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Abstract-  
This study reviews atomic layer deposition technique with a special interest on solar 
cells applications. Atomic layer deposition is a vapour phase deposition technique used 
for producing thin films for several applications. This review focuses on the chemistry 
of Atomic Layer Deposition of solar cells, merits and demerits of ALD on thin film 
solar cells. Solar cells have attracted a lot of interest due to their potential for 
affordable, clean and sustainable energy. Solar cells can be deposited using different 
deposition techniques but Atomic layer deposition currently attracts attention owing to 
the merits. ALD has functional merit to bulk materials, great processing flexibility and 
affordability. The review examined the merits of ALD and solar cells and areas for 
future study. It offers affordability, ease of control of film growth, conformal and 
improvement on the deposition of solar cells. Despite few demerits, ALD is poised to 
be the deposition technique of choice for modifying interfaces of the film for improved 
performance.  
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1. Introduction  
Clean, inexpensive and sustainable energy has been a keystone of increasing wealth and 
economic development of emerging economies. There is currently more investment in such 
technologies as alternate materials to meet global power needs of about 17 TW [1]. The 
emphasis is on the reduction of the cost and complexity of production of such technologies. 
About 120,000 TW of solar energy gets to the earth and only 600 TW is useful for consumption 
[2]. This makes solar energy the most abundant renewable and clean energy source. However, 
solar energy currently contributes just 1.1% of the total energy supply [3]. This low penetration 
may be attributed to several factors related to cultural, technology and economy. Sunlight is not 
evenly distributed globally and so is the level of acceptance/penetration of solar energy. 
Although, there is currently an increase in thin films solar cells research with emphasis on cost 
reduction for global consumption. Despite the decrease in solar cost in several developed 
countries, the same cannot be said of most developing countries. Domestication of solar energy 
technologies in all country will drastically reduce the cost and increase the acceptance globally. 
Module cost has been reduced but other factors still inhibit widespread of solar technology. The 
cost of solar is still unaffordable in several countries due to some factors. These factors include 
shipping, permits, labour and inspection cost incurred from importing solar in such countries 
[4-6]. A reduction in area per module and increased efficiency can crash the overall solar costs. 
This implies solar with theoretical efficiencies above the Shockley-Queisser limit with a cost 
less than $0.20 per watts [7, 8]. Thin film technology especially nanostructured metal oxide and 
scalable deposition like ALD can break the Shockley-Queisser limit [9, 10]. 
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Thin films Materials can be deposited using various techniques [11]. There has been an attempt 
to review atomic layer deposition and its applications by some studies in the past [12-16]. 
Puurunen [17] did a review of the surface chemistry of ALD. Although, Parsons, Elam [18] 
gave a review of the history and origin of Atomic layer deposition science from the 1960s until 
2013. Marin, Lanzutti [19] reviewed the ALD techniques, drawback and the instruments used 
for ALD analysis/characterization. Miikkulainen, Leskelä [12] reviewed the basics of ALD, the 
process of ALD reactant and ALD processing of ternary compounds. Kim [13] did a review of 
ALD processing of metals and nitride films and their areas of applications in semiconductor 
fabrication. Guo, Ye [14] reviewed the surface chemistry of ALD and its reaction mechanism 
for surface modification of polymeric materials. Tynell and Karppinen [20] did a 
comprehensive review of atomic layer deposition of ZnO and the applications. Kessels, Hoex 
[21] understudied the prospects of ALD for solar cells manufacturing. The study focused on the 
ALD deposition for first, second and third generation solar cells.  
This study will explore the fundamentals, applications of ALD and examples of ALD deposited 
solar cells. This will open frontiers for more research on ALD deposition of thin film solar cells. 
1.1 Deposition of Thin film 
 
Thin film deposition is classified into three groups by means of its nature of deposition as 
illustrated in Figure 1 [22]. This classification is broadly grouped based on the chemical or 
physical process of the thin films [23]. Deposition of the thin film is done above the substrate 
surface. The material to be deposited is added to the substrate in layers. This layer can be 
structural or as a spacer that can be removed thereafter [24]. Chemical deposition occurs when 
the hot substrate and inert gases react chemically in a low atmospheric pressure chamber. 
Chemical deposition is divided into gas-phase and solution-processed. The gas-phase are atomic 
layer epitaxy, chemical vapour deposition and atomic layer deposition [25]. The solution-
processed are spray pyrolysis, chemical bath deposition, screen printing, sol-gel, dip-coating 
and spin-coating [26-30]. Chemical deposition can also be sub-classified, based on precursor 
phase, into the spin coating, plating, atomic layer deposition, and chemical vapour deposition. 
The chemical vapour deposition (CVD) include plasma-enhanced CVD, low-pressure CVD and 
very low-pressure CVD [31].  
However, physical deposition involves the physical movement of the material toward the 
substrate surface. This material can be liquid, solid or vapour. Physical deposition process 
includes sputtering (DC and RF), thermal evaporation, ion plating, pulsed laser deposition and 
Molecular Beam Epitaxy (MBE) [32-35]. 



 
Figure 1: Classification of thin film deposition methods 

 
2. Introduction to Atomic Layer Deposition basics 
The emerging and future directions of ALD is geared towards energy applications. This includes 
energy conversion, energy conservation and energy storage. The main focus of energy 
conversion ALD studies is on fuel cells, solar cells and photo-electrochemical cells. However, 
energy conservation researches are towards improved catalysts. ALD study for energy storage 
tends to gravitate towards lithium and ultra-capacitors. The focus of ALD studies on energy 
applications stern from the interest in nanostructured materials. Nanostructured material is 
believed to be a global solution for low-cost and eco-friendly energy [36-39]. ALD is a viable 
tool for growing nanomaterials and deposition of nanostructured materials. This is in addition 
to the vast merit of the technique.  
ALD is a vapour phase deposition technique used for the deposition of different categories of 
thin films materials [40]. It is based cyclic use of self-limited chemical reactions for adjusting 
of the layer thickness. ALD has shown tremendous potential for deposition of novel 
semiconductors and other energy conversion processes [41-43]. The quest for efficient and 
affordable thin-film solar cells have shifted research focus to the atomic level control of thin 
film thickness, uniformity and maintains quality. ALD appears to be deposition technique of 
choice due to the simplicity, reproducibility, conformal, and uniform nature of the as-deposited 
thin films [44, 45]. Also, films deposited with ALD are continuous and pin-hole free [46]. The 
ALD was originally known as atomic layer epitaxy (ALE) by Suntola and Antson in 1977 [47]. 
ALD evolved from a couple of ALE processes of incorporating metals and metal oxides 
deposited non-epitaxial.  
 
2.1 Chemistry of ALD 
 
ALD is similar to chemical vapour deposition. However, ALD comprises of chemical reactions 
in which the precursors react with the surface successively but the reactants are kept apart at 
lower temperature [48]. During this reaction, the precursor is pulsated into a vacuum chamber 
of about <1 Torr for a specified amount of time to enable the precursor to react with the surface. 
The surface reaction is disconnected using nitrogen or argon purging. This purging ensures that 



unreacted precursor and by-product are removed. The purging and self-limited reactions create 
the ALD cycle which is shown in Figure 2i. A detailed schematic of the ALD cycle is depicted 
in Figure 2ii [49]. The amount of film thickness deposited in one complete cycle is known as 
growth per cycle (GPC). The final thickness is not dependent on the duration of the reaction but 
a number of the cycle. Individual layer thickness can be optimized with great accuracy.  
 
 

(i)    (ii)  
Figure 2: ALD cycle (i) summarized the ALD cycle (ii) Schematic of the ALD process. (a) 
Substrate surface has natural functionalization or is treated to functionalize the surface. (b) 

Precursor A is pulsed and reacts with the surface. (c) Excess precursor and reaction by-
products are purged with an inert carrier gas. (d) Precursor B is pulsed and reacts with the 

surface. (e) Excess precursor and reaction by-products are purged with an inert carrier gas. (f) 
Steps 2–5 are repeated until the desired material thickness is achieved. 

 
As seen in figure 2, a typical ALD cycle comprises four steps. The first step is the introduction 
of the reactants. This is followed by purging using inert gas to eliminate surplus reactants. The 
third step involves the addition of counter-reactants. The last step is purging of the unused 
reactants and by-product of the reaction. The anticipated thickness determines the amount of 
the cycle is repeated. 
ALD operates at a lower temperature of <350oC compared to CVD. Atomic layer deposition 
temperature window is the temperature where the growth is saturated and is dependent on the 
specific ALD process. A poor growth rate is obtained when the deposition is done outside of 
the ALD window. 
 
3. Atomic Layer deposition for thin film solar cells 
Material Solar energy has been identified as an emerging energy source due to the clean and 
sustainable nature [50]. Electricity is generated using a photovoltaic effect when solar cells 
convert sunlight into electricity [51]. A lot of solar cells have been developed over the last 
decades. However, efficiency and affordability still hinder the uniform domestication of solar 
energy across the globe [52]. The uniform and affordable deposition of metal oxides (TiO, ZnO, 
SnO2, HfO2, Al2O3), nitrides (TaN, TiN, WN, NbN), metals (Ru, Ir, Pt) and sulphides (ZnS) 
can be achieved using Atomic layer deposition. A metal oxide thin film is formed when a metal 
complex (e.g metal halide, metal alkoxide, etc.) and an oxygen source reacts [17]. The metal 
oxide is obtained via hydrolysis and condensation steps. Although, research is still on for atomic 
layer deposition of Ge, Si, Si3N4 and other multicomponent oxides. Table 1 outline an overview 
of major atomic layer deposition in solar cells. 
 



   Table 1. Summary of major ALD applications in solar cells. 
Author Material Application Thickness 

(nm) 
Solar Cells Classification 

[53-56] 
[57, 58] 
[59] 
 

CuxS 
CuInS2 

ZnO 

Absorber 
 
TCO 

unspecified Nanostructured heterojunction 
 
 

[60, 61] 
[62] 
[63] 
[64] 
 
[65] 
[66] 
[65] 
[67, 68] 
[69] 
 
[61, 69-
71] 
[60] 
 
[72] 
 
[73] 
 
[74] 
 
[75] 

Al2O3  
TiO2  
HfO2  
ZrO2 

 
AZO 
TiO2 

SnO2 
ZnO 
TiO2: Ta 
 
TiO2 

SnO2 

 

HfO2 

 

In2O3: 
Sn 
 
Pt 
 
In2S3 

Barrier Layer  
 
 
 
 
Photoanode  
 
 
 
 
 
Blocking 
Layer 
 
 
Compact 
layer 
 
TCO 
 
 
 
Sensitizer 
 

0.1–25 
 
 
 
 
5–90 
 
 
 
 
 
7-20 
 
 
 
 
7 
 
 
 
5 
 

Dye-sensitized 

[76] 
[77] 
[78-80] 
[81-84] 
[85] 
[86-88] 
[85] 
[77] 
[89, 90] 
 
[91] 
 
[92] 
 
 

ZnSe 
ZnS 
O (Zn, 
Mg) 
Zn (O, 
S)  
TiO2 

In2S3 

Al2O3 

GaS 
Zn-Sn-O 
 
Al2O3 

 
Al2O3 

Buffer layer   
 
 
 
 
 
 
 
 
 
Diffusion 
barrier layer 
Encapsulation 
layer 
 

10 - 70 
 
 
 
 
 
 
 
 
 
100 – 300 
 
10 – 55 
 
 

CIGS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



[93] 
 
 
[94-96] 

 
 
ZnO: B 
 
 
Al2O3 
 

 
TCO 
 
Surface 
passivation 
layer 
 

400 
 
 
5-30 

a-Si: H 
 
 
c-Si 
 

[97] 
[97, 98] 
[97, 98] 

AlAs 
AlGaAs 
GaAs 

Absorber 30 - 400 
 

AlGaAs/GaAs multijunction 

 
Atomic layer deposition can be used in several aspects of solar cells. ALD provides better 
control over CBD, PVD and CVD in terms of material growth and conformality. Material 
growth and conformality are vital for the development of new and low-cost solar cells. Atomic 
layer deposition has shown an advantage over other techniques for solar cells deposition. 
Atomic layer deposition technique has been established for forming barrier layers [99], an 
absorber layer and a passivation layer in crystalline silicon cells [100]. This has been shown in 
different categories of emerging solar cells especially nanostructured metal oxide solar cells. 
Banerjee, Lee [64] did ALD deposition of Al-doped ZnO films. The film thickness was ∼100 
nm and deposited at 150 °C on a quartz substrate. The study observed 17.7 cm2V-1s-1 maximum 
mobility and 4.4 x 10-3 Ωcm resistivity. The carrier concentration was obtained to be 1.7 x 1020 
cm-3 at 3% Al. A band gap of 3.23 eV and optical transmittance of 80% was achieved. 
Nguyen, Resende [101] deposited Al-doped ZnO films on borosilicate glass substrate using 
atmospheric pressure spatial ALD. A transparency of 90% and a tunable band gap in the range 
of 3.30 and 3.55eV was achieved. Also, the electron mobility of 5.5 cm2 V-1s-1 was recorded. A 
resistivity of 5.57 x 10-3 Ωcm was achieved which compared favourably with 3.0 x 10-3 Ωcm 
obtained using RF Sputtering [102]. Also, a carrier density of 4.25 x 1020 cm-3 was recorded. 

Also, Muñoz‐Rojas, Sun [71] used atmospheric pressure spatial ALD to deposit TiO2 as a hole 
blocking layers for P3HT-PCBM-based solar cells. Glass and ITO substrates were used for the 
films deposition. The longest deposition took 50cycles and the thinnest took 10cycles at 100 oC 
in 37 s. The study concluded that fast deposition, low processing temperature, material usage, 
and condensed energy input makes ALD effective method for layer blocking [103, 104]. 
Muñoz-Rojas, Jordan [105] deposited Cu2O films on both glass and polymer substrate at 225 
oC using rapid atmospheric ALD. The study achieved a carrier concentration of ∼1016 cm-3 and 
mobility of 5 cm2V-1s-1 with a thickness in the range of 50 – 120 nm using area >10 cm2. 
Poodt, Cameron [106] did an overview of spatial ALD. The study summarized the concept of 
spatially separating the half-reactions, with separate precursor inlets and exhausts. Several 
applications of spatial ALD was mentioned with thin film encapsulation and light management 
for PV explained. The process is an improvement on conventional ALD where the use of shields 
of inert gas to separate the half-reaction zones. The gas shield width is designed wide to avert 
diffusion and cross-reactions between the precursors. Quantum dot sensitizers with precise size 
have been grown using ALD [107]. The absorption coefficient of about 1.7 x 107 cm-1 has been 
achieved on plasmonic nanostructures using ALD. 
 
4. Atomic Layer Deposition Demerit 



There are a couple of demerits associated with Atomic layer deposition of solar cells. A major 
demerit is the temperature range of 80 – 300 oC of most ALD. The elevated surface-volume 
ratio causes nanostructured materials to have substantial melting point depression when 
combined with the vacuum in the atomic layer deposition reactor chamber [108]. Also, the 
formation of the nanostructured firm at low temperature causes quantum dot solar cells to lose 
their quantum confinement. This demerit can be overcome by depositing at a low temperature. 
A different solution is deposition of barrier layer material grown at low temperature around the 
quantum dot and the second material at elevated temperature. 
Also, the non-uniformity of ALD deposition of some porous structure of the thin film is a 
demerit. A third demerit is the inadequate commercial precursors for ALD deposition in 
existence. This continues to restrict the deposition for targeted material and application [49].   
 
 
5. Conclusion 
This review successful shed light on Atomic layer deposition, the chemistry of ALD, previous 
ALD deposition of solar cells and demerit of ALD. Atomic layer deposition has been shown to 
be the solution for conformal, precise thickness control and barrier layer formation for thin film 
solar cells, especially nanostructured solar cells. It offers affordability, ease of control of film 
growth and improvement on the deposition of solar cells. Despite the demerits, ALD is poised 
to be the deposition technique of choice for modifying interfaces of the film for improved 
performance.  
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