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1 Introduction

Modern on-shell methods [1, 2] have proven extremely successful for the efficient compu-

tation of scattering amplitudes in gauge theory and gravity. By working with on-shell

quantities one performs computations which are at every stage gauge invariant, yielding

considerable conceptual and practical advantages.

Recently, amplitude methods have been applied to the computation of post-Newtonian

and post-Minkowskian corrections in General Relativity (GR). Examples include the com-

putation of the leading classical [3, 4] and quantum [4] corrections at O(G2
N ) to the Newton

potential, confirming the earlier result of [5–7] based on Feynman diagrams, as well as the

computation of the particle bending angle [8–11] (for other recent related computations

see [12–21]). This is clearly a timely endeavour as LIGO necessitates computations in GR

of unprecedented precision. Feynman diagram calculations have been employed for many

years to extract relevant quantities for astrophysical processes. In this context, gravity is

treated as an effective field theory [22], making it perfectly sensible to compute quantum

corrections even if the theory is non-renormalisable. An alternative, systematic effective

field theory treatment was introduced in [23], where the massive objects are treated as

classical sources. The main focus for LIGO applications is to compute classical correc-

tions, which, due to an interesting cancellation of ~ factors, are in fact obtained through

loop calculations [24]. Notable efforts include the computations of the Newton potential

at second [25, 26], third [27–30], fourth [31–38] and fifth [39, 40] post-Newtonian order,

following the landmark computation at first post-Newtonian order [41]. Note also the ef-

fective one-body approach of [42], recently extended to incorporate the first and second

post-Minkowskian corrections in [43, 44], respectively.
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In this paper we entertain the possibility of adding higher-derivative curvature terms

to the Einstein-Hilbert (EH) action that could arise either from string theory or other

ultraviolet completions of gravity, and consider their effect on two quantities or relevance:

the Newton potential, and the particle bending angle. Concretely, we will consider the

action

S = − 2

κ2

∫

d4x
√−g

[

R +
α′ 2

48
I1 +

α′ 2

24
G3

]

, (1.1)

where I1 := Rαβ
µνR

µν
ρσR

ρσ
αβ , and

G3 := I1 − 2Rµνα
βR

βγ
νσR

σ
µγα . (1.2)

Here α′ has dimension length squared, κ2 = 32πGN , and GN is Newton’s constant. We

now briefly discuss the two cubic terms we have added to the EH action.

The first one, second term in the action (1.1), has a very special feature: it is the

only R3-invariant that affects three- and four-graviton amplitudes [45, 46]; in particular it

produces three-graviton amplitudes with all-plus or all-minus helicities, in addition to the

single-minus and single-plus tree amplitudes coming from the EH term. This term is also

the two-loop counterterm for pure gravity, although in the following we use it as a tree-

level deformation of the EH action. A number of amplitudes in this theory were computed

in [46], also in the light of KLT relations [47] and the BCJ double-copy construction [48].

The second cubic coupling, third term in (1.1), has been introduced to take into ac-

count the other possible contraction of three Riemann tensors Rµνα
βR

βγ
νσR

σ
µγα, whose

contribution to the Newton potential was recently computed in [49]. As it turns out, a

more natural combination to consider is G3 defined above in (1.2). There several reasons

for this: first, G3 appears in the low-energy effective action of the bosonic string (which we

quote later in section 3.5), and is a topological invariant in six dimensions. Furthermore,

its three- and four-point graviton amplitudes vanish [45, 46].

Together, I1 and G3 are the only two independent dimension-six couplings up to field

redefinitions as far as S-matrix elements are concerned [50, 51]. Note that we have intro-

duced the two couplings I1 and G3 in (1.1) with the particular coefficients arising from the

bosonic string; in practice we will analyse their effects separately, and one could give them

arbitrary coefficients if one wishes to consider a more general effective action. Moreover,

in addition to the two independent cubic couplings discussed now, we will also consider

a coupling of the form ΦR2, which appears in the full low-energy effective action of the

bosonic string, where Φ represents the dilaton.

A comment is in order here. In principle one can also consider adding to the EH action

quadratic terms of the form R2, RµνRµν and RµνρσRµνρσ (or, instead of the latter, the

Gauß-Bonnet combination RµνρσRµνρσ − 4RµνRµν +R2, which is a total derivative in four

dimensions). However, it turns out [52] that both R2 and RµνRµν terms can be removed

from the action with a field redefinition, which leaves scattering amplitudes invariant as a

consequence of the S-matrix equivalence theorem [50, 53–55]. Hence such terms can only

give contact-term contributions which do not affect the Newton potential [52].1

1Note that in [56] quadratic corrections arising from the addition of terms of the form R2 and RµνRµν

where treated exactly, and found to modify the spectrum of the EH theory by the addition of massive scalar
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Coming back to the main thread of this paper, we will focus on the computation of

the following two quantities of interest: first, the leading classical and quantum corrections

to the Newton potential between two massive scalars, and second, the bending angle of

massless particles of spin 0, 1 and 2 in the background of a heavy scalar. We extract these

quantities from two-to-two scattering amplitudes at one loop which, as is well known in

the literature [24], contains both classical and quantum corrections. Compared to the EH

case we observe a further power suppression in the potentials consistent with the higher-

derivative nature of the operator. The result for the classical contribution to the bending

angle is expected to be spin-independent due to the equivalence principle, while this is not

expected at the quantum level. Indeed in Einstein gravity this has been confirmed by [8–

11]. Surprisingly, we find that also the first quantum correction to the bending angle is

independent of the scattered particle in the presence of an R3 coupling. For completeness

of our presentation we will also discuss the corrections to the Newton potential arising

from (1.2), which are non-vanishing, in agreement with [49]. In addition, we will show

that the G3 interaction does not contribute to the bending of massless particles in the

background of massive scalars. Finally, the only process that is affected by the addition of

a ΦR2 coupling is the graviton bending, and we will also compute the modification induced

by this term.

Note that we use this action as a low-energy effective theory, as the processes under

consideration involve small energies and momenta, and is valid even if
√
α′ ≫ κ ∼ ℓpl as

is the case in string theory. This possibility can enhance the effect of the R3-corrections

significantly compared to the more standard choice
√
α′ ∼ κ. In the context of gravitational

wave experiments we do not expect the corrections arising from R3 terms to quantities such

as the Newton potential to be accessible because of the large distance scales involved, and

it would clearly be of great interest to find instances where they could play a role. We

also note [60], where a detailed analysis of causality constraints on the modifications of

three-graviton interactions in the regime of large α′ was carried out, and the consequences

for possible ultraviolet completions of the effective gravity theory were studied.

The rest of the paper is organised as follows. In the next section we compute the

classical and quantum correction to Newton’s potential to order (α′GN )2. Section 3 is

devoted to the calculation of the bending angle for particles of spin 0, 1 and 2 scattered off

a heavy scalar. As anticipated, to order (α′GN )2 we find that the classical and quantum

bending angle corrections are independent of the spin of the scattered particles. The

universality of the classical part is a consequence of the equivalence principle; that of

the quantum part deserves further exploration. Also in that section we consider the new

contribution to the graviton bending angle due to the inclusion of a coupling of the form

ΦR2, which arises in the bosonic string theory. Section 4 contains our concluding remarks.

We include in appendix A the expressions of the integral functions and Fourier transforms

used throughout the paper.

and tensor modes, as well as tachyonic and ghost modes, depending on the coefficients of these couplings.

The new propagators were then used in [57] to compute corrections to the Newton potential at tree level.

In the approach pursued in this work we treat such terms as perturbations of the EH theory in an effective

field theory expansion, as advocated in [22, 58, 59], where the massive modes simply do not propagate.
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2 R
3 corrections to the gravitational potential

In this section we compute the leading classical and quantum corrections to the Newton

potential induced by adding an R3 coupling to the EH action (1.1).

Following [3, 4] (see also earlier work in [5]), the potential can efficiently be obtained

from the computation of the scattering amplitude of two scalar particles with massesm1 and

m2. In the case of our interest, namely corrections due to the R3 term in (1.1), it turns out

that surprisingly the Born term is absent and the leading classical and quantum corrections

arise at one loop. We will perform this calculation efficiently with well-established unitarity

methods for amplitudes. The same approach will be used in the next section to determine

the bending of a massless scalar by taking one of the two masses to zero.

In order to set the stage for the calculation we first discuss the kinematics of the 2 → 2

scattering process. To align with the notation used in subsequent sections we will choose

the particle momenta so that p21 = p22 = m2
1, p

2
3 = p24 = m2

2. We choose to parametrise the

external momenta in the centre-of-mass frame as follows:

pµ1 = −(E1, ~p− ~q/2) ,

pµ4 = −(E4,−~p+ ~q/2) ,

pµ2 = (E2, ~p+ ~q/2) ,

pµ3 = (E3,−~p− ~q/2) .

(2.1)

Furthermore, since we are considering elastic scattering we have

E1 =E2=
√

m2
1 + ~p 2 + ~q 2/4 ,

E3 =E4=
√

m2
2 + ~p 2 + ~q 2/4 ,

(2.2)

where ~p · ~q = 0 due to momentum conservation. Notice that due to our all-outgoing con-

vention for the external lines, the four-momenta p1 and p4, corresponding to the incoming

particles, have an overall sign. Furthermore, our Mandelstam variables are defined as:

s := (p1 + p2)
2 = −~q 2, t := (p1 + p4)

2 = (E1 + E4)
2, u := (p1 + p3)

2, (2.3)

with s + t+ u = 2(m2
1 +m2

2). In this notation, the spacelike momentum transfer squared

is given by s, while the centre of mass energy squared is given by t.

A comment is in order here. We will later be interested in computing the classical and

one-loop quantum contributions to the potential2 arising from a (in this case leading) one-

loop computation. This is obtained from the appropriately normalised amplitude by means

of a Fourier transform in ~q [7]. Reinstating powers of ~, this Fourier transform involves

a factor of exp(i~q · ~r/~). It is important to be able to disentangle classical and quantum

effects, and this can be achieved efficiently by replacing ~q = ~~k and then integrating over

the wavevector, as carefully discussed in [17]. This in turn implies that we can suppress the

term ~q 2 in the expression of the energies in (2.2), which would produce O(~2) corrections.

2To be precise, by this we mean the ~
0 and ~

1 terms of the potential. Due to the presence of massive

particles the power of ~ is not related to the number of loops [24].
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m1 m2 +

± ∓

± ∓

EH R
3

1φm1

2φm1 3φm2

4φm2

ℓ1

ℓ2

m1 m2

± ∓

± ∓

Figure 1. The two cut diagrams contributing to the leading R3 correction to the gravitational

scattering of two massive scalars. The two gravitons crossing the cut have both either positive or

negative helicity and we have indicated this next to the dashed lines.

Similarly, in the following we will suppress such corrections from expanding the Mandelstam

variables t or u.

Moving on to the unitarity-based calculation of the scattering process, we stress a

crucial fact, namely that classical and quantum corrections to the potential are associated

with terms in the amplitude that are non-analytic in the variable s [22, 24] and, hence,

have discontinuities in s. Therefore, it will suffice to consider two-particle cuts in the s-

channel, see e.g. [3, 4] where modern on-shell methods were applied for the first time to

this kind of problem. Furthermore, we only need to perform the cuts in four dimensions

as discrepancies with D-dimensional cuts at one loop are related to rational, and hence,

analytic terms.

The relevant channel to consider is therefore that associated with the momentum

transfer in the scattering process. In this channel there are only two cut diagrams to

consider, depicted in figure 1. They are related by swapping the EH amplitude with the

R3 amplitude, which is equivalent to swapping m1 and m2 in the first diagram.

The cut calculation requires as input two types of two-scalar/two-graviton tree ampli-

tudes. While the corresponding tree amplitudes in EH gravity with a minimally coupled

scalar are well known, we need to derive the expression for the amplitudes due to the R3

correction. Note that this interaction forces the two internal gravitons to have equal he-

licities, since the R3 term can only produce three-graviton amplitudes with all helicities

equal.

The well-known EH amplitude for the scattering of two scalars with mass m1 and two

gravitons is given by [61]

A(1φm1 , 2φm1 , ℓ−−

1 , ℓ−−

2 ) = −
(κ

2

)2
m4

1

〈ℓ1 ℓ2〉2
[ℓ1 ℓ2]2

[

i

(ℓ1 + p1)2 −m2
1

+
i

(ℓ1 + p2)2 −m2
1

]

.

(2.4)

The amplitude with two scalars of mass m2 and two gravitons produced by one insertion

of R3 can easily be computed, with the result

AR3(−ℓ++
1 ,−ℓ++

2 , 3φm2 , 4φm2 ) =
(κ

2

)2
(

α′

4

)2 4i

s12
[ℓ1 ℓ2]

4 (ℓ1 · p3)(ℓ2 · p3) . (2.5)
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In order to arrive at (2.5) we had to evaluate a single Feynman diagram, and we used the

expression of the three-point vertex with two scalars of mass m and momenta p1 and p2
and one off-shell graviton3

V µν
φmφmh(p1, p2) =

1φm

2φm

µν = i
(κ

2

) [

− ηµν(p1 · p2 +m2) + pµ1p
ν
2 + pν2p

µ
1

]

, (2.6)

along with the three-point current Xµν
R3(1

++, 2++) with two on-shell, positive helicity gravi-

tons and one off-shell graviton derived from the R3 coupling, which is found to be

Xµν
R3(1

++, 2++) =
R3

1++

2++

µν =
i

4

(κ

2

)(α′

4

)2
[1 2]4

(

〈1|µ|2]〈2|ν|1] + µ ↔ ν
)

. (2.7)

Note that this gives the well-known three positive-helicity graviton amplitude if we contract

the free indices with the appropriate polarisation tensor,

AR3(1++, 2++, 3++) = −i
(κ

2

)(α′

4

)2
([12][23][31])2 . (2.8)

The two four-point amplitudes quoted above can now be combined to form the cut

integrand in the s-channel. Note that in our conventions all external particle momenta pi
are considered as outgoing. From the left-hand side of figure 1 we get

I(1),l.h.s.
φm1

,φm2

∣

∣

∣

s-cut
= (2D) 4m4

1 s(ℓ1 ·p3)(ℓ2 ·p3)
[

1

(ℓ1 + p1)2 −m2
1

+
1

(ℓ1 + p2)2 −m2
1

]

, (2.9)

where we have multiplied by a factor of two due to the sum over internal helicities, we have

introduced the universal combination of couplings

D =
(κ

2

)4(α′

4

)2
, (2.10)

and we have suppressed the ubiquitous two-particle phase space measure. The second cut

diagram (right-hand side of figure 1) is obtained from the first by swapping m1 and m2.

Lifting (2.9) off the cut, i.e. taking ℓ1,2 off-shell and replacing the two cut propagators

by (i/ℓ21)(i/ℓ
2
2), we obtain a one-loop integral with a rather complicated numerator. The

reduction to a linear combination of scalar Feynman integrals can be performed efficiently

using LiteRed [63, 64]. In appendix A we have given all integrals that are relevant for the

computation of the potential, namely those with discontinuities in the s-channel, and in

the expression of the amplitudes presented below we will only include such integrals.

3See for instance [62].
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From the first diagram in figure 1 we obtain

A
(1),l.h.s.
φm1

,φm2

= c3(m1,m2)I3(s;m1) + c2(m1,m2)I2(s) , (2.11)

where we have suppressed for the moment the overall factor D. The full Lorentz-invariant

expressions of c2 and c3 are:

c3(m1,m2) =
4s2m4

1

(4m2
1−s)2

[

2m2
1

(

m4
1−2m2

1

(

m2
2+t

)

+
(

m2
2−t

)2
)

+s
(

−3m4
1+2m2

1m
2
2+

(

m2
2−t

)2
)

+s2
(

m2
1−m2

2+t
)

]

c2(m1,m2) =
2s2m4

1

(4m2
1−s)2

[

6m4
1+4m2

1

(

m2
2−3t

)

+6
(

m2
2−t

)2−2s
(

2
(

m2
1+m2

2

)

−3t
)

+s2
]

.

(2.12)

As discussed after (2.3), we only need to keep the leading-order term in s = −|~q |2 of (2.12).
This is all what is needed in order to extract the full post-Minkowskian (classical plus one-

loop quantum) potential. The resulting expressions are:

c̃3(m1,m2) =
(m1s)

2

2

[

(t−m2
1 −m2

2)
2 − 4m2

1m
2
2

]

,

c̃2(m1,m2) =
s2

4

[

3(t−m2
1 −m2

2)
2 − 4m2

1m
2
2

]

.

(2.13)

For convenience we also quote the result for the post-Newtonian expansion, which requires

further expanding for |~p | ≪ m1,2. In this non-relativistic limit, we have

c̃3(m1,m2) ≃ (m1s)
2
[

2(m1 +m2)
2~p 2

]

,

c̃2(m1,m2) ≃ s2
[

2m2
1m

2
2 + 3(m1 +m2)

2~p 2
]

.
(2.14)

Curiously, in the static limit ~p 2 → 0 the leading term of c2 is O(s2), while c3 is of order

O(s3) and hence further suppressed. The expressions for the bubble integral I2(s) and the

massive triangle integral I3(s;m) are given in (A.1).

The classical contributions to the potential are identified with the non-analytic 1/
√
−s

contributions, arising uniquely from the I3(s;m1,2) integral:

A
(1),cl
φm1

,φm2

= − i

32
√
−s

(

c̃3(m1,m2)

m1
+

c̃3(m2,m1)

m2

)

= − is2

32
√
−s

m1 +m2

2

[

(t−m2
1 −m2

2)
2 − 4m2

1m
2
2

]

,

≃ − is2

32
√
−s

(m1 +m2)
[

2(m1 +m2)
2~p 2

]

,

(2.15)

where the middle line represents the full relativistic classical contribution, while the last

line gives the small velocity approximation.4

4For the rest of this section we denote the non-relativistic limit of the full relativistic expression by ≃.
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On the other hand the finite log(−s) terms from I2 and I3 are genuine quantum

corrections:

A
(1),qu
φm1

,φm2

= − i

8π2
s2 log(−s)

[

(t−m2
1 −m2

2)
2 − 2m2

1m
2
2

]

≃ − i

4π2
s2 log(−s)

[

m2
1m

2
2 + 2(m1 +m2)

2~p 2
]

. (2.16)

Finally, we extract the gravitational potential from the three-dimensional Fourier transform

in ~q of the amplitude [7],

V (~r, ~p ) = i

∫

d3q

(2π)3
ei~q·~r

A(~q, ~p )

4E1E4
, (2.17)

with ~q and ~p related to the Mandelstam variables as described earlier in (2.3). We then get

V (~r, ~p ) := Vcl(~r, ~p ) + ~Vqu(~r, ~p ) =

∫

d3q

(2π)3
ei~q·~r

(

vcl + ~vqu
)

, (2.18)

with

vcl =
s2√
−s

m1 +m2

256E1E4

[

(t−m2
1 −m2

2)
2 − 4m2

1m
2
2

]

≃ s2√
−s

(m1 +m2)
3~p 2

64m1m2
,

vqu =
1

32π2
s2 log(−s)

[

(t−m2
1 −m2

2)
2 − 2m2

1m
2
2

]

E1E4

≃ 1

32π2
s2 log(−s)

[

2m1m2 + ~p 2

(

8 + 3
m2

1 +m2
2

m1m2

)]

.

(2.19)

Finally, we reinstate the overall factor D = (α′/4)2(κ/2)4, introduce Newton’s constant

GN := κ2/(32π), and perform the Fourier transforms using (A.3) and (A.4). This gives

our result for the leading classical and quantum corrections to Newton’s potential arising

from the addition of an R3 term to Einstein’s gravity:

Vcl(~r, ~p ) =
(α′GN )2

r6
3(m1 +m2)

16E1E4

[

(t−m2
1 −m2

2)
2 − 4m2

1m
2
2

]

≃ (α′GN )2

r6

[

3

4

(m1 +m2)
3

m1m2
~p 2

]

,

(2.20)

and

Vqu(~r, ~p ) =
(α′GN )2

r7

{

− 15

2π

[

(t−m2
1 −m2

2)
2 − 2m2

1m
2
2

]

E1E4

}

≃ (α′GN )2

r7

{

− 15

2π

[

2m1m2 + ~p 2

(

8 + 3
m2

1 +m2
2

m1m2

)]}

.

(2.21)

While we discussed so far the effects of the interaction I1 = Rαβ
µνR

µν
ρσR

ρσ
αβ , there

exists a second independent contraction Rµνα
βR

βγ
νσR

σ
µγα. Corrections to the Newton

– 8 –
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potential due to this interaction were recently studied in [49]. These two structures combine

naturally into

G3 := I1 − 2Rµνα
βR

βγ
νσR

σ
µγα , (2.22)

which appears in the low-energy effective action of the bosonic string (quoted later on in

this paper in (3.21)). It is a topological invariant in six dimensions and its three- and four-

point graviton amplitudes vanish [45, 46]. For completeness we will now present a short

discussion of the corrections to the Newton potential in the presence of the G3 interaction.

The steps in the derivation of the potential are identical to the ones detailed above,

but an important new ingredient is the two graviton/two scalar amplitude induced by the

G3-interaction with unit coefficient:

AG3
(1++, 2++, 3φm , 4φm) = −i

3!

4

(κ

2

)4
[12]4(s+ 2m2) . (2.23)

Importantly, this expression contains a contribution proportional to m2 that leads to a

qualitatively new term in the potential, while the term proportional to s only gives a

higher order in ~ correction which we will drop. Note also the absence of a collinear

singularity in (2.23); indeed the three-point graviton amplitudes generated by G3 vanish.

Feeding the amplitude in (2.23) in the cut computation as done earlier leads to the

amplitude for the scattering of two massive scalars with masses m1,2:

(κ

2

)6
4(m1m2s)

2
[

m2
1I3(s,m1) +m1 ↔ m2

]

, (2.24)

where as usual we only kept the leading term in s.

The coupling G3 appears in the low-energy bosonic string effective action quoted later

in (3.21) in the form L′ = (−2/κ2)α′ 2(G3/24). For this particular interaction term, going

through the standard procedures one arrives at the following corrections to the potential:

VL′ = 12(α′GN )2
(m1m2)

2

E1E4

[

(m1 +m2)
1

r6
− ~

10

πr7

]

, (2.25)

where as usual GN is Newton’s constant, and as before we have only written the classical

contribution and the first quantum correction. Note one interesting difference between the

classical correction arising from I1 and G3, namely that the latter does not vanish in the

static limit |~p | → 0.5

Finally, we anticipate that there is no contribution to the bending of massless particles

from massive scalars in the presence of the G3 coupling, as discussed in the next sections.

3 Particle bending angle

In this section we compute the effect of the R3 term to the bending of massless particles

of spin 0, 1 and 2 in the presence of a heavy scalar particle of mass m using similar

methods as in the previous section. We will compute the relevant scattering amplitudes

of massless scalars, photons and gravitons off a massive scalar in sections 3.1, 3.2 and 3.3,

5In the non-relativistic limit, one can approximate (m1m2)
2/(E1E4)→m1m2−|~p |2

(

m2

1+m2

2

)

/(2m1m2).
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respectively, and then compute the bending angle in section 3.4. Since we only consider

elastic scattering, the helicity of the bent particle does not change in the process. Due

to our convention that all particles have outgoing momenta, helicity conservation requires

that the incoming massless particle has opposite helicity compared to the outgoing one.

Before starting it is useful to revisit the kinematics introduced in (2.1) in the situation

where m1 → m and m2 → 0. In this case we have

E1 = E2 =
√

m2 + ~p 2 + ~q 2/4 ,

E3 = E4 =
√

~p 2 + ~q 2/4 := ω .
(3.1)

We then find that s = −~q 2, as before, while t = (E1 + E4)
2 ≃ m(m + 2ω), and u =

2m2 − s− t. In order to extract the particle bending we work in a limit where

− s = ~q 2 ≪ ω2 ≪ m2 , (3.2)

which also implies ut−m4 ≃ −(2mω)2.

3.1 Scalar bending

The result for the bending of a massless scalar particle when it passes near a heavy scalar of

mass m can be extracted from considering the right-hand side diagram in figure 1, setting

m2 → 0 and renaming m1 → m. The left-hand side diagram simply vanishes in this limit.

Doing so, and working in the limit (3.2), we arrive at the simple result

A
(1)
φ = DNφ

[

2(m2s ω)2I3(s;m) + 3(msω)2I2(s)
]

, (3.3)

where Nφ = 1 is introduced only in order to then compare with the photon and graviton

bending results in (3.11) and (3.16). As before, we have included a factor of two from

summing over internal helicities. The expressions for the integral functions can be found

in appendix A.

It is interesting to compare our result to the corresponding result for scalar bending

in Einstein gravity, eq. (10) of [8]. Our result contains two more powers of s, as expected

from working with an R3 interaction, which contains four more derivatives with respect to

the EH action. As we will see later in (3.11) and (3.16), we will arrive at a result for the

particle bending which is the same for scalars, photons and gravitons up to and including

the first quantum correction. This universality of the quantum correction is unexpected —

it is not a feature of Einstein gravity [8–11] — and deserves further investigation.

A final comment is in order. Due to the mass dependence in (2.23), there are no

classical and O(~) corrections to the bending of massless scalars due to the G3 coupling

in (2.22) — this is clear from (2.23), where the m2 term in the parenthesis vanishes while

the second can be discarded because it induces corrections of O(~2).

3.2 Photon bending

The cut diagram to compute in this case is shown in figure 2. The amplitudes entering the

cut are

A(1φm , 2φm , ℓ−−

1 , ℓ−−

2 ) = −
(κ

2

)2
m4 〈ℓ1 ℓ2〉2

[ℓ1 ℓ2]2

[

i

(ℓ1 + p1)2 −m2
+

i

(ℓ1 + p2)2 −m2

]

,

(3.4)
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Figure 2. The cut diagram contributing to the leading R3 correction to gravitational scattering of

a photon (wavy lines) off a massive scalar (double lines).

while for the two-photon/two-graviton amplitude we have

AR3(−ℓ++
2 ,−ℓ++

1 , 3+, 4−) = −i
(κ

2

)2(α′

4

)2 [ℓ1ℓ2]
4

s12
〈4|ℓ1|3]2 . (3.5)

The latter amplitude can be derived by using the expression of the minimal two-photon/one

graviton coupling (see for instance section 3.2 of [62]), which for the required helicities

simplifies to

V µν(1+, 2−) =

1+

2−

µν = − i

2

(κ

2

)

〈2|µ|1] 〈2|ν|1] . (3.6)

Contracting this with the already derived current (2.7) with two same-helicity gravitons

and an additional off-shell graviton via the standard de Donder propagator leads to (3.5).

Using (3.4) and (3.5) we arrive at the following expression for the cut integrand

I(1)
γ

∣

∣

∣

s-cut
= −2Dsm4〈4|ℓ1|3]2

[

1

(ℓ1 + p1)2 −m2
+

1

(ℓ1 + p2)2 −m2

]

, (3.7)

corresponding to the cut diagram in figure 2. We have also included a factor of two from

summing over the two possible internal helicity assignments.

Reductions can be performed using the identity

〈4|ℓ1|3] =
Tr(4ℓ131)

〈3|2|4] , (3.8)

so that the integrand taken off the cut becomes

I(1)
γ = D8m4s12

〈3|2|4]2
[

L2 + E2
]

[

1

(ℓ1 + p1)2 −m2
+

1

(ℓ1 + p2)2 −m2

]

1

ℓ21

1

ℓ22
, (3.9)

where

L := (p1p3)(p4ℓ1)− (p3p4)(p1ℓ1) + (p4p1)(p3ℓ1) ,

E2 := −
[

ǫ(p4ℓ1p3p1)
]2

= detM ,
(3.10)
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Figure 3. The cut diagram contributing to the leading R3 correction to gravitational scattering of

a graviton (double wavy lines) off a massive scalar (double lines).

and M is the matrix whose entries are the scalar products of the momenta in the ǫ symbol.

In going from (3.7) to (3.9) we have also dropped terms linear in the Levi-Civita symbol,

which vanish upon integration. After performing the tensor reduction, keeping only terms

with an s-channel discontinuity and dominant in the limit (3.2), we arrive at the simple

result

A(1)
γ = DNγ

[

2(m2s ω)2I3(s;m) + 3(msω)2I2(s)
]

, (3.11)

where Nγ :=
[

(2mω)/〈3|2|4]
]2
. Note that |〈3|2|4]|2 = −ut + m4 → (2mω)2 in the low-

energy limit (3.2). As observed in [8], in this limit Nγ is a phase that does not affect the

potential and bending to be derived in section 3.4.

Comparing our result to that of light bending in Einstein gravity obtained in [8], we

see that our result is suppressed by two powers of s compared to theirs, as expected from

working with an R3 interaction. Furthermore, we see that the term in square brackets

in (3.11) is identical to the corresponding term in (3.3). This is true for the classical term

(the massive triangle), as expected from the equivalence principle, but also for the first

quantum correction (the bubble contribution).

Finally, in the presence of a G3 interaction the tree-level amplitude on the right-hand

side of figure 2 vanishes, that is AG3
(−ℓ++

2 ,−ℓ++
1 , 3+, 4−) = 0, hence there is no photon

bending produced by this interaction.

3.3 Graviton bending

The relevant cut diagram is depicted in figure 3. The tree-level amplitudes entering this

cut are given by

A(1φm , 2φm , ℓ−−

1 , ℓ−−

2 ) = −
(κ

2

)2
m4 〈ℓ1 ℓ2〉2

[ℓ1 ℓ2]2

[

i

(ℓ1 + p1)2 −m2
+

i

(ℓ1 + p2)2 −m2

]

,

(3.12)

while the amplitude in the R3-deformed theory with two scalars and two gravitons is [46]

AR3(−ℓ++
2 ,−ℓ++

1 , 3++, 4−−) = −i
(κ

2

)2 (α′

4

)2
(〈4 ℓ2〉[ℓ2 3]〈3 4〉)2

[ℓ2 ℓ1][ℓ1 3][3 ℓ2]

〈ℓ2 ℓ1〉〈ℓ1 3〉〈3 ℓ2〉
.

(3.13)
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Using these ingredients, one quickly arrives at the following form for the s-cut:

I(1)
h

∣

∣

∣

s-cut
= −(2D)m4〈4|ℓ1|3]4

[

1

(ℓ1+p1)2−m2
+

1

(ℓ1+p2)2−m2

] [

1

(ℓ1−p3)2
+

1

(ℓ1−p4)2

]

,

(3.14)

corresponding to four box topologies. The factor of two comes, as usual, from summing

over internal helicities. Using (3.8) we can recast this as

I(1)
h = (2D)

(

2m

〈3|2|4]

)4
[

L4 + E4 + 6L2E2
]

[

1

(ℓ1 + p1)2 −m2
+

1

(ℓ1 + p2)2 −m2

] [

1

(ℓ1 − p3)2
+

1

(ℓ1 − p4)2

]

1

ℓ21

1

ℓ22
.

(3.15)

Following similar steps as in the previous case, and in particular keeping only the leading

terms in the limit (3.2) we arrive at the result for the one-loop amplitude

A
(1)
h = DNh

[

2(ms)4
(

I4(s, t;m) + I4(s, u;m)
)

+ 2(m2s ω)2I3(s;m) + 3(msω)2I2(s)
]

,

(3.16)

where Nh :=
[

(2mω)/〈3|2|4]
]4

= N2
γ . A few comments on this result are in order.

1. Compared to the graviton bending result in Einstein gravity [11], the triangle and

bubble contributions are suppressed by a factor of s2, as expected from having four

more derivatives compared to the Einstein-Hilbert action.

2. The box contribution I4(s, t;m) + I4(s, u;m) is purely imaginary (see (A.1)) and

also appears (with a different coefficient) in the corresponding computation in the

Einstein-Hilbert case [8, 11]. It contributes an overall phase to the amplitude, and

therefore will be dropped.

3. The result of the integral reduction, once we drop the box term, is exactly the same

as we found for the scalar and photon case in (3.3) and (3.11).

4. We also note that since all four-point graviton amplitudes do not receive contribution

from the G3 interaction [45, 46], graviton bending is not affected by this interaction.

3.4 From the amplitude to the potential and the bending angle

Next we derive the potential, from which we can infer the bending angle. The potential

is defined as in (2.17), where now, using (3.1), we have 4E1E4 → 4mω. As in (2.18) we

decompose the potential into its classical and quantum contributions in momentum space:

vcl + ~vqu = Dm2ω

64

s2√
−s

+ ~D mω

16π2
s2 log(−s) . (3.17)

Performing the Fourier transforms using the results in appendix A we get

Vcl(~r, ~p ) = (α′GN )2
3m2ω

4r6
, Vqu(~r, ~p ) = −(α′GN )2

15mω

πr7
. (3.18)
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The bending angle can then be computed using the semiclassical formula [65]

θ = − b

ω

∫ +∞

−∞

du
V ′(b

√
1 + u2)√

1 + u2
, (3.19)

where b is the impact parameter, with the result

θ = (α′GN )2
3

32

(

15π
m2

b6
− ~

1024

π

m

b7

)

. (3.20)

We can compare this result to that obtained for scalars and photons [8], and gravitons [11]

in Einstein gravity. In those cases, the classical contribution is universal, as expected as a

consequence of the equivalence principle, but the quantum contribution differs for different

particles. In our case, both classical and quantum contributions are independent of the

particle considered, and (3.20) is the bending angle for scalar, photon and gravitons. It

should be noted that the universality of the one-loop quantum correction is unexpected,

and would clearly be interesting to confirm or disprove it by higher-loop computations. We

also note that our result for the bending angle is suppressed by a further factor of 1/b4

compared to the result of [8, 11], as expected from our use of a higher-derivative interaction.

3.5 Graviton bending in the bosonic string theory

The modified EH action (1.1) that we considered is known to be contained in the low-energy

effective action of the bosonic string theory [50]

SB = − 2

κ2

∫

d4x
√−g

[

R−2(∂Φ)2− 1

12
|dB|2+α′

4
e−2ΦG2+α′ 2e−4Φ

(

1

48
I1+

1

24
G3

)

+O(α′ 3)

]

.

(3.21)

In the definition of SB we have introduced the Gauss-Bonnet combination G2 =

RαβµνRαβµν − 4RαβRαβ +R2, I1 = Rαβ
µνR

µν
ρσR

ρσ
αβ and G3 = I1− 2Rµνα

βR
βγ

νσR
σ
µγα.

A natural question is whether the additional terms in the full effective action of the

bosonic string modify the computations presented so far in this paper. The extra terms do

not introduce modifications of the three-graviton interaction [45, 46], and do not affect the

three- and four-point graviton amplitudes. However, the Rµνα
βR

βγ
νσR

σ
µγα term modifies

the scalar potential, as shown recently in [49] and discussed at the end of section 2.

In this section we focus on the corrections to the graviton bending arising from the G2

term. Here, a novel four-graviton amplitude with two positive and two negative helicity

gravitons is produced due to two insertions of the ΦR2 contained in the e−2ΦG2 term

of (3.21). Note that the R3 term cannot produce a four graviton amplitude with this

helicity configuration.

The cut to consider is displayed in figure 4. The relevant amplitudes here are

A(1φm , 2φm , ℓ++
1 , ℓ−−

2 ) = −
(κ

2

)2 〈ℓ2|2|ℓ1]4
s212

[

i

(ℓ1 + p1)2 −m2
+

i

(ℓ1 + p2)2 −m2

]

,

(3.22)

while the ΦR2 amplitude is given by the simple expression [46]

AΦR2(−ℓ−−

1 , 3++, 4−−,−ℓ++
2 ) = −

(κ

2

)2 (α′

4

)2 2i

(ℓ1 − p4)2
〈ℓ1 4〉4[3 ℓ2]4 , (3.23)
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Figure 4. The cut diagram contributing to the leading (ΦR2)2 correction to gravitational scattering

of a graviton (double wavy lines) off a massive scalar (double lines).

which arises from two ΦR2-vertex insertions joined by a dilaton propagator. The one-loop

integrand compatible with the s-channel cut becomes

I(1)
h = D 2

s212

(

4

〈3|2|4]

)4
[

L4 + 6L2 [p2 · (ℓ1 − p4)]
2E2 + [p2 · (ℓ1 − p4)]

4E4
]

·
[

1

(ℓ1 + p1)2 −m2
+

1

(ℓ1 + p2)2 −m2

]

1

ℓ21

1

ℓ22
,

(3.24)

where

L := (p2ℓ1)
[

(p2p3)(p4ℓ1)− (p3p4)(ℓ1p2) + (p3ℓ1)(p2p4)
]

+ (p2p4)
[

(p2p3)(ℓ1p4)− (p3ℓ1)(p2p4) + (p3p4)(ℓ1p2)
]

−m2(p3p4)(ℓ1p4) ,

E2 := −
[

ǫ(p2p3p4ℓ1)
]2

= detN ,

(3.25)

and N is the matrix whose entries are the scalar products of the momenta within the

Levi-Civita symbol. Performing the reductions, and taking the limit (3.2), we obtain

A
(1)
h = DNh

[

(4m2ω2s)2 (I4(s, t;m) + I4(s, u;m)) − 35(m2sω)2I3(s;m)

+28 (msω)2 s I3(s) + (msω)2
(

−251

6
+

3587

90
ǫ

)

I2(s)

]

,

(3.26)

where Nh :=
[

(2mω)/〈3|2|4]
]4

= N2
γ .

Finally we compute the bending angle, following the same steps as in section 3.4. As

before, we first compute the potential, from which we will then obtain the bending. The

potential is defined in (2.17), where again, using (3.1), we have 4E1E4 → 4mω. It can be

decomposed into a classical and quantum contribution in momentum space:

vcl + ~vqu = −D35m2ω

128

s2√
−s

− ~D
[

89mω

96π2
s2 log(−s) +

7mω

32π2
s2 log2(−s)

]

. (3.27)

– 15 –



J
H
E
P
0
1
(
2
0
2
0
)
0
1
0

Performing the Fourier transforms using results in appendix A and reinstating couplings

and the appropriate kinematic prefactor, we arrive at

Vcl(~r, ~p ) = −(α′GN )2
105

8

m2ω

r6
,

Vqu(~r, ~p ) = (α′GN )2
mω

r7

[

702

π
− 210

π
log(r/r0)

]

.

(3.28)

Using again (3.19), we arrive at the final result for the bending angle in the presence of a

ΦR2 coupling:

θ = (α′GN )2
{

−1575π

64

m2

b6
+ ~

64

π

[

−21 log (b/(2r0)) +
229

4

]

m

b7

}

. (3.29)

It is interesting to compare (3.29) with (3.20). We note that the classical contributions

to these two angles have opposite signs, and the ΦR2 contribution is larger than the R3

contribution by a factor of ∼ 15. Similar comments apply to the quantum correction.

Hence in the bosonic string the combined bending angle would be dominated by the ΦR2

contribution.

Finally, we briefly consider what would happen to the bending angle if the dilaton

acquires a mass Mφ, as expected in phenomenologically realistic models where the dilaton

is stabilised. The main modification occurs in the four-graviton amplitude (3.23), which

now would be derived by joining two R2φ vertices with a massive dilaton propagator, thus

replacing (ℓ1 − p4)
2 with (ℓ1 − p4)

2 −M2
φ. As a first approximation, we can consider the

dilaton as very heavy and thus replace its propagator with−1/M2
φ. Following steps identical

to those in the massless case, one arrives at the following expression for the bending angle:

θ = (α′GN )2
ω2

M2
φ

[

1575π

64

m2

b6
− ~

1536

π

m

b7

]

, (3.30)

which has a large suppression factor arising from the (ω/Mφ)
2 prefactor compared to the

bending angle (3.29) for the case of a massless dilaton.

4 Closing comments

We wish to conclude with a summary of some open problems and possible future directions

of our work, which clearly only touches on the tip of an iceberg of possible higher-derivative

modifications that can be contemplated.

1. It would be interesting to consider particles coupled non-minimally to the graviton

e.g. the photon coupled to the Riemann tensor as αγ

∫

d4x
√−gFµνFαβRµναβ . The

leading correction to the amplitude would then come from a single graviton-exchange

diagram.

2. It would be interesting to understand the universality (i.e. spin-independence) of

the quantum corrections to the particle bending. In pure gravity only the classical

corrections are universal in consonance with the equivalence principle.

3. Can α′ be made large enough, and consistent with known constraints, to produce

effects that are comparable with PNx correction from pure gravity, and for what x?
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SAGEX.6

A Integrals and Fourier transforms

The expression for the integral functions occurring in our calculations, expanded up to the

relevant orders in ǫ, and keeping only terms with an s-channel discontinuity, are:

I2(s) = icΓ
(−s)−ǫ

ǫ(1− 2ǫ)
≃ i

16π2

[

1

ǫ
− log(−s)

]

,

I3(s) = −icΓ
(−s)−1−ǫ

ǫ2
≃ i

16π2

1

s

[

1

ǫ2
− log(−s)

ǫ
+

1

2
log2(−s)

]

,

I3(s;m) = − i

32

[

1

m
√
−s

+
log(−s/m2)

π2m2

]

+O(
√
s) ,

I4(s, t;m) + I4(s, u;m) ≃ i

16π s (mω)
· i

[

1

ǫ
− log

(

− s

m2

)

]

,

(A.1)

where

cΓ =
Γ(1 + ǫ)Γ2(1− ǫ)

(4π)2−ǫΓ(1− 2ǫ)
, (A.2)

and f(ǫ) is a kinematic-independent function that will contribute to any of the physi-

cal quantities computed in this paper as it gives rise to terms that vanish when Fourier

transformed. We also quote the relevant Fourier transforms used in the text:

∫

ddq

(2π)d
ei~q·~r |~q |α =

(

2

r

)d+α Γ
(

d+α
2

)

(4π)d/2Γ
(

−α
2

) , (A.3)

as well as
∫

d3q

(2π)3
ei~q·~r|~q |4 log(q2) = −60

π

1

r7
, (A.4)

and

∫

d3q

(2π)3
ei~q·~r |~q |4 log2

(

q2

µ2

)

=
4

π

1

r7
[

60 log(r/r0)− 137
]

, (A.5)

where r0 := (µeγE )−1.

6https://sagex.org.
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