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ABSTRACT 

In this paper, a batch experiment was conducted to evaluate the water quality obtained from 

using pervious concrete (PERVC) technology to treat acid mine drainage (AMD). The study 

proposes an innovative application of PERVC as a permeable reactive barrier liner in 

evaporation ponds. The effectiveness of PERVC adsorbent in removing heavy metals was 

compared with that of zero-valent iron (ZVI) of particles sizes 1.0 to 1.8 mm. The AMD used 

in the study was obtained from abandoned gold and coal mines. PERVC mixtures consisted of 

granite aggregate and ordinary portland cement CEM I 52.5R (CEM I) or CEM I containing 

Class F 30% fly ash (30%FA) as a cement replacement material. ZVI was prepared from a 

mixture of silica sand and iron grit of specific sizes. PERVC and ZVI media were used to 

conduct batch reactor tests with AMD, for a period of 43 days at a ratio of one litre of reactive 

material to three litres of AMD. The quality of treated AMD was compared against effluent 

discharge standards.  

The contaminants Al, Fe and Zn were effectively removed by both PERVC and ZVI. Also, 

both adsorbents reduced Ni, Co and Cu to levels below those measured in raw AMD. However, 

PERVC was more effective in removing Mn and Mg while ZVI was ineffective. Although 

PERVC removed more heavy metals and with greater efficiency than ZVI, the PERVC – 

treated water showed high pH levels and exhibited elevated Cr6+ concentrations, owing to 

leaching from the cement and fly ash materials used in PERVC mixtures. 

 

Keywords: Pervious concrete, zero - valent iron, acid mine drainage, batch test, permeable 

reactive barrier 

 

Introduction 

Water preservation, recycling and reuse is quickly becoming inevitable as urbanisation and 

growth of the human population continues to stretch the demands on water availability in 
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various nations. Water in some countries is quite a scarce commodity. Southern Africa is 

among the known water - stressed regions, amongst others such as Middle East, China etc. 

(Jobson, 1999; Procházka et al., 2018). It is estimated that 40% of the world population may 

be living in water scarce or stressed countries within the next 50 years (Bichai et al. 2016).  A 

critical strategy for future water security lies in development of a portfolio of supply sources, 

including water recycling. A common source which is already widely employed in several 

countries is reuse of treated municipal wastewater. Another potential resource for water 

recovery is acid mine drainage (AMD).  

AMD typically occurs in abandoned mining sites rich in pyrites which are typically found 

embedded in mineral ore sources. Upon extraction of minerals during a mining activity, the 

pyrites are left exposed to atmospheric conditions within the mined rock sources or tailings. 

Under these exposure conditions, pyrites undergo oxidation forming acidic water discharge. 

Similarly, acid sulphate soils contain sulphidic materials which typically result in acidic water 

run - off i.e. AMD (Igarashi and Oyama, 1999; Testa et al., 2013; Komnitsas et al., 1995; 

Fitzpatrick, 2003). AMD dissolves acid soluble heavy metals from tailings and deposits the 

contaminants through a variety of mechanisms including precipitation and surface sorption 

onto soils and water courses, endangering the ecological systems, plant and aquatic life (Fripp 

et al., 2000).    

A simplified Eq. (1) gives the pyritic oxidation reaction leading to AMD formation (Kefeni 

et al., 2015; Ford, 2003; Akcil and Koldas, 2006; Petrik el al., 2006). The presence of some 

bacterial species especially Thiobacillus ferrooxidans, is known to remarkably oxidize iron and 

sulphur in pyrites, typically at a low pH < 3.5 (Igarashi and Oyama, 1999; Testa et al., 2013; 

Komnitsas et al., 1995; Blowes et al., 2003; Younger, 2004). 

 

   2 FeS2 + 7.5O2 + 7H2O  →  2Fe(OH)3  + 4H2SO4   (1) 

 

AMD emanates from its source which may be an underground or open cast mine, then flows 

to the surrounding environment that may include soil, wetlands, water courses or bodies. AMD 

is typically characterised by acidity and high concentrations of heavy metals. As a result of its 

chemical composition, it tends to be highly aggressive to environmentally sustained ecosystem. 

It pollutes wetlands, lakes, rivers etc. usually destroying aquatic life and rendering these water 

resources unsuitable for human or animal consumption and for agricultural uses. Also, AMD 

contamination strangulates animal and plant life including vegetation, and renders barren even 
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soils that were naturally fertile (Fripp et al., 2000; Ochieng et al., 2010).  The acidic nature of 

AMD causes corrosion of infrastructure used in dams, bridges, water pumping and supply, 

amongst others (Gitari et al., 2008; Pagnanelli et al., 2009; Offeddu et al., 2015; Macías et al., 

2012a). Fig. 1 shows an AMD source in a South African open cast mine. Crystallised metal 

and/or sulphate mineral salts can be seen deposited at the soil surface, following evaporation 

of AMD - contaminated seepage water in the soils (Antivachis et al., 2016; Harris et al., 2003). 

The dam in Fig.1 may also be considered as an evaporation pond, which serves as the AMD 

receptor prior to effluent discharge into the river downstream.  

 

 

Fig. 1 A dam of acid mine drainage emanating from surrounding mining activity 

in South Africa, showing   crystallization of heavy metal salts on soils rendering 

it non-life supporting (pH = 2.7, EC = 340 mS/m) 

 

Sustainable treatment of acid mine drainage 

Active treatment of AMD by dosing with lime or other chemicals, is presently the most 

commonly used technique. However, this method has major disadvantages including the 

formation of sludge which itself has to be disposed of, the high cost of chemicals, labour and 

equipment maintenance etc. (Hengen et al., 2014). These treatment costs can be so high to the 

point of being non - sustainable in the long - term, as commonly seen in some developing 

countries.  

Passive treatment systems such as the wetland system, permeable reactive barriers (PRBs) 

etc., are considered to be among the most sustainable options as they do not require continuous 
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chemical inputs, nor do they involve high maintenance. PRBs have emerged as one of the most 

promising passive systems for treatment of contaminated groundwater (Phillips, 2009; 

Thiruvenkatachari et al., 2008; Amos and Younger, 2003; Komnitsas et al., 2006). It is a cost-

effective technology that could be used to treat groundwater with an underground PRB or to 

treat surface water with a PRB liner in facultative evaporation ponds. The latter innovation is 

the preoccupation of the present paper, as discussed later under experimental study. A typical 

PRB consists of a trench or wall, filled with granular material which is sufficiently permeable 

to allow passage of groundwater through it, as determined by the natural groundwater flow 

regime.  

Various types of reactive materials have been studied for potential use in PRBs. The most 

common of them is zero-valent iron (ZVI) as indicated by the various researches (Cundy et al., 

2008; Suponik and Blanco, 2014; .Moraci and Calabró, 2010; Gusmão et al., 2004; Cantrell et 

al., 1995; Komnitsas et al., 2006). Others including activated carbon, zeolites, peat, saw dust, 

oxygen releasing compounds etc. have also been used and evaluated (Thiruvenkatachari et al., 

2008; Obiri-Nyarko et al., 2014). Alkaline materials such as limestone, hydrated or slaked lime 

and dolomite are commonly used to treat groundwater that is contaminated by AMD. These 

materials have been shown to effectively remove divalent and trivalent metal cations such as 

copper, cadmium, lead and zinc from solution (Wang et al., 2016; Gitari et al., 2008; Pagnanelli 

et al., 2009; Offeddu et al., 2015; Macías et al., 2012a).  

Several recent pioneering studies (Shabalala et al., 2017; Solpuker et al., 2014; Ekolu et al., 

2016a; Shabalala, 2013) have shown pervious concrete (PERVC) technology to be an effective 

system for polluted water remediation. Ekolu and Bitandi (2018) showed PERVC to also 

possess greater treatment longevity of about twice that of ZVI.  PERVC is a mixture of single 

size coarse aggregate, portland cement, water, and little to no sand. It is typically used to drain 

stormwater run - off from the streets, parking lots, driveways, and walkways. Porous pavements 

are known to reduce surface run - off and to minimize stormwater accumulation during a rain 

event in urbanised areas. Researches show that PERVC can also function as a pollution sink 

for run – off, owing to its particle retention capacity through filtration (Ekolu et al., 2014a and 

Solpuker et al., 2014). The high porosity of PERVC leads to good water infiltration and air 

exchange rates (Scholz and Grabowiecki, 2007).  

 

Objectives 

It has been shown that ordinary evaporation ponds hardly improve the quality of 

contaminated mine water (Mapanda et al., 2007). However, they provide effective interception 
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points that can be exploited to employ AMD treatment, for example by introducing alkaline 

materials and sulphate reducing bacteria (SRB) using limestone, manure etc. (Barnhisel et  al., 

2000; Macías et al., 2012b; Metesh et al., 1998).  

This paper proposes an innovative application of PERVC as a PRB liner in evaporation 

ponds, for recovery of water from AMD. To the best knowledge of the authors, the proposed 

use is the first of such PERVC’s application. Accordingly, a batch reactor experiment was 

conducted to evaluate the water quality obtained by using PERVC made using portland cement 

of grade CEM I 52.5R (CEM I) or CEM I /FA mixture containing 30% FA (30%FA) as a 

cement replacement material. Comparisons were then made on treatability of AMD using 

PERVC versus using ZVI as adsorbents. The measurements conducted on water include 

physico - chemical parameters, changes in water quality due to the various treatments, 

adsorption parameters, and removal efficiency. The quality of treated water was evaluated 

against the Environmental Protection Act (EPA, 1986) and National Water Act (NWA, 1999), 

being the standards for effluent disposal to the environment.      

 

Experimental Study 

Configuration 

The experiment comprised batch tests conducted on AMD using PERVC and ZVI 

adsorbents. The batch reactor set - up depicts a configuration of PERVC – PRB liner in a 

facultative evaporation pond or dam, as illustrated in Fig. 2a. Often, these ponds are trapezoidal 

or rectangular shaped, clay - lined trenches that serve as receptors of contaminated mine water 

seepage. From these ponds, the effluent may be discharged into the adjacent natural water body 

or stream. The present study innovatively proposes to provide a PERVC - PRB liner upon the 

walls of evaporation ponds. AMD undergoes treatment as it passes through the PERVC - PRB 

lining. As shown in previous studies (Ekolu et al., 2016a), PERVC is highly porous and has 

high hydraulic conductivity that allows uninhibited flow of water through its pore network, as 

also depicted in Fig. 2b (Yang and Jiang, 2003). As water percolates through the pore network 

of the PERVC liner, it comes in contact with highly alkaline cement paste in the concrete 

matrix. This paste neutralises the AMD by raising its pH, in turn leading to precipitation of 

dissolved heavy metals from the polluted mine water (Shabalala et al., 2017; Ekolu and Bitandi, 

2018).   
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Fig. 2 Pervious concrete reactive barrier lining in evaporation ponds of acid mine drainage  

 

 

Acid mine drainage and reactive media 

The AMD types used in the study were obtained from abandoned gold and coal mines, 

anonymously designated as WZ and TDB respectively. AMD was collected from field sources 

using high density polyethylene containers and transported to the laboratory for use in the 

experiments. As already mentioned, the reactive media comprising PERVC and ZVI were used. 

PERVC was made using constituents consisting of portland cement CEM I 52.5R with or 

without 30% fly ash (FA), and 6.7 mm granite aggregate. In an earlier study (Ekolu et al., 

2014b), it was shown that FA rapidly neutralises AMD, attaining maximum pH within 10 to 

15 minutes. 

The chemical compositions of the cementitious materials used, are given in an associated 

paper published earlier (Shabalala et al. 2017) and repeated in Table 1 for convenience. 

Evidently, the FA used was of Class F category (ASTM C 618, 2015). The granite aggregate 

used was selected following an earlier study, which involved aggregates of different types and 

sizes (Ekolu et al., 2016a).  

Also given in Shabalala et al. (2017), are mixture details including the mix design, mixing 

and casting procedures for the 100 mm PERVC cubes used. The mixes were designated as 

CEM1 for the PERVC made of ordinary portland cement, and 30%FA for PERVC containing 

30% FA as a partial cement replacement material. Incorporation of 30% FA into the concrete 

mixture provides effective resistance to potential acid attack by AMD (Ekolu et al., 2016b; 

Shabalala et al., 2017).  

The composition of ZVI comprised 80.6% Fe2O3, 0.72% MnO, 0.24% Al2O3, 0.19% Cr2O3, 

0.03% MgO, 0.02%ZnO and trace elements. Evidently, the ZVI had quite a high iron content. 

The density of ZVI is 7,800 kg/m3, while its specific surface area is typically 1.0 to 2.0 m2/g. 

In PERVC, the hardened cement paste (HCP) forms a coating on aggregate particles and reacts 

with AMD (Fig. 2). The density of HCP is 1900 – 1950 kg/m2 and its Brunauer–Emmet–Teller 
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(BET) specific surface area is 30 to 100 m2/g (Hunt, 1966; Thomas et al., 1998; Ekolu and 

Bitandi, 2018). 

      Commercially available ZVI material supplied by B.V. Boksburg (pty) Ltd., was used in 

the study. In preparing the ZVI – sand mixture, standard 100 mm cube moulds were filled with 

equal proportions of fine silica sand of size range 0.4 to 0.85 mm, coarse silica sand of size 

range 0.8 to 1.8 mm, fine ZVI grade GH 80 of size range 0.18 to 0.42 mm and coarse ZVI 

grade GH 18 of size range 1.0 to 1.4 mm. The fine particles of ZVI result in low porosity and 

low permeability, making it vulnerable to fast clogging. By incorporating sand into ZVI, the 

mixture attains increased porosity and higher permeability for better hydraulic conductivity 

and reduced clogging (Bartzas and Komnitsas, 2010).  

 

Table 1. Chemical compositions of portland cement and fly ash (Shabalala et al., 2017) 

 SiO2 Al2O3 CaO Fe2O3 MgO TiO2 Mn2O3 Na2O3 K2O P2O5 LOI 

CEM I 52.5R (%) 21.9 4.75 65.44 3.68 2.17 0.49 0.40 0.17 0.25 0.06 1.57 

Fly ash (%) 50.32 24.57 7.31 5.91 1.83 1.53 0.05 0.16 0.76 0.47 5.59 

 

 

Batch reactor experiment  

In the batch reactor set - up, one - litre cube of CEM 1, one - litre cube of 30%FA and one 

- litre of ZVI - sand mixture, were each placed in a four litre plastic container. Three (3) litres 

of WZ or TDB were added to each container. Table 2 gives the quantities of constituents used 

in the batch set-up. Vadapalli et al. (2008) observed that active treatment and neutralization of 

AMD to circumneutral or alkaline pH was optimized when the ratio of AMD to reactive media 

was maintained at 3:1 by volume. Accordingly, a ratio of one litre of reactive material to three 

litres of AMD was used in the present study. Containers were tightly closed to ensure no 

evaporation took place. During the first 10 days, aqueous samples of 200 mls were collected 

once a day and stored at room temperature. Thereafter, the sampling frequency was decreased 

to once a week. The experiment was conducted continuously for a period of 43 days. 

 

 Table 2. Adsorbent mixtures used in the batch experiment 

Adsorbents Solid constituents  Acid mine drainage  (mls) 

CEM I One 100 mm cube, one litre 3000 

30%FA One 100 mm cube, one litre 3000 

ZVI Iron grit and sand mixture*, one litre 3000 

*Comprised 25% iron grit GH18, 25% iron grit GH80, 25% silica sand of 0.4-0.85 mm 

size, 25% silica sand of 0.8-1.8 mm size 

 

Measurements and analyses 
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      Measurement of pH was conducted using the MP - 103 microprocessor - based 

pH/mV/Temp tester. pH tests were done immediately upon collection of aqueous samples from 

batch tests. The pH electrode was calibrated using standard NIST - traceable pH 2.0, 4.0, 7.0 

and 10.0 buffers. Samples of treated AMD were collected into 220 ml plastic vials, stored at 

4oC and analysed for Al, Fe, Zn, Mn, Na, Mg, K, Ca, Mn, Fe, Co, Ni and Cu. The Perkin Elmer 

SCIEX (Concord, Ontario, Canada) ELAN® 6000 inductively coupled plasma - mass 

spectrometer (Perkin Elmer, 2003) was employed for the water analyses. SO4 concentration 

was determined using ion chromatography, Dionex QIC-IC.  

Adsorption capabilities of the reactive media were assessed based on retention parameters 

consisting of the amount of metal adsorbed (qe) in mg/g, contaminant removal efficiency 

(RE%), partition (also referred to as adsorption or distribution) coefficient (Kd) in mL/g. Eqs. 

(2) to (4) give the expressions used to calculate these parameters. 

m
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C-C(mg/g)q eoe ).(       (2) 

100
C

C-C
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eo x      (3) 
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C
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eo
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       (4) 

where Co is the initial concentration of the contaminant in AMD (mg/L), Ce is equilibrium 

concentration of the contaminant (mg/L), V is volume (L), m is mass of the reactive material 

or adsorbent (g). 

 

Results and Discussion 

The subsequent sections give the results obtained upon AMD treatment using PERVC and 

ZVI. The two AMD types used in the present study had different elemental compositions and 

acidity levels with pH values of 4.15 and 5.79 for WZ and TDB, respectively. Chemical 

analyses of WZ samples showed high metal concentrations of Ca (582 mg/L), Mg (170 mg/L) 

, Na (139 mg/L), Mn (131 mg/L), Fe (12 mg/L) and Al (3 mg/L),  while TDB  also had high 

contents of Ca (470 mg/L), Mg (214 mg/L), Na (3061 mg/L), Fe (9 mg/L) and Al (6 mg/L). 

Both, the WZ and TDB had high SO4 concentrations of 1123 and 2870 mg/L, respectively. 
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Figs. 3 to 9 show the pH results and the changes in concentrations of heavy metals, with 

duration of the treatment. These results are discussed comparing the treatability of AMD using 

PERVC relative to using ZVI.  

  

pH change 

During the batch reactor experiments, the pH values of raw AMD increased from 4.15 or 

5.79 before treatment to pH = 6 to 8 for ZVI and pH = 9 to 12 for PERVC after treatment, as 

seen in Fig. 3. For both reactive media, a rapid increase of pH was observed within the first 24 

hours of the experiment. For a given reactive material, the treated TDB always gave pH levels 

that were 1 to 2 points higher than the corresponding values for WZ. The high pH values 

observed in PERVC - treated AMD is related to dissolution of portlandite from the 

cementitious matrix, which adds alkalinity into the system (Chandrappa and Biligiri, 2016). In 

the experiments conducted using ZVI, the oxidation of ZVI to ferrous and ferric iron caused 

the increase in pH. As already indicated, lower final pH values were attained for acidic AMD 

water samples that were treated using ZVI as compared to those that were treated using 

PERVC. 

 

 

Fig. 3. Changes in pH values of acid mine drainage during treatment 

 

 

 

Effect of using plain pervious concrete  
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      Fig. 4 presents the changes in concentrations of Al, Fe and Mn during 43 days of the batch 

tests. The neutralising capacity of PERVC is attributed to the large quantity of portlandite phase 

which adds alkalinity to the solution.  CEM I effectively removed Al, Fe, Zn and Mn from both 

WZ and TDB with efficiency levels of 98% to 100%. In all the treated AMD samples i.e. WZ-

CEM1, TDB-CEM1, WZ-30%FA, TDB-30%FA, WZ-ZVI and TDB-ZVI, there was generally 

no consistent decrease in the concentration of sulphate, as seen in Fig. 5. It can be concluded 

that none of the reactive media were successful in removing sulphate. While most metals 

precipitate out of solution at high pH, sulphate remains in solution and does not precipitate 

since its stability is not pH dependent. However, some sulphate may be removed by PERVC 

as gypsum precipitate (Shabalala et al., 2017). Treatment methods such as microbial 

remediation of AMD using SRB, filtration, electrocoagulation, adsorption and ion exchange, 

are considered as promising alternatives for sulphate removal (Fernando et al., 2018).   

      It can be seen in Figs. 6 and 7 that the concentrations of Pb, Zn, Ni, Co and Cu decreased 

as the pH of the solution increased. Precipitation of metal hydroxides and oxides may explain 

the observed reductions in concentrations of these contaminants (Aube, 2004; Seneviratne, 

2007). The Ni, Cu, Pb and Zn metals may have precipitated as Ni(OH)2, Cu(OH)2, Pb(OH)2 

and Zn(OH)2, respectively. The removal of cobalt is probably due to its adsorption onto /co - 

precipitation with iron and aluminium hydroxides or hydrosulphates. At pH values between 8 

and 9, Ni is adsorbed onto calcite in solution (Kefeni et al., 2015).  

 

Effect of using pervious concrete mixtures containing fly ash 

      Major reductions in concentrations of most metals were observed for WZ-30%FA and 

TDB-30%FA as shown in Figs. 4, 6 and 7. The 30%FA adsorbent removed 99% of Al, reducing 

it from 3 mg/L in raw WZ to 0.07 mg/L in WZ-30%FA, and from 6 mg/L in raw TDB to 0.05 

mg/L in TDB-30%FA (Fig. 4a). The observed reductions of Al concentration in WZ-30%FA 

and in TDB-30%FA, may have resulted through the formation of amorphous Al(OH)3 

(Komnitsas et al., 2004). As pH increases, Fe3+ precipitates to form amorphous ferric 

hydroxides and oxyhydroxides, which explains the complete removal of iron from WZ-30%FA 

and TDB-30%FA.  

      The concentrations of Pb, Zn, Ni, Co and Cu in raw AMD were generally low and decreased 

to undetectable levels after PERVC or ZVI treatment. Removal of Ni can be attributed to its 

precipitation as Ni(OH)2 and possible adsorption on the precipitating amorphous Al and Fe-

oxyhydroxides. Cu tends to precipitate as cupric and cuprous fernite and may be adsorbed onto 
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the surface of FA at pH values between 5 and 6. Zn co - precipitates with Si that is solubilised 

from FA and forms willemite (Vadapalli et al., 2008).  

 

Effect of using zero - valent iron  

      When raw AMD was treated using ZVI, the concentrations of most metals measured in the 

batch tests decreased, as seen in Figs. 4, 6 and 7. Al removal levels were 82% and 97% for 

WZ-ZVI and TDB-ZVI, respectively. In Fig. 4c, the reduction of Mn concentration from 107 

mg/L in raw WZ to 63 mg/L in WZ-ZVI, and from 20 mg/L in raw TDB to 2 mg/L in TDB-

ZVI, may be attributed to its precipitation as Mn(OH)2 at alkaline or neutral pH. 

      Concentrations of Pb, Zn, Ni, Co and Cu were maintained at low values following ZVI 

treatment, as seen in Figs. 6 and 7. When Fe0 is oxidised to Fe2+ then to Fe3+, various iron 

corrosion products Fe(OH)2, FeOOH, Fe(OH)3 may form (Schwertmann and Murad, 1983), as 

shown in Eqs. (5) to (7) 

Fe3+ + 2H2O → FeOOH + 3H+       (5) 

2Fe2+ + 3H2O → Fe2O3 + 6H+       (6) 

3Fe2+ + 4H2O → Fe3O4 + 8H+       (7) 

Metals in cationic forms may be sorbed onto these iron corrosion products (Lindsay et al., 

2008; Hashim et al., 2011; Bartzas and Komnitsas, 2010). Thus, it is likely that the main 

processes for Ni (II), Co (II), Cu (II) and Zn (II) removal are their adsorption onto the surface 

of iron corrosion products. Ni, Co and Zn may also be precipitated as metal hydroxides.  
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Fig. 4. Changes in (a) aluminium, (b) iron and (c) manganese concentrations. 
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Fig. 5. Changes in sulphate concentrations. 

 

 

Fig. 6. Changes in (a) lead and (b) zinc concentrations. 
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Fig. 7. Changes in (a) nickel, (b) cobalt and (c) copper concentrations 

 

Alkali metal changes for treatments done using pervious concrete and ZVI adsorbents 

Fig. 8a shows that the K concentration levels remained elevated in both the PERVC (CEM 

I, 30%FA) - treated and the ZVI - treated AMD water. Also, there were no significant 

reductions in Ca and Mg concentrations of the ZVI - treated AMD, as seen in Figs. 8b and 8c. 

Interestingly, high removal of Mg was achieved in AMD samples that were treated using 

PERVC but the ZVI – treated samples showed very low Mg removal. The PERVC’s Mg 

removal levels for WZ and TDB were respectively 96% and 99%, while ZVI gave 

corresponding removal levels of 12% and 16%. Mg removal by PERVC was observed to be 

optimal at a pH range of 9 to 11 and may be attributed to the formation of brucite and 

hydrotalcite in solution (Solpuker et al., 2014).  
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Fig. 8. Behaviour of alkalis showing changes in (a) potassium, (b) 

calcium and (c) magnesium concentrations.  

 
 

Removal efficiencies  

The metal removal efficiency levels were calculated as summarised in Table 3. Average 

equilibrium concentrations of each contaminant over the period 10 to 43 days, were calculated 

and used to determine its proportional decrease or increase relative to its initial level in raw 

AMD. The Al, Fe, Zn and Pb had zero or undetectable concentrations after treatment with CEM 

I or 30%FA. For purposes of conducting calculations, the equilibrium concentrations of these 

contaminants were assumed to be 0.01 mg/L.     

As seen in Table 3, the Al, Fe, Ni, Co, Pb and Zn were successfully removed by all the 

reactive media (CEM 1, 30%FA, ZVI) with removal efficiency levels of up to 100%. The 
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removal efficiency levels for Al, Mn, Mg and Cu were greater when AMD was treated using 

CEM I or 30%FA relative to the treatment with ZVI. For instance, 91% to 100% of Mn and 

Mg in WZ or TDB were removed by CEM I or 30%FA, yet ZVI treatment correspondingly 

achieved a low 44% to 58% removal of Mn and even lower 12% to 16% removal of Mg. 

Clearly, the ZVI adsorbent was ineffective while PERVC was very effective in removing both 

Mn and Mg from raw AMD.  

 

Table 3. Contaminant removal efficiency levels achieved using pervious concrete and ZVI reactive media 

AMD 

Type 

Adsorbent Al 

(%) 

Fe 

(%) 

Mn 

(%) 

SO4 

(%) 

Mg 

(%) 

Ni 

(%) 

Co 

(%) 

Cu 

(%) 

Pb 

(%) 

Zn 

(%) 

 CEM1 98 100 100 -24 96 97 93 99 99 99 

WZ 30%FA 99 100 99 -32 91 96 93 99 99 99 

 ZVI 82 96 44 -51 12 95 97 70 99 94 

 CEM1 99 100 100 -75 99 98 98 80 99 100 

TDB 30%FA 99 100 99 -46 99 97 98 80 99 99 

 ZVI 97 100 58 -95 16 95 98 80 99 100 

 

A comparison is given in Fig. 9 showing the equilibrium concentrations of the major 

contaminants in AMD before and after treatment. It is clear from Fig. 9(a) that the major heavy 

metals presents in AMD were completely removed or reduced to negligible concentrations 

when treated using CEM I or 30%FA. The contaminants removed by CEM I or 30%FA include 

Mn and Mg. The ZVI also removed most heavy metals except Mg and Mn. The inability of 

ZVI to remove these two contaminants is attributed to the lower pH = 6 to 8 attainable through 

ZVI treatment, while CEM I or 30%FA attained a pH = 9 to 11, which is the range for 

precipitation of Mn and Mg.        

Since sulphate removal is not pH dependant, none of the media effectively removed or 

reduced SO4 concentrations. It is notable in Fig. 9b that the concentration of SO4 increased 

following AMD treatment using each of the adsorbents. The ZVI treatment gave greater 

increase in the SO4 concentrations compared with CEM I - or 30%FA - treatment, while the 

latter showed a slightly higher SO4 increase than the former. 
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Fig. 9. Concentrations of contaminants in acid mine drainage after 43 days of batch 

reactor treatment using pervious concrete or ZVI (a) heavy metals, (b) sulphates 

 

Retention properties of reactive media 

Results showing the retention characteristics of CEM I, 30%FA and ZVI are given in Table 

4 for the various heavy metals. For each type of AMD, the uptake of heavy metals (qe) was 

similar for both PERVC media i.e. CEM I and 30%FA. It can also be observed that ZVI had a 

similar metal uptake as PERVC, except for the metals Mn and Mg where the uptake by ZVI 

was quite low. For WZ, the uptake of Mn or Mg by PERVC was in the range 67 to 95 mg/g 

which is much higher than the 11 to 32 mg/g uptake by ZVI. Similarly for TDB, the Mn or Mg 

uptake of 11 to 125 mg/g by PERVC is much higher compared with 6 to 20 mg/g uptake by 

ZVI. These results are consistent with the inability of ZVI to significantly remove Mn and Mg, 

while PERVC adsorbents were effective in removing these contaminants, as discussed earlier. 

PERVC adsorbents also showed higher uptake of metals from TDB relative to their 

corresponding uptake from WZ. These observations underscore the relative ease of metal 

release by TDB as opposed to WZ which appears to be more difficult to treat.   



18 
 

    The adsorption coefficient, Kd gives the proportion of metal concentration sorbed by the 

reactive media relative to the concentration left dissolved in solution, as expressed in Eq. (4). 

CEM I and 30%FA were generally more effective sorbents compared to ZVI. For instance, 

ZVI showed little to no sorption of Mn and Mg giving Kd = 0.11 to 0.78 mL/g in TDB, 

compared to the corresponding 85 to 586 mL/g for PERVC. It is, however, notable that sorption 

of Mn by 30%FA was quite diminished in WZ unlike in TDB where higher sorption was 

observed. However, sorption of Mn in WZ by CEM I was also high. This observation may be 

related to the dilution effect of using FA as a partial replacement material in portland cement. 

 

Evaluation of treated water quality  

The contaminant concentrations in AMD before and after treatment with CEM I, 30%FA 

and ZVI were compared with the limits specified in EPA (1986) and NWA (1999) standards 

for pollutant discharge to the environment. Table 5 gives comparisons for the various 

contaminants in the raw AMD, treated WZ, and treated TDB. It may be noted that the standard 

limits given in EPA (1986) and NWA (1999) are the requirements for discharge of pollutants 

to a water resource. 

As shown in the table, both the raw WZ and raw TDB fail in almost all the contaminants, to 

meet the standard requirements for pollutant discharge into a water resource. Treatment of both 

AMD types using ZVI, reduces the concentration levels of contaminants to limits generally 

meeting the EPA (1986) and NWA (1999) criteria for discharge of treated AMD to the 

environment, with the exception of Mn. Treatment of AMD using CEM I or 30%FA leads to 

lower heavy metal concentrations relative to using ZVI, however, the PERVC - treated AMD 

water exhibit undesirably high pH levels and elevated Cr6+ concentration (Table 5). It is known 

that both acidity and high alkalinity of water, inhibit microbial growth. A circumneutral pH 

range, typically 6.5 to 7.5 is essential for sustenance of microbial activity and the ecosystem, 

generally.  

Cr6+ is known to be carcinogenic (Zhitkovich, 2011; WHO, 2003). Both CEM I and 30%FA 

materials do release Cr6+ into treated water, leading to concentration elevation beyond the 

maximum limits of 0.10 and 0.05 mg/L specified in EPA (1986) and NWA (1999), 

respectively. 

Also, all the reactive media resulted in elevation of SO4 concentration in the treated AMD, 

but there is no specified SO4 limit given in EPA (1986) and NWA (1999) for pollutant 

discharge to water bodies. The concentrations of most contaminants in CEM I - treated or 

30%FA - treated water, also meet the specified limits for drinking water standards (SANS 241, 
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2015) except for Na, SO4, Cr6+ and the high pH of 11. The ZVI - treated AMD water also fails 

to meet the drinking water limits for Na, SO4, Mg and Mn (Table 5).  

 

 

Table 4. Retention of heavy metals by the various reactive media  

 Metal 
WZ TDB 

qe (mg/g) Kd (mL/g) qe (mg/g) Kd (mL/g) 

CEM I 

Al 1.72 28.73 3.47 43.39 

Fe 7.03 703.02 5.02 501.81 

Zn 0.82 0.08 1.64 163.59 

Mn 76.62 232.17 11.72 585.75 

Mg 95.49 13.35 124.63 85.95 

Ni 0.74 18.47 0.35 34.59 

Co 0.16 8.21 0.23 22.87 

Cu 0.06 58.05 0.05 2.35 

30%FA 

Al 1.52 38.00 3.04 38.00 

Fe 6.16 615.66 5.02 501.81 

Zn 0.71 71.37 1.42 47.41 

Mn 66.92 0.10 10.21 85.07 

Mg 79.78 5.45 109.31 98.48 

Ni 0.64 12.84 0.30 14.89 

Co 0.14 7.19 0.20 20.03 

Cu 0.05 50.83 0.04 2.05 

ZVI 

Al 1.37 2.49 3.26 20.37 

Fe 6.42 13.11 5.02 501.81 

Zn 0.73 8.12 1.56 155.74 

Mn 32.41 0.44 6.49 0.78 

Mg 11.23 0.07 19.55 0.11 

Ni 0.69 11.54 0.32 10.61 

Co 0.16 16.19 0.22 21.77 

Cu 0.04 1.30 0.04 2.23 
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Table 5. Comparison of treated water quality against pollutant discharge standards  

 

 

Raw  

WZ 

 

 

(mg/L) 

Raw  

TDB 

 

 

(mg/L) 

EPA*  

effluent 

discharge 

standards 

 (mg/L) 

NWA** 

waste 

discharge 

limits  

(mg/L) 

SANS 241  

drinking 

water 

limits 

(mg/L) 

WZ treated using TDB treated using 

ZVI 

(mg/L) 

 

CEM I 

(mg/L) 

 

30%FA 

(mg/L) 

ZVI 

(mg/L) 

CEM I 

(mg/L) 

 

30%FA 

(mg/L) 

pH 4.15 5.79 5.5-9.0 5.5-9.5 5.0-9.7 7.5 11.4 10.9 8.8 11.6 11.2 

Ca 582 470    533.9 560.5 593.5 422.4 350.6 387.36 

Mg 170 214    158.7 0.08 0.49 199.3 0.08 0.11 

Na 139 3061   ≤ 200 120 139 132 2879 2694 2793 

K 15 47    14.02 23.06 27.04 46.23 57.4 65.9 

SO4
2- 1123 2870   ≤ 500 1932.4 1427.5 1571.8 7045 5045.1 5319.65 

Fe 12 9 ≤ 3.0 ≤ 0.3 ≤ 2 0 0 0 0 0 0 

Al 3 6  ≤ 0.03 ≤ 0.3 0.49 0.08 0.07 0.02 0.14 0.05 

Mn 131 20 ≤ 2.0  ≤ 0.4 63.02 0 0.07 2.03 0.01 0.01 

Zn 1.4 2.8 ≤ 5.0 ≤ 0.1 ≤ 5 0 0 0 0 0 0 

Cu 0.1 0.1 ≤ 3.0 ≤ 0.01 ≤ 2 0.044 0.004 0.004 0.020 0.023 0.021 

Co 0.3 0.4   ≤ 0.5 0.006 0.017 0.018 0.001 0.006 0.007 

Ni 

 

1.3 

 

0.6 

 

≤ 3.0   0.05 0.03 

 

0.04 0.02 

 

0.02 

 

0.02 

Cr 

 

0.067 

 

0.068 

 

≤ 2.0  ≤ 0.07 

 

0.006 

 

0.511 

 

0.719 0.008 

 

2.65 

 

0.655 

Cr6+ 

 

0.012 

 

0.016 

 

≤ 0.1 ≤ 0.05 

 

≤ 0.05 

 

0.0008 

 

0.436 

 

0.706 0.0008 

 

2.04 

 

0.503 

B 

 

< 0.2 

 

1.04  ≤ 1.0 

 

≤ 2.4 

 

0.157 

 

0.067 

 

0.184 0.597 

 

0.388 

 

0.632 

Pb < 0.03 < 0.03 ≤ 0.1 ≤ 0.01 ≤ 0.01 nd nd 0.0002 nd nd 0.0002 

*EPA - Environmental Protection Act (EPA, 1986), **NWA - National Water Act (NWA, 1999). 

 

 Conclusions 

In this study, the resulting water quality obtained from treating acid mine drainage using 

pervious concrete or zero - valent iron was compared against water standards for discharge of 

effluents to the environment. Based on findings from the investigation, the following 

conclusions are drawn. 

(a) In both of the AMD treatments done using pervious concrete and zero - valent iron, a 

rapid increase in pH was observed during the first 24 hours of the experiment. For 

pervious concrete treatment, a maximum pH of 9 to 12 was attained as compared to 6 

to 8 obtained after treatment of acid mine drainage using zero - valent iron.  

(b) The removal efficiency levels for Al, Fe, Zn, Mn, Mg, Ca, and Cu were 93 to 100% 

when acid mine drainage was treated using pervious concrete as compared to the 

corresponding 12 to 99% for the treatment done using zero - valent iron. Mn, Mg and 

Cu exhibited the lowest removal levels of 44, 12, 70% respectively, obtained upon 
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treatment of acid mine drainage using zero - valent iron. After treatment of acid mine 

drainage using pervious concrete or zero - valent iron, the equilibrium concentration of 

SO4 was always higher than that in raw acid mine drainage. For both, the pervious 

concrete and zero - valent iron adsorbents, the Ni, Co and Cu in the treated mine 

drainage were maintained at levels below those in raw acid mine drainage. 

(c) The main process responsible for heavy metal removal when raw acid mine drainage 

was treated using zero - valent iron, is the adsorption of precipitates onto the surface of 

iron corrosion products. However, the removal mechanism associated with the use of 

pervious concrete to treat acid mine drainage is not fully understood; further research 

is needed. 

(d) Pervious concrete mixtures were found to be better sorbents than zero - valent iron, as 

indicated by comparison of metal uptake and adsorption coefficients for the different 

contaminants.  

(a) Acid mine drainage treatment using zero - valent iron produces water that generally 

meets the standard criteria for pollutant disposal to the environment. Treatment of acid 

mine drainage using pervious concrete containing cement with or without fly ash, gave 

better water quality than the treatment done using zero - valent iron. However, the AMD 

water that was treated using pervious concrete failed to meet the limits applicable for 

discharge of effluent into a water resource, mainly due to the resulting elevated Cr6+ 

and high pH levels of the treated water. These issues need to be resolved to allow 

potential practical use of pervious concrete in water treatment applications. Further 

investigations are ongoing to improve the pervious concrete treatment system. 
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