
Join my party! How can we enhance social interactions in
music streaming?

Alo Allik, Florian Thalmann, Cornelia Metzig, Mark Sandler
Centre for Digital Music, Queen Mary University of London

{a.allik, f.thalmann, c.metzig, mark.sandler}@qmul.ac.uk

ABSTRACT
In this paper we examine ways to encourage social inter-
actions in online music streaming platforms and discuss the
challenges that emerge when deploying browser-based music
mixing systems. With the example of an interactive online
application, that allows users to choose music collaboratively
based on mood, create their own personal parties, as well as
share their favourite tracks with other participants, we ex-
plore new alternatives for musical experiences in the context
of social media on the one hand and music streaming on the
other.

1. INTRODUCTION
With the streaming paradigm becoming the prevalent

method of our daily musical experiences there are potential
new ways to introduce more collaborative and socially inter-
active experiences to music listening in the age dominated by
various social media platforms. Collaborative playlists have
become standard on most streaming platforms, yet most mu-
sic sharing seems to happen through posted links in social
chat applications. We explore a way to select and share mu-
sic collaboratively in a sample web application using higher
level musical concepts such as mood. The selected music is
automatically DJ mixed using the Web Audio API with the
help of content-based audio features that assist in match-
ing tempo, key, beats and volume of the tracks to create a
continuous and evolving stream.

The sample web application we are going to use as a
demonstrator of the different ideas explored in this paper,
moodplay.github.io, has grown out of two earlier, now
defunct music players. The original system - Moodplay[3] -
was designed as an interactive installation for public spaces
where participants could experience and interact with the
system and each other on location. This made for an im-
mediate and engaging experience, but at the same time sig-
nificantly constrained public accessibility for the same rea-
sons. It also involved remarkable time and effort to deploy,
involving audio and visual systems, and complex interac-
tion between components that made it unfeasible for any
sort of frequent deployment. This Moodplay should not

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

c© 2019 Copyright held by the owner/author(s).

be confused with its namesake web application accessible
at http://moodplay.pythonanywhere.com/, which is not re-
lated to the family of music players described here, yet con-
tributes an interesting and valuable approach to the area of
music mood similarity[2]. A web application also happened
to be the next iteration of our Moodplay[1] in attempts to
solve the problem of public accessibility, while also focusing
on personalisation, discovery and playlist creation. However,
various issues with music licensing, deployment infrastruc-
ture and, most importantly, the loss of the social aspect of
the application forced the development to be abandoned.

Having been faced with the joys and challenges of devel-
oping and deploying these applications, a larger picture has
gradually started to intrigue about how we listen to and
share music in an era of music streaming services and so-
cial media, in which we are perpetually connected online
and what kind of opportunities could this environment po-
tentially afford. How users on various streaming services
and online stores select music depends on the interface they
are presented and affects their choices. We are interested
in exploring if there are viable alternatives to the estab-
lished ways of designing music selection interfaces and how
to combine music selection with social aspects of listening
to music, in particular, how to make music selection a col-
lective interaction and how to enrich the sharing experience
in web environments.

2. MUSIC SELECTION
The most common music selection interfaces on digital

platforms, be it offline music players, online streaming ser-
vices or retail stores, present choices on the level of artists or
tracks in form of lists. Even curated playlists that usually
include tracks on higher level notions of popularity, style,
genre, mood or activity use the same format. A number of
alternative representations of musical tracks or artists could
help break from the standard by displaying a collection of
such entities in the shape of networks, clusters or scatter
plots, for example. The organising principle behind these
kinds of displays would derive from some kind of similarity
measure based on collection and analysis of contextual or
content-based information. Figure 1 illustrates a network
layout of a hypothetical track collection, in which each node
represents a track, the colors of nodes identify an artist, the
size of nodes could indicate popularity of each track, the con-
nections are made based on content-based similarity, which
could also serve as a probability weight when selecting a next
track, for example. Large collections of data about music
tracks, from which similarity models could be designed, can



Figure 1: Tracks could be displayed as a network in
a music player interface.

be accessed from various publicly available sources. There
are a number of music-related APIs, both community-run
and commercial, from where rich troves of information can
be gathered about musical entities like tracks, albums and
artists, that can then be used to enrich the music discov-
ery and selection for users. Connecting various data sources
can also have a qualitative effect on musical experiences.
Discogs1, Gracenote2, MusicBrainz3, AcousticBrainz4, Mu-
sicStory5, and Spotify6 are just a few specifically music-
related data sources that a music player could rely on for
information, and there are many more.

In case of moodplay.github.io, the arrangement of the
tracks, shown in Figure 2, is inherited from the original
system and is based on crowd-sourced data from the ever
popular Last.fm API (https://www.last.fm/api). Despite
the gradual reduction of the site’s functionality over the last
few years, it still provides valuable information about how
millions of users have described these entities by provid-
ing various tags related to genre, mood, instrumentation,
geographical location, lifestyle and many other typical no-
tions, but at the same time almost anything expressing a
personal opinion. The tracks are arranged in the space by
two mood coordinates: horizontally from negative to posi-
tive (designated as valence in dimensional models of emo-
tion) and vertically from calm to excited (also arousal or
intensity). The process that converts user tagging data to
the scattering of tracks in the space involved first determin-
ing a set of most often occurring mood tags, which can also
be extracted from the service. Then querying the API for
counts of how many times each tag has been applied by
users to each track produced a multidimensional space, in

1https://www.discogs.com/developers/
2https://developer.gracenote.com/web-api
3https://musicbrainz.org
4http://acousticbrainz.org/data
5http://developers.music-story.com/developers
6https://developer.spotify.com/documentation/web-api/

Figure 2: Representation of moodplay.github.io
tracks in 2D space, arranged in terms of general
mood from negative (left) to positive (right) hori-
zontally and calm (bottom) to excited (top) verti-
cally.

which each track is associated with a vector of tag counts.
This enables calculating coordinates for each track in a 2D
space by applying dimensionality reduction techniques. The
full process of track selection together with the models of
emotion and valence-arousal mapping of tracks has already
been discussed more in depth in previous Moodplay-related
papers.

The audio content for the player originates from Deezer
API7. Due to licensing limitations, the current system can
only access the 30-second previews of each track. The
dataset included in the current version of Moodplay is a sub-
set from the original system, that has been whittled down
through a process of finding matching Deezer identifiers of
tracks and further by including only the ones that have a
valid preview URL. In the end there are 3,497 tracks by
2,314 artists left of the original collection.

Users can explore the mood space by selecting a location
on the interface and are then displayed the corresponding
mood tag for that area. The space is tessellated using the
Voronoi algorithm8 with the mood tag coordinates as the
set of points as shown in Figure 3. The tessellation does not
appear in the interface (which is described in more detail in
Section 3 and shown in Figure 4), but partitions the space
into mood regions in the background. Once a desired mood
has been located, it can then be selected by clicking on the
popup label, which means the user preference is communi-
cated to the server and added to other users’. Thus users
never select music directly by artist or track, but by emotion
that the closest track to the preference matches.

7https://developers.deezer.com/api
8https://en.wikipedia.org/wiki/Voronoi diagram



Figure 3: Voronoi tessellation of the 2D mood space
that underlies the mood selection interface

3. SOCIAL INTERACTION
Social Web platforms accessible to anyone with a portable

device have drastically changed the way we communicate
and interact with each other. This also provides new oppor-
tunities in the context of music streaming, that perhaps have
not yet been explored to their full potential. Collaborative
music selection and sharing could be enhanced and encour-
aged through new types of music player interfaces that we
discussed in the previous section. Social interaction on pop-
ular music streaming platforms is currently for the most part
encouraged through collaborative playlists. Spotify used to
provide a messaging functionality in the early versions that
allowed users to send music links to each other, but that
functionality was removed. Dubtrack.fm9 is a social online
radio where users can create their own rooms or join exist-
ing ones and collaboratively queue tracks they would like to
listen to. Each rooms has a specific theme that represents a
community of music listeners, like ”chillout” or ”The Eight-
ies” for example, and code of conduct including what to play,
what not to play, and active hours. Tracks can be queued
from public music services like YouTube and SoundCloud.
Playlist10, a social music platform for iOS only available in
select territories (i.e. not UK), enables, in addition to col-
laborative playlist creation, a synchronised listening and a
chat functionality to participants. These are fine examples
of communal music sharing that enhance user participation
and music discovery, although still centred around the no-
tion of a linear playlist of tracks as the core musical entities.
An alternative to creating cumulative linear playlists could
be based on consensus and involve users voting for their pref-
erence from a set of options. If we envisioned a network of
tracks as suggested in the previous section, the users could
be presented a selection of tracks to choose from based on

9https://www.dubtrack.fm/
10https://www.playlist.com/

Figure 4: moodplay.github.io interface with 5 active
user names displayed alongside the circular player
cursor indicating the average mood of the party

feature similarity and the music stream is determined by
which tracks receive the most votes. If the selection hap-
pens by a higher-level concept such as mood, genre or activ-
ity, for example, then the selection of tracks is determined by
the system that aggregates user preferences, like in mood-
play.github.io. Since the Moodplay web application can be
accessed by any number of users simultaneously, the inter-
action becomes more immediate between potentially larger
number of participants. Each user can select a preferred
location in the mood space, which remains registered for a
certain period of time until it expires. This creates a con-
tinuously changing average mood that is displayed to users
by the circular player cursor as illustrated in Figure 4. The
preference can be changed at any time, although if done
while the last preference is still active, it is overwritten by
the new selection, i.e. each user can only have one preference
at a time.

For users who would like to explore the player on their
own or with a select group of friends, we have introduced
the notion of a party, somewhat similarly to the concept
of a room in Dubtrack.fm. Every user who arrives at the
front page is immediately added to the global Moodplay
party where they can see the votes of all other participants.
However, they are also able to create their own personal
party and share the link to it with whomever they choose.
All members of a party are able to vote on their select private
musical sequence and always hear the same track at the same
time, mixed together in the same way, regardless of where
they are geographically. If they are in the same room, the
users can decide to have only one of their devices play the
music while still all of them can vote on silent devices.

The synchronization between different audience members
of a party is ensure by socket.io11 - a JavaScript library
that enables real-time, bidirectional and event-based com-
munication between clients and the server. A server gathers
votes and push updates to all participants in a party at a
specific interval which can be configured separately for ev-
ery party. The updates contain information about currently
active users, the average mood of the party, and informa-
tion about the track that is playing. If the system detects
that there are no currently active participants, it activates

11https://socket.io



a number of bots that generate automatic votes to keep the
party going. Interacting with other participants by select-
ing music according to mood is one way moodplay.github.io
encourages social interaction, but it also facilitates sharing
music between participants.

4. MUSIC SHARING
Users can also choose to add their own music that is not

part of the official moodplay.github.io repertoire for use at
their private party. They can simply drag and drop audio
files onto the browser window. Using a statistical method a
custom track’s mood can be automatically inferred from au-
dio features, which can be extracted directly in the browser
using the framework piper-js.12

Users who want to share their music can use the mood
plane to visualize of the music they are sharing. We explore
two options. The first is to attribute mood variables valence
and arousal in an automated way, using features extracted
with vamp plugins, and the mood tags by humans for the
existing dataset. We use various statistics of both high and
low level features, like moments and autocorrelation. We
trained a random forest classifier on these feature vectors to
predict valence and arousal, and identify the features with
the highest importances as the informative features for va-
lence or arousal respectively. With those, we construct a
distance measure between tracks. This distance is uses only
extracted features, so it can be used to new uploaded tracks
without mood tag. We use it to calculate the nearest neigh-
bours of a track, separately for arousal and valence. The
averaged mood values of the neighbours are then used as
valence and arousal tag for an uploaded track. This ap-
proach works well however has some limitations. One is to
choose the distance measure: Since the feature vector by
which each song is represented has 400 dimensions or more,
the problem of hubness is present (i.e. song songs have a
low distance to many others because of the aggregation over
many dimensions, but not because of apparent audio simi-
larity). To reduce hubness, we reduce the number of dimen-
sions to the ones of the most informative features (separately
for valence and arousal). In addition we use a method from
[4] that constrains the number of neighbours of hubs to the
mutually closest neighbours. The attributed mood variables
depend on these choices, as well as on the used data.

A second option is to let the user tag the uploaded song
himself. This can be complementary to the first method,
or be assisted by the first method, such that the system
suggests mood coordinates, which the user can then accept,
or modify. Even if it is not possible to place a track with
high precision, it is useful to give a quick first description
of the music a use wants to share. Another possibility is
to use automated mood tags as suggestion which region of
the mood plane to explore, and to find tracks with similar
mood to an uploaded track, without the need to describe it
or attribute genre tags to it.

5. AUTOMATIC MIXING
One of the advantages of recent developments in Web tech-

nologies and especially the Web Audio API is that the ways
in which audio content can be presented to users online are
much more varied than they used to be. Instead of simply
playing back music files linearly, one can now easily create

12https://github.com/piper-audio

s2

m

t2t1

s1

Figure 5: A simplified representation of a sample
mix m from one piece s1 to the next s2, where the
mix features bars from both pieces as well as com-
bined transition parts t1, t2.

interactive applications with advanced audio functionality.13

Streaming services can greatly benefit from these advance-
ments and incorporate custom music processing functional-
ity that is tailored to individual listeners.

Moodplay.github.io demonstrates this in the form of au-
tomatic DJ mixing which consists in creating smooth and
appropriate transitions between subsequent songs for indi-
vidual listeners or parties. Depending on the compatibility
of two subsequent songs and their tempo, harmonic, and
rhythmic content one of several available customizable tran-
sitions is chosen and adapted to the specific musical situa-
tion. This functionality is based on a Node.js module that
can be embedded into any Web application.14 It uses the
Dynamic Music Objects framework to build DJ mixes on
the fly based on features extracted from the audio[5]. The
core of the package uses a decision tree to determine the best
way to transition from one given song to the next depending
on their degree of compatibility which is inferred via high-
level analytical descriptors derived from the audio features.
These decision trees can be custom-defined or they can be
learned automatically from transitions ratings by users[5].
A root object of type sequence represents the whole mix
to which the parts of the pieces intended to play are then
gradually added. These parts can be of various types and
may vary depending on the type of transition decided on.
Figure 5 shows a simplified representation of a mix contain-
ing parts of two pieces. Depending on which root object is
passed to the player, one can get it to either play the indi-
vidual original songs, or the created mix, or all at the same
time.

The auto-dj node module has a simple interface with
a few public functions: isReady() which returns a
Promise that resolves once the module is initialized,
getBeatObservable() which returns an RxJS Observ-
able which emits an incremented number whenever a
beat is played (can for example be used for anima-
tions), getTransitionObservable() through which one can
obtain an Observable that emits whenever a transition
is started, transitionToSong(audioUri: string) which
transitions to the song at the uri passed as an argument, and
playDjSet(audioUris: string[]) which mixes a whole set
of songs. Anything else is done internally and automati-

13see for example https://tonejs.github.io/demos
14https://www.npmjs.com/package/auto-dj



auto-dj module

schedulo

dymo-player

dymo-core

piper-js extractor

analyzer

decision tree

mix generatorAPI auto-djAPI service

direction of processing in module

Figure 6: The current structure of the mixing func-
tionality of moodplay.github.io.

cally, including loading the audio, extracting features, cal-
culating higher-level descriptors, deciding on a transition,
gradually adding to the mix structure, and playing it back.
moodplay.github.io also makes use of the option of provid-
ing a custom feature service when initializing auto-dj, which
provide pre-extracted features for all songs in the standard
collection which significantly reduces browser load. For any
custom songs (Section 4) a feature extractor extracts audio
features directly in the user’s browser using piper-js.

Figure 6 shows the structure of the current version of the
automatic mixing module. An analysis unit calculates and
buffers the high-level descriptors, a decision unit is capable
of performing various decisions, and a mix generator con-
tains templates for all the transition types, adds hierarchical
song structures to the dymo-core triple store, and creates the
mix object as described above. This object is then navigated
by the dymo-player,15 a playback module optimized with
Web Workers and based on the dynamic scheduling module
schedulo built around Tone.js16 or web-audio-scheduler17.

6. SUMMARY
moodplay.github.io is an online music streaming platform

that strives to encourage social interactions in music stream-
ing by allowing users to collaboratively choose music accord-
ing to mood. Since it is a web application, it is accessible on
any platform or operating system that supports web brows-
ing. Users can participate in the global Moodplay party
where everyone is added upon arrival, but they can also cre-
ate personal parties and control who are invited. There is
functionality that allows participants to share their favourite
tracks with other invited participants. The system analyses
the uploaded tracks by audio features to find their corre-
sponding mood coordinates, so that the automatic DJ mod-
ule can incorporate the new additions to the continuous mix.
One of the many challenges we have faced implementing and
deploying this system has been managing and optimizing the
audio processing with the Web Audio API. Apart from try-
ing to keep the CPU load at reasonable levels, we have en-
countered interesting dilemmas regarding where the different
phases of processing should happen. Currently the audio is
accessed directly from Deezer API and the server only deals
with track metadata, user and party coordinates and deter-
mining which track should be mixed in next, leaving all the
audio processing to the client devices. Alternatively, given
sufficient server resources, the audio mixing could also take
place on the server, that sends out the same stream to all
the clients.

15https://github.com/dynamic-music/dymo-player
16https://tonejs.github.io
17https://www.npmjs.com/package/web-audio-scheduler

MOODPLAY DATA
MOODPLAY.GITHUB.IO

Figure 7: The structure of moodplay.github.io

Technically, the system consists of an Angular18 front-end
accessible at https://moodplay.github.io and Express.js19

server application, https://moodplay-data.herokuapp.com/
that stores track metadata, mood coordinates and audio fea-
tures for the auto-dj module. Both components are devel-
oped as open source projects under GNU General Public
License v3.0. The code repository for the front-end can
be accessed at https://github.com/darkjazz/moodplay and
the back-end is available at https://github.com/darkjazz/
moodplay-server.

7. ACKNOWLEDGMENTS
This work was supported by EPSRC Grant EP/

L019981/1, “Fusing Audio and Semantic Technologies for
Intelligent Music Production and Consumption”. We would
like to acknowledge the contribution of Mathieu Barthet and
György Fazekas, who created the original installation ver-
sion of Moodplay.

8. REFERENCES
[1] A. Allik, G. Fazekas, M. Barthet, and M. Sandler.

myMoodplay: an interactive mood-based music
discovery app. In Proc. of the 2nd Web Audio
Conference (WAC), 2016.

[2] I. Andjelkovic, D. Parra, and J. O’Donovan. Moodplay:
Interactive mood-based music discovery and
recommendation. In Proceedings of the 2016 Conference
on User Modeling Adaptation and Personalization,
UMAP ’16, pages 275–279, New York, NY, USA, 2016.
ACM.

[3] M. Barthet, G. Fazekas, A. Allik, and M. B. Sandler.
Moodplay: an interactive mood-based musical
experience. In Proceedings of the Audio Mostly 2015 on
Interaction With Sound, AM ’15, Thessaloniki, Greece,
October 7-9, 2015, pages 3:1–3:8, 2015.

[4] D. Schnitzer, A. Flexer, M. Schedl, and G. Widmer.
Using mutual proximity to improve content-based audio
similarity. In ISMIR, volume 11, pages 79–84, 2011.

[5] F. Thalmann, L. Thompson, and M. Sandler. A
user-adaptive automated dj web app with object-based
audio and crowd-sourced decision trees. In Proceedings
of the 4th Web Audio Conference, Berlin, 2018.

18https://angular.io
19http://expressjs.com


