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Abstract 

This paper presents the results of laboratory investigations conducted on gold mine tailings 

(GMT) to assess their chemical, mineralogical, leaching and geotechnical characteristics as 

well their acid generating potential in view of assessing its suitability as an alternative 

backfilling solution in mine reclamation. Chemical characterisation revealed that GMT is 

dominated by Si, Al and Fe with notable amounts of Cr, Zr, Zn, Pb, Ce, As, Ba, Ni, V, Sr, Nd, 

Cu, U and Co. Mineralogical characterisation revealed a composition of silicate minerals with 

secondary minerals such as jarosite, goethite and hematite. Acid base accounting (ABA) results 

showed that GMT are acid generating. During column leach experiments, leaching of elements 

and SO4
2- was significant at initial stages and became negligible thereafter. GMT composites 

exhibited moderate strength parameters. The effect of curing age and addition of cement 

contributed to the shear strength of the material. Furthermore, GMT showed favourable 

characteristics for use in mine backfilling; however, solid/liquid ratios should be maintained to 

ensure maximum strength. The use of GMT for backfilling is therefore possible; however, 

blending with higher percentages of cement and alkaline materials such as coal fly ash should 

be considered to chemically stabilise the material. 

___________________________        
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Introduction 

Mineral waste is an inevitable consequence of mining and South Africa generates 

approximately 70% mineral waste annually from its mining activities [10]. Waste generated 

from gold mining alone accounts for 47% of the total mineral waste generated in South Africa 

[11]. There are approximately 400 gold tailings dams in South Africa, 270 of which are located 

within the Witwatersrand Basin covering an estimated area of 400 km2 [28, 3]. Currently, a few 

of these tailings dams in South Africa have been reclaimed for re-mining, entailing significant 

potential to exacerbate the negative environmental footprint of mining. Small percentages of 

this waste are beneficially utilised for backfilling and construction purposes [21]. 

A few factors contribute to limited beneficiation of mineral waste in South Africa, such as the 

absence of a regulatory framework that actively promotes the use of mineral waste and the 

absence of standards and specifications for mine waste products. Conflicting approaches to 

mineral waste classification constitute another possible reason why mineral waste in storage 

facilities result in substantial environmental problems. Godfrey et al. [13] alluded to conflicts 

around the regulation of mineral waste in South Africa, arguing that the fact that “mineral 

waste” is not defined legally results in conflicts around legislation. 

The consequences of mineral waste disposal are fully recognised [32, 24, 31, 27, 8]. As such, work 

has gone into ensuring atmospheric pollution prevention and mine waste stabilisation through 

rehabilitation. Moreover, alternatives to mineral waste management have been reviewed. For 

example, Malatse and Ndlovu [20] and Ogola et al. [29] studied the potential beneficiation of gold 

mine tailings (GMT) for brick manufacturing. Furthermore, Sibanda and Broadhurst [37] 

explored opportunities, drivers and barriers to re-purposing gold waste in South Africa. 

However, more research is needed to understand broader potential uses of GMT in mine 
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reclamation such as backfilling. Underground mine backfilling has become an integral part of 

mine reclamation in most parts of the world. Backfilling provides ground support and regional 

stability, thus reducing subsidence and improving ore recovery [30, 12]. A wide range of 

backfilling methods have been assessed, including rock, hydraulic, cemented and silica 

alumina-based backfilling [36, 38]. The methods considered for backfilling often make use of 

mineral waste (waste rock and tailings) in conjunction with small proportions of binders such 

as cement to improve the properties of the backfill material [18]. The use of mineral waste in 

mine backfilling provides an effective means of disposal owing to cuts in storage costs and a 

reduced environmental footprint. 

Previous studies on the viability of using GMT in mine backfilling (Amaratunga and 

Yaschyshyn [2], Benzaazoua et al. [6], Yilmaz [44]) were encouraging with very few studies of 

this nature having been carried out in South Africa. Realising the consequences of mineral 

waste disposal and the opportunity to use such waste in mine reclamation, this study aims to 

assess the properties of GMT produced by one of the mines in the West Rand Basin in South 

Africa for mine backfilling purposes. 

Materials and experimental methods 

Materials 

GMT used in the study was a composite sample collected from one the tailings dams of a gold 

mine in west rand basin, South Africa. The sample was obtained using an auger from a depth 

of 0.5 m to 5 m to ensure that the non-oxidised layer was represented to the best of our ability. 

Lafarge CEM II 52.5N (at 3%) was used as an additive for GMT during geotechnical testing 

to improve the properties of the material. The cement is classified as a high-strength cement, 
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capable of achieving strengths of >52.5 MPa at just 28 days under standard test conditions and 

fast early strength development of >20 MPa at 2 days. 

Experimental methods 

Geochemical and mineralogical composition 

The chemical composition and mineralogy of GMT was analysed using X-ray fluorescence 

(XRF) and X-ray diffraction (XRD) respectively. To carry out the analysis, the tailings were 

air dried and milled to <75 µm. The XRF analysis was carried out using a PANalytical 

wavelength dispersive AXIOS X-ray fluorescence spectrometer equipped with a 4 KW Rh 

tube. Quality assurance was attained using an amphibole reference sample. Loss on ignition 

(LOI) was determined using the ASTM D7384-08 procedure. 

XRD was conducted using pressed samples in plastic holders prepared for analyses as whole 

rock in a BRUKER D8 ADVANCE over a diffraction angle range of 2–70  at a speed of 

0.02 2θ with step sizes of 3 sec. Crystallographic phase identification was based on the 

BRUKER DIFFRAC plus-EVA evaluation program. 

Elemental analysis for leachates was carried out using inductively coupled plasma mass 

spectroscopy (ICP-MS) and anion analysis was carried out using ion chromatography (IC). The 

accuracy of the analysis was monitored using National Institute of Standards and Technology 

(NIST) water standards and the sulfate analysis was conducted turbid metrically. 

ABA 

The acid generating potential of GMT was evaluated using acid base accounting (ABA). The 

neutralisation potential (NP) and acid producing potential (AP) of samples were investigated 
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using the modified Sobek method. Subsequently, the net neutralisation potential (NNP) and the 

neutralisation potential ratio (NPR), also known as the ABA, was determined using the same 

method [39]. 

Column leach test 

Column leach experiments were conducted using a 1 m high column with an internal diameter 

of 26 mm. The column was filled with approximately 55 g dry GMT sample and the tests were 

run in a downward vertical flow mode using deionised water. Water flow was controlled using 

a peristaltic pump at a rate of three revolutions per second (rps) to give a controlled flow rate 

of 0.1 mL/minute. At the end of each leaching cycle (a week), the sample was filtered and 

preserved prior to ICP-MS and IC analysis. 

Geotechnical tests 

A geotechnical testing programme was conducted for the GMT samples, remoulded to 95% 

maximum dry density (MDD) with the addition of 3% CEM II 52.5N cement. The samples 

were cured in moisture over 7, 28 and 56 days curing periods at a room temperature of about 

23 °C. The laboratory tests included a particle size distribution test, Atterberg limit test, a 

Proctor test, a permeability test, compression tests using unconfined compression strength 

(UCS) and standard oedometer and shear strength tests by means of box shear testing. 

The grain size distribution of the material was carried out as per ASTM D422-63 using a sieve 

method. The particle size was characterised using the basic particle size classification for soils. 

Atterberg limit tests were conducted as per ASTM D4318 to measure the critical water content 

of the material. The test was evaluated on a 100 g sample passing through a 245 µm sieve. 

Liquid limit tests were carried out using Casagrande’s equipment. 
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The compaction characteristics of the material were studied using a modified Proctor test as 

per ASTM D1557 to determine the MDD and optimum moisture content (OMC) of the 

material. To obtain the variables, samples were mixed with water as per the requirements of 

the standard and compaction procedures in five equal layers in a mould by delivering 25 blows 

with a hammer on each layer. After the samples had been fully compacted, the moisture content 

and the dry density of the samples were determined. 

Permeability tests were performed as per BS1377 part 6 to assess the hydraulic conductivity of 

the material. A flexible wall permeameter induced by a cell pressure of 10 kPa was used for 

the test. The relationship between the void ratio and the degree of saturation in relation to the 

coefficient of permeability was established. 

The compression strengths of the samples were evaluated using the UC) (as per ASTM D2166) 

and standard oedometer (BS1377 part 5) tests to accurately measure the unconfined 

compressive strength of the materials. 

Consolidation was achieved using static loads of pressures 10, 25, 50, 100, 200, 400, 800 and 

1 600 kPa up to 12 hours per loading while unloading was achieved using 400, 100 and 10 kPa. 

Changes in thickness and void ratios in response to the effective stress were subsequently 

recorded. 

The shear strength of the samples was assessed using box shear testing (ASTM D2166) to 

determine the consolidated drained shear strength of the samples under confining vertical stress 
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applied at 50, 100 and 200 kPa. The total shear strength characteristic of the material cohesion 

(c) and the angle of shearing resistance (φ) in terms of Mohr Coulomb were established.

Results and discussions 

Geochemistry and mineralogy of GMT and cement 

The chemical composition (major and trace elements) of GMT and cement are summarised in 

Table 1. The major constituents of the tailings are Si, Al and Fe. The tailings contained varying 

concentrations of metals and metalloids, as follows, from moderate to high: Cr, Zr, Zn, Pb, Ce, 

As, Ba, Ni, V, Cu, U and Co exceeding the threshold concentrations for soils [9]. 

The presence of these elements in the GMT qualifies gold tailings as a possible source of soil 

and water pollution within the storage boundary as reported by Kneen et al. [16]. Aucamp and 

Schalkwyk [4] noted that elements such as Cr, Zn, Pb, Ni, Cu and Co are highly mobile in 

tailings materials and their mobility is pH dependent. The authors noted that the mobility of 

these elements is prominent at pH values below 3.5 becoming more stable at a neutral pH. The 

presence of pyrite in the tailings (Figure 1) reduces the pH during oxidation, triggers the 

mobility of elements and results in the formation of acid. 

The cement used in this study, similar to most cements on the market, contains reasonable 

amounts of alkali oxides (Table 1), which play an important role in cement hydration. LOI for 

GMT and cement was low, indicating the low percentage of moisture, carbonates and organic 

matter [15]. 

Mineralogical analysis by XRD revealed that the major minerals present in GMT are quartz 

(SiO2), mica (KAl3Si3O10(OH)2) and kaolinite (Al2Si2O5(OH)4) (Figure 1). Elevated quantities 
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of SiO2 (23.3%) may be attributed to its abundance in nature together with its high resistance 

to weathering and dissolution, related to hardness (7 on a Mohs scale) [19]. The presence of 

pyrite (FeS2) is common in Witwatersrand GMT as it is commonly found in nature. When 

pyrite is found in tailings, the oxidation of this mineral increases the acidity and consequently 

the mobility of potentially toxic elements. The concentration of secondary minerals such as 

jarosite (KFe3+
3(OH)6(SO4)2), goethite (FeO(OH) and haematite (Fe2O3) is an indication of the 

oxidation of sulphide minerals, in this case pyrite, as well as an indication that the tailings are 

acid producing [24]. Moreover, the absence of calcite in the tailings is synonymous with studies 

conducted by Rosner et al. [34], Rosner and Van Schalkwyk [33] and Van Rensburg [42]. These 

authors noted the presence of calcite in trace concentrations, which suggests that the tailings 

have low neutralising potential. 

Acid base accounting test (ABA) 

The ABA results of GMT are presented in Figure 2. The paste pH of GMT was acidic 

registering a pH value of 3.21. The acidity of the tailings could be attributed to low 

concentrations of Ca wt.% (0.68%) which control the alkalinity of the material and the 

dissolution of sulfur (recorded at 0.750%), Al (7.25%) and Fe (4.27%) which plays a role in 

the release of acid and the mobilisation of metals and metalloids. The net neutralisation 

potential (NNP) of the GMT was recorded at -42% and the neutralisation potential ratio (NPR) 

was recorded at -0.8, which theoretically suggests that the tailings have the potential to generate 

acid [17]. 

Column leach tests 

Mine waste, GMT in particular, has been reported to contain metals and metalloids in 

concentrations that are potentially hazardous to the environment. Studies conducted by Grover 
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et al. [14], Munyai [23], Netsiongolwe [25] have alluded to the leaching characteristics of GMT 

and their impact upon disposal. The authors have noted that the dissolution and mobilisation 

of elements depend on various factors such as pH, leaching medium, leaching time and the 

solid-liquid ratio. The prediction of the leaching behaviour of mine waste is therefore critical 

to assessing the environmental impact of storage and to choosing appropriate waste 

management methods to minimise the impact of such waste. 

This study used column leaching to establish the leaching characteristics of GMT by analysing 

the concentrations of certain environmentally sensitive elements in leachates.  In addition to 

the environmental conditions to which GMT will be exposed, as represented by the leaching 

medium, column leach tests also give an indication of the long-term leaching behaviour of 

GMT. Column leach tests with deionised water simulate GMT coming in contact with 

groundwater over the long term. 

Column leachate pH 

The variation in pH of leachates as a function of time (eight weeks) for column experiments is 

presented in Figure 3. The results show that the pH of the GMT leachate was low, coinciding 

with the chemistry of the tailings. 

The pH values of leachate from GMT ranged from 5.3 to 3.1 over the eight week leaching 

period. The drop in pH during the eight weeks leaching is an indication of the oxidation of 

pyrite in the presence of water, which can increase the acidity and consequently mobilise 

metals. 
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Leaching characteristics 

Column leach 

The concentrations of some of the environmentally sensitive chemical species in GMT column 

leachates are presented in Table 2. 

In general, all the elements under investigation and SO4
2- from the GMT were partially 

mobilised and leached out into the solution during week 1 of leaching (except for U and Fe). 

Thereafter, the concentrations were either gradually reduced or remained constant in the 

leachates collected from week 2 to week 8. This indicates that the soluble fraction of these 

chemical species was reduced with increasing time and exposure to water, showing resistance 

to leaching after the initial cycles of flushing.   The concentrations of Pb, Al, Cu and Cr after 

week 1 of leaching were below the detection limit, in spite of their moderate to high 

concentrations in the GMT as indicated by XRF analysis. Based on these results, it can also be 

noted that leaching of elements was not controlled by the pH of the leachates, but rather, that 

it represents a function of contact time with water. Moreover, the leaching medium, which is 

deionised water in this instance, was not strong enough to mobilise these sensitive elements 

into solution in spite of a drop in pH and an increase in acidity. However, the concentrations 

of some of these elements and the SO4
2- are higher than the permissible limits for domestic 

water (SANS 241:2015) [35], although this standard is perhaps conservative in terms of 

comparative purposes, as we are evaluating the leaching behaviour of a waste material. 

Furthermore, the leaching experiments were carried out without blending GMT with cement to 

assess what leaches out from the unblended sample and to represent a worst-case scenario, in 

case the material were to disintegrate when placed underground by adding cement. Blending 

GMT with cement would have solidified the sample in the column and the flow of water would 

not have been possible to assess the leaching characteristics. 
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Geotechnical tests 

Utilisation of mineral waste as a geo-material requires a thorough understanding of its 

geotechnical characteristics, especially in terms of its strength, resistance to water flow and 

shear resistance. This section provides a detailed discussion of the geotechnical characteristics 

of GMT in view of understanding their rheological characteristics and feasibility in 

applications such as mine reclamation. The results presented in this section were obtained from 

the test work conducted on untreated tailings (zero curing and zero cement addition) and treated 

tailings (3% cement addition and curing). 

It is important to note that all indicator tests (particle size distribution, Atterberg limits and 

Proctor tests) were conducted on untreated tailings, while all the other tests were conducted on 

treated tailings cured for 7, 28 and 56 days. 

Grain size distribution 

The particle size distribution of GMT is shown in Figure 4. Details regarding particle size 

distribution characteristics are presented in Table 3. 

It can be observed that the particle size distribution obtained for GMT is composed of 52% 

sand, 40% silt and 8% clay fractions with ranges of 0.01mm to 1 mm. The coefficient of 

uniformity (Cu) for the tailings was 12, which is comparable to well-graded sand. The 

coefficient of curvature for the tailings was 0.5, therefore outside the range for well-graded 

sands. Upon the addition of the 3% cement, the particle size composition was changed to 21% 

sand, 67% silt and 12% clay fractions, resulting in more silt fractions. The coefficient of 

curvature (Cc) value was also adjusted to 2.6, providing for a categorisation under well-graded 

sand (Table 3). 
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Atterberg limits 

Atterberg tests revealed that the tailings are non-plastic. Therefore, the liquid limit and plastic 

index could not be determined. According to Bartle [5], non-plastic soils have an inherent shear 

resistance to sliding with the addition of water and can only lose 50% shear strength because 

of water floating on top, contrary to clays that lose 99.5% of their total shear resistance to 

sliding due to drainage. Based on the particle size distribution and plastic limit, it can be 

resolved that the tailings are likely to have shear resistance. 

Compaction characteristics 

The compaction characteristics of GMT are given in Table 4. Furthermore, the compaction 

curve is presented in Figure 5. 

The tailings without cement exhibited a high MDD of 1 588 kg/m3 and a moderate OMC of 

14.9%. Upon the addition of cement, the MDD and OMC of the tailings decreased to 1 555 

kg/m3 and 10.4% respectively, similar to trends noted by Al-Khafaji [1]. The author noted that 

additives such as cement decreases the MDD of soils owing to chemical reactions between the 

molecules of cement, clay and water. 

Tatt and Ali [40], however noted, that decreases in MDD and OMC values are dependent on the 

type of soils; for example, soils predominantly comprising sand particles will result in an 

increase in MDD and a reduction in OMC, whereas soils with mostly clay particles will show 

a slight reduction in MDD and an increase in OMC with the increasing addition of cement. The 

decrease in OMC noted upon the addition of cement could be attributable to the cementation 

of the tailings induced by the 3% addition of cement, which resulted in the decreased moisture 

of the tailings. 
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The tailings also possessed high densities compared to the tailings containing 3% cement.  

However, the impact of compaction had a minimal effect on the tailings compared to the 

tailings composite. For example, a decrease in densities with varying moisture was noted for 

the tailings, while an increase in densities was noted for the composite sample (Table 5). Based 

on the results presented, it may be concluded that the addition of cement to the tailings greatly 

increased the compaction properties of the tailings. Furthermore, these compaction results 

indicate that the material can be used in civil works, based on the Indian Road Congress (IRC) 

compaction specifications. 

Permeability characteristics 

The permeability coefficient (k) of soils is an important parameter in mine backfilling in order 

to limit seepage into groundwater. Table 5 presents the values of the coefficient of 

permeability (k) for compacted GMT cured in moisture for 7, 28 and 56 days and induced by 

a consolidation pressure of 100 kPa. The table also provides the void ratio of the material in 

response to pressure. 

An increase in the coefficient of permeability was noted for tailings after increased curing 

periods and the addition of the cement. The average coefficient of permeability ranged from 

3.8E-07, 2.9E-07, 9.0E-07 to 9.0E-07 m/s. Based on the results it appears that the addition of 

cement to GMT increases the fine fractions, resulting in larger interparticle voids, which are 

responsible for hydraulic conductivity. The coefficient of permeability of the tailings was 

observed to be in the range of silt sand (between 10-3 and 10-5). This permeability range is 

attributed to the well grading of particles in the tailings. 
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Compression characteristics 

Unconfined compressive strength (UCS) 

The measure of resistance to external loading was evaluated using UCS and a standard 

oedometer. The specimens were prepared at MDD and OMC by standard compaction at a room 

temperature of about 23 °C. Tailings containing cement were cured for 7, 28 and 56 days and 

the tailings without cement did not undergo curing. The UCSs of GMT at varying ages of 

curing are presented in Table 6. 

From these results, it is apparent that the GMT had a good strength of 129 kPa. The early high 

strengths recorded for the tailings could be attributed to the well grading of the particles that 

resulted in the interlocking of particles and subsequent artificial cementation. 

Moreover, it is apparent that UCS increased with the age of curing. By the 56th day of curing, 

the tailings had achieved a high strength of 412 kPa, indicating the effectiveness of the addition 

of cement and increased age of curing on the strength gain. This is agreement with what was 

reported by Tatt and Ali [40], namely that the UCS of soils increases with cement addition and 

age of curing. 

Changes in moisture were also observed for GMT; the moisture of the tailings decreased with 

the age of curing. The initial moisture recorded for the GMT was 15.1 and decreased by 1.32% 

after seven days of curing and the addition of cement. A gradual loss until the 56th day of curing 

was noted consistent with the compaction effort. 

Based on the UCS results presented, cement addition and the age of curing greatly enhanced 

strength developments of the tailings. Moreover, the strain variables achieved at these 
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compressive strengths are an indication of the stiffness of the sample. It would be interesting 

to evaluate the effect of varying cement percentages on the strength properties of the tailings, 

to prove reports by Bergado et al. [7] that high additions of cement result in rapid improvements 

in the strengths of soils compared to scenarios where the soils percentages of cement are added. 

Standard oedometer 

Figure 6 shows variations in the void ratios for the tailings with increasing stresses at MDD of 

1 315 kg/m3 and OMC of 36.0. The one-dimensional consolidation for the tailings was induced 

by a vertical normal stress range of 10–1 600 kPa; unloading was achieved by stresses of 400, 

100 and 10 kPa applied over 12 hours for each load. 

A decrease in void ratio with an increase in stress was observed, followed by an increase upon 

unloading. At low stress levels, the changes in void ratios was minimal and increased as the 

load increased. It can be noted that the void-stress curve for GMT with zero cement and zero 

curing bent rapidly as loading was applied compared to the tailings to which cement had been 

added and which had been subjected to varying curing ages. 

A rapid compressibility of the tailings was noted with increasing stress. This is demonstrated 

by a rapid drop in the void ratio which is indicated by the height of the specimen (Table 7). 

The rapid compressibility of the tailings may be attributed to the differences in particle sizes 

of the tailings resulting in gradual crushing with applied load. The steady drop in void ratios 

noted for tailings cured for 7, 28 and 56 days, together with cement could be attributed to the 

stiffness of the tailings resulting from the hydrolysis of the cement. 
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The decrease in voids corresponds to decreases in the height and moisture content of the 

specimens (Table 7). 

During compression, GMT with zero curing and cement experienced increased strain at vertical 

stresses of 50–1 600 kPa (Figure 7). The cured samples experienced strain at varying vertical 

stresses. The 28th day cured sample experienced maximum strain compared to the 7 and 56th 

day cured sample. However, the 56th day sample experienced lower strains than all the cured 

samples. 

Based on the results obtained, the importance of curing and the addition of cement for 

enhancing the strength of the tailings was demonstrated. No failure points in stress-strain 

behaviour were noted with the imposition of increasing vertical stresses. However, the 

materials showed enhanced strengths at high stresses corresponding to the age of curing. 

Shear strength characterisation — box shear 

The shear strengths for the tailings compacted to their MDD and OMC and induced by normal 

effective stress of 50, 100 and 200 kPa are presented in this section. Figure 8 shows the 

relationship between normal stress and shear stress for the GMT. Variations of shear strengths 

in response to varying curing ages are shown in Table 8 and Figures 9 and 10. 

At the initial stage (no cement and zero days of curing) of the shear test, the results revealed 

minimum values of the angle of internal friction (φ), recorded at 29º for the tailings. No increase 

in the angle of internal friction was noted for the tailings after the seventh day of curing. By 

the 28th day of curing, an increase of 31.03% was noted and by the 56th day of curing, a slight 

decrease in φ was noted. Based on the results, it is concluded that the effect of curing on the φ 
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of the tailings was observed only by the 28th day of curing and that, beyond the 28th day, curing 

had no impact on the φ. 

Values of cohesion were minimal at zero cement addition, and improved with increasing curing 

periods and cement addition, as noted by Uchaipichat and Limsiri [41]. An increase in cohesion 

was noted during the seven days of curing, followed by a slight decrease during 28 days of 

curing and, again, a significant increase at 56 days of curing. Studies conducted by Moayed et 

al. [22] corroborate the significance of cement on cohesion and the angle of internal friction. 

The authors noted the significant increase in these shear properties of soils with cement 

addition. 

The increase in cohesion during the seven days of curing could be attributed to the initial 

cementation reaction between the tailings and the cement at the right moisture content. This is 

apparent from the cohesion values of the tailings where there had been zero curing and zero 

cement addition. The drop in cohesion noted at 28 days of curing could be attributed to the 

saturation of the samples with moisture, resulting in a loosening of the particles. By the 56th 

day of curing, the tailings saw an increase that resulted in cohesion values of 42 kPa, which is 

an indication of a highly cohesive material (Figure 10) and the long-term impact of curing. 

Based on the φ and c parameters recorded for the tailings, it may be concluded that the material 

has a moderate capability to withstand shear stress and may indeed be suitable for backfilling. 

However, the possibility of increasing the percentage of cement used should be explored to 

ensure maximum shear strength. 

Conclusion 

Storage and management of GMT in South Africa present challenge and alternate applications 

are continually being sought. Studies related to mine backfilling using GMT in the South 
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African context are scarce. Therefore, this study was carried out to evaluate the geochemical 

and geotechnical characteristics of tailings generated by the gold mines in South Africa to 

investigate their potential use as a mine backfilling material. 

Geochemical investigations indicated that leaching of chemical species is a reality when this 

material is placed underground. In general, it was observed that the leaching of elements/ions 

decreased or stabilised as the number of leaching cycles increased, indicating that the material 

will stabilise after initial contact(s) with underground water. However, in the absence of a 

representative “monolithic leaching protocol”, the conditions under which this material was 

investigated represents a worst-case scenario. The material that was subjected to leaching was 

loose (like a soil) with no additive (cement) added for the leaching experiments. In reality, for 

backfilling purposes, the tailings will be mixed with an additive and placed underground. 

Therefore, it is safe to assume that the material will consolidate while underground and its 

leaching behaviour will be more conservative. Moreover, ABA studies indicated that GMT is 

acid generating and that the leaching of these elements will be more pronounced in acidic 

conditions. Considering the geochemical nature of tailings, it is recommended that GMT be 

blended with a pozzolanic alkaline material such as fly ash and studied before placing 

underground. Studies (e.g. Yeheyis et al. [43]) indicate that geopolymers made of GMT blended 

with fly ash can be used as lining material for mine dumps. The GMT-fly ash geopolymers 

gained enough strength and chemical stability over the curing period and the results were quite 

promising [26]. 

The GMT cement composites evaluated in this study revealed appreciable strength properties, 

which are attributed to the 3% cement addition and the age of curing. The tailings showed 

enhanced strength properties at high stresses corresponding to the age of curing. Moreover, the 
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tailings showed a likelihood for shear resistance, together with a stiffening with the addition of 

cement and increased curing age. In essence, the tailing composites yielded appreciable 

geotechnical properties suitable for application in mine backfilling; with the only drawback 

being the permeability properties of the material, which showed increased permeability with 

age of curing. It is therefore advised that the addition of a wider variety of percentages of 

cement be evaluated to improve the permeability properties of the tailings and to further 

ascertain the geotechnical properties of the GMT. Moreover blending with coal fly ash should 

be assessed in order to chemically stabilise the material. 
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FIGURE CAPTIONS 

Figure 1 XRD results (in wt. %) for the GMT. 

Figure 2 NP and AP for GMT. 

Figure 3 Leachate pH of GMT over an eight weeks leaching period. 

Figure 4 GMT particle size distribution. 

Figure 5 Compaction curves for GMT. 

Figure 6 Relationship between void ratio and vertical stress for GMT. 

Figure 7 Relationship between strain and vertical stress for GMT. 

Figure 8 Relationship between normal stress and shear stress for GMT. 

Figure 9 Relationship between curing period and shear stress. 

Figure 10 Relationship between curing period and cohesion. 
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Table 1 The XRF results of major and minor elements (in wt. %) for GMT and cement 

 
 

GMT  

(wt. %) 

Cement 

(wt. %) 

 

 

GMT 

(ppm) 

Major 

Elements 

SiO2 36.6 20.0 

Trace 

Elements 

As 51 

TiO2 0.27 0.2 Ba 51 

Al2O3 7.25 4.0 Zn 60 

Fe2O3 4.27 2.5 Ce 53 

MnO 0.03 - Co 11 

MgO 2.20 2.9 Cr 182 

CaO 0.68 63.7 Cu 20 

Na2O 0.13 0.1 Ni 34 

K2O 0.30 0.7 Pb 58 

P2O5 0.05 0 U 14 

Cr2O3 0.04 - V 34 

LOI 2.59 3.8 Zr 148 

 

Table 2 Leaching characteristics of environmentally sensitive chemical species (in mg/l) from 

GMT over 8 week leaching period 

Week SO4
2- As Zn U Mn Fe Pb Al Cu Cr 

1 2063 0.36 1.1 0.16 0.38 0.33 0.05 0.07 0.74 0.04 

2 1677 0.01 0.04 0.56 0.32 0.48 0.001 <0.100 0.010 0.01 

3 1812 0.02 0.02 0.47 0.34 0.50 <0.001 <0.100 0.007 0.01 

4 1720 0.03 0.04 0.25 0.28 0.35 <0.001 <0.100 0.007 <0.001 

5 1687 0.05 0.04 0.25 0.21 0.49 <0.001 <0.100 0.001 <0.001 

6 1600 0.05 0.04 0.23 0.19 0.50 <0.001 <0.100 0.001 <0.001 

7 1523 0.06 0.06 0.23 0.19 0.53 <0.001 <0.100 <0.001 <0.001 

8 1473 0.06 0.06 0.22 0.18 0.59 <0.001 <0.100 <0.001 <0.001 

 

Table 3 Particle size distribution characteristics of GMT 

Properties GMT 

Sand sizes (0.06mm-2mm) 52 

Silt sizes (0.002mm-0.06mm) 40 

Clay size (<0.002mm) 8 

D60 (mm) 0.075 

D30 (mm) 0.015 

D10 (mm) 0.006 

Coefficient of uniformity Cu 12 

Coefficient of curvature Cc 0.5 and 2.6 
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Table 4 Compaction characteristics of GMT 

 

 

 

 

 

 

Table 5 Values of permeability at a normal stress of 100 kPa 

Samples 

Initial void ratio 

(e) 

Coefficient of 

permeability 

(m/s) 

Dry density 

(kg/m3) 

Initial degree of 

saturation 

GMT (0 days) 0.933 3.8E-07 1417 38.8 

GMT + 3% cement (7 days) 0.932 2.9E-07 1382 31.8 

GMT + 3% cement (28 days) 0.932 9.0E-07 1382 27.7 

GMT + 3% cement (56 days) 0.861 9.0E-07 1434 21.6 

 

Table 6 Unconfined compressive strength for GMT 

Samples 

Moisture content 

(%) 

Dry density 

(kg/m3) 

Compressive strength 

(kPa) 

Axial strain at max. 

(%) 

GMT (0 curing) 15.1 1416 129 1.96 

GMT + 3% cement (7 days) 14.9 1419 315 1.49 

GMT + 3% cement (28 days) 13.7 1416 386 1.14 

GMT + 3% cement (56 days) 12.2 1402 412 0.89 

 

Table 7 Specimen height vs. moisture content 

Samples 

Specimen Height (mm) Moisture Content (%) 

Initial 

Height 

before 

loading 

Height after 

final 

loading 

Height 

after 

unloading Before test After test 

GMT (0 curing) 25.4 20.61 22.29 15.7 36.0 

GMT + 3% cement (7 days) 25.4 23.198 24.285 12.1 31.5 

GMT + 3% cement (28 days) 25.4 23.053 24.109 10.2 33.3 

GMT + 3% cement (56 days) 25.4 23.250 24.307 4.6 33.5 

 

 

Properties GMT 

GMT with 

3% cement 

MDD (kg/m3) 1588 1555 

OMC (%) 14.9 10.4 

Dry density 

(kg/m3) 

1584 

1581 

1566 

1534 

1564 

1547 

1526 

1545 

1490 

1492 

Moisture content 

(%) 

14.2 

16.2 

12.2 

10.2 

16.2 

11.3 

12.8 

8.8 

6.3 

8.8 
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Table 8 Changes in the angle of internal friction in response to curing 

Samples 

Angle of internal friction 

(φ) Cohesion MMD (kg/m3) OMC (%) 

GMT (0 curing) 29 8 1555 10.4 

GMT + 3% cement (7 days) 29 31 1555 10.4 

GMT + 3% cement (28 days) 38 30 1555 10.4 

GMT + 3% cement (56 days) 36 42 1555 10.4 
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