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ABSTRACT         

The generation of construction and demolition waste (C&DW) worldwide keeps on 

escalating due to growth in infrastructure and the related refurbishment or replacement of 

existing structures. Numerous researches have been conducted towards utilizing C&DW 

materials for production of new concrete, from which it has been well-established that their 

use in concrete mixtures generally leads to inferior mechanical properties of the resulting 

concrete. As such, the general acceptance and conventional utilization of C&DW in the 

construction industry, is undermined. In this paper, the concept of triple layered interfacial 

transition zone (3ITZ) is suggested to be the main reason for the inferior mechanical 

properties exhibited by recycled aggregate concrete. The present paper reviewed past 

researches on re-activation of hydrated cement paste and on improving the quality of 

recycled aggregates by using different treatments. It is shown that a combination of 

mechanical grinding and thermal treatment at temperatures of 500 to 800oC, is an effective 

means of activating the cementitious properties of hardened cement paste. Adhered mortar 

removal and mortar fortification are the main approaches for enhancing the properties of 

recycled aggregates. Mechanical abrasion and/or thermal treatment at a temperature of 

500oC, are the most effective techniques for improving the properties of recycled 

aggregates.      
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Glossary of abbreviations 

C&DW  - Construction and demolition waste 

RFA  - Recycled fine aggregates 

RCA  - Recycled coarse aggregates 

HCP  - Hardened cement paste 

DCP  - Dehydrated cement paste 

O-DCP - Original dehydrated cement paste  

D-DCP - Dispersed dehydrated cement paste 

OPC  - Ordinary Portland cement 

GGBS  - Ground granulated blast-furnace slag 

RCF  - Recovered concrete fines 

CH  - Calcium hydroxide 

CSH  - Calcium silicate hydrate 

CS  - Calcium silicate  

FA  - Fly ash 

SF  - Silica fume 

ITZ  - Interfacial transition zone 

3ITZ  - Triple layered interfacial transition zone 

RA  - Recycled aggregate 

RAC  - Recycled aggregate concrete 

NCA  - Natural coarse aggregate 

RMA  - Recycled mortar aggregates 

MCP  - Microbial carbonate precipitation 

GO  - Graphene oxide 

PVA  - Polyvinyl alcohol 

PCE  - Polycarboxylate ether 

w/c  - Water / cement 

w/b  - Water / binder 
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1. Introduction  

The total annual concrete production worldwide has been estimated to be more than 10 

billion tons (Meyer, 2009). However, this enormous consumption of concrete for modern 

infrastructure construction also leads to depletion of the natural resources used for its 

production. Meanwhile, the generation of construction and demolition waste (C&DW) 

continues to grow as a result of replacement or refurbishment of existing structures. It is 

estimated that about 450 million tons of construction waste is generated each year in 

Europe (De Bito and Saikia, 2013), of which only 28% is recycled while 72% is disposed-

off (Matias et al., 2013). The construction industry in South Africa alone is estimated to 

generate C&DW of about 5 to 8 million tons each year (Benjamin, 2004). Presently, most 

C&DW materials are dumped in landfills or used in low quality applications, for example, 

as road base materials. 

       Numerous researches have been conducted on utilization of C&DW in concrete. 

Khatib (2005) reported that concrete made using 25% and 100% recycled fine aggregates 

(RFA) gave compressive strength reductions of 15% and 30%, respectively. Xiao (2012) 

concluded that compressive strengths of concrete made using recycled coarse aggregates 

(RCA) were generally lower than those of the control. They reported that strength 

decreased with increase in RCA content. Experimental work carried out by (Zega and Di 

Maio, 2011) showed that the 28-day compressive strength of concrete made at a 0.45 

water/cement (w/c) ratio, reduced from 43.6 MPa for control to 41.4 MPa when 30% of 

the fine aggregate was substituted with RFA, i.e. a strength decrease of about 5%. 

Similarly, Bester et al. (2017) reported that as the replacement of natural aggregate with 

recycled demolition aggregate increased, there was a drastic reduction in compressive 

strength of the 0.67 w/c ratio concrete from 45 MPa for control to 5 MPa, when 100% of 

the natural aggregate was substituted with recycled aggregates. Ekolu et al. (2012) used 

different types of recycled aggregates including RCA obtained from C&DW and from 

crushing of laboratory prepared hardened concrete. They found that the extent of 

compressive strength reduction due to use of RCA, was dependent on the mix design. 

Concretes made with RCA obtained from C&DW gave 35.2% and 21.8% strength 

reductions for 32 MPa and 50 MPa concretes, respectively. Such relatively inferior results 
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obtained for concretes made with recycled aggregates, give a negative connotation which 

undermines the potential for conventional use of C&DW in concrete construction.   

       During crushing of waste concrete, fine particles of sizes less than 150 m  are 

typically generated. Hardened cement paste (HCP) is a major constituent of these fine 

particles. Considering the need to promote environmental sustainability through recycling 

or re-use of waste materials, rejuvenating the cementitious properties of HCP is a subject 

of major interest in concrete research (Marcela, 2007; Yu and shui, 2014). It has been 

shown that HCP transforms into dehydrated cement paste (DCP) when subjected to high 

temperatures of 600 to 800oC for several hours. In the literature, DCP has been shown to 

exhibit some recovery of hydration characteristics, albeit not to the level of original 

Portland cement (Alonso and Fernandez, 2004; Castellote et al., 2004). However, the 

particle sizes of HCP that is separated from waste concrete, are typically coarser than those 

of cement. Hence, pulverizing of HCP or DCP to levels of cement fineness is necessary, 

prior to its use as a cementitious material. Also, DCP particles have a tendency to attach 

onto the ball mill and to form micro-agglomeration during grinding. This behaviour 

reduces grinding efficacy and produces coarser sizes of ground DCP particles, relative to 

those of cement particles. When ground DCP is used as a cementitious material, its 

drawbacks include a relatively short setting time, high water demand, and low strength 

(Shui et al., 2009), which altogether undermine its potential utilization in concrete.   

                 

2. Economical aspects of recycling concrete to produce aggregates 

Studies have shown that the cost of RA’s is significantly lower, being typically about 60 

to 80% the cost of natural aggregates (Silva et al., 2017; Dhir et al., 1998; Eckert and 

Oliveira, 2017). Hameed (2009) evaluated the cost of RCA produced under three different 

scenarios. Case 1 involved crushing of demolished concrete on site to produce RCA and 

using it as a base material at the same site. Case 2 involved disposal of demolished concrete 

at a landfill then purchasing natural aggregate from a quarry, while Case 3 comprised 

disposal of demolished concrete for crushing at a recycling plant then purchasing the 

produced RCA for use on site. It was reported that the total production costs for Case 1, 

Case 2, and Case 3 were $40,824, $104,275, and $96,766 per kiloton of demolished 
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concrete, respectively. Evidently, the production and/or use of recycled aggregates exhibits 

relatively lower costs.  

 

3. Significance 

There is high research interest towards enhancing the properties of C&DW so as to promote 

its potential re-use in concrete and the construction industry, generally. The objectives of 

this paper were to identify and highlight the available promising techniques that could be 

used to regenerate HCP and to improve the quality of waste aggregates for use in 

sustainable concrete construction. The potential for recovery of HCP’s cementitious 

properties using thermal treatment is reviewed based on the available literature.         

       Researches on removal of adhered mortar from recycled aggregates by mechanical 

abrasion, thermal treatment or by soaking in acids, are discussed. Also discussed are the 

researches relating to fortification of the adhered mortar using polymer impregnation, 

carbonation treatment, pozzolan slurry coatings, and biodeposition treatment. A 

comparative discussion on the effectiveness, benefits, advantages and disadvantages of the 

various techniques, is also presented.  Overall, this study could contribute towards better 

general understanding for improvement of C&DW characteristics, with a view of 

promoting waste utilization in the construction industry. Use of C&DW at industrial scale 

would lead to preservation of natural resources, reduction of CO2 generation from cement 

production, reduction of waste disposal to landfills, and mitigation of environmental 

pollution, generally. The present work also aimed at determining the extent of, hitherto, 

established scientific knowledge on this subject to which future researches may improve 

upon. 

 

4. Thermal activation of hardened cement paste for re-use as a cementitious  

      material   

Shui et al. (2008) used laboratory crushed concrete to prepare DCP. In their study, crushed 

particle sizes smaller than 5 mm were obtained from the concrete and heat-treated in a 

furnace at a temperature of 800oC. DCP was obtained by grinding the heat-treated crushed 

particles, followed by sieving through a 75 m  sieve size. Paste cubes of 20 mm size were 

prepared at a water/DCP ratio of 0.4 and cured in water. It was reported that compressive 
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strengths of 7.8 MPa and 8.0 MPa were obtained after 7 and 28 days of curing, respectively. 

The observed strength developed could be attributed to the rehydration of phases in the 

DCP. Clearly, the 28-day strength of the DCP pastes was quite low and similar to the early 

age strength. This observation may be related to the generation of hydration heat by DCP, 

which occurred mostly at the early hydration stages (Zhang et al., 2018). These results 

imply that the residual or unreacted cement compounds in DCP were perhaps mainly C3S 

and C3A, with little or no C2S.   

       Yu and Shui (2014) also conducted experimental research to evaluate the potential re-

activation of HCP. They prepared hardened paste powder by crushing and grinding samples 

of HCP fragments in a ball mill for 30 minutes. The resulting powder material passing 75 

m  was collected and subjected to thermal treatment at 650oC for 4 hours. The heat-treated 

HCP was designated as original DCP (O-DCP). Some O-DCP was dispersed using an 

ultrasonic device and designated as dispersed DCP (D-DCP). Paste cubes of 40 mm size 

were prepared using a binder comprising blends of O-DCP and fly ash (FA) or of ordinary 

Portland cement (OPC) and D-DCP. Pastes were prepared at a water/binder (w/b) ratio of 

0.3 and cured in a fog room for 28 days. It was reported that a high compressive strength 

of 61 MPa was obtained using a mixture containing 55% FA and 45% O-DCP.  

       Zhang et al. (2018) carried out research involving the use of ground granulated blast-

furnace slag (GGBS) to enhance the mechanical properties of DCP. In the investigation, 

waste concrete obtained from an old concrete structure in a local city was crushed to 

produce RCA, RFA, and HCP. The HCP was heat-treated in a muffle furnace at 600oC for 

3 hours to form DCP. GGBS was blended with DCP at mass ratios of 3:1, 2:1, 1:1, 1:2, and 

1:3 GGBS to DCP, then ground in a ball mill for 15 minutes. During grinding, an amount 

of natural gypsum equal to 5% DCP, was added. Mortar samples were then prepared at a 

water/DCP binder ratio of 0.5 and sand/binder ratio of 3:1. It was reported that the 

cumulative heat of hydration for 100% OPC binder paste of grade CEM I 42.5 N and for 

100% DCP binder pastes were 203.37 J/g and 445.94 J/g, respectively. It is interesting to 

note that DCP paste gave a higher heat of hydration than plain OPC paste. For 1:3 

GGBS/DCP mixture, the cumulative heat of hydration was 360.34 J/g while the mixture of 

1:1 GGBS/DCP gave a cumulative heat of hydration of 237.12J/g, a reduction of 46.8% 

relative to the hydration heat of 100% DCP. The hydration heat and compressive strengths 
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of the GGBS/DCP mixtures continued to decrease with increase in the content of GGBS. 

After 3 days of curing, the 1:3 GGBS/DCP paste gave a compressive strength of 30.8 MPa 

which was higher than the corresponding 27.6 MPa obtained for the plain OPC paste. At 

28 days, however, the plain OPC paste gave a much higher strength of 48.2 MPa relative 

to 37.5 MPa of the 1:3 GGBS/DCP binder paste.      

       A study on activation of recovered concrete fines (RCF) was done by (Florea et al., 

2014) in a manner similar to the foregone investigations conducted using HCP or DCP. 

They prepared the RCF from laboratory-made concrete samples by first crushing the 

concrete to particle sizes finer than 2 mm, followed by sieving the particles through a 150 

m  sieve. The RCF obtained was heat-treated at 500, 800, 1100oC, and used to prepare 

mixtures. Various waste materials comprising FA, untreated RCF-20 (RCF-20), 500oC 

treated RCF (RCF-500), 800oC treated RCF (RCF-800), were used to partially replace OPC 

at proportions of 0, 10, 20, and 30% RCF. Mortar mixtures consisting of 1350 g sand, 450 

g cement, and 225 g water, were prepared and used to cast 50 mm cubes and 40 × 40 × 160 

mm prisms, which were then cured in water for 28 days. It was reported that the 30% RCF-

800/OPC mortar gave the least flexural /compressive strengths of 4.8 /28.5 MPa. The 

10%RCF-20/OPC and 10%FA/OPC mortar specimens achieved flexural /compressive 

strengths of 7.8 /47.5 MPa and 7.5 /46.3 MPa respectively, which were comparable to 8.3 

/50.0 MPa of the reference OPC mortar. Evidently, incorporation of 30% RCF as OPC 

replacement gave significant reductions in flexural and compressive strengths.  

       Bordy et al. (2017) investigated the potential re-use of HCP without thermal activation. 

In their study, HCP was made by first casting cement paste at a w/b ratio of 0.3 using OPC 

of grade CEM I 52.5 N. After 89 days of curing the paste in water, the HCP was removed 

from curing water and broken into fragments which were then ground into powder using a 

laboratory ball mill. The powder obtained was sieved through the 80 m  sieve and 

incorporated as a cement replacement material in proportions of 0, 10, 20, 30, 40, 50, 75, 

and 100% HCP. Mortar mixtures of 0.45 water/HCP binder ratio and 2.32: 1 

aggregate/binder ratio were used to cast 40 × 40 × 160 mm specimens, which were then 

cured in water for 90 days at room temperature. It was reported that the total porosity of 

specimens increased with increase in the HCP content. This observation may be attributed 

to the decrease in total clinker content with increase in HCP content. HCP contains 
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relatively much less clinker than original OPC. As such, the amounts of hydration products 

formed, comprising calcium hydroxide (CH) and calcium silicate hydrate (CSH) are 

relatively much less in systems containing HCP, which leads to relatively higher porosity 

in HCP mixtures. As expected, compressive strengths decreased with increase in HCP 

content of the mortar mixtures. The 90-day compressive strength of mortars containing 

100% non-treated HCP was 7.29 MPa compared to 62 MPa for the 100% OPC mortar 

mixture.   

       Unlike Bordy et al’s. (2017) study which evaluated non-activated HCP, thermally 

treated HCP was investigated by (Serpell and Lopez, 2015). In their study, cement paste 

slabs of size 500 × 500 × 40 mm thick were cast at a w/b ratio of 0.5, using OPC of ASTM 

type I. The paste slabs were cured in water for 28 days, then broken into fragments of 40 

mm maximum size. The fragments were oven-dried at 105oC and reduced to fine HCP 

sizes by crushing and grinding using a jaw crusher and a ball mill. The ground paste 

particles were sieved through a 75 m  sieve to obtained fine powder that was then heat-

treated at temperatures of 659 to 941oC for 150 minutes to form DCP. The binder was 

prepared by replacing DCP with 0, 40, 50% silica fume (SF) or with 0, 10, 20, 30, 40, 50, 

60, 70% FA. Mortar mixtures of 0.75 to 1.05 w/b ratios were prepared using SF/DCP or 

FA/DCP as binders. Mortar cubes of 50 mm size were cast and cured in water then tested 

at 7 and 28 days. It was reported that both the proportion of DCP in the binder and the re-

activation temperature, did significantly affect the compressive strength of the DCP 

mortars. As expected, the compressive strength of mortars increased as the SF content 

increased. The highest 28-day strength was 26 MPa, obtained with DCP mixtures 

containing 40% SF. For mortars made using FA/DCP as the binder, the 28-day compressive 

strength decreased as the proportion of FA increased. It was also observed that increasing 

the HCP’s treatment temperature from 660 to 800oC, led to increase in compressive 

strength of the DCP mortars. However, further increase in the treatment temperature to the 

range of 800 to 940oC, led to decrease in compressive strengths.     

       Like other investigations discussed in the foregone, Shui et al. (2009) prepared HCP 

using OPC of ASTM type I, at a w/b ratio of 0.5. The paste samples were cured at 20oC 

for 30 days, then crushed into paste fragments of less than 25 mm size. The fragments were 

oven-dried at 80oC for 48 hours, then ground in a ball mill to produce HCP powder passing 
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75 m   sieve size. The powder was heat-treated for 2.5 hours at 300, 400, 500, 600, 700, 

800 or 900oC to produce DCP. Paste cubes of 20 mm size were prepared at a water/DCP 

binder ratio of 0.5 then cured in water. The Loss On Ignition (LOI), which is a measure of 

the non-evaporable water content, was considered as an estimate of the degree of 

rehydration for DCP paste. The non-evaporable water content was determined as the 

relative mass loss upon firing of DCP paste powder in a furnace at temperatures of 105oC 

and 1050oC. It was reported that the rehydration of DCP was quite rapid, attaining 70% 

rehydration within 24 hours. The degree of rehydration then increased gradually to 80, 85, 

and 95% at 3, 7, and 28 days, respectively. As usual with cementitious systems, the 

compressive strength of the DCP paste samples increased with curing age. The DCP paste 

that had been treated at 800oC gave 12.5 MPa and 17.5 MPa after 3 and 28 days of curing, 

respectively. Also, it was observed that the compressive strength of pastes increased as the 

treatment temperature increased up to 800oC. For example, the 3-day strength of the DCP 

paste increased from 2 MPa at a treatment temperature of 300oC to 12.5 MPa when treated 

at 800oC. However, when the treatment temperature exceeded 800oC, strength decreased 

to 8.4 MPa at 900oC. This behaviour may be attributed to the loss of chemically bound 

water when HCP is subjected to temperatures exceeding 900oC (Florea et al., 2014). Such 

high temperatures may also break down the primary bonds of hydration products and can 

cause fusion of unreacted cement compounds present in the HCP. These factors tend to 

diminish the hydraulic reactivity of the resulting DCP.   

 

5. Approaches and techniques for improvement of recycled aggregate properties  

5.1 Properties of recycled concrete aggregates   

Generally, recycled aggregates (RA’s) comprise 65 to 70% original aggregate and 30 to 

35% original cement mortar, by volume. As such, RA’s are mostly inhomogeneous, less 

dense, and more porous than natural aggregates (Zhang et al., 2015). RA’s are different 

from natural aggregates in that they contain two components, i.e. the natural aggregates 

and the cement mortar which is adhered to the surface of aggregates (Juan and Gutiérrez, 

2009). Figure 1 shows these two components of RA’s. The present authors herein propose 

that when RA’s are used in concrete, a triple layered weak zone (3ITZ) will form which 

consists of the existing or old interfacial transition zone (ITZ) together with its adhered 
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mortar, and a newly formed ITZ. It is postulated that the 3ITZ is thicker and much weaker 

than the single layered ITZ found in concretes made with natural aggregates. Figure 2 gives 

an illustration of the difference between ITZ and 3ITZ. Owing to the presence of 3ITZ, the 

mechanical properties of concretes made with RA’s are relatively inferior.   

       As mentioned earlier, it is well-established in the literature that RA’s exhibit properties 

that are inferior to those of natural aggregates. Table 1 gives some basic properties of RA’s 

as reported in various literatures. It is evident that the water absorption values of RA’s are 

in the range of 5 to 7%, which are much higher than the typical values of 1 to 5% for natural 

aggregates (Gomez-Soberon, 2002; Katz, 2004). The characteristically high water 

absorption tendency of RA’s is attributed to the presence of mortar which is adhered to the 

surfaces of aggregates. The other properties such as specific gravity, density, crushing 

value etc. are also different for RA’s but remain comparable to those specified for natural 

aggregates (BS 882, 1992).  

       

5.2 Enhancement upon the properties of concretes containing recycled aggregates 

Two approaches are typically employed to enhance the relatively inferior properties of 

concretes containing RA’s. The approaches comprise, (i) incorporation of nanoparticles 

into RAC and (ii) treatment of RA’s prior to their use in concrete. The present study 

focusses on the latter, as discussed throughout the later sections of the paper from Sub-

section 5.3 to Section 6.0. In this section, however, a brief discussion is given on the 

potential use of nanomaterials to enhance RAC properties. The superfine particle sizes and 

extremely large surface areas of nanomaterials, allow effective infilling of pores and also 

promote rapid hydration. Nanoparticles may also form nucleation sites for secondary or 

additional formation of CSH (Wang et al., 2016).      

NanoSiO2 is perhaps the most widely studied nanomaterial towards enhancement of 

RAC properties, as indicated by the numerous literatures available on the subject (Luo et 

al., 2018; Mukharjee and Barai, 2017; Zhang et al., 2015; Shaikh et al., 2018; Li et al., 

2017; Singh et al., 2018; Shaikh et al., 2015). Hosseini et al. (2009) incorporated 0.0, 1.5, 

and 3.0% nanoSiO2 by mass of cement, into RAC made using CEM I 42.5 N at a 0.40 w/c. 

It was reported that the RCA concrete showed an increase in compressive strength from 

28.1 MPa for the control to 35.3 MPa for the mixture containing 3.0% nanoSiO2, a strength 
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gain of 25.6%. In a similar study of RAC made at 0.48 w/c, into which 0.4, 0.8, and 1.2% 

nanoSiO2 by mass of cement was incorporated, Younis and Mustafa (2018) reported a 28-

day strength increase of 17% for the mixture containing 1.2% nanoSiO2. Mukharjee and 

Barai (2014) reported a 14% strength increase in RAC mixtures of 0.40 w/c containing 3% 

nanoSiO2. 

Other types of nanomaterials that have been employed in researches to enhance the RAC 

properties include nanoTiO2, nanoCaCO3 and graphene oxide (GO) (Luo et al., 2018; Long 

et al. 2018; Lei et al., 2016). Sharma and Arora (2018) studied the influence of GO on 

OPC/fly ash mortars made using RA’s. Mortar mixtures containing additions of 0.0, 0.05 

and 0.10% GO by weight of binder, were prepared at a 0.40 w/b. A strength increase of 

37% was reported for the mixture containing 0.05% GO. In a similar study conducted by 

Fang et al. (2017) using mortar mixtures containing 0.0, 0.05, 0.10, and 0.20% GO by mass 

of cement, it was reported that the mixture containing 0.20% GO gave a 41% increase in 

flexural strength. 

 

 

                           Figure 1: Components of recycled concrete aggregates (Juan and Gutiérrez, 2009). 
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        Figure 2: The interfacial transition zone in concretes made with natural or recycled aggregates.     

 

Table 1:  Properties of recycled concrete aggregates.     

 

Author 

 

Recycled 

aggregate 

size (mm) 

 

Specific 

gravity 

 

Bulk density 

(kg/m3) 

 

Water 

absorption 

(%) 

 

Fineness 

modulus 

 

Crushing 

value 

(%)  

Kim et al. (2016) 4.75 - 2270 6.56 3.40 - 

Qiu et al. (2014) 20 - 2440 7.10 - - 

Zhang et al. (2015) 2.5 2.53 - 8.06 - 18.60 

Kong et al. (2010) 20 - 1290 5.50  16.50 

Al-Bayati et al. (2016) 19 2.30 - 5.91 - 27.42 

Xuan et al. (2016) 20 - 2605 6.10 - 27.80 

Katz (2004) 19 2.48 1356 5.10 - - 

Pandurangan et al. (2016) 20 2.45 1360 4.58 - 33.23 

Saravanakumar et al. (2016) 20 2.47 1390 6.80 - - 

Mukharjee and Barai (2014) 20 2.46 1321 - - 31.52 

Ismail and Ramli (2013) 20 2.33 - 4.44 - 29.15 

Zhan et al. (2014) 20 - 2639 6.58 - - 

De Brito et al. (2016) 20 - 1248 4.66 - - 

Kou and Poon (2010) 20 - 2423 6.23 - - 

Kou et al. (2011) 20 2.35 - 7.42 - - 

Shi et al. (2018) 4.75 - 2490 5.3 2.45 - 

Song et al. (2015) 25 2.32 - 7.4 - - 

Etxeberria et al. (2006) 20 - 2430 4.44 - - 

Gokce et al. (2013) 25 2.29 - 5.9 - - 

Paine and Dhir (2010) 20 - 1360 5.5 - - 

De Brito et al. (2011) 16 - 2300 5.8 - - 
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5.3 Treatment methods for improving the quality of recycled aggregates   

The physical and mechanical properties of concretes made using RA’s can be enhanced by 

using various types of treatments. Basically, there are two approaches that are used to treat 

RA’s, namely the removal of adhered mortar and fortification of the adhered mortar. 

Subsequently discussed are the different methods that have been employed in various 

literatures to treat RA’s. 

 

5.3.1 The adhered mortar removal approach 

Mechanical abrasion, thermal treatment, soaking of aggregates in acid or combinations of 

these methods, are the commonly used techniques for removal of adhered mortar from 

RA’s.   

 

(a) Soaking in acid  

An acid solution tends to soften the cement hydration products found in HCP, making it 

potentially effective in removing the adhered mortar and thus improving the quality of 

RA’s. Tam et al. (2007) conducted research on removal of adhered cement mortar from 

RA’s by soaking the aggregates in hydrochloric acid (HCL), sulfuric acid (H2SO4), and 

phosphoric acid (H3PO4) solutions of 0.1 M concentrations. RCA samples of sizes 10 mm 

and 20 mm, were used in the study. The samples were soaked for 24 hours in the various 

types of acids and then washed with water to remove residual acid along with corroded 

mortar from the surfaces of the treated aggregates. They reported that the most effective 

mortar removal was obtained using the treatments done with H2SO4 and HCL, which 

respectively gave 10.3% and 12.2% reductions in water absorption values. Akbarnezhad et 

al. (2011) suggested that complete removal of adhered mortar using acid treatment, could 

be achieved by soaking of RA’s in H2SO4 of concentrations greater than 2.0 M, over long 

durations of at least 5 days.     

       Saravanakumar et al. (2016) also carried out an experimental study in which HCL, 

nitric (HNO3), and H2SO4 acids of 10% normality, were used to treat RCA. During the 

treatments, samples of aggregates were initially soaked in the three acid solutions for 24 
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hours at room temperature. Afterwards, the treated aggregates were thoroughly washed 

with distilled water to remove the residual acid solvents and loose particles. The HCL-

treated aggregates were further treated by soaking the samples in SF slurry for 24 hours at 

room temperature. It was reported that the treated RCA showed improvement in density 

from 1390 kg/m3 before treatment to 1472 kg/m3 after treatment. Also, the treated RCA 

had 30.7% lower water absorption relative to the non-treated RCA. The improved results 

were attributed to effective removal of adhered mortar from the RCA using the HCL 

treatment.  

       It should be considered that while the acid treatment technique can be effective in 

removal of adhered mortar, it may not be suitable for weak or friable aggregates such as 

limestone etc. Such weak aggregates typically dissolve under acid attack (Juan and 

Gutierrez, 2009).    

 

(b) Mechanical abrasion with or without thermal treatment 

Mechanical abrasion is a common method of removing cement mortar from the surfaces 

of aggregates by applying vigorous physical wear using an abrasion machine. Although 

this method can significantly decrease the amount of the adhered cement mortar, it has the 

potential to cause fracturing of particles when used to treat friable aggregates (Tam et al., 

2008; Juan and Gutiérrez, 2009; Akbarnezhad et al., 2013).   

       Basically, the mechanical abrasion method can be conducted with or without heat 

treatment. The method is conducted by applying rolling and vibratory motions at high 

speed in a rotary mill. This process tends to fracture and fragment the adhered mortar. Use 

of high speeds during mechanical abrasion runs, tends to improve the peel-off efficacy of 

the mortar layer, thereby producing a better quality of the treated RCA (Shi et al., 2016). 

Crushed recycled concrete may also be heat-treated at around 300oC to desiccate the 

adhered mortar, making it fragile before subjecting it to abrasion in a rotary mill. The ease 

with which the adhered mortar can be removed increases with rise in the temperature of 

heating. However, the quality of RCA may be adversely affected if the heating temperature 

exceeds 500oC. Experimental research carried out by (Tateyashiki et al., 2001) 

demonstrated that high quality treated RCA can be obtained by combining thermal 

treatment with mechanical abrasion.      
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(c) Combined mechanical abrasion and acid wash  

This method was employed by (Kim et al., 2016) to treat RFA of particle sizes less than 5 

mm. In their treatment set-up, the fine aggregates were placed in an abrasion machine, then 

acid water that was made by diluting H2SO4 was fed into the machine. The treatment 

process was carried out at varied abrasion time durations of 5 to 15 minutes.  It was reported 

that the oven-dried density of RFA increased from 2270 kg/m3 before the treatment to 2480 

kg/m3 after the treatment. Also, the water absorption of RFA reduced from 6.56% before 

the treatment to 2.90% after the treatment, i.e. a significant decrease of about 56%. 

 

(d) Thermal treatment followed by soaking in water 

Juan and Gutierrez (2009) employed this method to study the removal of adhered mortar 

from RCA of size fractions 4 to 8 mm and 8 to 16 mm. In their experiment, the aggregates 

were dried in a muffle furnace at 500oC for 2 hours, then immediately immersed in cold 

water. The resulting sudden cooling causes differential stress movements between the 

adhered mortar and the substrate aggregate, which then leads to cracking of the adhered 

mortar, making it to detach from the aggregate surface. It was reported that the treatment 

led to a 15% increase in density values and 70% reduction in water absorption values of 

the RCA. This method can be used for various types of aggregates including friable or 

weak aggregate types. 

 

(e) Thermal treatment followed by soaking in acid  

Kumar and Minocha (2018) investigated the effectiveness of using a combination of 

thermal treatment and soaking of RA’s in acid, to treat RFA. In their study, RFA samples 

were soaked in water for 24 hours, then subjected to thermal treatment at 300, 400, 500, 

and 600oC. The treated samples were then soaked in 0.1, 0.4, and 0.7 M HCL for 24 hours. 

The treated RFA samples were further immersed in water for 24 hours to wash out the 

residual acid from the surfaces of the aggregate particles. It was reported that the samples 

that were heat-treated at 600oC, then soaked in 0.1, 0.4 and 0.7 M HCL showed 54.1%, 
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68.7%, and 69.2% reductions in water absorption, while their specific gravity values 

correspondingly increased by 25.8%, 34.7%, and 39.8%. Evidently, the use of higher 

concentrations of acids, led to greater removal of the adhered mortar.   

 

(f) Soaking in acid followed by thermal treatment 

This procedure is a reverse of the method discussed in the foregoing Section 5.3.1(e). Al-

Bayati et al. (2016) carried out an experiment to evaluate the physical properties of 19 mm 

RCA by first soaking the aggregates in acid before subjecting the samples to thermal 

treatment. In their experiment, the RCA samples were washed thoroughly and oven-dried 

at 105oC for 24 hours, then cooled and soaked for 24 hours in acid solutions of 0.1M HCL 

or 0.1M acetic acid (C2H4O2). Afterwards, the samples were immersed in distilled water to 

wash out residual acid from the aggregates before again oven-drying the samples at 105oC 

for 24 hours. Finally, the RCA was heat-treated for one hour at 250, 350, 500 or 750oC.  

       It was reported that the treatment process generally removed a significant amount of 

adhered mortar from the RCA. For samples that were treated at 350oC, the water absorption 

reportedly decreased from 5.91% before the treatment to 4.29% after the treatment. 

However, the treated samples that were subjected to the higher temperatures of 500 and 

750oC gave poor water absorption results. These adverse results could be attributed to 

possible microcracking of the aggregate particles, as a result of thermal expansion under 

high temperatures (Al-Bayati et al., 2016). It is also possible that wet-dry cycles consisting 

of oven-drying followed by soaking of samples in acid or water, generated differential 

internal stresses within the aggregate particles, which initiated or exacerbated 

microcracking. Considering these adverse effects of the treatment method, this procedure 

which involves applying the treatment in a number of wet-dry cycles, does not appear to 

be suitable for treating RA’s. 

 

(g) Special techniques  

(i) Ultrasonic water cleaning 

By soaking RCA in water, some impurities found at surfaces of crushed concrete 

aggregates can be removed. Katz (2004) repeatedly applied ultrasonic water cleaning on 

19 mm RCA until clear water was obtained. The procedure reportedly caused the removal 
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of weak adhered mortar layers from RCA. The study showed that RA’s from low grade 

concrete required more cleaning cycles than the aggregates recovered from higher grade 

concrete. This observation may be attributed to the weak matrix of the low grade concrete, 

which releases relatively higher quantities of fine particles more easily, compared to the 

stronger matrix of higher strength concrete. In the experiment by (Katz, 2004), the 

ultrasonically washed RCA were used with OPC to prepare concretes of 0.57 w/b ratio. It 

was reported that the concretes made using the treated RCA gave a strength increase of 

7%.   

 

(ii) Soaking in acid followed by soaking in calcium silicate   

Ismail and Ramli (2013) treated 10 mm and 20 mm RCA by soaking the aggregates in acid 

solutions followed by soaking the samples in calcium silicate (CS). During the first stage 

of the treatment, RCA samples were immersed in 0.1 M and 0.5 M HCL for 24 hours, in 

order to remove the adhered mortar. The aggregates were removed from acid solutions and 

washed with distilled water, then drained. They were then oven-dried at 105oC for 24 hours 

and soaked in CS solution for 24 hours. Finally, the treated RCA samples were removed 

from the CS solution and again oven-dried at 105oC for 24 hours. It was reported that the 

apparent particle density of the treated RCA slightly improved, while water absorption 

significantly reduced by 20%. 

       Figure 3 shows a schematic diagram of the different treatment methods that have been 

employed in the literatures, for removal of adhered mortar. It can be seen that a variety of 

method combinations can be employed to achieve effective removal of adhered mortar. 

From the foregoing discussion, it is clear that the method(s) that may be considered for 

treating any given RCA have to be cautiously selected. Mechanical abrasion and acid 

treatment methods may not be suitable for treating friable aggregates. It also seems that 

treatments that apply repeated wet-dry cycles of oven-drying and soaking in acid or water, 

may induce microcracking of aggregate particles. While thermal treatment is shown to be 

effective, use of high temperatures exceeding 500oC can have adverse effects, resulting in 

poor properties of the treated aggregates (Al-Bayati et al., 2016; Shi et al., 2016).    
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Figure 3: Treatment methods for removal of adhered mortar. 

 

5.3.2 The adhered mortar fortification approach 

In this approach, attempt is made to fill the existing voids within the adhered cement 

mortar, thereby strengthening the ITZ. Polymer emulsions are commonly used as fortifying 

agents. The treatment process involves vacuum impregnation of aggregates with or 

immersion of the samples into, an emulsion. The various mortar-fortifying treatment 

methods that have been employed in various literatures, are subsequently discussed.   

 

(a) Polymer impregnation       

Silicon-based polymers are water repellents which can be used to reduce the water 

absorption of porous materials such as RCA. Polymer molecules tend to fill pores within 

the adhered mortar, when RCA are immersed in the polymer emulsion (Shi et al., 2016). 

Spaeth and Tegguer (2013) investigated the effect of polymer treatment on properties of 

20 mm RCA. The polymer solutions used in the investigation were sodium silicate, 
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siloxane, and silane emulsion. The treatment procedure consisted of impregnating the RCA 

with the polymer solutions, followed by air-drying of the samples at room temperature for 

24 hours before oven-drying at 50oC for another 24 hours. It was reported that the 

treatments were beneficial in reducing the water absorption of RCA, depending on the type 

and concentration of the polymer solution used. For example, use of 30% sodium silicate 

solution reduced the water absorption of RCA from 4.5% before the treatment to 2.1% after 

the treatment.  

       Kou and Poon (2010) investigated the viability of improving the physical properties 

of 10 mm and 20 mm RCA by treating the aggregates using polyvinyl alcohol (PVA). The 

polymer solution was prepared by adding 120, 160, 200, and 240 g of PVA powder to 2 

litres of boiling water, giving concentrations of 6%, 8%, 10% and 12% PVA, respectively. 

The RCA samples were soaked in the polymer solution by applying a vacuum suction of 

920 mbar for 6 hours in a desiccator. After stoppage of the vacuum, the samples were left 

to soak for a further 18 hours before tests were done. It was reported that the PVA treatment 

led to increase in density of the 20 mm RCA samples from 2423 kg/m3 to 2566 kg/m3, 

while water absorption decreased significantly from 6.23% before the treatment to 2.39% 

after the treatment.   

 

(b) Carbonation treatment  

CSH and CH are the principal hydration products present in adhered mortar which typically 

contains HCP. Carbon dioxide (CO2) can easily penetrate into the pores of adhered mortar 

and react with these compounds under partially dry conditions (Castellote et al., 2009). 

Thiery et al. (2007) reported that carbonation of CH and CSH led to 11.5% and 23.1% 

volume increases, respectively. CH is generally present at the pore walls and within the 

HCP. CO2 reacts with the CH to form CaCO3, which in turn fills existing pores and voids 

within the mortar, causing densification (Ekolu, 2016; Ekolu, 2018). Accordingly, 

carbonation reduces the permeability of the adhered mortar. 

       Zhang et al. (2015) reported an improvement in physical properties of RA’s following 

carbonation treatment of the aggregates. In their study, 2.5 mm RFA samples were exposed 

to 20% CO2 concentration in a controlled carbonation chamber maintained at 20oC and 

60% RH. During progress of the experiment, the extent of carbonation of the RFA samples 
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was monitored periodically. At specific time periods, samples were taken out from the 

carbonation chamber then ground and sprayed with 1% phenolphthalein alcohol solution. 

It was reported that a duration of 7 days was required for complete carbonation of the 

samples to occur. Also, the water absorption values of the carbonated gravel RFA and 

carbonated crushed RFA were found to be respectively 28% and 22% lower than the 

corresponding values of the non-carbonated samples. The apparent density and crushing 

value of the carbonated gravel RFA were found to be 5% and 9% higher than those for the 

non-carbonated samples. The carbonated RFA samples were also mixed with OPC of grade 

CEM I 42.5 N, to prepare mortar cubes of 40 mm size at a w/b ratio of 0.50. The cubes 

were cured in lime-saturated water for 90 days. It was reported that the 90-day compressive 

strengths of the carbonated gravel RFA and carbonated granite RFA mortars were 18% and 

8% higher than those for the corresponding non-carbonated samples, respectively. 

       The mechanical properties of concretes containing carbonated and non-carbonated 

RCA of 10 mm or 20 mm sizes were also investigated by (Xuan et al., 2016). The 

carbonation treatment consisted of pre-conditioning the samples in a drying chamber 

maintained at 25oC and 50% RH before placing inside a 100 L cylindrical steel chamber, 

which was then filled with 100% CO2 gas under a vacuum suction of -0.6 bar. After 24 

hours of carbonation, the treated RCA samples were removed from the chamber and tested 

for water absorption and crushing value. It was reported that the carbonation treatment led 

to a reduction of 16.7% in water absorption and an increase of 25.9% in crushing value of 

the RCA, while the 10% fines value increased by 4%.  

       Shi-Cong et al. (2014) also reported an enhancement in properties of recycled mortar 

aggregates (RMA) upon CO2 treatment of the aggregates. In conducting the treatment, 4 

kg of crushed RMA were placed inside a 33 L air-tight steel cylindrical chamber, then a 

vacuum suction of -0.5 bar was applied before the chamber was filled with 100% CO2 gas 

supply. The CO2 treatment was sustained over various durations of 6, 12, 24, 48, and 72 

hours. Results showed an increase in density and in 10% fines value from 2326 kg/m3 and 

96 kN before the treatment, to 2349 kg/m3 and 111 kN after the treatment. Also, the water 

absorption of RMA reduced from 11.8% before the treatment to 10.1% after the 

carbonation treatment. It was reported that a CO2 treatment duration of at least 24 hours 

was needed for substantial improvement in properties of the RMA to be attained.  
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(c) Coating using pozzolanic materials   

Studies have shown that the relatively inferior properties of concretes made using RA’s 

can also be improved by coating the aggregate particles using pozzolanic materials such as 

FA, SF etc. (Shannag, 2000). These coatings tend to fill some existing cracks and voids 

within the adhered mortar. The pozzolans can also react with some CH that may be present 

within the pore walls of the adhered mortar, forming secondary hydration products (Ekolu 

et al., 2006; Kong et al., 2010). Such a pozzolanic reaction may in turn improve the 

microstructure of ITZ, thereby enhancing the strength and durability properties of the RCA 

concretes. 

       A study on use of carbonation treatment or pozzolan slurry coatings, to treat 4.75 mm 

RFA, was conducted by (Shi et al., 2018). The pozzolan slurries used in their study were 

prepared using SF, FA and nanoSiO2 materials whose specific surface areas were 18500, 

427, and 160000 m2/kg, respectively. The nanoSiO2 slurry was made at a water to solid 

ratio of 20:1, while the SF and FA slurries were of 10:1 water to solid ratio. RFA samples 

were oven-dried at 60oC for 48 hours, before mixing with fresh slurry for 30 minutes and 

leaving the samples to soak for a further 60 minutes. The treated RFA samples were then 

removed from the slurry, drained, and oven-dried at 100oC for 2 hours, then tested. The 

treatment of RFA using CO2 was done in a carbonation chamber maintained at 20oC and 

60% RH, filled with 20% CO2 for 3 days.      

       It was reported that both the carbonation and pozzolan slurry treatments had the effects 

of reducing water absorption and increasing the apparent density of the RFA. However, the 

carbonation treatment seemed to be slightly more effective than the pozzolan slurry 

treatments, giving a water absorption value of 26.4% compared to corresponding values of 

24.5%, 20.7%, 20.7% for FA-slurry, SF-slurry, nano-SiO2 slurry treatments, respectively. 

As already explained in Section 5.3.2(b), the effectiveness of the carbonation treatment is 

attributed to the reaction of CO2 with hydration products within the adhered mortar. This 

reaction forms CaCO3 that fills empty spaces within the capillary pores of the adhered 

mortar (Cakır, 2014; Zhang et al., 2015). In contrast, the pozzolan slurry forms a thin layer 

of coating at surfaces of RA’s and may not easily penetrate deeper into the adhered mortar, 
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unlike the case with CO2 ingress. However, both techniques can significantly improve the 

quality of ITZ and enhance the properties of RA’s, as already discussed.      

 

(d) Biodeposition treatment     

The biodeposition concept is based on the ability of bacteria to precipitate CaCO3 at the 

outer surface of the cell wall, due to occurrence of negative zeta potential of adequate 

strength (Grabiec et al., 2012). Sporosarcina pasteurii cell (Sp. cell) can attract Ca ions 

(Ca2+), which then react with carbonate ions (CO3
2-) originating from urea (CO(NH2)2) 

hydrolysis. Simultaneously, ammonia (NH4
+) increases the pH value of the surrounding 

medium, which in turn improves calcite precipitation (Shi et al, 2016).  

       Wang et al. (2017) carried out an experiment to investigate the influence of biogenic 

CaCO3 treatment on the properties of RA’s. In their study, 20 mm RCA were subjected to 

four different treatments. In treatment A, the RCA samples were immersed in a grown 

culture for 24 hours. The samples were then removed and transferred to a deposition 

medium consisting of 0.5 M urea and 0.5 M Ca-nitrate. In treatment B, the RCA samples 

were submerged in a highly concentrated bacterial suspension of 109 cells/ML for 24 hours. 

Afterwards, the samples were removed and transferred to the same deposition medium as 

that of treatment A. Treatment C was similar to treatment A, the main difference being the 

incorporation of a yeast extract of 5 g/L into the deposition medium. In treatment D, the 

RCA samples were immersed in a grown culture for 48 hours, then transferred to the same 

deposition medium as that of treatment A. It was reported that the most effective method 

was treatment D, which gave the lowest water absorption value of the treated RCA. Water 

absorption values of 5.5%, 5.5%, 3.3%, and 3.0% were obtained for the treatments A, B, 

C and D, respectively.  

       Biodeposition treatment may also be referred to as microbial carbonate precipitation 

(MCP). As already explained, the treatment refers to the process of employing micro-

organisms, particularly bacteria, to stimulate CaCO3 crystal precipitation (Qiu et al., 2014; 

Zhan et al., 2019). The formation of CaCO3 is controlled by four main factors, i.e. the Ca2+ 

ion concentration, dissolved inorganic carbon, pH, and availability of the crystal nucleation 

site (Hammes and Verstraete, 2002). While most bacteria can modify all the four factors, 

their key function in stimulating precipitation is achieved by increasing the pH through 



                                               23 
 

metabolic processes (De Muynck et al., 2010) and by attracting metal ions such as Ca2+, to 

form crystal nucleation sites (Morita, 1980). An investigation by Qiu et al. (2014) found 

that an MCP treatment which was done on 20 mm RCA samples using a bacterial 

concentration of 108 cell/mL, gave 1.03% increase in weight and 15% reduction in water 

absorption of the treated samples.     

       Grabiec et al. (2012) conducted a study of biodeposition treatment in which 19 mm 

RCA were dried at 78oC for 24 hours before submerging the samples in a liquid culture of 

Sp. cell for 24 hours. Water absorption tests were done on RCA samples before and after 

the biodeposition treatment. It was reported that water absorption reduced by 8% and 15% 

when bacterial concentrations of 106 and 108 cell/mL were used in the treatments. 

        At the end of Section 5.3.1 (Figure 3), some considerations on the selection of 

methods for treatment of RA’s were discussed. Table 2 further attempts to compare the 

different treatment methods, on the basis of their effects on water absorption and density 

of RA’s. Also, given in the table are the advantages and disadvantages of the different 

treatment methods. It can be seen that the mechanical abrasion method is one of the most 

effective treatment techniques for RA’s, along with the thermal treatment method. 

However, thermal treatment can be costly due to its high energy requirements. Both 

techniques are non-hazardous, unlike the acid soaking method and the carbonation 

treatment technique, which can pose high health risks when applying the treatments. The 

other techniques such as polymer impregnation and biodeposition etc., require extensive 

use of chemicals and bacterial cultures, which renders these methods to be quite expensive.  
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Table 2: Comparison of different methods for treatment of recycled aggregates. 

 

Treatment method 

Effect on  

Advantages and  

disadvantages 
24-hour water 

absorption (%) 

Density 

(kg/m3) 

(A). Adhered mortar removal  

      approach 

   

  1. Combined mechanical abrasion   

      and acid   wash (Kim  et al.,  

      2016). 

       ↓ down to 56% ↑ up to 9% Mechanical abrasion is 

effective, simple, direct, not 

costly, non-hazardous. Not 

suitable for friable 

aggregates. 

  2. Soaking in acid (Tam et al.,  

      2007). 

       ↓ down to 12% - Can be hazardous, not 

suitable for weak aggregates 

  3. Thermal treatment (Juan and  

      Gutierrez, 2009). 

       ↓ down to 70% ↑ up to 15% Effective but costly due to 

high energy requirement. 

  4. Pre-soaking in acid followed by  

      thermal treatment (Al-Bayati   

      et al., 2016). 

       ↓ down to 27% - The use of acid can be 

hazardous. 

  5. Thermal treatment followed by  

      soaking in acid (Kumar and  

      Minocha, 2018). 

       ↓ down to 69% - Can be costly. The use of 

acid can be hazardous. 

  6.  Special technique:  

       soaking in acid followed by  

       soaking in calcium silicate  

       (Ismail and Ramli, 2013). 

       ↓ down to 20% - Expensive due to the high 

cost of chemical agents. 

    

(B). Adhered mortar fortification   

      approach 

   

  1. Polymer impregnation (Kou  

      and Poon, 2010; Spaeth and  

      Tegguer, 2013). 

       ↓ down to 53% ↑ up to 6% Expensive due to the high 

cost of chemical agents. 

  2. Carbonation treatment (Zhang  

      et al., 2015). 

       ↓ down to 28% ↑ up to 8% Simple but can be hazardous 

  3. Biodeposition treatment  

      (Grabiec et al., 2012). 

       ↓ down to 15% - Costly and time consuming. 

 

6. Cost implications of the various treatment methods for recycled aggregates    

The authors of the present paper conducted a survey by contacting the supervisors of 

various aggregate quarries in Gauteng, South Africa. The survey showed that the average 

cost of natural aggregate and RCA in the province is about $24.7 and $20.8 per ton, 

respectively. As expected, the application of treatments on RCA generally increases the 

cost of the treated aggregates. Tables 3a,b,c give detailed considerations on the cost inputs 

associated with each of the various treatment methods. It can be seen that the average cost 
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of the non-treated RCA increases from $20.8 per ton before treatment to $26.2, $27.3, 

$28.1, and $28.6 per ton after application of the abrasion, ultrasonic water cleaning, 

carbonation, and thermal treatments, respectively. Evidently, the treatments elevate the 

cost of RCA by $1.5 to $3.9 above that of natural aggregates, depending on the treatment 

method. However, this cost increment is small considering the enormous benefits of treated 

RA’s including the improvement of engineering properties, sustainability of resources and 

environmental impacts.  

Table 3a: Cost implications of thermal treatment with /without soaking in acid and of the abrasion method. 

Treatment Cost ($1000) Note* 

Thermal treatment   

    Cost of muffle furnace 5.0  Muffle furnace machine costs about $50,000, 

i.e. $5,000 per year for 10 years 

    Working capital 1.5 15% variable operating cost of about $1,500  

 per unit per year for the muffle furnace 

    Equipment maintenance 1.6 Cost of maintenance per year is about $1,600 

    Labour 8.9 One person at about $8,869 per year 

    Power (electricity) 2.7 Cost of power is about $2,748.3 per year 

    Total cost of the treatment 19.5 About 2,500 tons per year at $7.8 per ton 

Soaking in acid   

    Cost of acid 3.5 Average cost of HCL, H2SO4 or H3PO4 

solution of 0.1 M for treating one ton of 

recycled aggregates is about $3,500 

    Labour 0.2 Cost of labour for treating one ton   

 of aggregates is about $200 

    Water 0.005  Cost of water for treating one ton of  

 aggregates is about $5 

    Total cost of the treatment 3.7 About $3,705 per ton  

 

Thermal treatment followed by 

soaking in acid 

 

3.7 

 

About $3,712.8 per ton  

Pre-soaking in acid followed by 

thermal treatment 
3.7 About $3,712.8 per ton 

Abrasion method   

    Cost of abrasion machine 0.5 Abrasion machine cost is about $5,000, i.e. 

$500 per year for 10 years 

    Working capital 1.0 15% variable operating cost of about $1000 

    Equipment maintenance 1.0 Cost of maintenance per year is about $1,000 

    Labour 8.9 One person at about $8,869 per year 

    Power (electricity) 2.1 Cost of power is about $2100 per year 

    Total cost of the treatment 13.5 About 2500 tons per year at $5.4 per ton 

Combined abrasion and acid 

treatment 

 

3.7 

 

About $3,710.4 per ton 
*Data obtained from a survey conducted with industry experts and suppliers of treatment chemicals and machinery. 
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Table 3b: Cost implications for ultrasonic cleaning and polymer impregnation treatment methods. 

Treatment Cost ($1000) Note* 

Ultrasonic water cleaning   

    Cost of the ultrasonic machine 2 Ultrasonic machine cost is about $20,000 i.e.  

 $2,000 per year for 10 years 

    Working capital 1.7 15% variable operating cost of about $1,700 

per unit per year for the ultrasonic machine 

    Equipment maintenance 1.8 Cost of maintenance per year is about $1,800 

    Labour 6.8 One person at about $6,800 per year 

    Power 1.9 Cost of power is about $2,900 per year 

    Water 2.0 Cost of water is about $2,000 per year 

    Total cost of the treatment 16.2 About $2,500 tons per year at $6.5 per ton 

Polymer impregnation treatment   

    Cost of the drying oven 2.0 Drying oven cost is about $20,000  

 i.e. $2,000 per year for 10 years 

    Working capital 1.6 15% variable operating cost of about $1,600 

per unit per year for the oven 

    Equipment maintenance 1.7 Cost of maintenance per year is about $1,700 

    Labour 8.6 One person at about $8,600 per year 

    Power (electricity) 2.5 Cost of power is about $2,500 per year 

    Cost of (only) using the oven 16.5 About 2,500 tons per year at $6.6 per ton 

    Cost of polymer 3.0 Average cost of silane, siloxane or sodium 

silicate solution for treating one ton of 

aggregates is about $3,000 

    Labour 0.5 Cost of labour for treating one ton   

 of aggregates is about $500 

    Cost of (only) applying the polymer 3.5 About $3,500 

    Total cost of the treatment 3.5 Cost of the treatment is about $3,507 per ton 
*Data obtained from a survey conducted with industry experts and suppliers of treatment chemicals and machinery.  
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Table 3c: Cost implications of the treatments done using carbonation and pozzolanic materials. 

Treatment Cost ($1000) Note* 

Carbonation treatment   

    Cost of the carbonation  

chamber 

4.0 Carbonation chamber cost is about $40,000  

 i.e. $4,000 per year for 10 years 

    Working capital 2.0 15% variable operating cost of about $2,000 

per unit per year for the chamber 

    Equipment maintenance 1.9 Cost of maintenance per year is about $1,900 

    Labour 8.5 One person at about $8,500 per year 

    Cost of the CO2 1.8 Cost of CO2 is about $1,800 per year 

    Total cost of the treatment 18.2 About 2,500 tons per year at $7.3 per ton   

Pozzolanic materials treatment   

    Cost of drying oven 2.0 Drying oven cost is about $20,000  

 i.e. $2,000 per year for 10 years 

    Working capital 1.6 15% variable operating cost of about $1,600 

per unit per year for the oven 

    Equipment maintenance 1.7 Cost of maintenance per year is about $1,700 

    Labour 8.6 One person at about $8,600 per year 

    Power (electricity) 2.5 Cost of power is about $2,500 per year 

    Cost of (only) using the    

    oven 

16.5 About 2,500 tons per year at $6.6 per ton 

    Cost of pozzolanic materials 0.008 Average cost of SF, FA or nanoSiO2 for   

 treating one ton of recycled aggregates is 

about $8.0 

    Labour 0.1 Cost of labour for treating one ton   

 of aggregates is about $100 

    Water 0.0006 Cost of water for treating one ton of  

 aggregates is about $0.6 

    Cost of (only) applying the 

pozzolanic materials 

0.1 About $108.6 per ton 

   Total cost of the treatment 0.1 Cost of the treatment is about $115.2 per ton 

*Data obtained from a survey conducted with industry experts and suppliers of treatment chemicals and machinery. 
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7. Conclusions    

This review paper has identified and highlighted the available promising techniques that 

may be used to regenerate cementitious properties from hardened cement paste and to 

improve the properties of recycled aggregates. It was found that a combination of 

mechanical grinding and thermal treatment techniques, is an effective means for activating 

the cementitious properties of hardened cement paste. Considering that the relatively 

inferior properties of recycled aggregates are mainly attributed to the presence of adhered 

mortar at the surfaces of aggregates, a wide range of techniques exist that are effective in 

enhancing the properties of recycled aggregates. These techniques are categorized into the 

adhered mortar removal treatments and the adhered mortar fortifying methods. The 

important mortar removal techniques consist of mechanical abrasion and/or thermal 

treatment with or without soaking of the aggregates in acid or water. Polymer 

impregnation, carbonation treatment, pozzolanic slurry coating and biodeposition, are the 

main mortar fortifying techniques. From findings in the literature, the following specific 

conclusions have been reached.   

(a) Hardened cement paste (HCP) can be transformed into dehydrated cement paste  

      (DCP) by subjecting it to high temperatures, causing it to recover some hydration  

      capacity. The recommended range of temperatures for the thermal treatment of HCP  

      is 500 to 800oC.  Use of higher temperatures is detrimental. 

(b) For HCP to be used as a recycled cementitious material, it is necessary for its fineness  

      to be high enough to pass 75 m
 
sieve. Relative to ordinary Portland cement, DCP  

      gives a short setting time, has a higher water demand, and generally gives lower   

      strength.   

(c) Recycled aggregates typically exhibit high water absorption values of 5 to 7%, owing  

      to the presence of adhered mortar at surfaces of the aggregates. When recycled  

      aggregates are used in concrete, the adhered mortar and the associated existing        

      interfacial transition zone (ITZ) along with the new ITZ, form a triple  

      layered weak zone (3ITZ). It is suggested that this relatively weaker and thicker 3ITZ  

      is majorly responsible for the inferior properties of concrete made with recycled  

     aggregates.  



                                               29 
 

(d) Mechanical abrasion and/or thermal treatment methods are the most effective  

        techniques for improving the properties of recycled aggregates. These techniques  

        also possess the merit of simplicity, are least costly and non-hazardous. Thermal  

        treatment of recycled aggregates at temperatures exceeding 500oC can be   

        detrimental to properties of the treated aggregates.  

(e) While the cost of non-treated recycled aggregates is lower than that of natural 

aggregates, treatment of the former tends to elevate its cost to levels somehow above 

those for the natural aggregates. However, a majority of the methods including the 

abrasion and thermal treatment techniques, remain competitive and feasible.  
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