus

Fð0Þ
O3;s

ð1; 2; 3c_cÞ ≔
1

2
pAB
1 p2CDFCD

3c_cAB ¼ h3cj=p1=p2j3_c�;
ð3:21Þ

where, once again, the normalization is fixed by matching
the four-dimensional limits of this quantity with the scalar
configuration of (3.19).
As a final remark, we point out that O3 is not the only

mass-dimension six operator which appears in the Yang-
Mills theories (also with matter). One also has a contribu-
tion from

Õ3 ≔ DαFaμνDαFa
μν: ð3:22Þ

However, it is easy to see that the minimal form factor for
Õ3 can be related to the one of O2 as
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Fð0Þ
Õ3

ð1a _a; 2b _b; qÞ ¼ s12F
ð0Þ
O2
ð1a _a; 2b _b; qÞ: ð3:23Þ

Further Lorentz contractions of two covariant derivatives
and two field strengths, such as DμFaν

μ DρFa
ρν, are ruled out

or expressed in terms of the operators previously mentioned
thanks to the equations of motion. In particular, in the case

of pure Yang-Mills theory Õ3 can be expressed as a linear
combination of O2 and O3 through the equations of
motion. For a detailed discussion, see [64].
Finally, we provide the tree-level expressions needed for

the one-loop computation of the nonminimal form factor of
O3 which are:

(i) the nonminimal tree-level form factor of O3 with four gluons

Fð0Þ
O3
ð1a _a; 2b _b; 3c_c; 4d _d; qÞ ¼ Ba _ab _bc_cd _d þ Ca _ab _bc_cd _d þDa _ab _bc_cd _d; ð3:24Þ

with

Ba _ab _bc_cd _d ¼ ð−h1a2_b�h2b3_c�h3c1_a� þ ½1_a2bi½2_b3ci½3_c1aiÞ
h4dj=p1=p3j4_d�

s34s41
þ cyclic;

Ca _ab _bc_cd _d ¼
h1a2_b�h2b4_d�h4d3_c�h3c1_a� þ ½1_a2bi½2_b4di½4_d3ci½3_c1ai

s34
þ cyclic;

Da _ab _bc_cd _d ¼ −
�X4

i¼1

1

siiþ1

�
ðh1a2_b�h2b3_c�h3c4_d�h4d1_a� þ ½1_a2bi½2_b3ci½3_c4di½4_d1aiÞ ð3:25Þ

(ii) the nonminimal tree-level form factor of O3 with two external scalars

Fð0Þ
O3
ð1; 2; 3c_c; 4d _d; qÞ ¼

1

s12
ðh3c4_d�h4dj=p1=p2j3_c� − h4d3_c�h3cj=p1=p2j4_d�Þ ð3:26Þ

(iii) the nonminimal tree-level form factor of O3;s with two external scalars

Fð0Þ
O3;s

ð1; 2; 3c_c; 4d _d; qÞ ¼
h3cj=p4=p2j3_c�h4dj=p1=p2j4_d�

s23s34
þ h4dj=p1=p3j4_d�h3cj=p1=p2j3_c�

s34s41

þ h3cj=p2=p1j4_d�h4d3_c�
�

1

s34
þ 1

s23
þ 1

s41

�
− h4dj=p2=p1j3_c�h3c4_d�

1

s34
þ h3cj=p2j4di½3_cj=p1j4_d�

�
1

s23
þ 1

s41

�
: ð3:27Þ

These formulas have been obtained by requiring the six-
dimensional form factor to match, upon taking the four-
dimensional limit, the known four-dimensional expressions
in different helicity configurations [28,37,65,66]. The
resulting ansatz was then numerically compared with the
results from Feynman diagrams and a complete match
was found.

C. TrF4 and higher dimensional form factors

The fourth power in the field strength can be considered
as a turning point in the general behaviour of the operators,
for reasons which will become clear in a moment. The first
study of renormalization properties of gluonic operators of

dimension up to eight was carried out in [67] and with more
recent techniques in [68]. It turns out that we can have four
possible independent operators involving different contrac-
tions of four field strengths:

TrFμ
νFν

ρFρ
σFσ

μ; TrFμνFμνFρσFρσ;

TrFμ
νFρ

σFν
ρFσ

μ; TrFμνFρσFμνFρσ: ð3:28Þ
In pure gauge theories, which we are considering in this
work, all these operators can appear with independent
coefficients, while they are no more independent in the low
energy effective action from the superstring theory [69–71].
In this section we will focus only on the first operator,
which we will refer to as TrF4:
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O4 ≔ TrF4 ≔ TrFμ
νFν

ρFρ
σFσ

μ: ð3:29Þ
This encloses all the main features of the operators with
higher powers in the field strength, and at the end of this
section we will be able to generalize some results to a
peculiar operator involving a consecutive chain of n field
strengths.
In four dimensions the main difference between TrF4

and the lower-power cases is that the structure of this
operator allows the mixing of the self- and antiself-dual
components, i.e., schematically

TrF4 ≃ TrF4
SD þ TrðF2

SDF
2
ASDÞ þ TrF4

ASD: ð3:30Þ
Thus the usual all-plus (all-minus) minimal form factors
appear along with MHV-like quantities:

Fð0Þ
O4
ð1þ; 2þ; 3þ; 4þ; qÞ ¼ 2½12�½23�½34�½41�;

Fð0Þ
O4
ð1þ; 2þ; 3−; 4−; qÞ ¼ ½12�2h34i2;

Fð0Þ
O4
ð1þ; 2−; 3þ; 4−; qÞ ¼ ½13�2h24i2; ð3:31Þ

and all the other configurations can be obtained by
symmetry and parity arguments.
In six dimensions the minimal form factor is

Fð0Þ
O4
ð1a _a; 2b _b; 3c_c; 4d _d; qÞ ¼ FAB

1a _aCDF
CD
2b _bEF

FEF
3c_cGHF

GH
4d _dAB

¼ðB.14Þh1a2_b�h2b3_c�h3c4_d�h4d1_a�
þ ½1_a2bi½2_b3ci½3_c4di½4_d1ai
þ h1a2b3c4di½1_a2_b3_c4_d�;

ð3:32Þ

where we notice that at this power of the field strength
the new structure h· · ··i½· · ··� involving four-spinor invar-
iants appears, which is very reminiscent of the four-point
amplitude. This new structure gives us the MHV-like
components in (3.31) when we consider the appropriate
little-group configurations in the four-dimensional limit
(see Appendix C).
We have already identified the scalar operator associated

to TrF4 in (2.10) and we define

O4;s ∝ TrDμϕDνϕFν
ρFρμ ð3:33Þ

such that its minimal form factor is

FO4;s
ð1; 2; 3c_c; 4d _d;qÞ ¼

1

2
pAB
1 p2CDFCD

3c_cEFF
EF
4d _dAB

¼ −h3cj=p2=p1j4_d�h4d3_c�

þ 1

4
h2a2a3c4di½1_a1

_a3_c4_d�:
ð3:34Þ

The expression of TrF4 gives us some insight about the
operators involving the nth power of the field strength,
where the Lorentz indices are contracted between adjacent
field strengths, which we will refer to as TrFn:

On ≔ TrFn ¼ TrFμ1
μ2Fμ2

μ3 � � �Fμn−1
μnFμn

μ1 : ð3:35Þ

It is easy to show that this operator can be decomposed in
a sum of double traces (in the Lorentz indices) on the self-
dual and antiself-dual parts, schematically13:

TrFn ≃
Xn
i¼0

TrðFn−i
SD Fi

ASDÞ: ð3:36Þ

Take two disjoint and ordered subsets of labels Sþ ¼
fpkgk¼1…i and S− ¼ fqkgk¼1…n−i, with Sþ ∪ S− ¼
f1;…; ng. Then all tree level form factors, for any helicity
configuration, can be written in a very compact way:

Fð0Þ
On
ð1h1 ;…; nhn ; qÞ ¼ cn;i

Yi
k¼1

½pkpkþ1�
Yn

k¼iþ1

hqkqkþ1i;

ð3:37Þ

where the overall coefficient is

cn;i ¼
8<:

2 i ¼ 0

ð−1Þn−i i ≠ 0; n

ð−Þn2 i ¼ n

: ð3:38Þ

An explicit example of this general formula is given by

Fð0Þ
O5
ð1−; 2þ; 3−; 4−; 5þ; qÞ ¼ −h13ih34ih41i½25�½52�:

ð3:39Þ

The structure of TrFn form factors in six dimensions is
much more complicated than the four-dimensional one, the
number of terms grows very fast, but nonetheless some
general pattern can be observed. In particular if we restrict
to a kinematic configuration for which only some of the
legs are truly six dimensional and the others are defined on
the embedded four-dimensional subspace, the formulas are
much easier and compact. In principle, this is all we need in
order to calculate rational terms with the dimensional
reconstruction technique, since we need to consider only
the limited number of internal loop legs as six dimensional.
As an example, consider the minimal form factor of TrFn

with two six-dimensional legs and n − 2 four-dimensional
legs in the all-plus helicity configuration. The general
expression is given by

13We stress that this general structure was hidden by lower
power-operators because the field strength is traceless:
TrFn−1

SD FASD ¼ TrFSDFn−1
ASD ¼ 0.
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TrFnð1a _a; 2b _b; 3þ;…; nþÞ ¼ ðh1a2_b�h2b3_1�½34�hn11_a�
þ ½1_a2bi½2_b31i½34�½n_11ai
þ h1a2bn131i½1_a2_b3_14_1�Þ

×
Yn−1
i¼4

½iiþ 1�: ð3:40Þ

This result can be found by observing that the combination
λAiaλ̃iB _a appears only once for each six-dimensional leg,
which allows to write an ansatz comprising every possible
combination with arbitrary coefficients to be fixed. The
coefficients can then be determined by taking the four-
dimensional limit of the six-dimensional gluons and
requiring the form factor to match (3.37). For the sake
of comparison, if we take n ¼ 6 the three terms of (3.40)
come from a fully six-dimensional expression of 39 terms
which has already been reduced from initial 52 terms using
Schouten identity.

IV. ONE-LOOP FORM FACTORS

In this section we will consider a number of one-loop
applications of the dimensional reconstruction procedure
discussed so far. The results obtained for the minimal form
factors of TrF2 and TrF3 were already known in the
literature. We prove that the latter has no rational terms, as it
has also been argued by [28]. These calculations will be
useful to set the stage and give an example of the procedure
before dealing with more involved operators and kinematic
configurations. In particular, we reproduce the known
nonminimal form factor of TrF2 with three positive-helicity
external gluons. Finally, we compute the complete minimal
form factor of TrFn with n ¼ 4 at one loop and generalize
some of the results to arbitrary n.

A. The minimal TrF2 form factors

As a first proof of concept of the method we will confirm
the well known statement that the minimal form factor of
the operator TrF2 in pure Yang-Mills does not have any
rational terms. In particular, we will consider the all-plus
helicity configuration.
The quantity we want to compute can be written as

Fð1Þ
O2
ð1þ; 2þ; qÞ ≔ Fð0Þ

O2
ð1þ; 2þ; qÞ · fð2Þðs12Þ
¼ 2½12�½21� · fð2Þðs12Þ; ð4:1Þ

where we factored out all the helicity dependence in the
tree-level prefactor, and fð2Þðs12Þ is a function only of the
Mandelstam variable s12. As explained in Sec. II this
quantity can be computed using (2.7):

fð2Þðs12Þ ¼ fð2Þ6Dðs12Þ − 2fð2Þϕ ðs12Þ; ð4:2Þ

where f26Dðs12Þ and f2ϕðs12Þ are the form factors with six-
dimensional internal gluons or scalars respectively, nor-
malized by the corresponding tree-level quantity.
At one loop, the two-particle cut represented in Fig. 3 is14

fð2Þ6Dðs12Þj2−cut ¼
1

2½12�½21�
Z

dLIPSFð0Þ
O2
ð−la _a1 ;−lb _b2 Þ

×Að0Þ
g ðl2b _b; l1a _a; 11_1; 22_2Þ: ð4:3Þ

In order to simplify this expression we decompose the six-
dimensional quantities in terms of four-dimensional ones,
as explained in detail in Section B 3. These calculations
are rather lengthy and we have devised a Mathematica
package to deal with them (see Appendix F for a detailed
presentation). In general, we write six-dimensional expres-
sions in terms of fλiα; λ̃i _α; μiα; μ̃i _α; mi; m̃ig with i ¼ 1, 2, l1,
l2, as explained in Appendix B 3. Imposing that the external
legs are defined in four dimensions is equivalent to setting
mj ¼ 0 and m̃j ¼ 0 for j ¼ 1, 2, which automatically
removes any dependence of fð2Þ on μjα and μ̃j _α. From
(B22), momentum conservation impliesX

i

mi ¼ 0;
X
i

m̃i ¼ 0: ð4:4Þ

Only the two internal legs l1 and l2 have to be kept in six
dimensions, in other words p5

i , p
6
i ≠ 0 for i ¼ l1, l2, which

implies

ml2 ¼ −ml1 ≔ −m; m̃l2 ¼ −m̃l1 ≔ −m̃; ð4:5Þ

where

μ2 ¼ mm̃; ð4:6Þ
with μ2 defined in (2.3). The result for the complete
integrand in (4.3) is, schematically,

FIG. 3. Two-particle cut of the one-loop form factor TrF2 in six dimensions.

14The explicit expression of Ag can be found in Appendix C.
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I ¼ ihl1l2i2½l2l1�2
s12s2l2

þ μ2ð4 termsÞ þ μ4ð17 termsÞ

þ μ6ð5 termsÞ þ μ8ð1 termÞ; ð4:7Þ

where the Mandelstam invariants are defined in terms of six-
dimensional momenta. It is important to note that the
dependence on μi and μ̃i is spurious and we can choose
these “reference momenta” in order to cancel as many terms
as possible from our result. After doing so one has to be
careful in identifying the loop momenta and Mandelstam
invariants consistently with this choice. A particularly
convenient choice is

μl1 → λl2 ; μl2 → λl1 ; μ̃l2 → μ̃l1 : ð4:8Þ

Doing so, we immediately arrive at

fð2Þ6Dðs12Þj2−cut ¼
Z

dLIPS

�
−i

s12
s2l2

þ 2i
μ2

s2l2

�
: ð4:9Þ

Next we repeat a similar computation for the two-particle
cut with internal gluons replaced by scalars:

fð2Þϕ ðs12Þj2−cut ¼
1

2½12�½21�
Z

dLIPSFð0Þ
O2;s

ð−l1;−l2Þ

×Að0Þðl2; l1; 1a _a; 2b _bÞ

¼
Z

dLIPSi
μ2

s2l2
: ð4:10Þ

Taking the difference between (4.9) and twice (4.10)
leads to the desired four-dimensional result

fð2Þðs12Þj2−cut ¼ −is12
Z

dLIPS
1

s2l2
: ð4:11Þ

It is important to stress that in order to perform the
scalar subtraction consistently, one needs first to write
both fð2Þ6D and fð2Þϕ as functions of the full d-dimensional
momenta and Mandelstam invariants, in order to eliminate
any dependence on the choice of the arbitrary helicity
spinors μi and μ̃i. We can directly read off the one-loop
result from (4.11):

ð4:12Þ

where the triangle integral with outgoing momenta
ðp1; p2; qÞ is defined in Appendix E.
As anticipated, our result (4.12) does not contain any μ2

term i.e., any rational term, and is thus in agreement with
the very well known result. An equivalent result holds for
the all-minus helicity configuration. As expected, there are

no bubbles in the result, because both TrF2
SD and TrF2

ASD
are protected operators.

B. The nonminimal TrF2 form factor

In this section we address the computation of the one-
loop nonminimal form factor of the operator TrF2. As usual
we begin by defining the normalized quantity fð2;3Þ as

Fð1Þ
O2
ð1þ; 2þ; 3þ; qÞ ≔ 2½12�½23�½31� · fð2;3Þðs12; s23; s13Þ;

ð4:13Þ
with

fð2;3Þðs12; s23; s13Þ ¼ fð2;3Þ6D ðs12; s23; s13Þ
− 2fð2;3Þϕ ðs12; s23; s13Þ; ð4:14Þ

Notice that we decided not to normalize by the correspond-
ing tree-level form-factor, which carries additional non-
trivial dependence on the Mandelstam variables, but simply
by a factor [12][23][31] which only captures the complete
helicity dependence of the operator. Computing the dis-
continuity in the s12-channel we have

fð3Þ6DðfsijgÞjs12−cut ¼
1

2½12�½23�½31�
Z

dLIPSFð0Þ
O2
ðla _a1 ; lb _b2 ;31_1Þ

×Að0Þð−l2a _a;−l1b _b;11_1;22_2Þ; ð4:15Þ
which, upon making use of momentum conservation in the
form of (4.5), is a 356-term expression. We make use of the
redundant d.o.f. to simply the expression by choosing

μl1 ↦ λl2 ; μ̃l1 ↦ λ̃3; μl2 ↦ λl1 ; μ̃l2 ↦ λ̃3; ð4:16Þ

which leads to

fð3Þ6DðfsijgÞjs12−cut ∝
Z

dLIPS½3l1�hl1l2i½l23�: ð4:17Þ

Note that, after using (4.16), the last expression apparently
is no longer invariant with respect to little-group trans-
formations of l1 and l2, since these transformations mix the
λ and μ. In other words, looking at the numerator of (4.17),
l1 and l2 appear as four-dimensional massless momenta,
whereas they should really be massive. Hence in order to
further manipulate the expression in a consistent manner
we have to restore the masses, i.e., restore explicit little-
group invariance. This is achieved by the replacement

λαi λ̃
_α
i ↦

�
λαi λ̃

_α
i þ

μ2

hλiμii½μ̃iλ̃i�
μαi μ̃

_α
i

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pð4Þα _α
i

−
μ2

hλiμii½μ̃iλ̃i�
μαi μ̃

_α
i ;

ð4:18Þ
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which in the particular case of (4.17) becomes

jl1i½l1j ↦ =lð4Þ1 −
μ2

hl1l2i½3l1�
jl2i½3j;

jl2i½l2j ↦ =lð4Þ2 −
μ2

hl2l1i½3l2�
jl1i½3j; ð4:19Þ

where the replacements (4.16) have already been applied.
After this substitution and some further manipulation,
(4.17) becomes

fð2;3Þ6D ðs12; s23; s13Þjs12−cut
¼ i

½12�
½23�½31�

Z
dLIPS½3j=lð4Þ1 =lð4Þ2 j3�I ð2;3Þ

6D ; ð4:20Þ

where

I ð2;3Þ
6D ¼ q4s12 − 2μ2q2s12 − 4μ2s3l1s3l2

s212s2;−l2s3l1s3l2
: ð4:21Þ

Performing the appropriate scalar subtraction for the
nonminimal configuration of the operator TrF2 is more

subtle than in the minimal case. The double cut one needs
to compute is represented in Fig. 4. There are two different
tree-level form factors to be inserted into the cut: the non-
minimal form factors with two external scalars and one
gluon of the operators TrF2 and ðDϕÞ2. The tree-level
expression for these form factors are given in (3.14) and
(3.15) respectively. Computing the complete result for the
double-cut of the scalar contribution leads to

fð2;3Þϕ ðs12; s23; s13Þjs12−cut
¼ i

½12�
½23�½31�

Z
dLIPS½3j=lð4Þ1 =lð4Þ2 j3�I ð2;3Þ

ϕ ; ð4:22Þ

with

I ð2;3Þ
ϕ ¼ −μ2

q2s12 þ s3l1s3l2
s212s2;−l2s3l1s3l2

: ð4:23Þ

Upon subtracting twice (4.22) from (4.20), uplifting the cut
and performing some algebraic manipulations on the
numerator, one ends up with the final expression:

ð4:24Þ

where all integrals can be found in Appendix E.

FIG. 4. A double cut of the scalar contribution to TrF2 nonminimal. The red boxes highlight the two different operator insertions.
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Clearly the double cuts in the channels s23 and s13 can be
derived from (4.24) by symmetry arguments, thus the only
invariant channel left to compute would be s123, see Fig. 5.
This double-cut involves the use of the five-point ampli-
tudes in six dimensions with five gluons as well as with
three gluons and two scalars,15 combined with the minimal
form factor of O2 and O2;s respectively. The only topology
probed by this cut, which is not probed by any of the
previous cuts, is the bubble with the form factor in one of
the two vertices and all the momenta in the other.
Performing the calculation the associated coefficient turns
out to be zero. Thus (4.24) and its permutations give the
complete result, which matches the one given in [16,72].

C. The minimal TrF3 form factors

We now consider the TrF3 form factor in the all-plus
helicity configuration. The procedure we follow is exactly
the same as in the TrF2 case. First we factor out the helicity
dependence as an overall tree-level prefactor:

Fð1Þ
O3
ð1þ;2þ;3þ;qÞ≔ Fð0Þ

O3
ð1þ;2þ;3þ;qÞ · fð3Þðs12; s23; s13Þ

¼ −2½12�½23�½31� · fð3Þðs12; s23; s13Þ;
ð4:25Þ

then we compute fð3Þ as the difference fð3Þ6D − 2fð3Þϕ . We
start with the two-particle cut in the s12 channel represented
in Fig. 6, which reads

fð3Þ6Dðs12Þjs12−cut ¼ −
1

2½12�½23�½31�
×
Z

dLIPSFð0Þ
O3
ð−la _a1 ;−lb _b2 ; 31_1Þ

×Að0Þðl2a _a; l1b _b; 11_1; 22_2Þ: ð4:26Þ

Upon expanding the six-dimensional invariants we get a
168-term expression. This can be considerably simplified
using momentum conservation as in (4.5) and choosing the
μs to be

μl1 ↦ λl2 ; μ̃l1 ↦ λ̃3; μl2 ↦ λl1 ; μ̃l2 ↦ λ̃3: ð4:27Þ
Doing so, we arrive at the compact expression

fð3Þ6Dðs12; s23; s13Þjs12−cut

¼ i
Z

dLIPS

�½12�½3j=lð4Þ1 =lð4Þ2 j3�
s2l2 ½23�½31�

þ μ2
½3j=lð4Þ1 =lð4Þ2 j3�
½3j=p1=p2j3�

�
;

ð4:28Þ
where we have already reconstructed the full d-dimensional
momenta. Computing the scalar contribution in a similar
fashion16 leads to

fð3Þϕ ðs12; s23; s13Þjs12−cut ¼
i
2

Z
dLIPSμ2

½3j=lð4Þ1 =lð4Þ2 j3�
½3j=p1=p2j3�

;

ð4:29Þ
and finally

fð3Þðs12; s23; s13Þjs12−cut ¼ i
½12�

½23�½31�
Z

dLIPS
½3j=lð4Þ1 =lð4Þ2 j3�

s2l2
:

ð4:30Þ

FIG. 6. Two-particle cut of the one-loop form factor TrF3 in the s12 channel in six dimensions.

FIG. 5. Two-particle cut of the one-loop form factor TrF2 in the s123 channel in six dimensions.

15Their analytic expression is given in Appendix C.

16For the case of the scalar contribution it turns out that the
most convenient choice for the μs is the same as in the gluon case.
Notice that it is for this particular reason that we would have been
allowed to perform the subtraction between the two contributions
without writing them in terms of full d-dimensional quantities
first. Indeed, if this were not the case, we would have had to
reconstruct the form of the loop momenta in terms of general μs
before doing the subtraction.
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After using (4.27), it is possible to write fð3Þ in terms of Mandelstam invariants:

fð3Þðs12; s23; s13Þjs12−cut ¼ −i
Z

dLIPS

�
s12
s2l2

þ 2

�
ð4:31Þ

modulo terms which integrate to zero. Uplifting this result leads to:

ð4:32Þ

Combining the discontinuities in the three channels s12, s23 and s31 we arrive at the complete one-loop form factor

fð3ÞðfsijgÞ ¼
Xn
k¼1

fð3ÞðfsijgÞjskkþ1−disc; ð4:33Þ

where every term in the sum can be obtained from (4.32) by relabeling the external legs.

D. The nonminimal TrF3 form factor

In the last sections we showed how the dimensional reconstruction can be applied to form factors. In this section we
derive for the first time the complete form factor of the operator TrF3 with four gluons in the all-plus helicity configuration.
The procedure we follow has been described in detail earlier, hence we now only sketch the relevant derivations and

provide the main results. Up to cyclic permutations there are two independent unitarity cuts to be computed, say in the s12-
channel and s123-channel. Starting from the s123-cut, one needs to evaluate the following difference to obtain the complete
result:

where the tree-level form factor in the scalar subtraction term (second term in the figure above) is the minimal form factor of
the operator TrðDμϕDνϕFμνÞ. The Passarino-Veltman reductions of the resulting tensor integrals have been performed
using the Mathematica package FEYNCALC [73,74]. From the two-particle cuts in the s123-channel we obtain the following
functions:

ð4:34Þ

with the coefficients

COMPLETE FORM FACTORS IN YANG-MILLS FROM … PHYS. REV. D 101, 026004 (2020)

026004-15



D½0�
0 ¼ −iFð1; 2; 3; 4Þ;

C½0�
0 ¼ −i

s12 þ s31
s12s23

Fð1; 2; 3; 4Þ;

C½0�
1 ¼ −i

s23 þ s31
s12s23

Fð1; 2; 3; 4Þ; ð4:35Þ

where

Fð1; 2; 3; 4Þ ≔ s123
s231

ðs12½13�½24� þ s31½12�½34�Þðs23½13�½24�

þ s31½23�½14�Þ: ð4:36Þ

Finally the coefficient of the bubble can be written as

B½0�
0 ¼ 2i½12�½23�½34�½41�b½0�0 ; ð4:37Þ

where the helicity-blind function b½0�0 is defined as

b½0�0 ¼ s2123
s12s23

�
1

s12 þ s31
þ 1

s23 þ s31

�
þ ½13�½24�
½12�½34�

s2123
s23s31

·
1

s12 þ s31

þ ½13�½24�
½14�½23�

s2123
s12s31

·
1

s23 þ s31
: ð4:38Þ

The result also contains a box integral with a μ2 i
numerator, which after integration is of OðϵÞ. For com-
pleteness we quote its coefficient:

D½2�
0 ¼ −2is123

�½12�2½34�2
s12

þ ½23�2½41�2
s23

þ ½13�2½24�2
s31

�
:

ð4:39Þ

Next we consider the two-particle cut in the s12-channel
and, as discussed in earlier sections, the discontinuity of the
complete form factor is determined from the difference

Fð1Þ
6Dð1þ; 2þ; 3þ; 4þ;qÞjs12−cut
− 2Fð1Þ

ϕ ð1þ; 2þ; 3þ; 4þ;qÞjs12−cut; ð4:40Þ

where the second term is the scalar subtraction. As in the
case of the nonminimal form factor of TrF2, there are two

contributions to the scalar quantity Fð1Þ
ϕ ð1þ; 2þ; 3þ; 4þ; qÞ,

which are represented in Fig. 7. The first contribution
comes from the operator TrF3 with two scalars and two
gluons, whereas the second one comes from the scalar
operator TrDμϕDνϕFμν.
After tensor reductions, we find

ð4:41Þ
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where we checked that the coefficients D½p�
0 , D½p�

1 , C½p�
0 and

C½p�
2 match the ones found in the previous calculation, up to

relabeling. The other coefficients for the triangles are

C½0�
3 ¼ i½12�½23�½34�½41�c½0�3 ;

C½2�
3 ¼ 4i

s12
½12�½34�½13�½24�; ð4:42Þ

where

c½0�3 ¼ s12 þ s31
s23

þ s12
s34

�
1þ s13

s14
þ s24
s23

�
−
½13�½24�
½14�½23�

�
s123ðs12 þ s31Þ − s213

s213
−
s12
s34

�
−
½13�½24�
½12�½33�

s12
s213s23

½s123ðs23 þ s31Þ − 2s231�

þ ð1; 4Þ ↔ ð2; 3Þ; ð4:43Þ

while for the bubbles

B½0�
1 ¼ 2i½13�2½24�2

�
1

s31
−

1

s23
þ s12
s23s31

�
þ 2i½12�2½34�2

�
2

s23
−

2s12
s23ðs13 þ s23Þ

�
þ 2i½12�½34�½13�½24�

�
1

s12
þ 4

s23
−

2

s34
−

4s24
s23s34

�
þ ð1; 4Þ ↔ ð2; 3Þ; ð4:44Þ

and

B½2�
1 ¼ 4i

s212
½12�½34�ð½13�½24� þ ½23�½14�Þ: ð4:45Þ

We have checked that our result satisfies the expected
infrared consistency conditions. In particular, using the
results for the coefficients D0, C0 and C1, one immediately
finds that the coefficient of ð−s123Þ−ϵ

ϵ2
vanishes, as required.

We have also confirmed that the coefficient of ð−s12Þ−ϵ
ϵ2

is
proportional to the corresponding tree-level nonminimal
form factor derived in [37],

Fð0Þ
O3
ð1þ; 2þ; 3þ; 4þ; qÞ

¼ −2
½12�½23�½34�½41�

s12

�
1þ ½13�½24�

½23�½41� −
s24
s41

�
þ cyclic:

ð4:46Þ

E. The minimal TrF4 form factors

In this section we consider the form factors of TrF4 in all
possible helicity configurations. The case where all par-
ticles have the same helicity is interesting since it admits an
immediate generalization to the minimal form factors
of operators of the form TrFn defined in (3.35). In this
family, TrF4 is the first operator whose minimal form factor
contains rational terms. We are going to consider the
quantities in the planar limit of the theory, i.e., at one loop
we will probe only the discontinuities in the Mandelstam
invariants of adjacent momenta in the color-ordered form
factor. At this point it is important to stress that nonplanar
contributions behave differently: as one can see from (2.10)
there is no nonplanar scalar contribution, because in the
operator the scalars can only appear next to each other, and
then the complete four-dimensional contribution coincides
with the diagrams with purely six-dimensional internal
gluons.

1. All-plus felicity configuration

We begin by defining

Fð1Þ
O4
ð1þ; 2þ; 3þ; 4þ; qÞ ≔ 2½12�½23�½34�½41� · fð4ÞðfsijgÞ:

ð4:47Þ

At one loop, we can make the following observations:
(i) The cut-constructible part, coming from the form

factor involving only gluons, has the same struc-
ture as Fð1Þ

O3
ð1þ; 2þ; 3þ; qÞ, with both UV and IR

divergences.

FIG. 7. A two-particle cut of the scalar contribution to the nonminimal TrF3 form factor. The red boxes highlight the two different
operator insertions.
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(ii) Terms proportional to μ2 and μ4 now appear. As
already mentioned, these could not arise for n < 4
because of the limited kinematic, as we will show
below. The new integrals are two triangles with
μ2 and μ4 numerators17 and when expanded in
powers of the dimensional regulator ϵ give a finite

contribution in the ϵ → 0 limit. They are exactly
the rational terms that cannot be seen by the com-
pletely four-dimensional cut construction, where
clearly μ2 ¼ 0.

Following the procedure outlined in the previous sec-
tions, we find

ð4:48Þ

Notice that in the final result the integral I43½μ4� appears. In
general, in a renormalizable gauge theory one would expect
triangle integrals to appear with at most a third power of the
loop momentum in the numerator, which allows for at most a
μ2 triangle contribution. However we are considering an
effective field theory with an operator of mass-dimension
eight, hence the possibility of having also an I43½μ4� term. The
last step of the calculation is the sum over all the possible
channel discontinuities, as we did in (4.33) for TrF3.

The above result can be immediately generalized to TrFn

for arbitrary n in the all-plus helicity configurations, where
we define

TrFnð1þ;…; nþ;qÞj1-loop ≔ ð−Þn2
Yn
k¼1

½kkþ 1� · fðnÞðfsijgÞ;

ð4:49Þ
and

ð4:50Þ

This simple generalization is due to the fact that, upon
properly normalizing with the corresponding four-dimen-
sional quantities, the six-dimensional minimal tree-level
form factor of TrFn is identical to that of TrF4 up to the
replacement 4 ↦ n, as can be seen from (3.40). As a final
remark, notice that we can a posteriori explain the absence
of rational terms for TrF3: indeed we can recover (4.32) by
simply replacing n ↦ 3 in (4.50). Then, rational terms
vanish since they are proportional to ½3n�.

2. MHV configuration: The alternate and split-helicity
color ordered form factors

We define the MHV color-ordered form factor with
alternate-helicity gluons as follows:

Fð1Þ
O4
ð1þ; 2−; 3þ; 4−; qÞ ≔ h24i2½13�2 · fð4Þa ðfsijgÞ: ð4:51Þ

Since this case presents some peculiarities in the calcu-
lations, we will give more details about it. In particular, the
cut of the form factor with six-dimensional internal gluons
in the s12-channel is given by

17For analytic expressions of such integrals see for example
Appendix E.
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fð4Þa;6DðfsijgÞjs12−cut ¼ −
Z

dLIPS
i

s12s2l2

I2
6D

h24i2½13�2

¼ −
Z

dLIPS
i

s12s2l2
ð2k · l2Þ2; ð4:52Þ

where

I6D ¼ 2μ2h24i½13� þ h2j=lð4Þ1 j3�h4j=lð4Þ2 j1�
þ h2j=lð4Þ2 j3�h4j=lð4Þ1 j1� ð4:53Þ

and in the last step we removed terms proportional to

h2j=lð4Þ2 j1� that vanish upon integration. Also kμ is a massive
momentum defined by

kα _α ¼
½12�
½13� λ2αλ̃3_α −

h12i
h24i λ4αλ̃1_α; ð4:54Þ

and it is easy to prove that it satisfies the following
relations:

k2 ¼ 2p1 · k ¼ 2p2 · k ¼ s12: ð4:55Þ

Surprisingly, the scalar contribution is identically zero
after integration:

fð4Þa;ϕðfsijgÞjs12−cut

¼
Z

dLIPS
i

s12s2l2

h4j=lð4Þ1 j3�h4j=lð4Þ2 j3�h2j=lð4Þ2 j1�2
h24i2½13�2 ¼ 0;

ð4:56Þ

because of the presence of the term h2j=lð4Þ2 j1�2. Thus the
discontinuity in the s12-channel is completely given by
the pure six-dimensional contribution (4.52), which after
the integral reduction can be written as

ð4:57Þ

It is worth stressing that all the other planar contributions
can be obtained from the previous one easily by symmetry
arguments.
As usual, for the split-helicity configuration we factorize

the tree-level form factor:

Fð1Þ
O4
ð1þ; 3þ; 2−; 4−; qÞ ≔ ½13�2h24i2 · fð4Þs ðfsijgÞ: ð4:58Þ

Unlike the previous case, in the planar limit we have two
different cuts which cannot be related by symmetry: in

particular, we can perform the cut in channels with same or
opposite helicity gluons. The discontinuity in the s12-
channel, after the scalar subtraction, is given by

ð4:59Þ

The cut in the s23-channel is reminiscent of the alternate-
helicity case, with vanishing scalar contribution up to
integration:

fð4Þs ðfsijgÞjs23−cut ≃ −
Z

dLIPS
i

s13s3l2
ð2k · l2Þ2; ð4:60Þ

where the momentum kμ is defined by

kα _α ¼
½23�
½13� λ2αλ̃1_α þ

h23i
h24i λ4αλ̃3_α; ð4:61Þ

and it satisfies the following relations:

k2 ¼ 2p2 · k ¼ 2p3 · k ¼ s23: ð4:62Þ

The cut in the s23 channel is

ð4:63Þ

Let us emphasize some relevant features of the result:
(i) The final result is free of rational terms. Thus we

would have found the same, complete, quantity even
with four-dimensional unitarity-cuts.

(ii) The only operator that contributes in four dimen-
sions is TrðF2

SDF
2
ASDÞ, which is a descendant of

Trϕ4 in N ¼ 4 SYM18.
(iii) We note the absence of bubbles in the final result for

this (unrenormalized) form factor. This may be
related to the independence of the bare quantity
on the matter content of the theory. One could then
regard the computation as if it was performed in
N ¼ 4 SYM, where the operator under consider-
ation belongs to a protected multiplet.

(iv) An unrelated observation is that the color-ordered
form factors with alternate and split-helicity con-
figurations are the same:

18See for example Table 7 in [75].
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Fð1Þ
O4
ð1þ; 2−; 3þ; 4−; qÞ ¼ Fð1Þ

O4
ð1þ; 3þ; 2−; 4−; qÞ:

ð4:64Þ

This is an accident due to the simple topology of the
integral basis combined with the fact that bubbles do
not appear. At first, the equality (4.64) could appear
as a consequence of the photon decoupling identities
which hold in Yang-Mills theory. However these
identities are no longer valid when one considers
interactions with higher powers of the field strength.
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APPENDIX A: FOUR-DIMENSIONAL SPINOR
HELICITY FORMALISM

In this section we briefly review the four-dimensional
spinor helicity formalism (SHF) [76–79], having as a main
goal to present our notation and conventions.
SLð2;CÞ is the universal covering of the Lorentz group

SOþð1; 3Þ. This means that the projective representations
of SO(1,3) on the Hilbert space are in one-to-one corre-
spondence to the unitary representations of SLð2;CÞ.
Furthermore, these infinite-dimensional unitary represen-
tations on the states naturally induces finite-dimensional
representations on the operators (e.g., the fields) of the
theory. Moreover, group theory ensures that all finite
dimensional irreducible representations of SLð2;CÞ can
be found by taking the totally symmetric tensor product of a
finite number of its fundamental and antifundamental
representations. The finite dimensional irreducible repre-
sentations, labeled by two semi-integer numbers (m, n),19

are obtained by the symmetric tensor product of the repre-
sentations ð1

2
; 0Þ and ð0; 1

2
Þ, respectively 2m and 2n times.

The fundamental objects transforming in the ð1
2
; 0Þ

representation will be labeled by λ and the associated
indices will be undotted Greek letters as α; β;…. The
fundamental objects transforming in the ð0; 1

2
Þ will be

labeled by λ̃ with associated dotted Greek indices _α; _β;….
What group theory states is that we can construct any

quantity transforming in some representation of the Lorentz
group in a uniform way in terms of objects transforming
in these two representations. In general any scattering

amplitude can be written as a function of the set
fλiα; λ̃i _αg, with the index i running over all in- and outgoing
particles of the considered process. In order to level out the
description we will take all particles as outgoing from now
on. We will refer to λ and λ̃ collectively as helicity spinors.
In real momentum space, these two representations are
related by complex conjugation.
Dotted and undotted indices are raised and lowered

through the Levi-Civita tensor ϵ and we adopt the following
conventions:

λα ¼ ϵαβλβ ¼ ϵαβϵβγλ
γ → ϵαγϵ

γβ ¼ δβα: ðA1Þ

The same is true for dotted indices as well. Lorentz singlets
can be build out of contractions of helicity spinors. Namely,
our conventions for the angle and the square Lorentz
invariant brackets are as follows:

hiji ≔ hλiλji ≔ λαi λjα ¼ −hλjλii;
½ij� ≔ ½λiλj� ≔ λ̃i _αλ̃

_α
j ¼ −½λjλi�: ðA2Þ

It is simple to convince oneself that the so called Schouten
identity holds:

hijiλkα þ hjkiλiα þ hkiiλjα ¼ 0: ðA3Þ

An similar identity can be written for the λ̃’s as well.

1. Massless momenta

Considering Lorentz vectors, one has that the vector
representation of SO(1,3) corresponds to the ð1

2
; 1
2
Þ repre-

sentation of SLð2;CÞ. This correspondence is explicitly
given by

pμ → pα _α ≔ pμσ
μ
α _α: ðA4Þ

The sigma matrices satisfy the Clifford algebra

fσμ; σ̄νg ¼ 2ημν; ðA5Þ

where σ̄μ _αα ≔ ϵαβϵ _α _βσμ
β _β
. Then, if we further define

p _αα ≔ pμσ̄ _αα
μ , we have that

p _αα
i pjα _α ¼ 2pi · pj: ðA6Þ

For a massive particle the mass-shell condition can then be
written as

p2 ¼ m2 → p _ααpα _α ¼ detðpα _αÞ ¼ m2: ðA7Þ

The power of the SHF becomes manifest when we consider
massless momenta. Indeed, the massless condition can be
trivialized by picking19In our conventions, (m, n) has dimension ð2mþ 1Þð2nþ 1Þ.
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piα _α ¼ λiαλ̃i _α: ðA8Þ

There is an ambiguity in the definition of pi in terms of
fλi; λ̃ig, which is represented by a phase

λiα → e−iφiλiα; λ̃i _α → eiφi λ̃i _α: ðA9Þ

This rescaling leaves momentum invariant and is thus a
little group transformation. The little group in four dimen-
sions is the double covering of SOð2Þ ≃ Uð1Þ and we
choose to assign helicity − 1

2
to λ andþ 1

2
to λ̃. Thus it is now

manifest how the new variables can carry information about
both the momentum and the helicity of an associated
particle.

2. Massive momenta

At this point we turn our attention to the spinor helicity
description of massive momenta, of which we make
extensive use. One can always write a massive momentum
L as [80]

Lμ ¼ lμ þ L2

2l · η
ημ; ðA10Þ

where both l and η are massless momenta and L2 ¼ m2 is
the mass associated to this momentum. The previous
expression fixes lμ in terms of the massive momentum
Lμ completely once we have chosen the arbitrary ημ. We
can write (A10) in terms of helicity spinors as

piα _α ¼ λiαλ̃i _α þ
m2

hλiμii½μ̃iλ̃i�
μiαμ̃i _α: ðA11Þ

Focusing on the number of d.o.f. we expect to have 3 d.o.f.
from the spinor variables, plus an additional d.o.f. from the
mass squaredm2. The quantity λαλ̃ _α already carries by itself
3 d.o.f., but μα and μ̃ _α apparently carry two additional
complex degrees, which coincide with their direction, while
the momentum is invariant under the rescaling

μα → aμα; μ̃ _α → bμ̃ _α; ðA12Þ

where a, b ∈ C. The redundancy is taken into account by
the four-dimensional massive little group fSOð3Þ ≃ SUð2Þ,
which has two additional generators, with respect to the
massless one. Indeed we can write the massive momentum
in terms of the irreducible SU(2) helicity spinors [81]

λIα ¼
�
λα

m
hλμi μα

�
; ðA13Þ

where I is an index in the fundamental of SU(2) and

pα _α ¼ λIαλ̃ _αI ¼ ϵIJλ
I
αλ̃

J
_α; ðA14Þ

where λ̃ _αI ¼ �ðλIαÞ†, according to the sign of the p0

component of momentum. In this form it is obvious that
any SU(2) transformation

λIα → λJαUJ
I ðA15Þ

leaves the momentum invariant.

APPENDIX B: SIX-DIMENSIONAL SPINOR
HELICITY FORMALISM

In this section we give a concise overview of the six-
dimensional spinor helicity formalism. In particular we are
interested in how it can be broken down in terms of a four-
dimensional subspace and the associated four-dimensional
spinors. For a more detailed discussion see [14,17,62,82].

1. Helicity spinors in six dimensions

In six-dimensional Minkowski spacetime, the Lorentz
group is SO(1,5), whose universal covering group is
SLð2;HÞ, and we will denote it as SU�ð4Þ. Indeed, its
representations are in one-to-one correspondence to those
of SU(4), which is the universal covering of SO(6). The six-
dimensional little group is ˜SOð4Þ ≃ SUð2Þ × SUð2Þ.
Let us denote with □

A and □A the objects transforming
respectively in the fundamental and anti-fundamental
representations of the Lorentz group SU�ð4Þ and ða; _aÞ
the indices of the bifundamental representations of the two
components of the little group. The Clifford algebra is
defined by

fγμ; γ̃νgAB ≔ γμACγ̃
νCB þ γνACγ̃

μCB ¼ 2ημνδBA; ðB1Þ

where μ ¼ 0;…; 6, γμAB ≡ γμ½AB� and γ̃μAB ≡ γ̃μ½AB�. These
gamma matrices transform in the pseudoreal representation
6 ¼ 4 ∧ 4 of SU�ð4Þ and are related by

γ̃μAB ¼ ðγμABÞ� ¼
1

2
ϵABCDγμAB: ðB2Þ

Six-dimensional momenta can be written as

pAB ≔ pμγ
μ
AB; ðB3Þ

and also transform in the 6 representation. The massless
condition on the momenta reads

p2 ∼ ϵABCDpABpCD ¼ 0; ðB4Þ

which can be solved by expressing the momentum as the
bispinor

pAB ¼ ϵ _a _bλ̃ _aAλ̃ _bB ¼ λ̃ _aAλ̃
_a
B; ðB5Þ

where λ̃ _aA is a pseudoreal spinor. Analogously, we can
write
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pAB ¼ λaAλBa ¼ −ϵabλAaλBb ; ðB6Þ

which satisfies

pAB ¼ ðpABÞ� ¼ −
1

2
ϵABCDpCD: ðB7Þ

Notice that, given the above definitions, the spinors λaA and
λ̃ _aA automatically satisfy the Dirac equation:

pABλ
B
a ¼ −

1

2
ϵABCDλ

B
aλ

bCλDb ¼ −ϵABCDλBaλC1 λD2 ¼ 0; ðB8Þ

and similarly for λ̃ _aA. The Dirac equation can be also
written equivalently as a relation between λ and λ̃:

0 ¼ λaAλBa λ̃B _a ¼ −λA1 λB2 λ̃B _a þ λA2 λ
B
1 λ̃B _a; ðB9Þ

which implies

λAa λ̃A _a ¼ 0: ðB10Þ
Finally we need to define polarization vectors in terms of

the spinors. Just as in four dimensions one has to introduce
a reference spinor to do so, which we call q. Then a good
definition is given by

εABa _a ðp; qÞ ¼
ffiffiffi
2

p

spq
jpai½A½p _aj=qB�;

εa _aABðp; qÞ ¼ −
ffiffiffi
2

p

spq
jp _a�½Ahpaj=qB�: ðB11Þ

2. SU�ð4Þ spinor identities

In this subsection we present some useful identities for
six-dimensional spinors. We focus on the SU�ð4Þ structure
of the spinors and keep the little group indices implicit for
the sake of clarity. Of course little-group indices can be
restored at any time because they are unambiguously
related to each spinor.
Consider a certain number of spinors λAi (and λ̃iA), with

labels i ¼ 1;…; n. The Lorentz invariant objects which can
be built out of these spinors are of three types:

(i) Bispinor invariant objects:

λAi λ̃jA ≔ hij� ðB12Þ
(ii) Two distinct four-spinors invariant objects:

ϵABCDλ
A
i λ

B
j λ

C
k λ

D
l ≔ hijkli;

ϵABCDλ̃iAλ̃jBλ̃kCλ̃lD ≔ ½ijkl�: ðB13Þ
The spinors transform in the fundamental representation of
SU�ð4Þ, thus A ¼ 1;…; 4. Two identities (and their two
complex conjugate) follow immediately from this:

λ½A1 λ
B
2 λ

C
3 λ

D
4 λ

E�
5 ¼ 0; ðB14Þ

and

λ½A1 λ
B
2 λ

C
3 λ

D�
4 ¼ 1

4!
ϵABCDh1234i; ðB15Þ

and analogous relations hold for λ̃iA. Equations (B14)
and (B15) can be combined to give the six-dimensional
Schouten identity: X

cyclic

h1234iλA5 ¼ 0: ðB16Þ

3. From six-dimensional to four-dimensional
quantities

For our purposes, we find it convenient to write six-
dimensional spinors in terms of four-dimensional ones,
allowing amplitudes to be expressed in terms of the more
familiar four-dimensional spinors. We can view six-dimen-
sional null vectors as four-dimensional massive ones, by
defining the two complex mass parameters

m ≔ p4 þ ip5; m̃ ≔ p4 − ip5; ðB17Þ

where p4 and p5 are the fifth and the sixth components of
the 6D momentum pμ. The six-dimensional massless
condition becomes then

p2 ¼ ðpð4ÞÞ2 −mm̃ ¼ 0: ðB18Þ

where ðpð4ÞÞ2 ¼ p2
0 − p2

1 − p2
2 − p2

3 is the four-dimensional
massive momentum associated to pμ. We found it more
efficient for our calculation to describe these momenta
as a combination of two massless momenta, as in (A11).
We can decompose 6D helicity spinors in terms of 4D
spinors as

λAa ¼
 − m

hλμi μα λα

λ̃ _α m̃
½μλ� μ̃

_α

!
; λ̃A _a ¼

 m̃
hλμi μ

α λα

−λ̃ _α m
½μλ� μ̃ _α

!
;

ðB19Þ

where the little group indices label the columns and the
SU�ð4Þ indices label the rows. The SU�ð4Þ index structure
can be broken down into two SLð2;CÞ complex conjugated
indices:

□
A ¼

�
□α

□
_α

�
; □A ¼

�
□

α

□ _α

�
: ðB20Þ

This embedding is specific of our choice of gamma matrices:
indeed, we choose them such that the γ-matrices restricted to
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μ ¼ 0;…; 3 reduce to the familiar chiral representation in
four dimensions20.
pAB and pAB are invariant under the little group SUð2Þ ×

SUð2Þ transformations

λ0Aa ¼ Ua
bλAb ; λ̃0A _a ¼ U _a

_bλ̃A _b;

ðUa
b; U _a

_bÞ ∈ SUð2Þ × SUð2Þ: ðB21Þ

The 6D momentum in 4D components reads:

pAB ¼
� −mϵαβ λαλ̃

_β þ ρμαμ̃
_β

−λ̃ _αλβ − ρμ̃ _αμβ m̃ϵ _α _β

�
; ðB22Þ

where ρ ¼ mm̃
hλμi½μλ�. We notice that m and m̃ completely fix

the diagonal components, thus they are little group invari-
ant objects (this was obvious from their definitions). In our
choice of gamma matrices, the off-diagonal components
precisely coincide with the 4D massive momentum:

pð4Þ
α _α ¼ λαλ̃ _α þ ρμαμ̃ _α; ðpð4ÞÞ2 ¼ mm̃: ðB23Þ

It is easy to see that the two copies of SUð2Þ of the 6D little
group act in an identical way on the 4D momenta and we
recover the usual massive little group: indeed, they depend
only on the combination mm̃ and we can obtain dotted
transformations from the undotted by simply replacing

m → −m̃; m̃ → −m: ðB24Þ

The Lorentz invariant quantities hiaj _a�, hiajbkcldi,
½i _aj _bk_cl _d� can be written in terms of four-dimensional
angle and square brackets, once the helicity indices are
fixed (a, b, c, d ¼ 1, 2 and _a, _b, _c, _d ¼ _1, _2), by using the

decomposition given in (B20) and decomposing ϵABCD ∼P
ϵαβϵ _α _β and δAB ¼ diagðδβα; δ _α_βÞ.

APPENDIX C: SIX-DIMENSIONAL
SCATTERING AMPLITUDES

Six-dimensional tree-level amplitudes are the basic
ingredients of our unitarity-based recipe. In this section
we give the analytic expressions needed for our calculations
and comment on how to recover four-dimensional expres-
sions in a specific limit.
As we already mentioned, in six dimensions the notion

of helicity is encoded in a tensorial structure, which must be
reflected by the amplitudes. The advantage of this tensorial
nature of helicity is that a single (tensorial) expression of
the amplitude contains all the possible four-dimensional
helicity configurations, when dimensional reduced. The
drawback however is that one loses some of the simplicity
which was peculiar to specific helicity configurations. In
particular there is no concept of MHV amplitudes.
In the previous section we have chosen the embedding of

the four dimensions into the six-dimensional space. Thus
the four-dimensional helicity structure is embedded in the
six-dimensional amplitudes. In general this represents a
good consistency check for six-dimensional results. In fact
for an appropriate limit these results must return their four-
dimensional counterparts. More specifically, accordingly to
our embedding, it turns out that states characterized by
little-group indices (1,1) and (2,2) correspond to the
positive and the negative helicity states in the four-dimen-
sional limit (m, m̃ → 0), because of representation we
chose for the gamma matrices. On the other hand, in four
dimensions the additional (1,2) and (2,1) components
coincide with two 4D scalars.
The four-gluon amplitude, computed in [17], is

ðC1Þ

According to our embedding, we expect Agð122; 222;
311; 411Þ to reproduce the MHV amplitude Að1−; 2−;
3þ; 4þÞ in the limit mi, m̃i → 0 for i ¼ 1;…; 4, which is
indeed the case:

Agð122; 222; 311; 411Þj4D ¼ i
h12i4

h12ih23ih34ih41i : ðC2Þ

While Agð112; 221; 311; 422Þ reproduces the four-point
amplitude with two scalars and two opposite-helicity
gluons Að1ϕ; 2ϕ̄; 3þ; 4−Þ:

Agð112; 221; 311; 422Þ ¼ i
h14i2h24i2

h12ih23ih34ih41i : ðC3Þ

Another amplitude of which we make frequent use is the
six-dimensional four-point amplitude with two gluons and
two scalars [16]

20For the explicit basis of gamma matrices see Appendix A
of [17].
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ðC4Þ

The massless scalars in six dimensions behave as massive
scalars when reduced to four dimensions. Taking the limits
m1, m2, m̃1, m̃2 → 0 and choosing the helicity components
we found the four-point amplitudes for gluons and massive
scalars in four dimensions:

Asð122; 211; 3; 4Þj4D ¼ −i
h1j=pð4Þ

3 j2�
s12s23

;

Asð111; 211; 3; 4Þj4D ¼ iμ2
½12�2
s12s23

; ðC5Þ

where μ2 coincides in this case with the mass of the scalar
squared.
Finally, the last amplitude one needs is the five-point

tree-level amplitude. The amplitude with five-gluons has
first been computed in [17]. In [14,62] this result has been

extended to the five-point superamplitude in the N ¼
ð1; 1Þ theory. This superamplitude also contains informa-
tion about the amplitude with scalar fields which is needed
for the scalar subtraction when doing dimensional
reconstruction. The amplitude with five gluons is

Agð1a _a; 2b _b; 3c_c; 4d _d; 5e_eÞ
¼ i

s12s23s34s45s51
ð−Ma _ab _bc_cd _de_e þDa _ab _bc_cd _de_eÞ ðC6Þ

with

Ma _ab _bc_cd _de_e ¼ h1aj=p2=p3=p4=p5j1_a�h2b3c4d5ei½2_b3_c4_d5_e�
þ cyclic; ðC7Þ

and

2Da _ab _bc_cd _de_e ¼ h1aΣ̃2_b�h2b3c4d5ei½1_a3_c4_d5_e� þ h3cΣ̃4_d�h1a2b4d5ei½1_a2_b3_c5_e�
þ h4dΣ̃5_e�h1a2b3c5ei½1_a2_b3_c4_d� − h3cΣ̃5_e�h1a2b4d5ei½1_a2_b3_c4_d�
− ½1_aΣ2bih1a3c4d5ei½2_b3_c4_d5_e� − ½3_cΣ4dih1a2b3c5ei½1_a2_b4_d5_e�
− ½4_dΣ5eih1a2b3c4di½1_a2_b3_c5_e� þ ½3_cΣ̃5eih1a2b3c4di½1_a2_b4_d5_e�: ðC8Þ

The amplitude with two scalars and three gluons is

Agð1ϕ; 2ϕ̄; 3c_c; 4d _d; 5e_eÞ ¼ −
i

s12s23s34s45s51
ðMs

c_cd _de_e
þDs

c_cd _de_e
Þ; ðC9Þ

with

Ms
c_cd _de_e

¼ h3cj=p1j4di½3_cj=p2j4_d�h5ej=p1=p2=p3=p4j5_e� þ h4dj=p1j5ei½4_dj=p2j5_e�h3cj=p4=p5=p1=p2j3_c�

þ h3cj=p1j5ei½3_cj=p2j5_e�h4dj=p5=p1=p2=p3j4_d� þ
1

2
h3c4d5e1ai½3_c4_d5_e2_b�h1aΣ̃ _b

2�; ðC10Þ

and

2Ds
c_cd _de_e

¼ −h4dj=p1j5ei½3_cj=p2j5_e�h3cΣ̃4_d� þ h4dj=p1j5ei½3_cj=p2j4_d�h3cΣ̃5_e�
− h3cj=p1j5ei½3_cj=p2j4_d�h4dΣ̃5_e� þ h3cj=p1j5ei½4_dj=p2j5_e�½3_cΣ4di
− h3cj=p1j4di½4_dj=p2j5_e�½3_cΣ5ei þ h3cj=p1j4di½3_cj=p2j5_e�½4_dΣ5ei: ðC11Þ
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The Σ and Σ̃ that appear in the previous formulas are
defined as

jΣiai ¼ ð=pi=piþ1=piþ2=piþ3 − =pi=piþ3=piþ2=piþ1Þjiai
jΣ̃ia� ¼ ð=pi=piþ1=piþ2=piþ3 − =pi=piþ3=piþ2=piþ1Þjia� ðC12Þ

where we define p6 ≡ p1.

APPENDIX D: NONMINIMAL FORM
FACTORS

In this section we will address the computation of six-
dimensional tree-level building blocks using BCFW recur-
sion relations.21 In particular we briefly comment on the
main steps of the calculation of TrF2 in the nonminimal
configuration.
Diagrammatically the terms we need to compute are

represented in Fig. 8. In this computation one needs to
make use of the three-point on-shell amplitudes in six-
dimensions. These are most conveniently defined in terms
of a set of auxiliary SU(2) spinors which we denote by
ua, ũ _a, wa and w̃ _a, following the conventions of [17].
These objects are not Lorentz invariants in six dimen-
sions and thus are not allowed to appear in the final
expression, however they enjoy useful properties which
simplify the calculation. The on-shell three-point ampli-
tude cleanly expressed in terms of the above mentioned
spinors:

A3ð1a _a; 2b _b; 3c_cÞ ¼ iΓabcð1; 2; 3ÞΓ̃ _a _b _cð1; 2; 3Þ; ðD1Þ

with

Γabcð1; 2; 3Þ ¼ u1au2bw3c þ u1aw2bu3c þ w1au2bu3c;

Γ̃ _a _b _cð1; 2; 3Þ ¼ ũ1_aũ2_bw̃3_c þ ũ1_aw̃2_bũ3_c þ w̃1_aũ2_bũ3_c:

ðD2Þ

Consider now applying six-dimensional BCFW as in
Fig. 8. The hatted momenta are shifted by a quantity
proportional to the complex parameter z as

p̂1 ¼ p1 þ zXa _aε1a _a;

p̂3 ¼ p3 − zXa _aε1a _a; ðD3Þ

where Xa _a is an arbitrary tensor needed to saturate the little
group indices. This tensor, which also multiplies (D7), will
be removed at the end of the calculation. The on-shell
condition p̂2

1;2 ¼ 0 implies det X ¼ 0, which allows to
express X as

Xa _a ¼ xax̃ _a: ðD4Þ

Furthermore we can define the quantities

yb ¼ x̃ _ah3b1_a�−1; ỹ _b ¼ xah1a3_b�−1; ðD5Þ

which allow us to rewrite the momentum shift (D3) in terms
of the spinor shifts

j1̂ai ¼ j1ai þ zxaybj3bi;
j3̂bi ¼ j3bi þ zybxaj1ai;
j1̂ _a� ¼ j1_a� − zx̃ _aỹ _bj3_b�;
j3̂ _b� ¼ j3_b� − zỹ _bx̃ _aj1_a�: ðD6Þ

Considering now for example term A in Fig. 8 one has

ðAÞ ¼ Xa _aA3ð1̂a _a; 2b _b; k̂d _dÞ
−i
s12

Fð0Þ
O2
ð−k̂d _d; 3̂c_c; qÞ

¼ i
s12

Xa _aΓabdð1̂; 2; k̂ÞΓ̃ _a _b _dð1̂; 2; k̂Þhk̂d3̂_c�h3̂ck̂
_d�:

ðD7Þ

Before substituting the definitions (A6) in (D7), we
make use of the properties of u, ũ, w, w̃, to simplify this
expression. The most useful identities are

(a) (b)

FIG. 8. BCFW construction of the tree-level nonminimal TrF2 form factor in six dimensions.

21For a more detailed account of six-dimensional BCFW
see [17].
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uiawib − uibwia ¼ ϵab; ũi _aw̃i _b − ũi _bw̃i _a ¼ ϵ _a _b;

jui · ii ¼ juj · ji; jũi · i� ¼ jũj · j� ∀ i; j ¼ 1; 2; k;

jw1 · 1i þ jw2 · 2i þ jwk · ki ¼ 0;

jw̃1 · 1� þ jw̃2 · 2� þ jw̃k · k� ¼ 0; ðD8Þ

where we used the shorthand notation uiajiai ¼ jui · ii and
ũi _aji _a� ¼ jũi · i�. These identities allow us to rewrite

Γabdð1̂; 2; k̂Þhk̂dj ¼ h1̂aju2b þ h2bju1̂a;
Γ̃ _a _b _dð1̂; 2; k̂Þjk̂

_d� ¼ j1̂ _a�ũ2_b þ j2_b�ũ1̂ _a; ðD9Þ

which in turn leads to

ðAÞ ¼ i
s12

Xa _aðh1̂a3̂_c�h3̂c1̂ _a�u2bũ2_b þ h1̂a3̂_c�h3̂c2_b�u2bũ1_a
þ h2b3̂_c�h3̂c1̂ _a�u1̂aũ2_b þ h2b3̂_c�h3̂c2_b�u1̂aũ1̂ _aÞ:

ðD10Þ

To further simplify the result, and to eliminate the residual
SU(2) spinors, we make the following observations:

(i) pairs of ui, ũj with i ≠ j can be immediately
rewritten in terms of six-dimensional invariants as

u1aũ2_b ¼ h1a2_b�; u2bũ1_a ¼ −h2b1_a�;
u2bũk_c ¼ h2bk_c�; ukcũ2_b ¼ −hkc2_b�: ðD11Þ

(ii) pairs of ui, ũj with i ¼ j can be rewritten using the
identity [62]

uiaũi _a ¼
ð−1ÞPij

siP
hiajpjPji _a�; ðD12Þ

where pj is any other momentum belonging to the
same three-point amplitude as pi, and Pij ¼ þ1 for
clockwise ordering of the states (i, j). Also P is any
given arbitrary momentum.

Repeating a similar reasoning on term (B) one gets

ðBÞ ¼ i
s23

Xa _a ðh1̂a3̂_c�h3̂c1̂ _a�u2bũ2_b þ h1̂a3̂_c�h2b1̂ _a�u3cũ2_b
þ h1̂a2_b�h3̂c1̂ _a�u2bũ3̂ _c þ h1̂a2_b�h2b1̂ _a�u3̂cũ3̂ _cÞ:

ðD13Þ

The on-shell condition for the intermediate propa-
gators in (A) and (B) defines two different BCFW shift

parameters, which we label zA and zB respectively. By
computing zA and zB one can see that they are related by

zB ¼ −
s23
s12

zA: ðD14Þ

Thanks to this relation multiple cancellations happen
between terms in (A) and terms in (B). With some further
algebra and removing the Xa _a tensor, one arrives at (3.13).
The analytic expression of the six-dimensional form

factor Fð0Þ
O2
ð1a _a; 2b _b; 3c_c; qÞ could also be computed using

Feynman diagrams, see for example [16]. Due to the low
multiplicity of this form factor, there is just a small number
of contributing Feynman diagrams. The diagrammatic
approach may thus be considered as equivalently viable
as BCFW in this case, the latter method however leads to a
far more compact expression with all the symmetries
manifest.
In a similar way but with much less involved calculation,

we can find both the nonminimal form factors with two
scalars and one gluon (3.14) and (3.15). In Figs. 9 and 10
we show the BCFW factorization channels for these
calculations. The only missing ingredient is the three-point
amplitude with two scalars and one gluon in six dimen-
sions, which turns out to be very simple:

Að1a _a; 2; 3Þ ¼ iu1aũ1_a: ðD15Þ

FIG. 9. BCFW construction of the tree-level nonminimal TrF2

form factor with two scalars.

FIG. 10. BCFW construction of the tree-level nonminimal Dϕ2

form factor.
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APPENDIX E: INTEGRAL EXPRESSIONS

The integrals needed in this paper are

ðE1Þ

and

ðE2Þ

where

cΓ ¼ Γ½1þ ϵ�Γ½1 − ϵ�2
Γ½1 − 2ϵ� : ðE3Þ

This results are exact to all orders in ϵ, and the expression
of the corresponding integral functions in a different number
of dimensions can be obtained by simply replacing ϵ to the
appropriate value, for instance ϵ ↦ ϵ − 1 and ϵ ↦ ϵ − 2 for
d ¼ 6 − 2ϵ and d ¼ 8 − 2ϵ, respectively. In particular it
turns out that all the integrals which give the rational terms,
i.e., those with a nontrivial numerator written in (2.4), can
always be expressed as integrals in higher dimensions [8].
Indeed consider the general integral function

Idn½μ2p� ¼
Z

d4−2ϵl
ð2πÞ4−2ϵ ðμ

2Þpfnðfpig; lÞ

¼
Z

d4lð4Þ

ð2πÞ4
Z

d−2ϵμ
ð2πÞ−2ϵ ðμ

2Þpfnðfpig; lÞ; ðE4Þ

and the μ-measure can be rewritten as

Z
d−2ϵμðμ2Þp ¼ 1

2

Z
dΩ−1−2ϵ

Z þ∞

0

dμ2ðμ2Þ−1−ϵþp

¼
R
Ω−1−2ϵR

dΩ2p−1−2ϵ

Z
d2p−2ϵμ: ðE5Þ

Then (E4) can be written as

Idn½μ2p� ¼
ð2πÞ2p R dΩ−1−2ϵR

dΩ2p−1−2ϵ

Z
d4þ2p−2ϵl
ð2πÞ4þ2p−2ϵ fnðfpig; lÞ

¼ −ϵð1 − ϵÞð2 − ϵÞ � � � ðp − 1 − ϵÞð4πÞpIdþ2p
n ½1�;

ðE6Þ

where Z
dΩx ¼

2π
xþ1
2

Γ½xþ1
2
� : ðE7Þ

Then to compute this integrals becomes just simple
algebra:
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APPENDIX F: THE SpinorHelicity6D Mathematica
PACKAGE

In this section we briefly describe the Mathematica
package SpinorHelicity6D [83], which we developed to
facilitate our calculations involving six- (and four-)
dimensional spinors and was initially inspired by the
package SpinorHelicity [58]. In the following we present
a subset of all the available functions—specifically, we
focus on the routines needed to check our results. In the
near future a more complete documentation along with
an updated version of the package will be released,
including tools needed for numerical evaluations in six-
dimensional space. For the sake of concreteness, the
functions will be presented applying them to an example
calculation, namely TrF3 in the all-plus helicity
configuration22.

1. The Building Blocks

The basic input of most computations is given in
terms of spinors and invariants built out of them. All of
these can be input into Mathematica through a keyboard
shortcut, a complete list of which is stored into the
variable SHORTCUTS, see Fig. 11. Alternatively one can
use the more user-friendly palette which opens auto-
matically upon loading the package or by typing
SpinorPalette.
The basic objects are:
(i) the standard four-dimensional spinors λ and λ̃. These

allow for upper and lower spinor-indices and have
the usual contraction properties:

The indices of λ and λ̃ do not mix, in other words the
package is able to distinguish between dotted and undotted
indices:

We adopted the convention that

λð−pÞ ¼ iλðpÞ; λ̃ð−pÞ ¼ iλ̃ðpÞ; ðF1Þ
and this is automatically applied both to the free as well as
contracted spinors:

As can be seen from the above example one is free to
choose whatever label for the momenta. However some

22See also the Mathematica notebook in the Github
repository.
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caution is needed and we recommend avoiding labels
containing minus signs,23 these are safe only if written in
form of a string.
(ii) μ and μ̃ are the auxiliary spinors needed to write a

massive momentum in terms of two massless ones as
in (B23). They share all the properties of λ and λ̃
respectively.

(iii) The set of spinors λ and μ without indices are
auxiliary objects used for example when defining
properties or applying transformations to both spin-
ors with upper and lower Lorentz indices.

(iv) Mand M̃ are the“masses”arising fromthe fifth andsixth
spacetime component of the momentum as in (4.5).

(v) Λ and Λ̃ are the six-dimensional spinors. These have
been implemented only with lower little group
indices, but in order to raise them one can simply
use the two-dimensional Levi-Civita tensor.

(vi) Clearly h·; ·i and ½·; ·� are the four-dimensional
invariants and h·; ·�, ½·; ·i, h·; ·; ·; ·i and ½·; ·; ·; ·� the
six-dimensional ones.

It is important to point out that, despite the nice visuali-
zation properties of the above presented objects, they are still
interpreted as plain functions by Mathematica. This means
that, for example, they can be safely copy-pasted and all the
standard operations for functions can be applied. In order to
access the explicit functional forms use InputForm.

.
2. Computing the Double-Cut

The computation of TrF3 (all-plus) begins by imposing
four-dimensional kinematics on external particles, or equiv-
alently declaring the corresponding momenta to be mass-
less. This is done through the function KillMasses, and
the list of massless momenta24 is stored in Momenta4D

.
In our specific case we need to break down the six-

dimensional spinors and invariants in terms of the four-
dimensional ones. This breakdown is achieved through the
command To4D locally on a given expression, but it can
also be turned on globally and applied automatically to all
expressions through To4DAlways[True]. This setting
can be reversed by To4DAlways[False].

FIG. 11. A complete list of all the shortcuts available in the
package.

23For example n − 1 could be misinterpreted as the opposite of
1 − n due to the automatic ordering applied by Mathematica. 24By default all momenta are always considered massive.
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One can then write down the following double-cut expression with gluons running through the loop:

Here TrF3tree is the tree-level form factor used to normalize the one-loop expression, and S is the Mandelstam
invariant sij with momenta i and j in six-dimensions. We made use of the command SumContracted, which
sums over the contracted little-group indices. As can be seen the result of the double cut is a 32-term expression, and we
printed the first term of the sum to give an idea of their form. We can obtain a first simplification of the expression by
applying momentum conservation in the form of (4.5), which reduces the number of terms down to 24:

3. Removing the redundancy

Now we can use the function MuReplace to eliminate
the redundant d.o.f. parametrized by the fμ; μ̃g spinors.
These can be fixed to arbitrary values without affecting the
final (little-group invariant) result. MuReplace goes
through all the μs (μ̃) present in the given expression and
replaces them with λs (λ̃) in such a way that as many terms as
possible vanish due to the antisymmetry of the angle and
square brackets. This function allows for two options:

(i) DisplayReplacements, default is False. If set
to True the replacements chosen by MuReplace
will be displayed along with the result.

(ii) GlobalReplacements, default is False. If
set to True the chosen replacements are stored
and become globally defined.25 The list of
spinors defined to be equivalent can be accessed
through FixedSpinors. The global definitions
stored in FixedSpinors can be cleared with
ClearSpinors.

25In other words the chosen replacements are applied from
there on whenever the given spinors are encountered.
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The output of MuReplace upon setting DisplayReplacements to True is a list of two elements. The first is the
expression of TrF3 after the most suitable replacements have been applied. The second term is the list of replacements
which have been found to be the most convenient.
It is also possible for the user to choose the replacements and apply themmanually. This can be done through the function

SpinorReplace or SpinorReplaceSequential, which allow to perform generic replacements of spinors inside
given expressions. The difference between the two functions is that the first performs all the specified replacements
simultaneously whereas the second performs them sequentially.
Finally, before performing any other manipulations, we restore the momenta l1 and l2 to massive four-dimensional

momenta, as discussed in more detail in Sec. IV B. This is done by the function CompleteToMassive, which takes as
input an expression and the list of replacements used to remove the μs. One gets

where the spinor invariants ½3l1�hl1l2i½l23� has been closed to ½3=l1=l23� and new dependencies on the masses m and m̃
appeared. Using once again momentum conservation to get rid of ml2 and m̃l2 , and to replace sl1l2 with s12 we get

4. The scalar subtraction

Once the computation with the gluons in the loop has been completed we can move on to the scalars. One has to go
through exactly the same steps as before. First write down the double-cut expression, then evaluate it and remove the
redundant μ spinors to simplify the result, and finally rewrite the expression in terms of four-dimensional massive momenta.
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Performing the scalar subtraction leads then to the final result:

From here on one can take two possible routes: either manipulate the final expression by hand and obtain (4.32), where the
IR divergences are clearly visible in the form of a one-mass triangle. If one is interested in a completely reduced expression,
one can proceed as follows:

(i) complete the denominator to Mandelstam invariants and further contract all possible expressions of the form hiji½ji�
to sij. This is accomplished with CompleteDenomina-tors and CompleteMandelstam respectively. The
variables S4 is the Mandelstam invariant sij with pi and pj in four dimensions, where S4 can be related to S through
CompleteToMassive.

(ii) Since we removed the helicity structure, int must be expressible in terms of Mandelstam invariants only. In other
words we expect the numerator to be of the form hipj � � �pki�, which is a trace involving a helicity projector. To
contract the numerator into the above form we use ToChain:
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and then we use ToTrace to evaluate the resulting trace. The option KillEpsilon sets the contributions proportional to
the Levi-Civita tensor to zero. We can do this since the kinematics of the problem does not allow for more than three
independent momenta in the final answer and thus similar terms would be vanishing anyway. The scalar products appearing
after the trace are four dimensional.

(iii) rewrite the four-dimensional scalar products as six-dimensional Mandelstam invariants and masses, using
ScalProdToS

(iv) then we use momentum conservation once again, and since all the S4 appearing in the expression involve only
external four-dimensional momenta, we uplift it to S.
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(v) Finally we can perform the reduction of the above expression using integration by part identities, for example with
LiteRed [84,85]. We export our result to the LiteRed notation using the function Relabel, which allows to
relabel the momenta inside the scalar products and Mandelstam invariants, as well as reassign a new name to the
scalar product. We also uplift the cut and then perform the reduction:

which of course matches with the reduction of expression (4.32):
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