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ABSTRACT In this paper, energy storage sharing among a group of cooperative households with integrated
renewable generations in a grid-connected microgrid is studied. In such a microgrid, a group of households,
who are willing to cooperatively operate a shared energy storage via a central coordinator, aims to minimize
their long term time-averaged costs, by jointly taking into account the operational constraints of the
shared energy storage, the stochastic solar power generations and the time-varying load demands from all
households, as well as the fluctuating electricity prices. This energy management problem, which comprises
storage management and load control, is first formulated as a constrained stochastic programming problem.
Based on the Lyapunov optimization theory, a distributed real-time sharing control algorithm is proposed
to solve the constrained stochastic programming problem without requiring any statistical knowledge of the
stochastic renewable energy generations and the uncertain power loads. The credit-based distributed sharing
algorithm, in which each household independently solves a simple convex optimization problem without
requiring any statistics of the system, is designed to quickly adapt to the system dynamics while facilitating a
fair allocation of the shared energy storage with respect to individual households’ energy contributions. The
performance gap of the proposed low-complexity distributed sharing algorithm is evaluated via theoretical
analysis. Numerical simulations using a practical system setup are conducted to investigate the effectiveness
of the proposed sharing control algorithm in terms of energy cost saving and fairness. The simulation results
show that the proposed credit-based distributed sharing algorithm can not only save power consumption cost
by coordinating the use the shared battery among households in a fair manner but also improve the utilization
of renewable energy generation.

INDEX TERMS Energy Management, Lyapunov Optimization, Energy Storage Sharing, Smart Grid.

I. INTRODUCTION

THE fast-growing electric consumption and the concern
of the carbon dioxide emission of traditional fossil

fuel based power plants motivate a green power system
with users deploying distributed renewable energy genera-
tors, e.g., wind turbines and solar photovoltaics (PVs). In
South Africa, a strong solar radiation resource makes solar
energy a particularly attractive option, where annual solar
radiation ranges from 2400 to 2800kWh/m2 [1]. Associated
with global solar PV price reductions and spurred on by high
annual grid power price increases, solar PV generator instal-
lation in South Africa has also been accelerating. However,
the inherently intermittent and stochastic nature of renewable
energy production owing to weather variability poses signif-
icant challenges to efficient utilization of renewable energy.

Increasing dynamics in power systems due to renewable
integration and electricity demands have resulted in the ex-
ploration of energy storage systems (ESSs) for potential so-
lutions [2]. From the perspective of power grid operation, the
benefits of ESSs including generation backup, transmission
support and voltage control have been well-recognized [3].
On the other hand, from the user’s perspective, ESSs can
be integrated with distributed renewable generations as a
more practical solution to improve the energy efficiency and
reliability by storing not only surplus energy generated from
renewable resources but also cheaper energy at times of lower
electricity prices for later use at times of renewable energy
generation shortages and/or higher electricity prices. In this
work, we mainly focus on the interplay between energy
supply and energy storage at the user side.
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There have been many studies on energy management
in the context of renewable integration and energy storage
from the perspective of residential energy storage manage-
ment. Most of the previous studies assume that an ESS
is owned by a user or one entity and analyze the energy
storage management problem considering a single user single
ESS scenario or a distributed ESSs scenario [4]–[10]. For
instance, in recent studies [4], [5], the authors investigated
single user optimal charging and discharging policies that
balance cost savings with user convenience, such as activ-
ity delay, by exploiting the price variations without having
to shift user demand to the low-price periods. Meanwhile,
energy trading and exchanging in a grid-connected microgrid
with distributed renewable generators (RGs) and ESSs owned
by individual users, has gained lots of research attention
recently [6]–[8]. For instance, the authors in [8] presented
a multi-objective optimization method for a grid-connected
community microgrid to reduce the electricity costs of all
users, by sharing all renewable energy and storage resources
in the system through local power exchange. Energy stor-
age management also has been studied extensively in the
literature for supply-demand balancing to counter the fluc-
tuation of renewable generation for small-scale microgrids
composed of multiple RGs and ESSs. The authors in [9],
[10] proposed multiagent system-based control strategies to
coordinate all components, i.e., distributed RGs, ESSs and
loads, in a small-scale islanded microgrid to maintain the
supply-demand balance within the system while maximizing
the social welfare of all the participants [9] or minimizing
the total power loss associated with charging/discharging
inefficiency [10].

In recent years, the concept of ESS sharing, where the
surplus energy of some users can be charged into a shared
(common) ESS and then be discharged by other users with
renewable energy deficit, has received increasing attention
[11]–[22]. An ESS shared across a group of users, which
can be energy consumers in an industrial park or neighbor-
ing households in a community, can benefit users not only
through sharing the installation and maintenance costs of
the ESS but also by exploiting the non-overlapping power
consumption patterns of users. Nevertheless, along with the
benefits, ESS sharing also brings increasing challenges in
energy storage management and load management.

In this paper, we consider a microgrid of a group of
households with their individual renewable energy genera-
tors, who are willing to operate a shared ESS (in the form of
a battery) in a cooperative manner, aiming to minimize their
long term time-averaged costs. In this sharing system, the
main challenge of energy management is how to dynamically
coordinate the households to optimally utilize the shared
ESS, i.e., how to optimally charge/discharge energy to/from
the shared ESS, so as to minimize their individual energy
consumption costs while satisfying their individual prefer-
ences. This energy management problem can be viewed as
an energy storage management problem combined with a
demand side management problem. Due to the finite capac-

ity, the ESS introduces correlation across time. Specifically,
current charging/discharging action impacted by the previous
charging/discharging action will impact the future charg-
ing/discharging. Given the inherent time-coupling feature of
the ESS, the uncertainties in the multiple renewable genera-
tions and power demands from different households, as well
as the electricity price variations, dynamically coordinating
energy storage among a group of households is challenging
when integrating energy storage management with demand
side management.

Different mechanisms and approaches have been proposed
to provide cost saving through a shared ESS. The authors
in [11] discuss an energy storage managing method in a
distribution network based on evenly dividing energy stor-
age between customers and system operator, but does not
optimize the division of energy storage. In [15], the authors
proposed a reputation-based centralized energy management
system (EMS) to jointly schedule households’ appliance
power consumption and allocate the available energy in the
shared battery by considering households’ reputations, which
depend on the amount of renewable power they have shared.
The proposed EMS runs a day-ahead optimization problem
which is formulated as a Mixed Integer Linear Program-
ming. In [16], the authors addressed the cost saving trade-
off problem of sharing an ESS among multiple users using a
Markovian model and proposed a centralized control policy
to dynamically allocate battery capacity among users. The
policies for energy storage sharing using a predetermined
time-of-use pricing scheme are studied in [17], in which, with
a finite horizon formulation, an optimal centralized policy
is proposed. In [18], a game theoretic approach is presented
with a distributed algorithm to determine each user’s energy
production and storage a day-ahead. In [19], the authors
studied a scenario where an aggregator owns a central storage
unit and virtualizes the physical storage into separable virtual
storage capacities that can be sold to users to store the energy
purchased from the main grid, and modeled the interaction
between the aggregator and users in each time slot as a two-
stage problem. Assuming that users can perfectly predict
their renewable generations and loads, a pricing-based virtual
storage sharing scheme among a group of users was proposed
and the solutions were characterized based on parametric
linear programming under a day-ahead prediction on users
renewable generations and loads. Similarly, using the same
storage virtualization concept, the authors in [20] presented
a shared ESS service architecture consisting of a virtually
assigned ESS to each participating user and proposed a
long-term service strategy, focusing on the selection of the
shared ESS size and the service price, which is determined
by the interactive decisions of the ESS service provider and
users using Lagrangian relaxation. A centralized approach
was introduced in [21], which consists of day-ahead ESS
scheduling and real-time pricing for energy sharing among
multiple PV prosumers with the assistance of an Energy
Sharing Provider (ESP) equipped with an ESS. The ESP
first decides the day-ahead scheduling strategy of the shared
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ESS via stochastic programming based on day-ahead PV
generation and load demand forecasts of individual pro-
sumers. Then real-time prices are set via a Stackelberg game-
based model to coordinate the energy consumption of the
prosumers in each time slot. The authors in [22] developed
a bi-level Stackelberg game-based discriminatory auction
model to allocate and price energy for sharing a distributed
energy resource (DER) consisting of a RG and an ESS within
an apartment building. The bi-level auction based allocation
model can be implemented in a distributed way where the
DER owner determines the prices for DER energy based
on the consumers demand curves, which are assumed to be
known to the DER owner, while the consumers decide their
consumption accordingly.

Most of these existing studies on ESS sharing assume
that the renewable energy generations and loads of users are
known ahead of time to a central agent, who optimizes the
charging/discharging energy of each user, or assume perfect
forecasting of the renewable generations, load demands and
energy prices, which is practically unachievable. In practice,
with unpredictable changes in renewable energy generations
and demands, adaptive response to the dynamics of the sys-
tem by utilizing the shared ESSs is an important requirement
in the time-varying environment of the ESS sharing system.

Due to the time coupling constraints brought by the shared
ESS, the optimization problem for energy management in
this ESS sharing system turns out to be a time-coupling
problem. Previously, such problems are usually solved using
approaches based on Dynamic Programming [23], which
not only require full statistical information of the random
variables in the problem but also suffer from the "curse of
dimensionality" problem [24].

Recently, the Lyapunov optimization theory [25], an effec-
tive method to deal with stochastic optimization and stability
problems, has been widely adopted in the literature, such
as [26]–[30], to develop online algorithms that require no
a priori statistical knowledge of the underlying stochastic
processes for real-time energy management in microgrids
with renewable energy resources combined with ESSs. Using
the Lyapunov optimization theory for event-driven queueing
systems, an optimization problem with time-coupling con-
straints can be reformulated to a relaxed problem, which
can be solved in each time slot based on the current system
state and provides a suboptimal solution for the optimization
problem. No information about the future or past system
states is required. For instance, in [26], the optimal cost sav-
ing policies using the Lyapunove theory for a single storage
system have been studied and a real time control algorithm
was proposed to minimize one user’s long term expected
energy cost considering a renewable energy resource and a
battery. The authors in [28] proposed a real-time distributed
algorithm based on the Lyapunov optimization theory to
coordinate a group of distributed storage units to provide
power balancing service to a power grid through charging
or discharging. The proposed algorithm accommodates a
wide spectrum of vital system characteristics, including time-

varying power imbalance amount and electricity price, finite
battery size constraints, cost of using external energy sources,
and battery degradation. However, most of the existing stud-
ies primarily consider a single user single ESS scenario or a
distributed ESSs scenario.

In this paper, we focus on developing a real-time control
algorithm for a battery sharing system. The main contribu-
tions of this paper are summarized as follows:

1) A real-time sharing energy management strategy based
on the Lyapunov optimization theory is designed for
storage control and load management for multiple
households, requiring no statistical knowledge of the
stochastic renewable energy generations and the uncer-
tain power loads, so as to minimize the long term power
consumption costs of all households.

2) A credit-based distributed implementation of the
Lyapunov-based real-time sharing control strategy is
proposed to coordinate the group of households in
a distributed and fair manner, in which each house-
hold’s energy management optimization problem is
solved locally with almost all information obtained
locally. Based only on the current system state, the
proposed credit-based sharing control algorithm jointly
optimizes energy charging/discharging and load man-
agement for all households while taking into account
the energy contributions of individual households to
the shared battery, and imposes load shedding and
renewable energy curtailment if necessary.

The rest of the paper is structured as follows. The system
model of a microgrid with a group of households sharing a
common ESS is described in Section II. In Section III, we
formulate the optimization problem for energy management
in this sharing system. In Section IV, a Lyapunov-based
real-time sharing control strategy is proposed to solve the
optimization problem and its performance is analyzed. A
credit-based algorithm is then proposed to implement the
Lyapunov-based sharing control strategy in a distributed and
fair manner. Numerical results obtained through simulation
evaluations are presented in Section V. Finally, concluding
remarks are provided in Section VI.

II. SYSTEM MODEL
We consider a smart community that consists of an energy
storage sharing management (ESSM) system for a group of
households I = {1, . . . , I} whose load profiles are different
and each of whom has an on-site RG. The ESSM system con-
tains an energy storage battery with a finite capacity shared
among all households who can charge energy harvested from
their RGs as well as purchased from the main grid (MG) into
the battery. The households’ load demands can be supplied
by their individual RGs, the shared battery and the MG. In
this sharing system, the households cooperatively operate the
shared battery via a central coordinator, who manages the
shared battery to make sure its operational constraints are
satisfied, so as to jointly minimize their electricity consump-
tion costs by utilizing their renewable energy together with
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the MG combined with the finite-capacity energy storage. We
assume that the ESSM system operates in slotted time t, i.e.,
t ∈ {0, 1, . . . , T − 1}.

1) Renewable generator
We assume that each household has a solar PV genera-
tor with different capacity and the amount of harvested
energy in a time slot varies over time. Let gpv,i(t)
denote the energy harvested from household i’s solar
PV generator in time slot t. Since gpv,i(t) is random
due to the randomness of the solar source, we assume
no prior knowledge of gpv,i(t) or its statistics.

2) Main grid power
Each household can purchase energy from the MG
in time slot t at the unit price p(t), which is time-
varying and only known in time slot t. Let gl,i(t)
denote the amount of energy purchased from the MG
by household i in time slot t that directly supplies
the household i’s load, and gs,i(t) denote the amount
of energy purchased from the MG by household i in
time slot t that is stored into the shared battery to take
advantage of time-varying electricity prices. Then the
energy cost of household i in time slot t is

CMG,i(t) = [gl,i(t) + gs,i(t)]p(t) ∀i ∈ I. (1)

3) Local power demand
Let Di(t) be the household i’s load in time slot t. We
assume a priority of using energy harvested from its
solar PV generator gpv,i(t) to directly supplyDi(t) and
the excessive portion, if any, will be charged into the
shared battery. When D(t) ≤ gpv(t), we denote the
energy that household i charges into the shared battery
in time slot t by

gch,i(t) ≤ gpv,i(t)−Di(t) ∀i ∈ I. (2)

Note that, since the storage space of the shared battery
is limited, not all the excessive portion can be charged
into the battery if there is not enough storage space in
the shared battery.
When Di(t) > gpv,i(t), the residual Di(t) − gpv,i(t)
can be served with the power purchased from the MG
gl,i(t) or the power drawn from the shared battery
gdis,i(t). A balance between purchasing the power
from the MG and drawing the power from the battery
must be struck under the following feasibility condi-
tion:

gl,i(t) + gdis,i(t) = Di(t)− gpv,i(t) ∀i ∈ I. (3)

The loads of each household can be classified into two
categories:
• inelastic loads (in unit of kWh) represent the criti-

cal demands such as refrigerator and lights, which
should not be shed or shifted over time.

• elastic loads (in unit of kWh) represent the con-
trollable energy requests such as electric vehicles,
air conditioners and other smart appliances, which

can be flexibly curtailed or scheduled over time to
minimize costs.

We consider a demand side management in the micro-
grid, where flexible loads can be shed in response to
supply conditions. For each household, its demand is
bounded by:

Di(t) ≤ Di(t) ≤ Di(t) ∀i ∈ I (4)

where Di(t) is the maximum power demanded by
household i in time slot t, i.e., the most preferred
power consumption of household i, and Di(t) is the
minimum power demanded by household i in time
slot t that cannot be shed or rescheduled, i.e., the
inelastic loads. Note that Di(t) and Di(t) are the
demand requests decided by households based on the
physical constraints and their willingness to shed their
elastic loads. If a household refuses load shedding, the
requested maximum and minimum power will be the
same. The demand requests of each household in each
time slot are assumed to be stochastic.
However, load shedding used for cost saving may
cause discomfort to the households. When the shed
power consumption Di(t) deviates from the preferred
power consumption Di(t), discomfort experienced by
household i can be represented by a discomfort cost
function

CCOM,i(t) = αi(t)[Di(t)−Di(t))]
2 ∀i ∈ I,

(5)
where weighted coefficient αi(t) is a positive constant
used to indicate the sensitivity of household i towards
the power consumption deviationDi(t)−Di(t) in time
slot i: the higher the value of αi(t), the more sensitive
the household i towards the power consumption devia-
tion.
Meanwhile, in order to control the quality-of-service
(QoS) [29] for each household, an upper bound is
imposed on the portion of the unsatisfied flexible loads,
which can be formally expressed by [31]

lim
T→∞

1

T

T−1∑
t=0

[
Di(t)−Di(t)

Di(t)−Di(t)

]
≤ βi ∀i ∈ I,

(6)
whereDi(t)−Di(t) is the shed demand,Di(t)−Di(t)
is the total demand that can be shed in time slot t,
and βi ∈ (0, 1] is a pre-designed threshold used to
control the QoS. It reflects the tolerance of household
i to the power consumption deviation. A smaller βi
indicates a tighter QoS control. Note that both αi(t)
and βi are decided by household i based on its energy
consumption preference and αi(t) could vary over time
in a stochastic manner.

4) Shared Energy Storage
The shared energy storage battery has a finite storage
capacity Scap. In practice, batteries are not ideal. There
are energy conversion losses during the charging and
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discharging processes. Let ηch ∈ (0, 1] and ηdis ∈
[1,∞) be the charging efficiency coefficient and the
discharging efficiency coefficient, respectively.
a) Denote s(t) as the energy state of the battery at the
beginning of time slot t. Then the energy state s(t),
known as state of charge (SOC), in kWh, fluctuates
over time and evolves as follows:

s(t) = s(t− 1) + ηch
∑
i∈I

[gch,i(t) + gs,i(t)]

− ηdis
∑
i∈I

gdis,i(t) =∆ s(t− 1) +
∑
i∈I

bi(t)
(7)

where bi(t) is defined as the effective charging and
discharging amounts in time slot t.
b) Because of limitation imposed by the charging and
discharging circuits, the amounts of power charged into
and discharged from the battery are upper bounded.
Denote the maximum charging rate and discharging
rate of the battery by Rch and Rdis, respectively, so
that

0 ≤
∑
i∈I

[gch,i(t) + gs,i(t)] ≤ Rch

0 ≤
∑
i∈I

gdis,i(t) ≤ Rdis
(8)

c) Charging a battery near its capacity or discharging it
close to the zero energy state can significantly reduce
battery lifetime [32]. Hence, lower and upper bounds
on the battery energy state are usually imposed by its
manufacturer or owner. Denote [Smin, Smax] as the
preferred energy range with 0 < Smin < Smax <
Scap. Then the level of the shared battery in time slot i
is bounded

Smin ≤ s(t) ≤ Smax. (9)

d) Combining (7), (8) and (9), the boundaries of
charging and discharging power in time slot t can be
compactly represented as

0 ≤
∑
i∈I

[gch,i(t) + gs,i(t)] ≤ min{Rch,
Smax − s(t− 1)

ηch
}

0 ≤
∑
i∈I

gdis,i(t) ≤ min{Rdis,
s(t− 1)− Smin

ηdis
}

(10)

The space-availability constraint and the energy-
availability constraint in (10) must be satisfied at all
time for the charging and discharging decisions to be
feasible. In other words, the energy charged/discharged
into/from the shared battery must not exceed the stor-
age space/energy available for charging/discharging.

III. PROBLEM STATEMENT AND FORMULATION
A. PROBLEM STATEMENT
Solar power generations of multiple households bring more
uncertainties to the energy management problem, making it

challenging to balance supply and demand in real-time. In
this paper, we study the problem of real-time energy storage
and management in this microgrid aiming at achieving the
long-term energy consumption objectives of the households
while ensuring an acceptable level of the discomfort experi-
enced by each household in real-time, taking into considera-
tion the dynamics of the energy demands, renewable sources
and energy prices as well as the operational constraints of the
shared battery. Hence, the objective of the ESSM system is to
jointly determine power consumption, power purchasing and
energy charging/discharging actions of all households so as
to minimize the long-term time-averaged costs of all house-
holds, subject to the operational constraints of the shared
battery as well as time-varying solar power generations and
load demands from households and electricity prices. There-
fore, the control problem can be stated as follows: given
the current random renewable supplies, the battery energy
levels, the energy demand preferences of households and the
electricity prices, design a control strategy that chooses the
energy purchasing vectors, the battery charging and discharg-
ing vectors, as well as load serving vectors for all households
such that the long-term time-averaged energy consumption
costs of all households are minimized.

For the sake of clarity and ease of reading, we define the
system state X(t) in time slot t using the renewable gen-
erations and demand preferences of households, the energy
prices from the MG and the energy state of the shared battery

X(t) =∆ [gpv(t),d(t), p(t), s(t)], (11)

where d(t) =∆ [Di(t), Di(t)] ∀i is the demand preference
vector and gpv(t) =∆ (gpv,i(t)) ∀i is the renewable generation
vector. We assume that X(t) is stochastic.

The control vector in time slot t is defined by

Y(t) =∆ [gl(t),gs(t),gch(t),gdis(t),D(t)]. (12)

where gl(t) =∆ (gl,i(t)) ∀i and gs(t) =∆ (gs,i(t)) ∀i are
the energy purchasing vectors for load serving and battery
charging respectively, gch(t) =∆ (gch,i(t)) ∀i and gdis(t) =∆

(gdis,i(t)) ∀i are the battery charging and discharging vec-
tors, respectively, and D(t) =∆ (Di(t)) ∀i is the serving load
vector. Note that, even though some of the components in
X(t) can be arbitrarily correlated, the control decision in
each time slot only depends on current system state X(t)
without any previous system state information.

With the known information, i.e., the current system state
X(t), the objective of the ESSM system is to make control
decision to choose Y(t) in reaction to the current system state
X(t) in each time slot in order to minimize the households’
energy consumption costs, comprising the discomfort costs
of load shedding and the costs of energy purchased from the
MG, over a long-term T -slot period, while guaranteeing the
QoS for each household, by jointly managing energy con-
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sumption, supply and storage. We define the instantaneous
cost of all households by

CToT (t) =
∑
i∈I

CMG,i(t) +
∑
i∈I

CCOM,i(t)

=
∑
i∈I

[gl,i(t) + gs,i(t)]p(t) +
∑
i∈I

αi(t)[Di(t)−Di(t)]
2

(13)

Thus, the stochastic control optimization problem of the
real-time energy management, called P1, can be formulated
by

P1 : min
Y(t)

lim
T→∞

1

T

T−1∑
t=0

E {CToT (t)} ,

s.t. (2)(3)(4)(6)(8)(9),

(14)

where E{·} is taken with respect to X(t). Taking the random-
ness of the system state X(t) and the random control decision
Y(t) in each time slot into account in the expectations of the
objective function and constraints, P1 seeks control decisions
for the entire time horizon up till infinity taking the sys-
tem dynamics into consideration. However, due to the time-
coupling dynamics of (7), the current control action impacted
by the previous control actions will impact the future control
actions. Therefore, it is challenging to solve the stochastic
optimization problem P1 with the correlated control actions
Y(t) over time.

The optimization problem P1 can be solved using ap-
proaches based on Dynamic Programming [24], provided
that the system statistics, e.g., the distributions of the compo-
nents of X(t), are known, which might be practically infeasi-
ble. In this study, given the stochastic system state X(t), we
are interested in real-time energy management that not only
requires no system statistics but also can quickly adapt to the
system dynamics. Motivated by the recent studies, a real-time
algorithm is developed to determine real-time control vector
Y(t) over time, applying the general framework of Lyapunov
optimization [25] to reformulate the optimization problem P1
to handle the time-coupling constraint (9).

B. PROBLEM MODIFICATION
Time-average constrains can be transformed into queue sta-
bility constrains and simple real-time algorithms can be pro-
vided for complex dynamic systems using the Lyapunov opti-
mization theory. Unfortunately, the time-coupling dynamics
of s(t) over time in (7) and the battery capacity constraint
in (9), which require that no energy underflow and overflow
happen for all time, impose a hard constraint on the charging
and discharging decisions in each time slot. As a result,
the charging and discharging decisions are correlated with
each other over time. Therefore, P1 cannot be directly solved
using the standard Lyapunov optimization techniques.

To avoid such coupling, the hard constraint (9) in P1 is
relaxed to a softer constraint, which reflects the long-term

time-averaged relationship among the charging and discharg-
ing decisions, given by

lim
T→∞

1

T

T−1∑
t=0

E

{∑
i∈I

bi(t)

}
= 0. (15)

The derivation of (15) is provided in Appendix A. Instead of
bounding the energy state in each time slot in (9), the softer
constraint in (15) requires that the mean rate of the effective
charging and discharging amounts in the whole process is
kept stable. Replacing the time-coupling constraint (9) with
the time average queuing constraint (15), we relax P1 to the
following problem:

P2 : min
Y(t)

lim
T→∞

1

T

T−1∑
t=0

E {CToT (t)} ,

s.t. (2)(3)(4)(6)(8)(15),

(16)

Through this relaxation transformation, the dependency of
per time slot charging/discharging amount on the battery state
s(t) in constraint (9) is removed and the standard Lyapunov
optimization techniques can be applied to obtain the optimal
solution in a way that is independent of battery SOC level.
This relaxation technique used to accommodate the type of
time-coupling constraints such as (9) was first introduced in
[33] for energy management in a data center equipped with
an ideal battery, and then was widely adopted in the literature
regarding energy storage management. However, with the
relaxed constraint (15), the solution to P2 may be infeasible
to P1. Hence, in the next section, we will present a real-time
control algorithm that can guarantee all constraints of P1 are
satisfied. We will show later in Section IV-C that the solution
to P2 obtained by the proposed real-time algorithm in fact
also satisfies (9), so it is feasible for P1.

IV. LYAPUNOV-BASED REAL-TIME SHARING CONTROL
ALGORITHM
In this section, we present a real-time control algorithm using
the Lyapunov optimization techniques to solve P2 and pro-
vide simple online solutions based on the current information
of the system state.

A. VIRTUAL QUEUE DESIGN
According to the concept of virtual queues from the Lya-
punov optimization theory [25], we first introduce virtual
queues for the time-averaged inequality and equality con-
straints (6) and (15) in P2 to transform them into queue
stability constraints.
• Battery Queue: a virtual queue Kb(t) = s(t) − θ

that accumulates the charging and discharging amounts,
where θ is a perturbation parameter designed to ensure
the constraint of the energy state in (9) is satisfied. The
dynamic of Kb(t) is given by

Kb(t+ 1) = Kb(t) +
∑
i∈I

bi(t). (17)
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The intuition behind the battery queue Kb(t) is to
construct the decision making algorithm based on a
quadratic Lyapunov function involving Kb(t), then by
keeping the quadratic Lyapunov function value small
to push the value of s(t) towards θ. Thus, it can be
ensured that the battery queue always has enough energy
by carefully choosing the value of θ. Note that Kb(t) is
a shifted version of the energy state s(t) by a constant
parameter θ and can be negative. We will show in
Section IV-C the boundedness of s(t) can be guaranteed
through the design of the perturbation parameter θ and
Vmax.

• QoS-Aware Load Queue: a virtual queue Hl,i(t) that
is associated with the long-term constraint in (6). It
evolves as follows:

Hl,i(t+ 1) = max {Hl,i(t)− βi, 0}+
Di(t)−Di(t)

Di(t)−Di(t)
(18)

Initialize Hli(t) as Hli(0) = 0. With arrival rate being
the shedding percentage and the departure rate being
βi in time slot t, the time averaged load shedding
percentage must be less than or equal to βi to ensure
the queue Hl,i(t) to be stable. Hence, maintaining the
stability ofHl,i(t) is equivalent to keeping the constraint
(6) satisfied [25].

By introducing the virtual queues, the time-averaged con-
straints (6) and (15) are transformed into the mean rate
stability constraints of virtual queues. Hence, an optimization
problem which minimizes the cost CToT (t) over time while
ensuring that the mean rates of the two virtual queues are kept
stable is feasible to P2.

Replacing the time-averaged constraints (6) and (15) with
the mean rate stability constraints (17) and (18), we now relax
P2 to P3, which is suitable for the Lyapunov optimization
framework, as follows:

P3 : min
Y(t)

lim
T→∞

1

T

T−1∑
t=0

E {CToT (t)} ,

s.t. (2)(3)(4)(8)(17)(18).

(19)

B. LYAPUNOV-BASED REAL-TIME SHARING CONTROL
ALGORITHM DESIGN
In this section we apply the Lyapunov optimization tech-
niques to solve P3. Define Θ(t) =∆ (Kb(t), Hl,i(t),∀i ∈ I)
as the concatenated vector of the virtual queues. As a scalar
measure of the virtual queues, a perturbed Lyapunov func-
tion is defined as L(Θ(t)) =∆ 1

2 [Kb(t)
2 +

∑
i∈I Hl,i(t)

2].
The Lyapunov function L(Θ(t)) is a scalar measure of
queue stabilization. Intuitively, if L(Θ(t)) is small then all
queues are small; and if L(Θ(t)) is large then at least one
queue is large. Thus, by minimizing a drift in the Lyapunov
function, i.e., by minimizing a difference in the Lyapunov
function from one time slot to the next, the queues Kb(t)
and Hl,i(t) can be stabilized. Define the conditional one-
slot Lyapunov drift, which represents the expected change

in the Lyapunov function from one time slot to the next, as
∆(t) =∆ E {L(t+ 1)− L(t)|Θ(t)}, where the expectation is
taken over the random processes associated with the system,
given the current queue states Kb(t) and Hl,i(t).

We now use the drift-plus-penalty minimization method
introduced in the Lyapunov optimization theory [25] to solve
P3. Firstly, adding the function of the expected cost at current
time slot, i.e., the penalty function, to the conditional one-
slot Lyapunov drift, we obtain the drift-plus-penalty term
∆(t)+V E{CToT (t)}, where V , a positive parameter, serves
as a weight controlling the performance tradeoff between
cost and (virtual) queueing delay, i.e., how much one cares
about the cost compared with the queueing delay. Instead of
minimizing the energy consumption cost objective in P3, in
the Lyapunov optimization, the objective is to minimize the
short term drift-plus-penalty function by controlling Y(t) in
each time slot t.

The intuition behind this approach is as follows: Mini-
mizing the Lyapunov drift term ∆(t) of the the drift-plus-
penalty term alone pushes the queue-lengths of the virtual
queues to lower values. The second term of the drift-plus-
penalty term is a penalty term with the parameter V con-
trolling the trade-off between minimizing the queue-length
drift and minimizing the cost function. In other words, while
P3 is a problem of minimizing the time-averaged cost of
energy consumption while maintaining the stability of the
virtual energy queue and load queue, the drift-plus-penalty
minimization method jointly considers the time-averaged
constrains and the objective function through the introduction
of the control parameter V . A larger value of V indicates a
greater priority to minimizing the cost function at the cost of
a greater size of the virtual queues and vice versa. Thus, by
varying the parameter V , one can obtain a desired trade-off
between the size of the queue backlogs and the cost of energy
consumption. In our case, the maximum feasible V results in
the minimized time-average cost of energy consumption.

Using the drift-plus-penalty minimization method, a con-
trol policy that solves problem P3 is obtained by minimizing
the drift-plus-penalty expression ∆(t) + V E{CToT (t)}. We
examine the drift-plus-penalty term and obtain an upper
bound on it in the following proposition.

Proposition 1. In each time slot t, for all possible decisions
and all possible values of ∆(t), the drift-plus-penalty term is
upper bounded as follows:

∆(t) + V E{CToT (t)} ≤ B +Kb(t)E

{∑
i∈I

bi(t)|Θ(t)

}

+
∑
i∈I

Hl,i(t)E
{
Di(t)−Di(t)

Di(t)−Di(t)
− βi|Θ(t)

}

+ V E

{∑
i∈I

CMG,i(t) +
∑
i∈I

CCOM,i(t)

}
,

(20)

where V is a control parameter andB =∆ 1
2 max{R2

dis, R
2
ch}+
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1
2 (1 + β2

max).

Proof. See Appendix B

Thus, with the drift-plus-penalty minimization method, the
control decisions are chosen to minimize the upper bound
on the Lyapunov drift-plus-penalty obtained in (20) instead
of minimizing the drift-plus-penalty expression directly. It
will be shown in Section IV-C that greedily minimizing the
upper bound on the Lyapunov drift-plus-penalty obtained in
(20) provides a bounded sub-optimal solution to P3. Hence,
the real-time sharing control algorithm can be described as
follows: in each time slot t, given the system state X(t)
and the queue states Θ(t), the real-time sharing control
algorithm determines the control decision Y(t) by solving
the following linear programming problem P4:

P4 : min
Y(t)

Kb(t)
∑
i∈I

bi(t) +
∑
i∈I

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

+ V
∑
i∈I

CMG,i(t) + V
∑
i∈I

CCOM,i(t)

s.t. (2)(3)(4)(8)(17)(18).
(21)

Although no statistical knowledge associated with the system
state X(t) is required, the queue states Θ(t) carry sufficient
statistical information needed to determine the control de-
cision Y(t). We will show in Section IV-C that the design
of the real-time problem P4 can lead to some analytical
performance guarantee.

C. ALGORITHM PERFORMANCE ANALYSIS
In this section, we analyze the performance of the real-time
sharing control algorithm P4 with respect to the original
problem P1.

In the following proposition, we prove that the bound-
edness of the energy states (9) in P1 can be satisfied by
appropriately designing the perturbation parameter θ and the
control parameter V . Therefore, the control decisions Y(t)
derived from P4 are feasible of to P1.

Proposition 2. In each time slot t, set the perturbation
parameter θ as

θ =∆ Smin + ηdisRdis + V pmax, (22)

where

0 ≤ V ≤ ηch(Smax − Smin − ηchRch − ηdisRdis)
pmax − pmin

. (23)

Then, under the real-time sharing control algorithm, given
that the system state X(t) is i.i.d over time, we have

1) All the control decisions Y(t) derived from P4 are
feasible to P1, i.e.,

Smin ≤ s(t) ≤ Smax, ∀t; (24)

2) The gap between the optimal cost of P1 and the ex-
pected time-averaged cost under the proposed algo-
rithm by solving P4 is within bound B/V , i.e.,

C∗P4 − C∗P1 ≤
B

V
(25)

whereC∗P4 is the expected time-averaged cost achieved
by P4, C∗P1 is the optimal cost of P1, and B =∆

1
2 max{R2

dis, R
2
ch}+ 1

2 (1 + β2
max).

Proof. See Appendix C

While proposition 2.1 indicates that, under the real-time
sharing control algorithm, the feasibility of the solutions
is maintained, proposition 2.2 characterizes the gap be-
tween the resulting time-averaged cost and the optimal
cost of P1, which is in the order of O(1/V ). To mini-
mize this gap, the control parameter V should be set as
Vmax =∆ ηch(Smax−Smin−ηchRch−ηdisRdis)

pmax−pmin
. Since Vmax in-

creases with Smax, which depends on the shared battery
capacity, the real-time sharing control algorithm is asymp-
totically equivalent to P1 as the shared battery capacity
increases.

Summarily, the Lyapunov-based real-time sharing control
algorithm provides a low-complexity alternative to achieve a
similar performance to the original optimization problem P1.
However, according to the definition of Vmax, the proposed
algorithm performs better for the shared battery with a larger
capacity compared to the one with a smaller capacity.

D. DISTRIBUTED CREDIT-BASED SHARING
ALGORITHM

In the previous section, we presented a Lyapunov-based real-
time sharing control algorithm to coordinate all households’
energy consumption and battery utilization. The real-time
problem P4 can be solved by a central agent in a centralized
way, provided that the solar power generations and load
demand preferences of all the households are all known to
the central agent, i.e., all households have to report their
renewable generations and demand preferences including the
preferred power demands and the QoS control factors, to the
central agent. However, this leads to privacy concerns since
the households may not be willing to disclose their private
information. In this section, we propose a credit-based dis-
tributed algorithm that allows the storage capacity/space of
the shared battery to be allocated to the households according
to their energy contributions to the shared battery. The credit-
based control sharing algorithm solves the real-time energy
management problem P4 in a distributed manner, which is
more implementable in practice.

Naturally, based on their solar power generations and
loads, the group of households I can be divided into two
groups: energy surplus group A, Ia, in which ggv,i ≥ D∗i
∀i ∈ Ia, and energy deficit group B, Ib, in which ggv,i ≤ D∗i

8 VOLUME *, 20**
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∀i ∈ Ib. Hence, the optimization problem P4 can be split
into two sub-problems for group A and B, respectively:

P4− a : min
Y(t)

Kb(t)
∑
i∈Ia

bi(t) +
∑
i∈Ia

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

+ V
∑
i∈Ia

CMG,i(t) + V
∑
i∈Ia

CCOM,i(t)

s.t. (2)(4)(8)(17)(18),
(26)

and

P4− b : min
Y(t)

Kb(t)
∑
i∈Ib

bi(t) +
∑
i∈Ib

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

+ V
∑
i∈Ib

CMG,i(t) + V
∑
i∈Ib

CCOM,i(t)

s.t. (3)(4)(8)(17)(18).
(27)

It is noticed that the virtual queue state Kb(t), which is
determined by the battery charging and discharging amounts,
gs,i, gch,i and gdis,i ∀i ∈ I in the previous time slot t −
1, can be calculated at the central coordinator side. Thus, in
time slot t, assuming Kb(t) is known to all households, the
optimization problems in P4-a and P4-b can be split into sub-
problems for each household. Specifically, the sub-problem
for each household is

P4− a′ for i ∈ Ia :

min
Yi(t)

Kb(t)bi(t) +Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)
+ V Ci(t)

s.t. (2)(4)(18),
0 ≤ gch,i(t) + gs,i(t) ≤ ξch,i(t)Rch,

(28)

and

P4− b′ for i ∈ Ib :

min
Yi(t)

Kb(t)bi(t) +Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)
+ V Ci(t)

s.t. (3)(4)(18),
0 ≤ gdis,i(t) ≤ ξdis,i(t)Rdis,

(29)

where Ci(t) = CMG,i(t) +CCOM,i(t), ξch,i(t) and ξdis,i(t)
represent the percentages of the maximum charging rate
and discharging rate, Rch and Rdis, taken by household
i, respectively. Apparently, in each time slot, as long as∑
i∈I ξch,i(t) ≤ 1 and

∑
i∈I ξdis,i(t) ≤ 1, the constraint (8)

is satisfied and the solutions to the sub-problems of individual
households, P4-a’ and P4-b’, are feasible to P4.

We now present a credit-based division scheme to divide
the maximum charging/discharging rate, Rch/Rdis, in (28)
and (29) among households who request to charge/discharge.
Firstly, in order to encourage cooperation among the house-
holds and avoid some households taking advantage of others
by discharging much more than they contributed previously,

we introduce a credit concept, in which the credit point of
each household is determined by its contribution to the shared
battery, i.e., the accumulated amount of energy it charged and
discharged previously. Specifically, in each time slot t, the
credit point of household i is given by

Cri(t) =

t−1∑
t=1

gch,i(t) + gs,i(t)− gdis,i(t). (30)

The initial credit point Cri(0) = 1/I and the central co-
ordinator records the credit point of each household. At the
beginning of each time slot t, each household first presumes
that Rch/Rdis is all taken by itself, i.e., ξch,i(t) = 1 and
ξdis,i(t) = 1 ∀i ∈ I. Based on this presumption in addition
to its solar power generation gpv,i and load demand di(t),
each household with energy surplus/deficit calculates its op-
timal control vector, i.e., the optimal load Di(t), optimal en-
ergy purchasing request for load serving gl,i, optimal energy
purchasing request for battery charging gs,i, optimal battery
charging/discharging requests gch,i/gdis,i by solving the real-
time optimization problem P4-a’/P4-b’. For both energy
surplus and deficit groups, if the sum of charging/discharging
requests obtained exceeds Rch/Rdis, the central coordina-
tor proportionally divides Rch/Rdis among households who
request charging/discharging based on their credit points,
i.e., ξch,i(t) = Cri(t)∑

i∈Ia
Cri(t)

and ξdis,i(t) = Cri(t)∑
i∈Ib

Cri(t)
.

Accordingly, each household redetermines its optimal control
vector by solving the real-time problem P4-a’/P4-b’ based
on the adjusted value of ξch,i(t)/ξdis,i(t).

The credit-based distributed sharing control algorithm is
summarized in Algorithm 1. With all information obtained
locally or through simple communication, under the pro-
posed credit-based distributed real-time sharing control al-
gorithm, the optimization problem is solved locally without
requiring any statistical information of the system. Thus,
the proposed sharing control algorithm can be implemented
more easily while avoiding disclosure of private information.

V. PERFORMANCE EVALUATION
A performance evaluation of the proposed real-time sharing
control algorithm via numerical simulations is provided in
this section.

A. SIMULATION SETUP
We consider a microgrid with 10 households in a neighbor-
hood sharing one battery with capacity of Scap, charging and
discharging efficiencies of ηch = 0.8 and ηdis = 1.25, re-
spectively. For the sake of simplicity, we assume that Smax =
Scap and Smin = 0.1Smax, respectively. In addition, the
maximum charging and discharging rates are assumed to be
of the same quantity, Rch = Rch = 0.15Smax. The initial
battery energy level is set as Smin. Due to various living
habits and some social factors such as the age and type of
residence, the load demand of each household in the consid-
ered microgrid varies. We simply classify the households into
three types: Type I low power consumption, Type II medium

VOLUME *, 20** 9
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Algorithm 1: Credit-based distributed real-time shar-
ing algorithm

Initialize the virtual battery queue Kb(0) = s(0)− θ,
the control parameter V = Vmax, the QoS-aware
load queue of each household Hl,i(0) = 0,∀i, and
the credit point of each household Cri = 1/I, ∀i,
respectively.

In each time slot, each household executes the
following steps sequentially:

1. Receive Kb(t);
2. Initialize k = 1 and assume ξkch,i(t) = 1 and
ξkdis,i(t) = 1, respectively;

3. Based on its current renewable generation gpv,i,
demand preferences di(t) and virtual QoS-aware
load queue Hl,i(t), as well as the virtual battery
queue state Kb(t), energy price p(t) and upper
bounds of charging and discharging rates ξkch,i(t)Rch
and ξkdis,i(t)Rdis, solve the real-time problem
P4-a’/P4-b’ to determine its optimal load Dk

i (t),
optimal energy purchasing request for load serving
gkl,i, optimal energy purchasing request for battery
charging gks,i, optimal battery charging gkch,i and
discharging requests gkdis,i;

4. Send its battery charging and discharging requests,∑
gkch,i + gks,i and gkdis,i, to the central coordinator;

5. D∗i (t)← Dk
i (t), g∗l,i ← gkl,i, g

∗
s,i ← gks,i,

g∗ch,i ← gkch,i and g∗dis,i ← gkdis,i;
6. Update Hl,i(t) based on its evolution equation (18).

In each time slot, the central coordinator executes the
following steps sequentially:

1. Initialize k = 1, broadcast the control parameter
V = Vmax, and virtual battery queue state Kb(t);

2. After receiving the charging and discharging
requests,

∑
gkch,i + gks,i and gkdis,i, from the

households, evaluate
∑
i∈I g

k
ch,i + gks,i and∑

i∈I g
k
dis,i, respectively.

if
∑
i∈I g

k
ch,i + gks,i ≤ Rch and

∑
i∈I g

k
dis,i ≤ Rdis

then
a. Inform all households to go to their Step 5;
b.
∑
i∈I g

∗
ch,i + g∗s,i ←

∑
i∈I g

k
ch,i + gks,i and∑

i∈I g
∗
dis,i ←

∑
i∈I g

k
dis,i;

c. Go to Step 3;
else

a. k ← k + 1;
b. ξkch,i ←

Cri(t)∑
i∈Ia

Cri(t)
and

ξkdis,i ←
Cri(t)∑

i∈Ib
Cri(t)

;

c. Send ξkch,i and ξkdis,i to the respective
households and inform all households to repeat
their Step 3 and 4;

end
3. Update Kb(t) and Cri(t),∀i, based on their

evolution equations (17) and (30), respectively.
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(a) Solar generation profiles of individual households
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FIGURE 1. An example of solar generation profiles and load profiles of
individual households.

power consumption and Type III high power consumption.
Each household has a solar PV system with different ca-
pacity that generates a different amount of renewable energy
everyday from 6am to 7pm. We assume households in each
type have solar PV systems generating a similar amount of
renewable energy everyday, which is selected from a uniform
distribution with the mean value of 5kWh, 8kWh and 15kWh
and a slight variance of 0.05kWh for Type I, Type II and
Type III, respectively. Each day is divided into T = 24 time
slots. As shown in the illustrative example in Fig.1(a), the
renewable power generated by each household in each time
slot is generated using a beta distribution with the mean value
of 0.6kW and the standard deviation of 0.03kW.

The simulations are run over households with different
appliance demand profiles of different types of households.
An appliance demand profile generator is developed to sim-
ulate the time-varying power consumption of household ap-
pliances for each household in each time slot as shown in
Fig.1(b). With this appliance demand profile generator, each
appliance operates in a random time slot during a certain
period per day and consumes a certain amount of power
selected from a uniform distribution with a different mean
for each household type to differentiate power consumption
among different types of households, and a variance of 0.2-
1kWh to differentiate power consumption among households
in the same type. Note that, the main objective of the appli-
ance demand profile generator and the solar power generation
simulator is to simulate the differentiation in load demands
and solar power generations of different households in each
time slot to randomly construct the scenario, where some
households have surplus solar energy to compete for the free
storage space of the battery while others with energy deficit
compete for the energy stored in the battery.

The total load demand generated by the appliance demand
profile generator for each household in each time slot is used
as its maximum power request Di(t), while the minimum
power demands Di(t) that can not be shed is set randomly
from [0.3Di(t), 0.7Di(t)]. The QoS related parameters αi(t)
for each household in each time slot and βi for each house-
hold are chosen randomly from [1.5, 3.5] and [0.5, 0.7], re-
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Operation Duration Price(R/kWh)
Weekdays

Peak 7:00-9:00, 18:00-20:00 1.6257
Standard 6:00-7:00, 10:00-18:00 21:00-22:00 1.2860
Off-Peak 1:00-5:00, 23:00-24:00 1.0117
Weekends
Standard 7:00-12:00, 18:00-20:00 1.2860
Off-Peak 1:00-6:00, 13:00-17:00, 21:00-24:00 1.0117

TABLE 1. Time-of-use (TOU) tariff

spectively.
In addition, the Time-of-Use tariff of Johannesburg city

power as listed in Table 1 is used for simulation.

B. SIMULATION RESULTS
This section presents simulation results of the proposed dis-
tributed sharing algorithm. We consider a period of 90 days,
where T = 2160 with each time slot representing 1 hour,
and randomly generate 10 households consisting of 3 Type I
households with an average daily load demand of 29.35kWh,
3 Type II households with an average daily load demand of
35.60kWh and 4 Type III households with an average daily
load demand of 58.06kWh. In total, the 10 households have a
daily average of 427.09kWh of load demand and a daily aver-
age of 103.85kWh of solar generation. The average monthly
load demands and solar generations of individual households
are listed in Table 2 for the sake of easy comparison. The real-
time optimization problem in P4 is solved using the CVX
toolbox [34] for Matlab.

By varying the battery capacity, we investigate the effec-
tiveness of the shared battery in cost saving in this battery
sharing system. As can be observed in Fig.2(b), the solar gen-
eration curtailment rate drops with an increase in the battery
capacity since there is more storage capacity to accommodate
surplus solar generations and cheaper electricity from the
MG. Accordingly, the average cost per kWh decreases with
the increase in the battery capacity as shown in Fig.2(a).
Obviously, considering the relatively high initial investment
cost of batteries, which is expressed on a per kWh of energy
capacity basis, a trade-off between battery capacity, solar
generation curtailment, electricity consumption cost along
with other factors should be made in sizing the shared battery,
so that the battery sharing system can achieve optimal cost-
benefit ratio. However, in this work, we mainly concentrate
on how to utilize the shared storage given the dynamic behav-
ior of the system to reduce electricity consumption cost and
do not consider the optimal sizing of the shared battery. In
the following, we further investigate the performance of the
proposed sharing algorithm using a battery sharing system
with the 10 households sharing a 90kWh battery, which is
enough to accommodate the load demands with a relatively
low cost and zero solar generation curtailment (shown in
Fig.2), as an example.

Firstly, to evaluate the performance of the proposed dis-
tributed sharing algorithm in energy cost saving, a greedy
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FIGURE 2. Average cost per kWh and solar generation curtailment rate under
various battery capacities.

sharing algorithm, where each household is myopic and only
aims to minimize its current cost without taking the future
and other households into account, is used for comparison.
Specifically, under this myopic greedy sharing algorithm,
assuming that all storage space and energy available in the
shared battery can be used by itself, each household inde-
pendently solves a simple cost minimization problem in (31)
to derive its optimal charging (energy generated by its solar
power generation and purchased from the MG) and discharg-
ing requests as well as the optimal energy consumption of its
controllable loads. To ensure that the space-availability con-
straint and the energy-availability constraint in (10) are satis-
fied, if the sum of the amounts of charge/discharge from all
households exceeds the storage space/energy available in the
shared battery, the storage space/energy available for charg-
ing/discharging is proportionally divided among the house-
holds based on the amounts of their charging/discharging
requests.

min
Y(t)

[gl,i(t) + gs,i(t)]p(t) + αi(t)[Di(t)−Di(t)]
2, ∀i ∈ I,

s.t. (2)(3)(4)(7)(10)
Di(t)−Di(t)

Di(t)−Di(t)
≤ βi, ∀i ∈ I.

(31)

Note that, since there is no load management mechanism
in the greedy algorithm, the constraint Di(t)−Di(t)

Di(t)−Di(t)
≤ βi

is added to make sure that the QoS of each household is
satisfied. Moreover, to allow the greedy sharing algorithm to
take advantage of the time-varying pricing, if there is storage
space for charging, each household purchases energy from
the MG to charge into the shared battery during off-peak
periods.

As can be observed in Fig.4, under the greedy sharing
algorithm, as long as there is storage space, energy is pur-
chased to charge into the battery during off-peak periods,
which results in a situation where there is less storage space
for the generated solar energy. As a result, in total 30.80%
generated solar energy can not be accommodated as shown
in Table 2. In contrast, as shown in Fig.3, with the systematic
optimization mechanism in the proposed sharing control
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FIGURE 3. Real-time system states X(t) and control decisions Y(t) of the
credit-based distributed sharing control algorithm.
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FIGURE 4. Real-time inputs and outputs of the greedy sharing algorithm.

algorithm that achieves zero solar generation curtailment,
when necessary, energy is purchased to charge to the shared
battery while taking into consideration the solar power that
will be generated in the following time slots. Thus, the pro-
posed sharing control algorithm can avoid solar generation
curtailment more effectively.

Fig.5 provides a comparison of the accumulated served
load and corresponding cost over time. For the sake of easy
comparison, the original load demands and corresponding
average monthly costs (with a system average monthly cost
of R1185.52) without an ESS and a demand management
mechanism are depicted in Fig.5 and listed in Table 2 as
low benchmarks. It is illustrated that the proposed sharing
control algorithm with an average monthly cost of R883.92
outperforms the myopic greedy algorithm with an average
monthly cost of R1114.02. In addition, as shown in both Fig.5
and Fig.4, the greedy sharing algorithm without a proper load
management mechanism has to serve more power consump-
tion (with the average shed demand rate being 0.05%) with
a higher average cost per kWh (R1.0072/kWh) compared
to that of the proposed algorithm (R0.8850/kWh) with an
average shed demand rate of 9.79%, as listed in Table 2.
Table 2 also shows that, compared to the greedy algorithm,
the proposed sharing control algorithm reduces the average
monthly cost and solar generation curtailment of each indi-
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FIGURE 5. Comparison of accumulated cost and load between the
credit-based distributed algorithm and the greedy algorithm.

vidual household by 15.01%-25.17% and 29.13%-31.19%,
respectively.

Secondly, to evaluate the fairness of the proposed dis-
tributed sharing algorithm that takes into account individ-
ual households’ energy contributions, a proportional dis-
tributed sharing algorithm, in which the maximum charging
rate Rch in (28) and the maximum discharging rate Rdis
in (29) are proportionally divided among the households
based on the amounts of their charging/discharging requests,
is compared with the proposed sharing algorithm. Specifi-
cally, under the proportional distributed sharing algorithm,
for both energy surplus and deficit groups, if the sum of
charging/discharging requests obtained exceeds Rch/Rdis,
Rch/Rdis is proportionally divided among households based
on the amount of their charging/discharging requests, i.e.,
ξpch,i(t) =

gch,i+gs,i∑
i∈Ia

gch,i+gs,i
and ξpdis,i(t) =

gdis,i∑
i∈Ib

gdis,i
.

Accordingly, each household determines its optimal control
vector by solving the the real-time problem P4-a’/P4-b’
based on the value of ξpch,i(t)/ξpdis,i(t).

As illustrated in Fig.7, under the proportional sharing al-
gorithm, available space/energy of the shared battery is allo-
cated among households based on their charging/discharging
requests, which results in a situation where the Type I house-
hold, who contributes less energy, discharges so much from
the shared battery that the type III household, who con-
tributes more energy, has to purchase energy when it needs,
instead of benefiting from the energy it shared previously. In
contrast, as illustrated in Fig.6, the credit-based sharing algo-
rithm, which allows for the contribution of each household to
the shared battery, enables the Type III household to benefit
more from the shared battery, which accordingly reduces its
energy cost as depicted in Fig.8. Meanwhile, it can also be
observed in Fig.6 and Fig.8 that the utilization of the shared
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FIGURE 6. Real-time charge/discharge and purchase decisions of the
credit-based distributed sharing control algorithm.

energy by the Type I household is limited by its contribution,
which leads to an increase in its energy cost.

Furthermore, as can be observed in Table 2, from the
system point of view, compared to the low benchmark case,
both the credit-based sharing algorithm and the proportional
sharing algorithm achieve significant cost saving by reducing
system average monthly cost by 25.35% and 25.44%, respec-
tively, with zero solar generation curtailment. However, in
such a battery sharing system, individual households intend
to save their own energy costs by storing their surplus solar
energy and cheaper electricity purchased from the MG in
the shared battery. Given that the average ratios between the
solar generation and the load demand of Type I, II and III
households are 16.17%, 23.13% and 37.26%, respectively,
Type III households are expected to save more in energy cost
compared to Type I and II households. According to Table 2,
compared to the low benchmark case, the average monthly
costs of Type I, II and III households incurred under the pro-
portional sharing algorithm reduce by 26.89%, 25.38% and
24.27%, respectively, which indicates that households who
contribute less energy free ride on the contributions of others.
Meanwhile, the average monthly cost of Type I, II and III
households incurred under the credit-based sharing algorithm
reduce by 21.35%, 24.31% and 28.43%, respectively, which
are in line with their average ratios of solar generation to
load demand. Thus, from the individual households point of
view, the credit-based sharing algorithm facilitates more fair
allocation of the shared energy among households.

Thirdly, to investigate the effectiveness of the proposed
sharing algorithm that is able to take advantage of the
non-overlapping power consumption patterns of users, the
proposed distributed sharing system is compared with a
distributed ESSs case, where each household individually
owns and operates an ESS with a similar control scheme
using the Lyapunov optimization technique. For a fair com-
parison, in the distributed ESSs case, the battery capacity
of individual household is set in proportion to its net load
demand (the load demand minus the renewable generation
that can be used to serve the load directly) while the overall
capacity of all households is equivalent to the capacity of
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FIGURE 7. Real-time charge/discharge and purchase decisions of the
proportional sharing control algorithm.
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FIGURE 8. Comparison of real-time cost between the credit-based distributed
algorithm and the proportional algorithm.

the shared battery in the sharing system. Specifically, the
battery capacity of household i is equal to ρiEmax, where
ρi =

∑T
t=1 Di(t)−gpv,i(t)∑I

i=1

∑T
t=1 Di(t)−gpv,i(t)

and Emax is the capacity of
the shared battery in the sharing system. As shown in Table
2, compared to the distributed ESSs case, households with a
shared battery achieve 6.41%-9.76% lower average monthly
costs while reducing the solar generation curtailment of
each household to zero. This indicates that, by coordinating
the utilization of the shared battery among households, the
solar generation curtailment can be avoided more effectively,
which in turn leads to energy cost reduction.

VI. CONCLUSIONS
In this work, a microgrid consisting of a group of households
with renewable energy sources and controllable loads shar-
ing a common battery is considered. An ESSM system, in
which households cooperatively utilize the shared battery, is
presented, aiming to minimize the long term time-averaged
cost of the whole microgrid, i.e., the long-term time-averaged
costs of all households, subject to the operational constraints
of the shared battery as well as the arbitrary dynamics of
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System Average H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Household Profile

Average Monthly Load Demand (kWh)
1072.14 1062.03 1304.61 880.353 1305.55 1312.58 878.48 882.93 1302.85 1070.14

Average Monthly Solar Generation (kWh)
247.50 246.67 486.18 142.36 486.82 485.13 142.39 142.37 489.22 247.01

Average Monthly Cost (R)
Without ESS and DM (Low Benchmark)

1185.52 1170.30 1161.14 1345.06 990.69 1346.01 1354.21 983.89 992.10 1344.57 1167.31
Credit-based Distributed Sharing Alg

883.92 887.53 873.69 954.52 779.31 968.39 973.34 773.16 780.79 961.42 887.05
Greedy Alg

1114.02 1092.92 1090.97 1275.50 920.57 1275.60 1286.78 909.57 920.32 1275.38 1092.58
Proportional Distributed Sharing Alg

886.18 876.71 862.93 1008.63 722.24 1017.44 1034.31 719.50 727.68 1021.16 871.19
Distributed ESSs

956.97 958.96 948.72 1029.80 860.42 1034.74 1044.26 856.35 865.20 1045.93 958.24

Average Cost per kWh (R/kWh)

Without ESS and DM (Low Benchmark)
1.0708 1.0916 1.0933 1.0310 1.1253 1.0310 1.0317 1.1200 1.1236 1.0320 1.0908

Credit-based Distributed Sharing Alg
0.8850 0.9211 0.9191 0.8023 0.9989 0.8122 0.8112 0.9947 0.9985 0.8074 0.9230

Greedy Alg
1.0072 1.0199 1.0278 0.9796 1.0459 0.9784 0.9829 1.0356 1.0426 0.9804 1.0212

Proportional Distributed Sharing Alg
0.8905 0.9125 0.9101 0.8527 0.9302 0.8576 0.8669 0.9284 0.9298 0.8618 0.9061

Distributed ESSs
0.9235 0.9600 0.9608 0.8608 1.040 0.8617 0.8621 1.0346 1.0386 0.8707 0.9604

Solar Generation Curtailment Rate

Without ESS and DM (low benchmark)
58.21% 56.78% 56.65% 59.51% 53.68% 60.01% 59.63% 53.62% 53.65% 60.11% 56.47%

Credit-based Distributed Sharing Alg
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Greedy Alg
30.80% 30.14% 30.05% 31.19% 29.13% 31.54% 31.30% 29.27% 29.27% 31.63% 30.07%

Proportional Distributed Sharing Alg
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Distributed ESSs
3.38% 0% 0% 8.22% 0% 8.38% 7.79% 0% 0% 9.42% 0%

TABLE 2. Comparison of costs and solar generation curtailment rates of the whole microgrid and individual households.

renewable generations, load demands, and electricity pricing.
We study the energy management problem for such a shar-
ing system and propose a credit-based distributed real-time
sharing control algorithm, which takes into consideration
energy contributions of individual households. Based on the
Lyapunov theory, the proposed sharing control algorithm
coordinates households to optimally charge/discharge energy
to/from the shared battery, by jointly optimizing charging
and discharging of the shared ESS as well as the power
consumptions of all households’ controllable loads in a
distributed and fair manner without requiring any system
statistics. Numerical simulations are presented to evaluate
the performance of the proposed real-time sharing control
algorithm in terms of energy cost saving and fairness. It is
shown that, compared to the greedy sharing algorithm, the

proportional distributed sharing algorithm and the distributed
ESSs case, the proposed credit-based distributed sharing
control algorithm outperforms in terms of both cost saving
and renewable energy generation utilization.

.

APPENDIX A
Derivation of (15)

Summing both sides of the energy state equation (7) over
t = {0, 1, · · · , T − 1} and dividing them by T yields

1

T

T−1∑
t=0

∑
i∈I

bi(t) =
s(T )

T
− s(0)

T
. (32)

where
∑
i∈I bi(t) is defined as the effective charging and dis-

charging amount of in time slot t in (7). Taking expectations
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on both sides of (32) and taking limits over T to infinity gives

lim
T→∞

1

T

T−1∑
t=0

E

{∑
i∈I

bi(t)

}
= lim
T→∞

s(T )

T
− lim
T→∞

s(0)

T
.

(33)
Since both s(T ) and s(0) are finite due to (9), the right hand
side of (33) is equal to zero.

APPENDIX B
Proof of Proposition 1

According to the definition of L(Θ(t)), the difference

L(Θ(t+ 1))− L(Θ(t))

=
1

2
[Kb(t+ 1)2 −Kb(t)

2] +
∑
i∈I

1

2
[Hl,i(t+ 1)2 −Hl,i(t)

2]

(34)

Based on the queue update of Kb(t) in (17), the term Kb(t+
1)2 −Kb(t)

2 in (34) can be upper bounded by

Kb(t+1)2−Kb(t)
2 ≤ 2Kb(t)

∑
i∈I

bi(t)+max{R2
dis, R

2
ch}.

(35)
Similarly, based on the queue update of Hl,i(t) in (18), the
term Hl,i(t+ 1)2−Hl,i(t)

2 in (34) can be upper bounded by

Hl,i(t+1)2−Hl,i(t)
2 ≤ 2Hl,i(t)

[
Di(t)−Di(t)

Di(t)−Di(t)
− βi

]
+1+β2

i .

(36)
Applying inequalities (35) and (36) to (34), taking the con-
ditional expectation over L(Θ(t+ 1))−L(Θ(t)) given Θ(t)
and adding the term V E{CToT (t)} yield the upper bound in
(20).

APPENDIX C
Proof of Proposition 2

Proof of Proposition 2.1:
The per-slot problem P4 includes all constraints of the

original problem P1 except for the energy state constraint
(9). Hence, to prove the solution derived from P4 are feasible
to P1 is to show the energy state s(t) is bounded within
[Smin, Smax]. The optimization problem P4 can be rear-
ranged to P5

P5 : min
Y(t)

[V p(t) +Kb(t)ηch]
∑
i∈I

gs,i(t) +Kb(t)ηch
∑
i∈I

gch,i(t)

+ V p(t)
∑
i∈I

gl,i(t)−Kb(t)ηdis
∑
i∈I

gdis,i(t)

+ V
∑
i∈I

αi[Di(t)−Di(t)]
2 +

∑
i∈I

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)
,

s.t. (2)(3)(4)(8)(17)(18).
(37)

Let D∗(t) =∆ D∗i (t), gch
∗(t) =∆ g∗ch,i(t), gdis

∗(t) =∆

g∗dis,i(t), gl
∗(t) =∆ g∗l,i(t) and gs

∗(t) =∆ g∗s,i(t) ∀i ∈ I be
the optimal solution to (37). It is noticed that D∗(t) will
not directly affect the battery queue Kb(t). Hence, D∗(t)

can be treated as a given load. As mentioned previously, we
consider two cases in determining how to utilize the solar
energy generation: Case 1: energy surplus where ggv,i > D∗i
and Case 2: energy deficit where ggv,i ≤ D∗i . Thus, the user
group I can be naturally divided into two groups: group A,
Ia, where ggv,i > D∗i ∀i ∈ Ia, and group B, Ib, where
ggv,i ≤ D∗i ∀i ∈ Ib. Correspondingly, the optimization
problem P5 can be split into two per-slot sub-problems for
group A and B, respectively, as follows:

• Case 1: when ggv,i > D∗i , we have g∗l,i(t) = 0. Then,
the optimization problem for group A P5-a is written as:

P5−a : Energy Surplus

min
Y(t)

[V p(t) +Kb(t)ηch]
∑
i∈Ia

gs,i(t) +Kb(t)ηch
∑
i∈Ia

gch,i(t)

−Kb(t)ηdis
∑
i∈Ia

gdis,i(t) + V
∑
i∈Ia

αi[Di(t)−Di(t)]
2

+
∑
i∈Ia

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

s.t. (4)(8)(17)(18).
(38)

• Case 2: when ggv,i ≤ D∗i , according to (3), we have
g∗ch,i(t) = 0 and gl,i(t) = D∗i (t) − g∗dis,i(t) − gpv,i(t).
Then, the optimization problem for group B P5-b is
written as:

P5−b : Energy Deficit

min
Y(t)

[V p(t) +Kb(t)ηch]
∑
i∈Ib

gs,i(t)−Kb(t)ηdis
∑
i∈Ib

gdis,i(t)

+ V p(t)
∑
i∈Ib

[Di(t)− gdis,i(t)− gpv,i(t)]

+ V
∑
i∈Ib

αi[Di(t)−Di(t)]
2 +

∑
i∈Ib

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

=[V p(t) +Kb(t)ηch]
∑
i∈Ib

gs,i(t)− V p(t)
∑
i∈Ib

gpv,i(t)

− [V p(t) +Kb(t)ηdis]
∑
i∈Ib

gdis,i(t) + V p(t)
∑
i∈Ib

Di(t)

+ V
∑
i∈Ib

αi[Di(t)−Di(t)]
2 +

∑
i∈Ib

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

s.t. (4)(8)(17)(18).
(39)

By combining P5-a and P5-b together, the optimization
problem P5 is transformed into the following optimization
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problem:

P6 : min
Y(t)

[V p(t) +Kb(t)ηch]
∑
i∈I

gs,i(t) +Kb(t)ηch
∑
i∈Ia

gch,i(t)

− [V p(t) +Kb(t)ηdis]
∑
i∈Ib

gdis,i(t)−Kb(t)ηdis
∑
i∈Ia

gdis,i(t)

+ V p(t)
∑
i∈Ib

Di(t) + V
∑
i∈I

αi[Di(t)−Di(t)]
2

+
∑
i∈I

Hl,i(t)
Di(t)−Di(t)

Di(t)−Di(t)

s.t. (4)(8)(17)(18).
(40)

Note that the optimal solution to P6 has the following prop-
erties:
• If Kb(t) > −V pmin/ηch,

∑
i∈I g

∗
s,i = 0;

• If Kb(t) < −V pmax/ηch,
∑
i∈I g

∗
s,i + g∗ch,i = Rch.

We now prove the boundary of s(t) in (24) using induction.
First it is obvious that the lower and upper bounds hold for
t = 0. Now suppose that the boundary holds for time slot t,
i.e., Smin ≤ s(t) ≤ Smax. This in turn indicates Smin− θ ≤
Kb(t) ≤ Smax−θ, i.e.,−V pmax/ηch−ηdisRdis ≤ Kb(t) ≤
Smax−Smin−V pmax/ηch− ηdisRdis. Hence, to prove the
boundary of s(t) in (24) also holds for time slot t + 1, we
need to prove the boundary of Kb(t), i.e., [−V pmax/ηch −
ηdisRdis, Smax−Smin−V pmax/ηch− ηdisRdis], holds for
time slot t+ 1. We consider the following cases:

1) First suppose −V pmax/ηch − ηdisRdis ≤ Kb(t) <
−V pmaxηch, we have

∑
i∈I (g∗s,i + g∗ch,i) = Rch,∑

i∈Ib g
∗
dis,i = 0 and

∑
i∈Ia g

∗
dis,i = 0. Then, based

on (17), the battery queue Kb(t) updates as follows:

Kb(t+ 1) = Kb(t) + ηch
∑
i∈I

(g∗s,i + g∗ch,i)− ηdis
∑
i∈I

g∗dis,i

= Kb(t) + ηchRch

> Kb(t) ≥ −V pmax/ηch − ηdisRdis.

In addition, as Kb(t) < −V pmaxηch, we have

Kb(t+ 1) < −V pmax/ηch + ηchRch

≤ Smax − Smin − V pmax/ηch − ηdisRdis,

as long as Smax − Smin − ηdisRdis − ηchRch ≥ 0
holds.

2) Secondly, suppose −V pmax/ηch ≤ Kb(t) ≤
−V pmin/ηch,

a) ifKb(t) ≥ −V p(t)/ηch, we have
∑
i∈I g

∗
s,i = 0.

There are two possibilities to study:
i) when −V p(t)/ηch ≤ Kb(t) < −V p(t)/ηdis,
we have

∑
i∈I g

∗
ch,i = min{Rch,

∑
i∈Ia (gpv,i −D∗i )}

and
∑
i∈I g

∗
dis,i = 0. Thus,

Kb(t+ 1) = Kb(t) + ηch min{Rch,
∑
i∈Ia

(gpv,i −D∗i )}

> Kb(t) ≥ −V pmax/ηch − ηdisRdis.

In addition, as Kb(t) < −V pmin/ηch, we have

Kb(t+ 1) < −V pmin/ηch + ηchRch

≤ Smax − Smin − V pmax/ηch − ηdisRdis,

based on the definition
V ≤ ηch(Smax−Smin−ηchRch−ηdisRdis)

pmax−pmin
in (23).

ii) when−V p(t)/ηdis ≤ Kb(t) ≤ −V pmin/ηch,
we have∑
i∈I g

∗
ch,i = min{Rch,

∑
i∈Ia (gpv,i −D∗i )}

and
∑
i∈I g

∗
dis,i = min{Rdis,

∑
i∈Ib (D∗i − gpv,i)}.

In other words, the maximum possible increase is
ηchRch and the the maximum possible decrease
is ηdisRdis. Thus, using the upper bound of V as
the case above, we have

Kb(t+ 1) < Kb(t) + ηchRch

≤ −V pmin/ηch + ηchRch

≤ Smax − Smin − V pmax/ηch − ηdisRdis,

while

Kb(t+ 1) > Kb(t)− ηdisRdis
≥ −V pmax/ηch − ηdisRdis.

b) if Kb(t) < −V p(t)/ηch, we have
∑
i∈I g

∗
s,i +∑

i∈Ia g
∗
ch,i = Rch and

∑
i∈I g

∗
dis,i = 0. Thus,

using the upper bound of V as the case above, we
have

Kb(t+ 1) = Kb(t) + ηchRch

≤ −V pmin/ηch + ηchRch

≤ Smax − Smin − V pmax/ηch − ηdisRdis,

while

Kb(t+ 1) = Kb(t) + ηchRch

≥ −V pmax/ηch + ηchRch

> −V pmax/ηch − ηdisRdis,

3) Thirdly, suppose −V pmin/ηch < Kb(t) ≤ 0, we have∑
i∈I g

∗
s,i = 0. As the case 2.a above, we consider two

possibilities as follows:
a) when −V pmin/ηch < Kb(t) ≤ −V pmin/ηdis,

we have
∑
i∈I g

∗
ch,i = min{Rch,

∑
i∈Ia gpv,i −D

∗
i }

and
∑
i∈I g

∗
dis,i = 0. Thus,

Kb(t+ 1) = Kb(t) + ηch min{Rch,
∑
i∈Ia

gpv,i −D∗i }

> Kb(t) > −V pmin/ηch
> −V pmax/ηch − ηdisRdis.

In addition, as Kb(t) > −V pmin/ηdis, we have

Kb(t+ 1) < −V pmin/ηdis + ηchRch

≤ Smax − Smin − V pmax/ηch − ηdisRdis,

b) when Kb(t) ≥ −V pminηdis, we have∑
i∈I g

∗
ch,i = min{Rch,

∑
i∈Ia (gpv,i −D∗i )}

and
∑
i∈I g

∗
dis,i = min{Rdis,

∑
i∈Ib (D∗i − gpv,i)}.

In other words, the maximum possible increase is
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Rch and the the maximum possible decrease is
Rdis. Thus, using the upper bound of V as the
case above, we have

Kb(t+ 1) < Kb(t) + ηchRch

≤ −V pmin/ηdis + ηchRch

≤ Smax − Smin − V pmax/ηch − ηdisRdis,

while

Kb(t+ 1) > Kb(t)− ηdisRdis
≥ −ηdisRdis > −V pmax/ηch − ηdisRdis.

4) Finally, suppose 0 < Kb(t) ≤ Smax − Smin −
V pmax/ηch − ηdisRdis, we have∑

i∈I
g∗s,i = 0,

∑
i∈I

g∗ch,i = 0

and
∑
i∈I

g∗dis,i = min{Rdis,
∑
i∈I

(D∗i − gpv,i)}.

Hence,

Kb(t+ 1) = Kb(t)− ηdis min{Rdis,
∑
i∈I

D∗i − gpv,i}

< Kb(t) ≤ Smax − Smin − V pmax/ηch − ηdisRdis.

In addition, as Kb(t) > 0, we have

Kb(t+ 1) = Kb(t)− ηdis min{Rdis,
∑
i∈I

D∗i − gpv,i}

> −ηdis min{Rdis,
∑
i∈I

D∗i − gpv,i}

> −ηdisRdis > −V pmax/ηch − ηdisRdis.

From the induction, the boundary of s(t) in (24) holds for any
time slot with any control decisions derived from P4, which
indicates that all constraints of P1 are satisfied. Hence, all
control decisions derived from P4 are feasible to P1.

Proof of Proposition 2.2:
To prove Proposition 2.2, we first give the following

lemma, which can be derived from Theorem 4.5 in [25].

Lemma 1. There exists a stationary and randomized control
policy Π that achieves the following:

E{CΠ(t)} = C∗P1; (41)

E{ηch
∑
i∈I

[gΠ
ch,i(t)+g

Π
s,i(t)]−ηdis

∑
i∈I

gΠ
dis,i(t)}E{

∑
i∈I

bΠi (t)} = 0,

(42)

E
{
Di(t)−DΠ

i (t)

Di(t)−Di(t)

}
≤ βi, (43)

where all expectations are taken over the randomness of
the system state and the possible randomness of the energy
charging/discharging and purchasing decisions.

Since the proposed algorithm is to minimize the RHS of
(20), the value of the RHS should be smaller than that under
the policy Π, which yield:

∆(t) + V E{C∗P4(t)} ≤ B +Kb(t)E{
∑
i∈I

bΠi (t)|Θ(t)}

+
∑
i∈I

Hl,i(t)E
{
Di(t)−DΠ

i (t)

Di(t)−Di(t)
− βi|Θ(t)

}
+ V E{

∑
i∈I

CΠ(t)}

= B + V C∗P1,
(44)

where (42) and (43) in Lemma 1 have been used. Taking an
expectation over Θ(t) on both sides and summing over t ∈
{0, 1, 2, · · · , T − 1}, we obtain

V
T−1∑
t=0

E{C∗P4(t)} ≤ TB + TV C∗P1 − E{G(T )−G(0)}

(45)
Dividing both sides by TV yields:

1

T

T−1∑
t=0

E{C∗P4(t)} ≤ B

V
+ C∗P1 −

E{G(T )−G(0)}
V T

(46)

Since E{G(T )} and E{G(0)} are finite, taking limits over T
to infinity gives:

lim
T→∞

1

T

T−1∑
t=0

E{C∗P4(t)} ≤ B

V
+ C∗P1. (47)
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