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Técnicas de Procesado y Aplicaciones Avanzadas de la Interferometría
con Radar de Apertura Sintética

Resumen

Introducción, Contexto yMotivación

La teledetección hace referencia a la adquisición y análisis de información de objetos o fenómenos
a distancia sin que exista un contacto material directo con ellos. Esto requiere del diseño de instru-
mentos capaces de recoger y procesar señales, tales como ondas electromagnéticas o acústicas, que
interaccionan con la materia y proporcionan datos relacionados con las propiedades físicas del ob-
jeto sobre el que inciden. Actualmente, la teledetección se asocia con el estudio de las dinámicas de
nuestro planeta Tierra y de los complejos procesos asociados a las mismas, llevado a cabo mediante
el procesado de datos adquiridos por sistemas aéreos o espaciales en forma de imágenes. Al estudiar
laTierramediante dichos sistemas, se suele hablar deObservación de laTierra, e incluye una enorme
variedad de técnicas y herramientas cuyo objetivo consiste enmejorar el conocimiento que tenemos
de nuestro planeta a escala global.

Los avances en teledetección, especialmente desde mediados de la década del año 2000, han de-
mostrado el enorme potencial que esta tecnología ofrece para monitorizar la superficie de la Tierra.
En este sentido, se ha desarrollado una gran cantidad de aplicaciones para múltiples áreas, tanto de
ámbito civil comomilitar e, indudablemente, se seguirán desarrollando nuevas aplicaciones en el fu-
turo. Tanto es así que hoy en día la teledetección juega un papel crucial en diversas áreas científicas
y de la ingeniería. Entre otras aplicaciones, la teledetección permite la generación de Modelos Di-
gitales de Elevación (MDE), muy usados en topografía y cartografía. Es ampliamente empleada en
ciencias geofísicas para el análisis de sucesos geológicos (erupciones volcánicas, terremotos, etc.),
así como para la gestión del riesgo de desastres. También, se emplean técnicas de teledetección en
meteorología para la estimación del clima, su evolución y su evidente impacto sobre la biodiversidad.
Otro ejemplo de aplicación de métodos de teledetección estaría relacionado con la monitorización
de cambios terrestres y medioambientales provocados por el avance de la civilización moderna, in-
cluyendo el mapeado 2-D, 3-D o 4-D (espacio y tiempo) de la superficie del terreno, o la detección
de cambios (para controlar la deforestación o la desertificación) y un largo etcétera.

Una forma de clasificar los sistemas de teledetección es en función de su fuente de iluminación,
demodo que diferenciamos sistemas activos y pasivos. Un sistema activo consta de su propia fuente
de iluminación, de modo que emite radiación electromagnética hacia el medio y mide la señal que
le es devuelta (reflejada). Por el contrario, un sistema pasivo detecta únicamente aquellas señales
reflejadas de manera natural que provienen de una fuente de iluminación externa al sensor, como
la radiación solar. Una segunda manera de clasificar estos sistemas es en función de la banda del
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espectro electromagnético empleada, distinguiéndose sistemas de microondas y sistemas ópticos.
Esta tesis se centra en los sistemas de Radar de Apertura Sintética (abreviado SAR), que son sis-
temas activos que operan en la banda de microondas del espectro electromagnético. Los sistemas
SAR constituyen uno de los sistemas más ampliamente usados en teledetección, debido a su amplia
cobertura y a su capacidad de operar con independencia de la situación climática. Los SAR se mon-
tan sobre plataformas móviles, que pueden ser aéreas (un avión o un helicóptero) o espaciales (un
satélite), siendo esta última la configuración que mayor impacto e interés ha tenido en este ámbito
dada la gran cobertura espacial que proporciona. La característica principal de estos sistemas radar
es que aprovechan el movimiento de la plataforma en los que están situados para sintetizar una an-
tena mucho mayor a la realmente empleada. Esto se conoce como principio de apertura sintética, y
permite un aumento drástico de la resolución espacial de las imágenes generadas.

Desde el lanzamiento del primer SAR orbital, SEASAT, en 1978, el número de misiones opera-
cionales (lanzamientos) llevadas a cabo por diferentes estados y organizaciones intergubernamen-
tales ha ido en aumento, especialmente desde principios de los años 90. De hecho, el número de
misiones no sólo ha aumentado, sino que ha ido aumentado cada vez más rápido. Esto demuestra
el auge que han experimentado los sistemas SAR así como el interés común en desarrollar y mejorar
el enorme potencial que estos sistemas ofrecen en el ámbito de observación de la Tierra. En este
sentido, las mejoras en la vida útil de nuevos sistemas, la resolución de las imágenes, la cobertura es-
pacial, el tiempo de revisita o la adquisición de imágenes en múltiples polarizaciones, asentaron las
bases para el desarrollo de técnicas avanzadas tales como la Interferometría o la Polarimetría SAR,
sobre las que trata el presente trabajo. Cabe destacar que el desarrollo de nuevas técnicas y aplica-
ciones se ha visto favorecido por unmejor acceso a los datos. En concreto, la política de acceso libre
del programa Comisión Europea, representa un cambio de paradigma en este sector, ya que permite
obtener libremente y desde cualquier parte del mundo, imágenes SAR y datos de otros sensores que
pueden analizarse y procesarse para cualquier fin.

La Interferometria SAR (InSAR) se desarrolló con el objetivo de extraer la topografía de una de-
terminada escena. Inicialmente descrita en 1974, esta técnica empezó a cobrar interés a finales de
los años 80, consolidándose definitivamente con el lanzamiento del primer satélite europeo ERS-1
en 1991, ya que una mayor cantidad de datos radar comenzó a estar disponible para usos cientí-
ficos. La interferometría se basa en combinar, al menos, dos imágenes SAR adquiridas desde dos
posiciones ligeramente distintas. Esta diferencia de posición es la que proporciona sensibilidad a las
alturas y permite extraer la topografía. Así, se han podido generar modelos digitales de elevación a
escala global, tales como el SRTM (Shuttle Radar Topographic Mission) de la NASA o el DEM de
TanDEM-X (del Centro Espacial Alemán, DLR).

Mientras que la interferometría convencional permite obtener la topografía del terreno, la deno-
minada Interferometría Diferencial (DInSAR) va un paso más allá y se centra en el análisis de de-
formaciones de la superficie terrestre sucedidas durante la adquisición de múltiples imágenes. En
otras palabras, si la topografía es conocida, la interferometría diferencial permite monitorizar cam-
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bios o deformaciones relativas entre imágenes SAR. Esta extensión diferencial de la interferometría
es hoy en día una técnica tremendamente potente y ampliamente empleada enmúltiples áreas, espe-
cialmente en el ámbito de la ingeniería civil, geológica, etc. Por ejemplo, permite estimar subsiden-
cias (hundimientos) o elevaciones del terreno así como deslizamientos de tierra. Permite también
analizar fuertes deformaciones de la corteza terrestre causadas por la actividad tectónica. El enorme
potencial de la interferometría diferencial es su capacidadpara obtenermedidas dedeformaciónmuy
precisas (del orden de 1cm) en grandes extensiones del terreno o áreas directamente no accesibles,
lo que supone una evidente ventaja frente a métodos de medida convencionales (in-situ). Conviene
mencionar que en los últimos años se handesarrolladomúltiples técnicas ligadas a la interferometríal
diferencial. Entre ellas, destaca la denominada PSI (Permanent Scatterer Interferometry), que es una
rama de la interferometría diferencial centrada el procesar únicamente ciertos píxeles de alta calidad
denominados dispersores persistentes (permanent scatterers) . Procesando series de imágenes SAR,
los algoritmos y métodos de PSI proporcionan medidas muy robustas y precisas de la deformación
o movimiento del terreno sobre dichos píxeles estables en áreas extensas.

Los sistemas SAR convencionales se diseñaron para generar imágenes de reflectividad de una es-
cena empleando una única polarización de las señales electromagnéticas transmitidas y recibidas.
El estudio de cómo la polarización de dichas señales interacciona con la materia se denomina Po-
larimetría. En el ámbito concreto del SAR, se conoce como Polarimetría SAR (o PolSAR) al estu-
dio, análisis y explotación del estado de polarización de señales para aplicaciones radar. Inicialmente
introducida a principios de los años 50, la polarimetría radar comenzó a cobrar interés sobre todo a
partir de los años 70, en los que se demostró el potencial de la polarimetría para caracterizar blan-
cos de radar. Como resultado de estas investigaciones, el interés en la polarimetría aumentó con-
siderablemente. Tanto es así que hoy en día, la polarimetría radar constituye una de las líneas de
investigaciónmás importantes relacionadas con la teledetección mediante SAR. Entre sus múltiples
aplicaciones, destacan lamonitorizacióndebosques, la estimaciónde la altura de la vegetación, análi-
sis de la biomasa (cantidad de masa vegetal), etc. Además, el aumento del número de satélites con
capacidad polarimétrica, tales comoRADARSAT-2, TerraSAR-X, Sentinel-1 o PAZ, lanzados en los
últimos años, justifica el interés endesarrollar nuevas técnicas y aplicaciones basadas enpolarimetría.

Mientras que la interferometría permite estimar alturas o deformaciones, la polarimetría permite
caracterizar blancos del radar extrayendo propiedades físicas adicionales. Ambas técnicas son, de he-
cho, complementarias. Desde finales de los años 90, surgió la idea de combinar la información pro-
porcionada por cada una de las dos técnicas. En este sentido, la Interferometría SAR Polarimétrica
(PolInSAR), cuyas bases fueron asentadas en 1998, constituye una extensión de la interferometría
escalar convencional y trata de solventar algunas de sus limitaciones debidas al empleo de una po-
larización fija, explotando la diversidad de canales polarimétricos que proporcionan sensibilidad a la
geometría y forma de los blancos del radar. Además, estudios recientes han demostrado el potencial
de juntar ambas técnicas en aplicaciones diferenciales. Así, la incorporación de datos en polarización
dual (dos polarizaciones) o en polarización completa (cuatro polarizaciones), proporcionados por

xiii



nuevos sensores radar, ha demostrado ser de gran utilidad para la monitorización de deformaciones
mediante interferometría diferencial, especialmente cuando se dispone de series temporales de imá-
genes.

Además de los avances tanto en interferometría como en polarimetría, el mapeado de la superfi-
cie terrestre empleando imágenes SAR ha experimentado un gran progreso en los últimos años. En
este sentido, la clasificación de la cobertura terrestre con imágenes radar pertenece a la disciplina del
reconocimiento de patrones, que es la ciencia que trata de clasificar objetos en múltiples categorías
o clases atendiendo a sus propiedades. Su objetivo es extraer características de objetos y, por tanto,
proporcionar información específica de un determinado sistema o conjunto de datos. Dicha clasifi-
cación suele llevarse a cabo con algoritmos de Aprendizaje Automático (Machine Learning), propios
del ámbito de la Inteligencia Artificial. De forma general, el aprendizaje automático fue concebido
desde la hipótesis de que los ordenadores pueden “aprender” directamente de los datos sin necesi-
dad de haber sido específicamente programados para una determinada tarea. Buscando patrones en
cantidades enormes de datos, los algoritmos de aprendizaje pueden readaptarse y predecir la evolu-
ción de un determinado sistema o los valores asociados a nuevas observaciones. Las aplicaciones
del aprendizaje automático son hoy en día innumerables. Visión artificial, ingeniería del software,
ayudas al diagnósticomédico, economía o lingüística son solamente algunos ejemplos. En el ámbito
concreto del SAR o la teledetección en general, los algoritmos de aprendizaje automático permiten
clasificar las observaciones proporcionadas por los sensores, y permiten generar mapas extensos de
la cobertura terrestre, su uso, así como de la vegetación. Cabe destacar que para que nuestro eco-
sistema y medioambiente sean debidamente gestionados, es necesario un conocimiento apropiado
sobre la distribución de áreas naturales, de recursos hídricos o del estado del suelo. Esto queda clara-
mente representado por el programa CORINE Land-Cover (Coordination of Information on the
Environment Land-Cover) creado por el Consejo Europeo en 1985 bajo propuesta de la Comisión
Europea, cuyo objeto es generar un inventario digital sobre la cobertura terrestre y su uso en todos
los países de la Unión Europea.
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Objetivos

El objetivo principal de esta tesis consiste en proponer y evaluar una serie de mejoras relacionadas
con la interferometría SAR, mediante el desarrollo de nuevos algoritmos y métodos relacionados
con diferentes etapas de procesado. Por otro lado, se pretende demostrar también el potencial que la
interferometría ofrece en el ámbito de la clasificación de tipos de cultivos. A continuación, se resume
brevemente cada una de las contribuciones realizadas.

En primer lugar, esta tesis trata de solventar diferentes limitaciones de la interferometría ligadas a
los efectos de la decorrelación o ruido presentes en los datos. Como se ha comentado previamente,
la interferometría se basa en combinar dos imágenes de unamisma zona, lo que da lugar a una nueva
imagen denominada interferograma. Mientras que la amplitud del interferograma no contiene infor-
mación útil (más allá de la que ya contienen las imágenes por separado), la fase del interferograma
es el producto clave de esta técnica ya que contiene la información de distancia entre el satélite y el
terreno. La calidad de dicha fase constituye el elemento central a partir del cual se pueden generar
todos los productos de interés para aplicaciones basadas en interferometría o su extensión diferen-
cial. Cabe destacar que la minimización del ruido es obligatoria prácticamente en cualquier ámbito
o aplicación que involucre un procesado digital de señales, tales como imágenes médicas, señales de
audio, etc. La reducción del ruido se lleva a cabo mediante el diseño de algoritmos de filtrado que
tratan de mejorar la calidad de la parte útil de la señal, a la vez que se minimizan los efectos de al-
gún tipo específico de ruido. En el ámbito concreto de la interferometría SAR, puede demostrarse
que existe una variedad de factores de decorrelación que degradan la calidad de los datos. Uno de
ellos es debido a la diferencia en la geometría de adquisición entre las dos imágenes empleadas para
generar un interferograma. Esta geometría diferente induce un desplazamiento entre los espectros
de las dos imágenes, de manera que únicamente la parte común contiene información útil, pudién-
dose considerar el resto como ruido. Otra importante fuente de decorrelación es debida a cambios
significativos entre las imágenes. Es decir, si la escena ha cambiado entre las dos imágenes (por
ejemplo, debido a cambios en la vegetación) aparecerán fases extremadamente ruidosas dado que
la respuesta de algunos elementos dentro de la imagen es diferente. Esta decorrelación se denomina
decorrelación temporal.

En base a estas limitaciones, se han desarrollado nuevos métodos de reducción de los efectos del
ruido con el objetivo de mejorar la calidad de la fase. A continuación, se describen brevemente.

• Un nuevo filtro que trata de limitar la decorrelación geométrica en la dimensión rango. El fil-
trado en rango es una etapa bien conocida dentro del procesado interferométrico que trata de
limitar la anteriormente introducida decorrelación geométrica entre dos imágenes empleadas
para generar un interferograma. Se ha desarrollado un algoritmomejorado que emplea infor-
mación topográfica para adaptar automáticamente el filtrado a cualquier tipo de superficie, de
modo que se optimizan los resultados con respecto a métodos convencionales, en los que no
se consigue filtrar adecuadamente en zonas con topografía. Nótese que esta etapa de filtrado
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en rango suele considerarse una etapa de pre-procesado, ya quemodifica la respuesta espectral
de cada imagen por separado y se lleva a cabo antes de la generación de interferogramas.

• Un filtro para la fase interferométrica final. Cuando se genera un interferograma, puede que
la calidad de su fase no sea lo suficientemente buena para su procesamiento posterior debido
a los efectos de decorrelación temporal anteriormente explicados. En este sentido, práctica-
mente cualquier interferograma contiene áreas extremadamente ruidosas que pueden afectar
a la calidad de los resultados finales, haciéndose necesaria la reducción del ruido en dichas
zonas. Este filtro, aunque inicialmente diseñado para aplicaciones geofísicas (es decir, para
interferogramas diferenciales ligados a sucesos geológicos) puede aplicarse sobre cualquier
interferograma gracias a su adaptación tanto al nivel de ruido como a características de la ima-
gen. El objetivo final de este filtro es reducir el nivel de ruido en su totalidad, a la vez que se
mantienen detalles de la fase que contienen información útil.

En segundo lugar, se han evaluado diferentes métodos de optimización polarimétrica en pares inter-
ferométricos de imágenes. La interferometría diferencial SAR polarimétrica (PolDInSAR) trata de
incluir la polarimetría en aplicaciones diferenciales de la interferometría. Hasta la fecha, esta técnica
únicamente ha sido evaluada con series temporales, es decir, cuando se dispone de un número ele-
vado de imágenes que se combinan en un número elevado de interferogramas. Sin embargo, no se
ha probado con interferogramas aislados, que es el caso típico de las aplicaciones geofísicas ligadas a
eventos como terremotos o erupciones volcánicas. Por consiguiente, el segundo objetivo de la pre-
sente tesis consiste en comprobar si se puede mejorar la calidad de la fase interferométrica en pares
interferométricos mediante la aplicación de algoritmos de optimización basados en polarimetría.

Por último, el tercer objetivo de la tesis se centra en nuevas aplicaciones finales de la interferome-
tría SAR y, concretamente, en la explotación de datos InSAR para la clasificación de tipos de cultivos
(generación demapas temáticos de tipos de cultivos). De forma tradicional, los algoritmos de clasifi-
cación emplean datos obtenidos de sensores ópticos omulti-espectrales, dada sumayor sensibilidad
a las propiedades de los cultivos (como su humedad, la cantidad de clorofila en sus hojas, etc.). Sin
embargo, debido a la banda de trabajo de estos sensores, el número de imágenes disponibles puede
ser limitado en algunas ocasiones (por ejemplo, debido a la presencia de nubes o niebla en algunas
adquisiciones.). Por consiguiente, el empleo de imágenes SAR, adquiridas independientemente de
las condiciones climáticas, supone una evidente ventaja para este tipo de aplicación. Cabe destacar
que los algoritmos de clasificación basados en imágenes radar suelen emplear como entrada la inten-
sidad de las propias imágenes. Es decir, emplean datos radiométricos obtenidos a partir de la reflec-
tividad de las imágenes. Sin embargo, esta tesis trata de demostrar que los datos interferométricos
y, concretamente, series multi-temporales de coherencia, pueden emplearse de forma alternativa o
complementaria para esta aplicación.
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Resultados

Todas las técnicas de procesado desarrolladas durante la tesis muestran resultados satisfactorios. En
todos los casos, se han demostrado las limitaciones y/o desventajas que presentan los métodos con-
vencionales en cada ámbito específico, justificándose las ventajas que ofrecen los métodos propues-
tos. A continuación, se presenta un resumen global de los resultados obtenidos así como una dis-
cusión sobre los mismos.

En primer lugar, se ha demostrado que los métodos tradicionales de filtrado en rango no con-
siguen reducir de forma óptima la decorrelación geométrica en aquellas zonas con una topografía
variable. El método conocido como adaptativo se basa en estimar el desplazamiento espectral entre
imágenes mediante la generación de un interferograma temporal. El máximo valor del espectro se
corresponde directamente con dicho desplazamiento. Si bien tiene la ventaja de no requerir infor-
mación externa o auxiliar, presenta evidentes limitaciones. Por un lado, puede comprobarse que la
frecuencia de las franjas asociadas a la topografía coincide con la componente dominante del espec-
tro del interferograma, lo que acarrea incertidumbre en la estimación del desplazamiento espectral.
Por otro lado, este método es muy dependiente de la calidad original de los datos, de manera que
con interferogramas muy ruidosos el algoritmo adaptativo es totalmente ineficaz.

Otro filtro convencional emplea información orbital para calcular el desplazamiento espectral en-
tre imágenes. Es decir, se emplea directamente información de la geometría de adquisición de ambas
imágenes. A pesar de estar menos limitado ya que el desplazamiento se calcula de forma externa, el
filtrado no es óptimo si no se emplea información topográfica, especialmente en aquellas áreas en las
que la superficie del terreno varía rápidamente.

El desarrollo de filtros que incluyan información sobre las pendientes locales del terreno es abso-
lutamente necesario. En este sentido, los resultados obtenidosmuestran que el método desarrollado
consigue adaptarse correctamente a cualquier tipo de superficie,mejorando los resultados de todos y
cada uno de losmétodos ya conocidos. Se ha demostrado que se consigue eliminar enmayormedida
la decorrelación geométricamediante la explotación completa de la información proporcionada por
un DEM externo. Asimismo, el algoritmo propuesto es capaz de conseguir una fase más limpia e
incluso, recuperar información útil en zonas con topografía en las que los demás métodos resultan
ineficaces.

En segundo lugar, el filtro de fase desarrollado ha sido evaluado tanto con datos simulados como
con datos reales. La ventaja de emplear simulaciones es que podemos proporcionar más medidas
cuantitativas de calidad del filtrado al conocer la fase real (es decir, sin ruido). El filtro propuesto se
ha comparado con cuatro filtros distintos, siendo el denominado filtro deGoldstein elmás conocido
y más ampliamente empleado en este ámbito. Los demás son variaciones de este filtro original que
incluyen diferentes cambios y mejoras en su formulación. Con respecto a las simulaciones, se han
generado cuatro interferogramas con distintos niveles de ruido (desde un nivel intermedio hasta
un nivel extremadamente alto con el que la señal se encuentra prácticamente enmascarada por el
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ruido). Con respecto a los datos reales, se han procesado tres interferogramas correspondientes a
tres sucesos geológicos distintos y de diferentes sensores radar. En todos los casos, se muestra que
el filtro propuesto ofrece los mejores resultados. En efecto, se ha demostrado que, cualitativamente,
se consigue reducir en mucha mayor medida el nivel de ruido original en cada uno de los interfero-
gramas a la vez que se consigue preservar detalles (franjas) útiles en la fase. Las fases filtradas son
muchomás limpias y continuas espacialmente (suaves), lo que resulta enormemente ventajoso para
etapas posteriores del procesado y, especialmente, para la etapa de desenrollado de fase. Del mismo
modo, las medidas cuantitativas de la calidad del filtradomuestran que el método propuesto mejora
considerablemente los resultados de los demás. Concretamente, se consigue reducir prácticamente
en su totalidad los denominados residuos de fase, que se corresponden con píxeles inconsistentes
asociados a valores de fase erróneos.

En tercer lugar, losmétodosdeoptimizaciónpolarimétricanomuestranunos resultados tanbuenos
como se podía esperar inicialmente, y la mejora en la calidad de la fase en interferogramas aislados
estámuy limitada. Se ha llegado a la conclusión de que la reducción del ruido con esta técnica se con-
sigue gracias al promediado espacial de muestras (multilook) empleado para calcular la coherencia
interferométrica,mientras que la propia optimizaciónnoproporcionaunamejora adicional. Noobs-
tante, se ha podido comprobar que la optimización muestra resultados muy variables en función de
este número de muestras promediadas. En este sentido, pequeños promediados (pocas muestras)
proporcionan un aumento de coherencia muy grande (especialmente si se emplea un multilook de
3×3 píxeles), aunque el nivel de ruido en el interferograma semantiene elevado. Sin embargo, el uso
de promediados más grandes, a pesar de conseguir reducir en mayor medida el ruido, no proporcio-
nan una mejora clara frente a los canales polarimétricos convencionales.

Dentro de este mismo ámbito, se ha seguido una metodología alternativa en la que se realiza una
optimización individual de cada píxel, pero nunca se hace un promediado efectivo del interfero-
grama. La idea de este último test consiste en verificar si efectivamente el algoritmo de optimización
permite aumentar la calidad de la fase sin aplicar ningún filtrado (promediado). Para ello, se extraen
matrices de 3×3 píxeles en las que siempre se optimiza el píxel central. Los resultados muestran
que, finalmente, esta estrategia sí que consiguemejorar sustancialmente la calidad de la fase original,
demostrando que la optimización polarimétrica resulta útil. Los resultadosmuestran que el nivel de
ruido se reduce sustancialmente, únicamente manteniéndose elevado en aquellas zonas extremada-
mente ruidosas inicialmente. La principal ventaja de esta técnica es que no existe el riesgo de que
disminuya la resolución original del interferograma, lo que supone una ventaja evidente frente a al-
gunos métodos de filtrado.

Por último, la clasificación de tipos de cultivos se ha llevado a cabo en una zona agrícola locali-
zada al suroeste de Sevilla (Andalucía, España), denominada BXII. En dicha zona, se dispone de 17
tipos de cultivos diferentes, siendo el algodón y el tomate los más abundantes. El proceso de clasifi-
cación consiste en emplear datos InSARde Sentinel-1 del año 2017, usando el algoritmo de Bosques
Aleatorios (Random Forests), muy conocido en el ámbito del aprendizaje automático. Concreta-
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mente, se han empleado las coherencias generadas con una línea de base temporal corta (es decir,
poca separación temporal entre imágenes) de 6, 12 y 18 días, y provenientes de las dos polarizaciones
de Sentinel-1 (VV y VH).

Los resultados de clasificación son globalmente muy buenos, obteniéndose una precisión global
entre el 70 y el 80%. Se observa que el mejor resultado se obtiene cuando se emplean las coherencias
de la línea de base más corta (6 días). Esto era de esperar ya que los datos asociados se ven menos
afectados por la decorrelación temporal. El uso simultáneo de coherencias de múltiples líneas de
base no aporta ninguna mejora, de modo que la inclusión de más información temporal no tiene
ninguna ventaja en este ámbito específico. Con respecto a la influencia de la polarización, se ha de-
mostrado que las coherencias del canal VV proporcionan un resultado sustancialmente mejor. Esto
tiene sentido dado que se sabe que el canal VV dispone de una mayor relación señal a ruido (SNR)
que el VH. Sin embargo, los resultados muestran que el empleo de las coherencias de ambos canales
conjuntamente proporciona un mejor resultado (la precisión global aumenta en torno al 1-2% con
respecto al uso del canal VV únicamente). Convienemencionar que sólo 4 clases de las 17muestran
una mala clasificación, es decir, se identifican peor y se confunden con algún otro tipo de cultivo. El
análisis de la evolución temporal de la coherencia asociada a estos cultivos nos permite observar el
motivo de esta mala clasificación. En efecto, se ha demostrado que aquellos cultivos que presentan
una evolución temporal de coherencia similar a otros (es decir, muestran el mismo patrón de creci-
miento/disminución en sus valores a lo largo del tiempo) son los que presentan la mayor confusión.
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Principales Conclusiones

En la presente tesis se han desarrollado diferentes métodos avanzados ligados a la interferometría
radar. En base a todos los resultados mostrados a lo largo de este trabajo, puede decirse que los
objetivos inicialmente propuestos se han cumplido satisfactoriamente. A continuación, se resumen
las principales conclusiones derivadas de los resultados obtenidos en cada ámbito específico.

Sehademostradoque losmétodos convencionales defiltrado en rango tienendificultades para eli-
minar los efectos de decorrelación geométrica en escenas con topografía. El método propuesto con-
sigue solventar todas las limitaciones de los métodos conocidos mediante la explotación completa
de la topografía de la escena. Se ha podido comprobar que el tamaño de las ventanas empleado en el
filtrado afecta considerablemente a la calidad de los resultados. En efecto, ha quedado demostrado
que áreas con topografíamuy variable se filtranmejor con ventanas pequeñas (16 y 32 píxeles)mien-
tras que las zonas llanas se ven beneficiadas por bloques demayor tamaño (64 o 128 píxeles). El filtro
propuesto evalúa todos los tamaños de ventana posible y escoge lamejor solución, demanera que se
adapta automáticamente a cualquier tipo de superficie y se maximiza la calidad del filtrado.

Se ha visto también que debido a las fuentes de decorrelación restantes, prácticamente cualquier
interferograma presenta ciertas áreas muy ruidosas en las que no hay medidas de fase útiles. Los
resultados del filtro de fase propuesto demuestran que el método desarrollado va un paso más allá
con respecto a los métodos convencionales. Así, se ha demostrado que el filtro consigue reducir en
granmedida los efectos del ruido, a la vez que semantienen detalles de fase útiles. Conseguir esto de
forma simultánea es probablemente la tarea más difícil en el ámbito de filtrado del interferograma.
Estos dos objetivos se consiguen mediante 1) filtrar iterativamente la fase ruidosa original, 2) adap-
tarse localmente al nivel de ruido del interferograma y 3) suavizar espacialmente los valores de fase
ruidosos estimados. Además, una característica importante del filtro propuesto es que es completa-
mente no paramétrico, es decir, no requiere especificar manualmente ninguno de sus parámetros, a
excepción del tamaño inicial del bloque de filtrado. En este sentido, interferogramas muy ruidosos
se verán beneficiados por un tamaño inicial grande (por ejemplo, de 256×256 píxeles como se ha
propuesto), y un mayor número de iteraciones. Por el contrario, interferogramas de mejor calidad
requerirán menos iteraciones. Sin embargo, aunque se fije un tamaño de bloque inicial grande para
filtrar interferogramas poco ruidosos, únicamente repercutirá sobre el tiempo de computación y no
en el resultado final, ya que el filtro se adapta siempre al nivel de ruido del bloque.

El análisis de losmétodos de optimización polarimétrica en interferogramas aisladosmuestra que
la mejora en la calidad de la fase viene, principalmente, del promediado espacial empleado para cal-
cular la coherencia. Se ha podido comprobar que la propia optimización no ofrece una mejora adi-
cional a no ser que se emplee la metodología alternativa propuesta, en la que se optimiza cada píxel
individualmente sin promediar el interferograma original. En este caso, se ha visto que se reduce el
nivel de ruido de forma aceptable. Los resultados muestran que se consigue suavizar espacialmente
la fase en áreas no excesivamente ruidosas a la vez que se mejora la calidad de las franjas de fase. Sin
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embargo, la mejora en la calidad de los datos sigue limitada en aquellas zonas extremadamente rui-
dosas. Conviene mencionar que esta metodología tiene la ventaja de que la resolución original del
interferograma nunca se reduce.

Por último, se ha demostrado que los datos InSAR constituyen un observable útil que puede ser
empleado para clasificar cultivos mediante algoritmos de aprendizaje automático. La conclusión
general es que la coherencia multitemporal ofrece resultados más que aceptables, con una precisión
global que varía entre el 70 y el 80% en función de los datos de entrada del clasificador. Concreta-
mente, el mejor resultado se obtiene cuando se emplean las coherencias de la línea de base temporal
más corta (en este caso, 6 días) y de dos canales polarimétricos (en este caso, VV y VH), simultánea-
mente.

Se ha demostrado también la importancia que tiene un muestreo correcto de los datos propor-
cionados al modelo de entrenamiento. En este sentido, se ha visto que si el conjunto de entre-
namiento está desbalanceado (es decir, no todas las clases presentan un número similar de mues-
tras), el clasificador tiende a favorecer las clases mayoritarias, mientras que las clases minoritarias
se clasifican peor. El problema del desequilibrio de clases se ha resuelto submuestrando cada tipo
de cultivo de forma de cada uno de ellos tenga exactamente el mismo número de píxeles. Al hacer
esto, los resultados mejoran drásticamente de forma que cada una de las clases se identifica mejor.
Por último, se ha podido comprobar que el clasificador identifica peor aquellas clases cuya variación
temporal de coherencia presenta elmismo patrón (es decir, presenta lamisma tendencia de aumento
y disminución en sus valores en el tiempo).

xxi



xxii



1
Introduction

1.1 Motivation

Remote Sensing refers to the acquisition and analysis of information of distant objects or phenom-
ena without directly interacting with them. To retrieve the information, instruments are designed
to gather signals, such as electromagnetic or acoustic waves, which come from its interaction with
matter and contain significant data related to the object physical properties. In its current state, re-
mote sensing is generally associated with the study of complex processes and dynamics of our planet
Earth, by means of processing data gathered by aerial or space-borne systems in the form of elec-
tromagnetic images. When studying the Earth with such systems, we usually use the term Earth
Observation, which involves a wide variety of techniques and tools the goal of which is to improve
the knowledge we have of our planet at a global scale.

Advances in remote sensing technology, especially since themid-2000s, have drastically increased
the potential of remote sensed data tomonitor the Earth surface inmultiple areas. A large number of
applications, related to both civil and military domains, have been developed in the latest years and,
certainly, new ones will appear in the future. Nowadays, remote sensing plays a crucial role in many
scientific and engineering topics [1], including topography and cartography with the generation of
Digital ElevationModels (DEM). It is widely employed in geoscience for assessing geo-hazards (vol-
canic eruptions, earthquakes, etc.) and disaster risk management. Also, remote sensing techniques
are used in meteorology by estimating the climate and its evolution, and its subsequent impact on
biodiversity. Moreover, it can also be exploited to monitor terrestrial and environmental changes
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caused by modern civilization, including 2-D, 3-D and 4-D (space and time) land mapping, change
detection (for deforestation and desertification monitoring), etc.

Remote sensing technologies can be classified either according to its source of illumination (en-
ergy radiation) or to the working frequency of the system. In the first case, a system is called active if
it has its own source of illumination. Particularly, it sends electromagnetic radiation to a target and
measures the backscattered signal returned to the sensor. Contrarily, a passive system can only de-
tect backscattered signals that are reflected naturally from a source other than the sensor, as the light
emitted by the Sun. These sensors are useful to detect ultraviolet, visible and infrared radiations or
thermal radiation generated by all matter with a temperature higher than absolute zero. We also clas-
sify the sensors according to the band of the electromagnetic spectrum employed. We distinguish
betweenmicrowave (frequency ranging from 300MHz to 30 GHz) and optical systems. This thesis
focuses on Synthetic Aperture Radar (hereafter called SAR) systems, which are a specific type of radar
(RAdio Detection And Ranging). SAR are active systems which work on the microwave band of the
electromagnetic spectrum. They constitute one of the most important and remarkable instruments
for remote sensing due to its wide coverage and its weather-independent capability, and also because
they can operate indistinctly during day and night. SAR are mounted on moving platforms, which
can be either airborne (the sensor is placed on a plane or a helicopter) or space-borne (the sensor is
placed on a satellite which is in orbit around the Earth). The SAR systemmoves along its trajectory
transmitting and receiving signals in a side-looking fashion. All these signals are processed in such a
way that a larger antenna is ”synthesized”. This is referred to as the synthetic aperture principle and
allows an increase of the image resolution in the flight direction.

Since the launch of the first orbital SAR, SEASAT, in 1978, the number of operational missions
carried out by different states and intergovernmental organizations has experienced a significant
growth, especially since the beginning of the 90’s [2] [3] [4]. As shown in Table 1.1, the number
of missions has not only increased, but has increased more quickly over time, showing the common
interest in developing and enhancing the huge potential that SAR systems offer for observing the
Earth and its characteristics. As a visual example, Figure 1.1 shows the substantial improvement of
spatial resolution between a SAR image acquired in the early 90’s and an image acquired in 2008. Im-
provements in terms of mission’s life span, images’ resolution, coverage, revisiting time (6 days for
Sentinel-1 A/B, 11 days for TerraSAR-X and PAZ), or polarization diversity, paved the way for the
development of advanced techniques derived from the exploitation of the data, such as SAR Inter-
ferometry and Polarimetry, which are introduced in the following paragraphs. It is important to note
that the development of new techniques and products has also been favored by a better access to the
data. Specifically, the Copernicus Open Access Hub, a platform developed by the European Space
Agency, represents a paradigm change in Earth observation, since it provides completely free and
worldwide open access to different SAR products which can be directly downloaded and processed
for scientific purposes.
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(a) Image acquired by satellite ERS-1 in
date 1995-10-15 (around 3×22 meters reso-
lution) in Stripmap mode.

(b) Image acquired in date 2008-05-13 by
satellite TerraSAR-X in Spotlight mode (2 m
resolution).

Figure 1.1: Comparison between two SAR intensity images acquired over the city of Alicante
(Spain).

Satellite name Operator Polarization Mission duration
SEASAT NASA / JPL / Caltech (USA) Single June 1978 - October 1978
SIR-A NASA / JPL (USA) Single November 1981 - November 1981
SIR-B NASA / JPL (USA) Single October 1984 - October 1984

SIR-C/X-SAR NASA / JPL (USA) Dual April 1994 - October 1994
ERS-1 ESA (Europe) Single July 1991 - March 2000
ERS-2 ESA (Europe) Single July 1995 - September 2011

ENVISAT ESA (Europe) Dual March 2002 - April 2012
TerraSAR-X DLR (Germany) Dual June 2007 - present
RADARSAT-2 CSA (Canada) Full December 2007 - present
Cosmo-Skymed ASI (Italy) Full June 2007 - present
TanDEM-X DLR (Germany) Dual June 2010 - present
Sentinel 1-A ESA (Europe) Dual April 2014 - present
Sentinel 1-B ESA (Europe) Dual April 2016 - present

PAZ HISDESAT (Spain) Dual February 2018 - present

ESA refers to the European Space Agency, NASA refers to the National Aeronautics and Space Administration,
CSA is the abbreviation of Canadian Space Agency, ASI is the abbreviation of Italian Space Agency and DLR
refers to the German Aerospace Center.

Table 1.1: Launch dates of some European and North-American space-borne SAR missions
since the launch of SEASAT in 1978.
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SAR Interferometry, abbreviated InSAR, was developed with the goal of retrieving the topogra-
phy of an area. Although the basics of interferometry were initially described in 1974 [5], the tech-
nique became more popular in the late 80’s [6] [7] [8] [9], and its robustness consolidated with
the launch of the European satellite ERS-1 in 1991, since a large amount of SAR data became avail-
able for scientific analysis. SAR Interferometry is based in combining, at least, two different images
acquired from two slightly different positions. If the images were acquired using two antennas si-
multaneously, we would use the term single-pass interferometry. If both images were acquired at
different times, we would talk about repeat-pass interferometry. By extracting the topography, In-
SAR allowed the generation of global DEM’s, such as theNASA Shuttle Radar TopographicMission
(SRTM) [10] or the global TanDEM-X DEM [11]. In this context, a major step forward with re-
spect to classical InSAR applications is related to the estimation of changes in the Earth surface. If
the topography of an area is known, Differential SAR Interferometry (abbreviated DInSAR) allows
to monitor relative surface deformations between different SAR acquisitions [12] [13] [14]. DIn-
SAR is nowadays established as a very powerful advanced technique used in multiple areas. It is
used in civil engineering for estimating surface subsidence or uplifts caused by undergroundmining
or water extraction or for landslidemonitoring. It is also widely used in geophysics to analyze crustal
deformation caused by tectonic activities, such as volcanic eruptions and earthquakes. This tech-
nique provides accurate measurements (up to less than 1 cm) over large spatial extents, making it
advantageous in comparison to conventional in-situmethods. Innovative DInSAR algorithms using
large stacks of images have recently been developed. The family of techniques known as PSI (Per-
manent Scatterer Interferometry) is a branch of differential interferometry which is able to measure
ground motion very accurately on certain pixels previously selected as reliable (permanent scatter-
ers). By processing multiple SAR acquisitions, PSI has proved to be very powerful for monitoring
ground displacements over time, providing accurate deformation time series over such permanent
scatterers [15] [16] [17] [18] [19].

Conventional SAR systems were designed to generate reflectivity images using a single combi-
nation of polarizations of transmitted and received electromagnetic signals. Polarimetry is based
on analyzing the polarization state of electromagnetic fields, which is modified after the interac-
tion with scatterers. Consequently, SAR Polarimetry (abbreviated PolSAR) concerns the use of
polarimetry in radar applications, being initially introduced with the work of G.W. Sinclair [20].
Later on, throughout the 50’s and 60’s, important works related to backscatter theory were carried
out [21] [22] [23] [24]. Amajor contribution was done byHyunen in 1970 [25], where he applied
previous researches related to polarization to radar targets. As a result of his work, interest in SAR
polarimetry increased [26]. Polarimetry constitutes today amajor topic in SAR remote sensing, due
to the numerous applications it offers in different fields, including agriculture (crop mapping), for-
est monitoring, tree height retrieval, land use, etc. Furthermore, the number of SAR satellites with
polarimetric capabilities has grown significantly in the last decades. Modern and currently operat-
ing SAR systems, such asRADARSAT-2, TerraSAR-X, Sentinel-1 or PAZ are able to collect data at
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different polarizations, proving the interest in developing PolSAR techniques and applications.

While interferometry allows to detect relative height (or motion) of radar targets, polarimetry
deals with the physical properties of scatterers, and is able to retrieve additional features of them
by analyzing the polarization information contained in backscattered signals. Both techniques are,
in fact, complementary. Since the end of the 90’s, the idea of combining the information provided
by polarimetry and interferometry emerged. Polarimetric SAR Interferometry (abbreviated PolIn-
SAR), introduced in 1998, constitutes an extension of conventional scalar interferometry, leading
to solve the limitations or inaccuracies of interferometric systems operating with a fixed polariza-
tion (such as a better estimation of the height location of targets), by exploiting the sensitivity of
polarimetry to the shape or geometry of scatterers [27] [28]. Moreover, recent studies have also
shown the potential of including polarimetry in differential applications. Polarimetric Differential
SAR Interferometry (abbreviated PolDInSAR) has demonstrated to outperform classical DInSAR
techniques. The integration of fully or dual polarimetric data intoDInSARprocessing algorithmshas
shown to greatly improve the quality ofmotion/deformationmaps in both accuracy and spatial den-
sity, especially when multi-temporal data-sets are considered, as in the framework of the previously
introduced PSI [29] [30] [31] [32] [33].

Besides themajor improvements carriedout in both InSARandPolSAR, themappingof theEarth
surface with SAR imagery has also experienced an outstanding progress during the last years. Image
classification using remote sensed data belongs to the general field of pattern recognition. Pattern
recognition is the scientific disciplinewhich tries to classify objects intodifferent categories or classes
according to its properties. Its goal is to derive features of such classified objects and yield useful in-
formation of a given system or data set. Pattern recognition problems are approached by machine
learning algorithms,which fall into thefieldofArtificial Intelligence [34]. Broadly speaking,machine
learning was born with the theory that computers (machines) can ”learn” directly from data without
being explicitly programmed toperform tasks. By looking for patterns through large amounts of data,
machine learning algorithms are able to re-adapt themselves and predict the evolution of complex
systems or the value of new observations. Machine learning applications are nowadays innumerable.
Computer vision, software engineering, medical diagnosis, economics, linguistics or marketing are
just some examples. In the context of SAR and remote sensing, machine learning algorithms allow
to classify what the sensor is observing and, consequently, they allow to compile land-cover and veg-
etation maps of vast areas. If our ecosystem and natural environments are to be properly managed,
appropriate knowledge of the state and distribution of natural areas, the quantity of water resources
or the state of the soil is mandatory, and satellite datasets are very suitable to this end. Finally, the
global concern over land-use management is clearly represented by the CORINE-Land-Cover (Co-
ordination of Information on the Environment - Land-Cover) programme created in 1985 by the
European Council under proposal of the European Commission [35], whose main aim is to estab-
lish a digital inventory on land-cover of all European Union members.
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1.2 Objectives

Once the reader has been properly oriented to the topics this work deals with, its main objectives
can be introduced. This PhD is intended to provide improvements in different steps of the interfero-
metric processing, by the development of new algorithms and methods. Also, the work investigates
innovative InSAR applications related to the classification of crops. Each contribution is briefly de-
scribed in the following paragraphs.

In first place, this thesis addresses an issue intrinsically related to the interferometric processing,
which is the inherent decorrelation or noise present in InSAR stacks in repeat-pass mode. As stated
previously, interferometry is based on combining two images of the same area, resulting in a new
image denoted as interferogram. As complex signals, interferograms have both amplitude and phase
information. While amplitude is related to the power of radar targets, the interferometric phase con-
tains the distance difference between the satellite antenna and the ground targets in both acquisi-
tions. InSAR just exploits this phase difference, since the amplitude does not provide meaningful
information related to distances. Consequently, the accuracy and the quality of phase data represent
the key-element in both InSAR and DInSAR processing algorithms, and the reduction or suppres-
sion of decorrelation effects is strictlymandatory to provide reliable products derived from these two
techniques. It is worthmentioning that noise reduction is compulsory in (almost) all fields that treat
digital signals, such as medical images, audio signals, etc. Noise reduction is achieved by designing
filtering algorithms which try to enhance the quality of the signals by reducing the influence of spe-
cific types of noise. In the context of SAR, multiple sources of noise are present in interferometric
images. Although an analysis of the multiple sources will be carried out in Chapter 2.2, a basic and
initial distinction canbedrawnas follows. An important sourceof noise is due to the InSARprinciple
itself. More specifically, it is due to the fact that each image has its own acquisition geometry. This
different geometry induces an spectral misalignment between the images, leading to an inevitable
increase of decorrelation and loss of quality in the future phase. Since this source of noise cannot
be avoided, specific algorithms are to be designed to remove this type of noise. Another important
source is more related to the characteristics of the scene. If the scene changed significantly between
both images (for instance, due to changes in the vegetation), an important decorrelation would in-
evitably appear since the response of the scatterers between the images would differ. Accordingly,
one of the main objectives of this thesis deals with the development of improved denoising algo-
rithms for InSAR/DInSAR applications. More precisely, two different filters are proposed:

• A filter which addresses the problem of the spectral misalignment in range direction. Range
filtering is a commonly-used pre-processing step in SAR interferometry. Its goal is to remove,
from the two images used to generate an interferogram, the non-common frequency bands
in range dimension, as they cause a loss of correlation and deteriorate the quality of interfer-
ometric products. This work presents a refined method which correctly adapts to the local
topography and is able to optimize the filtering performance. Note that range filtering is per-
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formed prior to interferogram formation, so its output corresponds to two filtered images, the
spectral properties of which have been enhanced for interferometric purposes.

• An innovative filter for the final interferometric phase. Once an interferogram is generated, it
may not be directly suitable for its further processing due to the remaining noise in the data.
Consequently, without accurate and robust filtering processes, final InSAR or DInSAR prod-
ucts may be completely unfeasible to obtain. This filter has originally been conceived to elim-
inate the noise in differential interferograms used in geophysical applications, that is, interfer-
ogramswhichmap any kind of tectonic activities (such as volcanic eruptions or earthquakes).
However, its use can be extended to any kind of interferogram, thanks to its adaptation to both
the noise level and image features. The goal of the proposed method is to reduce the noise at
all levels while simultaneously preserving fine phase details which contain useful information.

Secondly, this thesis explores some specific aspects of PolDInSARwhen only one date is analyzed
(not time series as in PSI). As previously stated, PolDInSAR deals with the inclusion of polarimetry
in differential interferometry applications, and it has shown to outperform the results obtained with
conventional single-polarizedDInSAR. Its benefits have intensively been analyzed in the framework
of PSI, that is, when a large stack of images (resulting in a large number of interferograms) is to be
processed. However, its potential has not been evaluated with isolated interferograms. In this the-
sis, an exhaustive analysis of the inclusion of polarimetry in differential applications based on a single
interferogramhas been carried out. Consequently, the second objective of this work consists in eval-
uating the potential role of polarimetry in improving the quality of isolated InSARpairs. To this end,
different polarimetric optimization methods, parameters and criteria have been implemented and
tested with the goal of generating an optimum interferogram the phase of which is more suitable for
its future processing.

Finally, the third objective is related to new final applications of interferometric data, and more
precisely in crop-type mapping or classification. Conventional crop classification employs as input
features optical/multi-spectral data, due its high sensitivity to crop properties (such as the moisture
or the chlorophyll in the leaves). However, due to the passive nature of optical sensors, the num-
ber and/or the quality of images may be insufficient in some cases (for instance, because of clouds,
haze or darkness during winter). In this regard, alternative approaches using SAR data progressively
gained attraction. Classical SAR-based mapping methods are radiometric, that is, the backscatter
intensity of a series of images is used as input to classification algorithms. The third goal of this
work is to prove that InSAR is also sensitive to the temporal evolution of crops and, hence, that it
constitutes an alternative or a complement to conventional radiometric information for crop-type
classifications.
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1.3 Structure of the Thesis

Thecontents of themanuscript are divided into 5 chapters, being the first one this introduction used
to contextualize and provide the reader with basic information for the rest of the work, as well as to
explain the main objectives of the research.

Chapter 2 provides the theoretical background needed to ease the comprehension of the sub-
sequent chapters. A revision of the main concepts of SAR imaging is presented. In addition, the
fundamentals of SAR interferometry, including the differential extension, and SAR polarimetry are
introduced. The basic formulation of PolInSAR is also reviewed, including all mathematical consid-
erations which generalize the conventional single-polarized InSAR formulation to the diversity of
polarimetric channels. This is mandatory to understand the different optimization algorithms for
PolDInSAR processing, from the mathematical point of view, implementation aspects and compu-
tational complexity. In the last section of the chapter, an overview of image classification is provided.
In this regard, it is worthmentioning that image classification can be approached as amachine learn-
ing problem, where a set of objects (classes) within the images are to be recognized and classified ac-
cording to a knownmodel. Among the wide variety of machine learning algorithms, we have specif-
ically used Random Forests, which is an ensemble approach known to provide good classification
accuracies. A revision of this algorithm is also done in Chapter 2.

Chapter 3 and 4 constitute the core of the thesis. In the third chapter, the main contributions
to InSAR/DInSAR processing developed throughout the PhD are explained and justified in detail.
Each contribution concerns different key stepswithin the interferometric processing chain, although
they have the common goal of enhancing the quality of the data. The contribution related to range
filtering is regarded as a pre-processing step, i.e., it is performedbefore interferogram formation. That
is, range filtering employs twoSAR images as input, and outputs the same images butwhich aremore
suitable for future interferometric processing. Contrarily, both the proposed interferogramfilter and
the PolDInSAR phase quality optimization approach are related to final processing steps. Chapter 3
includes a variety of results, coming from simulated and real datasets, and yields conclusions derived
from the different innovative methods and algorithms which are presented. All contributions are
compared with conventional, state-of-the-art techniques to prove both the limitations of already-
existing methods and the advantage of the proposed ones.

Whereas Chapter 3 deals with processing, Chapter 4 deals with application. A novel method for
mapping cropland distribution by exploiting multi-temporal coherence data obtained from a large
stack of interferometric images is presented. A deep evaluation of the performance of InSAR data is
carried out by analyzing the influence of multiple temporal baselines and the combination of differ-
ent polarizations.

Main conclusions of the thesis are summarized in Chapter 5. Additionally, some suggestions for
future work are also provided. Finally, a complete list of publications in indexed journals and confer-
ence proceedings, generated during the work carried out for this thesis, is presented in Appendix A.
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2
Theoretical Basis

In this chapter we review the fundamental principles of SAR systems, their applications and
shortcomings which are involved in this thesis. Starting from the basic concepts of image acqui-
sition and generation in Section 2.1, we introduce SAR interferometry and the differential extension
in Sections 2.2 and 2.3. Interferometry is based on combining multiple SAR images from the same
area and generate new images called interferograms, which contain the phase difference between
the two images. An explanation on how this phase is sensitive to the topography of a surface or its
changes over time is included. The multiple sources of decorrelation and the concept of interfero-
metric coherence, as an indicator of the phase quality, are also introduced.

Section 2.4 gives a general review of SAR polarimetry. Polarimetry analyses how the polarization
of electromagnetic waves is modified after the interaction with objects. Thesemodifications depend
on the physical and geometrical properties of scatterers. In this section, the so-called ScatteringMa-
trix (or SinclairMatrix) is introduced. Thismatrix is the fundamental representation of PolSAR data
since it contains all the information related to each polarization state.

Once themathematical background of InSAR and PolSAR have been reviewed, we can introduce
the formulation of PolInSAR ¹ in Section 2.5. PolInSAR coherently combines both interferometric
and polarimetric information, in such a way that the complementary potentials of both techniques
are exploited. Finally, in Section 2.6, basics of both image classification strategies andmachine learn-
ing algorithms related to this work are described.

¹The formulation of PolDInSAR is identical to PolInSAR, with the exception that the topographic component has
been subtracted from phase data prior to the formation of the data structures and matrices.
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2.1 SAR Systems

2.1.1 Fundamentals of SAR Imaging

Radar systems have been used for the observation and remote detection of objects sinceWorldWar
II. By means of sending electromagnetic radiations and receiving its echoes, a conventional radar
can determine the location, the distance and the speed of its targets. A SAR constitutes an extension
of a conventional radar since it offers an outstanding improvement in terms of geometric resolution.
Accordingly, with the use of pulse compression techniques and the synthetic aperture principle, SAR
systems are able to obtain high-resolution reflectivity images (similar tomaps) of areas with different
backscattering properties, and with the use of relatively small antennas [36].

SAR systems operate with electromagnetic radiation in the microwave band, which is a specific
band of the electromagnetic spectrum, the frequency of which ranges from 1 to 100GHz (i.e., wave-
lengths from 0.3 m to 3 mm). However, SAR are commonly restricted to frequencies ranging from
1 to 40 GHz. Wavelength (or wave frequency) affects the interaction between the signal and the
target, so that higher frequencies interact with higher surface layers while lower frequencies pene-
trate deeper into themedia. Table 2.1 shows some usually-employed bands and their corresponding
frequency and wavelength.

Band Frequency (GHz) Wavelength (cm)
P 0.3 – 1 100 – 30
L 1 – 2 30 – 15
S 2 – 4 15 – 7.5
C 4 – 8 7,5 – 3.8
X 8 – 12.5 3,8 – 2.4
Ku 12.5 – 18 2,4 – 1.7
K 18 – 26.5 1,7 – 1.1
Ka 26.5 – 40 1.1 – 0.8

Table 2.1: Frequency bands usually employed in SAR systems.

Either it is space-borne or air-borne, the SAR illuminates the Earth surface in a side-looking fash-
ion as shown in Figure 2.1. The SARmoves jointly with the platform along its flight trajectory, send-
ing microwave pulses at a certain Pulse Repetition Frequency (PRF) and receiving each backscattered
pulse from the Earth surface. The illuminated scene is swept across and, simultaneously, scanned
in the along-track direction, generating a ’raw’ data matrix of the scene. The flight direction (repre-
sented by ’x’ dimension in Figure 2.1) is defined as the ’along-track’ or azimuth direction, while the
across-track (or ground-range) direction (represented by dimension ’y’) is denoted as range.
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Figure 2.1: SAR imaging geometry.

The backscattered signals reach the receiver antenna after a delay which depends on the distance
d between the sensor and the scatterer,

Δt =
2d
c
, (2.1)

being c the speed of light in vacuum (approximately 300.000 km/s).

The resolution of an imaging system can be defined as the determination if only one ormore than
one target is observed. In the case of SAR, we have a two-dimensional resolution. On the one hand,
the resolution in range dimension δr is related to pulse duration τ or to signal bandwidth BW,

δr =
cτ
2

=
c

2BW
. (2.2)

Equation2.2 clearly states that, to obtain a fine resolution in range, short pulses (in termsof duration)
would be needed. Conversely, in order to obtain a high Signal-to-Noise Ratio (SNR), high energy
pulses have to be emitted, which is unfeasible if the pulses’ duration are short. To overcome this
limitation, a linearly frequencymodulated signal (chirp) is transmitted [36] [2], which can be longer
in time and cover the desired bandwidth. These chirp pulses are compressed and convolved with a
reference range function, resulting in a range-compressed image.

On the other hand, in principle, the resolution in azimuth dimension is directly related to the
physical size L of the antenna and its half-power beam width β, which are directly proportional,

β =
λ
L
, (2.3)

being λ the wavelength. The azimuth resolution δa is given by

δa = r0
λ
2L

, (2.4)
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where r0 is the range distance to the ground. By observing Equation 2.4, because of the long distance
r0 (especially in space-borne systems), it can be deduced that fine resolutions cannot be obtained un-
less extremely huge antennas are used, which is, once again, unfeasible. The generation of a synthetic
antenna allows to greatly improve the azimuth resolution. The idea is to ’synthesize’ an effective
longer antenna by means of signal processing rather than to actually use longer physical antennas.
This longer antenna is synthesized by taking advantage of the motion of the platformwhere the sen-
sor is deployed, so that the antenna takes up several positions along the platform trajectory. A signal
is transmitted at each of these positions and each received signal is sequentially stored (it is crucial
that the amplitude and the phase of each received signal is properly preserved). All these stored sig-
nals resemble the signals which would have been obtained by using a linear array of antennas, but
only a single radiating element is used. The new effective half-power beamwidth of the synthetic
aperture is given by

βsa =
λ
Lsa

(2.5)

whereLsa is the effective length of the synthetic aperture, i.e., the path length during the SAR receives
signal from ground targets,

Lsa = r0
λ
L
, (2.6)

which provides the new azimuth resolution,

δasa = r0
λ

2Lsa
. (2.7)

By inserting Equation 2.6 into 2.7, we obtain that the azimuth resolution does not depend on either
the ground range distance or the wavelength, and that it only depends on the antenna size L,

δasa = r0
λ

2Lsa
=

λr0L
2r0λ

=
L
2
. (2.8)

Moreover, Equation2.8paradoxically indicates thatfiner azimuth resolutions areobtainedwith smaller
rather than larger antennas, which is a truly spectacular result and motivated the research on SAR.

2.1.2 Image Description

The data acquisition process presented in the previous section allows the obtaining of series of data
denoted as raw data, which are not directly related to the final reflectivity of the scanned area but
they contain information of point targets which is spread throughout all received signals during the
synthetic aperture time. The generation of such final reflectivity image from the raw data, known as
focusing, is clearly non-trivial, and consists in a two-step method where a relative amount of specific
processing is required [37] [38].

In order to derive the SAR image equations, the impulse response of the system must be known.
A simplified approach can be derived by considering the imaging geometry of Figure 2.2, where a
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single-point (or deterministic) scatterer P is located in space at coordinates (x′, y′, z′).

Sensor
x-x'

R(R', x-x')

θ

H
R'

ys

y'

x'
P

y

z
Flight direction

x

z'

Zero-doppler position

Figure 2.2: SAR measurement of a single-point scatterer.

The sensor is located at (x, ys,H), where the x dimension can be described in time as a function
of the flight speed v, yielding x = vt. The distance between the sensor and the scatterer is

R(R′, x− x′) =
√

R′2 + (x− x′)2. (2.9)

According to this geometry, the response of the point scatterer in the SAR image (centered at its zero-
Doppler coordinates) is given by the convolution of the intensity of the scatterer and the impulse
response function of the SAR system [39],

S(x, r) = σS(x′, y′)δ(x− x′, y− y′, z− z′)h(x− x′, r− R′) · exp (−j
4π
λ
R′), (2.10)

where σS is the complex reflectivityof thepoint target andh(x,R) corresponds to the two-dimensional
(range and azimuth) impulse responses which are related to the imaging resolution in both azimuth
(dsa) and range (dr),

h(x,R) = sinc
(

x
δsa

)
sinc

(
R
δr

)
. (2.11)

In order to derive a complete mathematical formulation of a SAR image, different concepts have to
be introduced. The resolution cell is defined as the area given by dsa × dr (that is, the area given by
the SAR impulse response). In a real scenario, there is not just an individual scatterer but an ensem-
ble of point scatterers within the resolution cell. It is important to note that this happens since the
dimension of the resolution cell (order of meters) is significantly larger than the signals’ wavelength
(centimeters). In other words, all received echoes are not due to an individual scatterer, but are the
result of the combination of an arbitrarily number of individual point scatterers within the resolution
cell. Contrarily to the deterministic behavior of a point scatterer described by the image model of
Equation 2.10, the response of this ensemble of individual scatterers is completely random. Thus,
to derive a general expression of a SAR image, different assumptions have to be made. Firstly, we
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assume that the scatterer did notmove while it was illuminated (the scene remains stationary during
its acquisition). The second assumption refers to linearity [39], that is, the total scattered field results
from the linear superposition of each field of each individual scatterer.

The general expression of the SAR imagemodel is derived as follows. We consider an ensemble of
scatterers E(x, y, z) located in a 3D space, or volume V. The projection of E into the 2D cylindrical
zero-Doppler radar coordinates gives the complex reflectivity of the distributed target,

E(x,R) =
∫
V
E(x, y′ + R sin(θ), z′ − R cos(θ)) R dθ, (2.12)

where θ is the incidence angle. The SAR image expressed in azimuth x and slant-rangeR coordinates
is

S′(x,R) =
∫
V
E(x, y′ + R sin(θ), z′ − R cos(θ)) exp(−j

4π
λ
R) h(x− x′,R− R′) dV. (2.13)

where dV = dx′ dy′ dz′.

In practice, it becomes completely unfeasible to describe the distributed scattering process by
means of the SAR image model of Equation 2.13. Accordingly, a statistical model which assumes
that N individual scatterers are within the resolution cell is assumed, so that Equation 2.13 can be
transformed into

S(x,R) =
N∑

n=1

σn(xn,Rn) h(x− xn,R− Rn), (2.14)

where σn(xn,Rn) =
√
σn ejθn is the radar cross-section [40] [41] and the impulse response of each

scatterer can be expressed as
h(x− xn,R− Rn) = hn ejφn . (2.15)

According to Equation 2.14, the complex SAR image S is of the form

S =
N∑

n=1

An ejφn , (2.16)

where An is the amplitude of the n scatterer and φn its phase within the resolution cell. Visually, the
complex reflectivity resulting from the contribution of each elementary scatterer can be illustrated
in the complex plane as in Figure 2.3.

Due to the random distribution of the scatterers within a resolution cell, the signals of these scat-
terers may interfere constructively or destructively. Such effect gives a granular aspect to the im-
ages with significantly important random spatial variations between pixels. This phenomenon cor-
responds to the so-called specklewhich will be described in Subsection 2.1.3.
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Figure 2.3: Coherent integration of an ensemble of scatterers resulting in the final SAR com-
plex reflectivity.

2.1.3 Speckle

Although it is misleadingly considered as noise since it degrades the quality of SAR images, speckle
is purely related to the radar echoes and the coherent nature of SAR imaging. The superposition of
all point scatterers within a resolution cell makes that the derivation of a speckle noise model can
only be done statistically, with a set of multiple assumptions:

• The number of elementary scatterers is large and they are statistically independent, i.e., none
of them has a dominant contribution.

• The amplitude An of the n scatterer is independent from its phase (i.e., they are random vari-
ables).

• The phase lies within the interval [−π, π].

Under these hypotheses, the Central LimitTheorem allows us to split Equation 2.16 as the summa-
tion of its real and imaginary parts, i.e.,

S =
N∑

n=1

Re(An ejφn) + j
N∑

n=1

Im(An ejφn), (2.17)

where the real and imaginary parts of the image are

Re(S) =
N∑

n=1

An cos(φn),

Im(S) =
N∑

n=1

An sin(φn),

(2.18)

and follow a zero-mean Gaussian distribution with σ standard deviation, denoted asN (0, σ2) [42]

pdfRe(S) = pdfIm(S) =
1√
2πσ2

exp
(
−A2

2σ2

)
. (2.19)
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From Equation 2.19, we can derive the expressions of the probability density functions (pdf) of the
amplitude, the phase and the intensity of a distributed scatterer (being the latter defined as the square
of the amplitude, i.e., the intensity I = A2), within a single-look complex (SLC) SAR image, as

pdfA =
A
σ

exp
(
−A2

2σ2

)
, (2.20)

pdfI =
1
2σ2

exp
(
−I
2σ2

)
, (2.21)

pdfφ =
1
2π

. (2.22)

Each magnitude is statistically described with a different type of distribution. The pixel amplitude
and intensity follow a Rayleigh and an exponential distribution respectively, whereas the phase fol-
lows a uniform distribution within [−π, π]. A visual representation of each distribution is repre-
sented in Figure 2.4. Since the phase is uniformly distributed within its definition domain, there is
no information that canbe extracted from it due to the randomlydistributed scatterers. It follows that
the phase of a single SAR image is uninterpretable and cannot be exploited, as shown in Figure 2.5.
However, ground scattering hopefully cancels out when the phase difference between a set of SAR
images is calculated. This fact allows the exploitation of the phase difference, which constitutes the
base for InSAR processing and will be analyzed in detail in Section 2.2 and 2.3.
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Figure 2.4: Probability density functions of amplitude, intensity and phase of a SLC image
over distributed scatterers.

Speckle reduction or despeckling can be achieved by multilooking, which, basically, consists in av-
eraging independent pixels or looks of the intensity image. Although it causes a loss of spatial res-
olution, multilook greatly improves both the radiometric estimation and the interpretability of the
image by reducing the noise variance. Speckle reduction is an important topic in SAR imagery, and
a wide variety of methods and algorithms have been developed in the latest years. The most sim-
ple method is the previously explained multilook, but there undoubtedly exist more sophisticated
methods. TheLee Filter [43] [44], the adaptive and Intensity-driven filter (IDAN) [45], Non-Local
method [46], or the Binary PartitionTree-based approach [47] are just some of such improved algo-
rithms for speckle suppression. Finally, Figure 2.6 provides an example of speckle reduction filters.
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(a) Intensity.
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Figure 2.5: Intensity and phase of a SAR image. The phase of a single image is completely
noisy and provides no information. The scene corresponds to a PAZ image of the Mojave
Desert (USA).

(a) Original image. (b) 3×3 multilook.

(c) 15×15 multilook. (d) IDAN filter.

Figure 2.6: Speckle reduction in a SAR image intensity by different methods.
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2.2 SAR Interferometry

SAR interferometry was conceived with the goal of retrieving the topography of an area. As previ-
ously indicated, the technique requires, at least, two SAR images from the same area acquired from
two slightly different positions. Both images can be acquired either simultaneously using two differ-
ent antennas in single-pass mode, or at different times (repeat-pass mode). A critical step in InSAR
processing is image coregistration [48] [49]. The goal of this step is to align or resample both images
to the same geometry, so that there is a ’pixel match’ and the amplitude or the phase to be extracted
comes from the same ground area. Coregistration requires the selection of a ’reference image’, usu-
ally referred as ’master image’ and the rest of images (usually called ’slaves’) are resampled to the
master’s geometry. Very high accuracies, at sub-pixel resolution are required at this step, usually in
the order of 1/16pixel. Note that, aside from InSAR, a large number of applications could not be im-
plemented, such as the analysis of time series, change detection, etc., without properly coregistering
a set of images.

InSAR imaging geometry can be illustrated as in Figure 2.7. The separation between both sensors
(or orbits) is called the interferometer baseline (denoted as B in Figure 2.7), and can be divided into
two components. The perpendicular or normal baseline B⊥ is the component perpendicular to the
Line of Sight (LOS), while the parallel baseline B∥ is the component along the LOS.
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Figure 2.7: InSAR imaging geometry.

The angular separation between both sensor positions is denoted the slope angle α and the path
length difference ΔR = R2 − R1, directly related to the phase difference between both images, can
be calculated to estimate the height at each image pixel.

Once both images have been properly registered, they can be ’interfered’ simply by performing a
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complex conjugate multiplication (pixel by pixel). This complex product yields a new image called
interferogram. Thus, denoting as S1 and S2 two SAR images,

S1(x, r) = |S1(x, r)| exp (j φ1(x, r)),

S2(x, r) = |S2(x, r)| exp (j φ2(x, r)),
(2.23)

where (x, r) are the image spatial coordinates (i.e., line and pixel), the complex interferogram I is
defined as

I(x, r) = S1(x, r) · S∗2(x, r) = A exp (jΔΦ). (2.24)

Interferometry exploits the phase difference ΔΦ since, as we will see in the following, it is related to
the topography of the illuminated area.

The phase of each image S1 and S2 that form an interferogram is given by

φ1 = −4π
λ
R1 + ψ1,

φ2 = −4π
λ
R2 + ψ2,

(2.25)

where λ is the radar wavelength, R1 and R2 are the range distances to the ground, and ψ1 and ψ2

model the phase term contribution from the random ground scattering in each image. It is impor-
tant to point out that noise components due to both the acquisition system and atmospheric distur-
bances have been neglected. Assuming that ground scattering properties did not change significantly
between the acquisition of both images, i.e. ψ1 ≈ ψ2, the phase difference or interferometric phase
(or simply called the phase in InSAR context) is

ΔΦ = φ1 − φ2 = −4π
λ
(R1 − R2) = −4π

λ
ΔR. (2.26)

Note that phase values still belong to [−π, π], i.e., they are ’wrapped’ to that interval. By means of
geometrical relations, it is possible to derive the topographic height difference between two generic
points P and P′ from the corresponding interferometric phase measurements at each point. Range
distance R2 in Figure 2.7 can be expressed as

R2
2 = R2

1 + B2 + 2R1 B cos
(
π
2
− θ − α

)
. (2.27)

The cosine law yields

cos
(
π
2
− θ − α

)
= sin(θ − α), (2.28)

so
sin(θ − α) =

R2
2 − R2

1 − B2

2R1B
. (2.29)

Since the baseline B is small in comparison to the range distances, we can derive the following ap-
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proximation (known as far-field approximation)

B sin(θ − α) ≈ Δr. (2.30)

Due to the ambiguity in wrapped phase values and orbits inaccuracies, the expression of ΔR cannot
be derived from the geometry [42]. However, the increment in δR between points P and P′ can be
measured precisely as

∂ΔR = B cos(θ − α)δθ, (2.31)

where the off-nadir angle θ0, which corresponds to the inclination of the sensor with respect to the
nadir, is known. Consequently, the change in the phase between P and P′ is

∂ΔΦ = −4π
λ
∂ΔR. (2.32)

Combining Equations 2.31 and 2.32 we obtain the relation between a change in the interferometric
phase and a change in the look-angle as

∂ΔΦ = −4π
λ
B cos(θ0 − α)δθ, (2.33)

and the relation between δh and ∂ΔΦ is

δh = −−λR′
1 sin(θ0)
4πB⊥

∂ΔΦ. (2.34)

Then, we can derive an expression which relates the topography δh and the interferometric phase
difference between two points as

∂ΔΦ = −4π
λ

(
− B⊥

R′
1 sin(θ)

δh
)
. (2.35)

Finally, combining the previous Equations 2.33, 2.34 and 2.35, the expression of the interferometric
phase is

ΔΦ =
4π
λ

(
B sin(θ − α)− B⊥

R1 sin(θ)
δh
)
. (2.36)

Thus, Equation 2.36 shows that, if we know the spatial baseline in slant-range direction (B⊥), the
interferometric phasemeasurements are directly related to the topography of an illuminated area. In
other words, the normal baseline between the orbits provides the sensitivity from which the topog-
raphy can be extracted. In fact, the larger is the normal baseline is, the more sensitive or accurate the
estimation of the topography will be. By looking at Equation 2.36, we can distinguish two different
terms, so that the interferometric phase can be divided into two contributions,

ΔΦ = ΔΦflat + ΔΦtopo. (2.37)
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The flat-earth component ΔΦflat is due to the fact that two points located at the same height do not
have the same interferometric phase value since the look angles of each acquisition are slightly dif-
ferent. As a consequence, even a completely flat terrain (i.e., in the absence of topography) will have
an important phase contribution. Visually, the flat-earth phase is shown as a linear phase component
with fringeswhich are parallel to theflight direction. This termcan easily be estimated and subtracted
by means of the geometrical information of each SAR acquisition. Its expression is

ΔΦflat =
4π
λ
B sin(θ − α) =

4π
λ

B⊥

R1 tan(θ)
ΔR. (2.38)

The second term ΔΦtopo is the topographic component. If the terrain is not flat, this phase compo-
nent is modulated by the topography, i.e., it is associated with local height changes. Its expression is

ΔΦtopo =
4π
λ

B⊥

R1 sin(θ)
δh. (2.39)

Evidently, the goal of InSAR is to isolate this last term from the original interferogram in which the
flat-earth and the topographic phase are superimposed.

The interferometric process is illustratedwith the example of Figure 2.8. Two images correspond-
ing to theMount Etna volcano (Italy) acquiredwith Sentinel-1 satellite have been used (images were
acquired on dates 2018-07-07 and 2018-07-19). Once both images have been coregistered, an inter-
ferogram can be computed according to Equation 2.24. Figure 2.8 (b) shows such raw interferogram
simply obtained by the complex product of both images. As it can be observed, the flat-earth compo-
nent clearly ’dominates’ and a linear pattern of fringes appear throughout the phase. It is important
to note that this component provides information about the interferogram, but it does not contain
useful information about the topography of the scene. The flat-earth phase can be estimated accord-
ing to Equation 2.38 (Figure 2.8 (c)) and then it can be subtracted from the original interferogram,
yielding a phase which is directly related to the topography of the area. This is represented in Fig-
ure 2.8 (d). The remaining interferometric fringes represent the strong topography which is present
around the volcano, and can be understood as isolines, i.e., each color inside a fringe is located at the
same height.

Finally, an important aspect should be addressed. Since all phase values are wrapped to [−π, π], a
phase unwrapping process must be performed to obtain a final DEM. Phase unwrapping consists in
recovering absolute and unambiguous phase data from the original wrapped measurements, so that
a conversion from the absolute phase to the topographic height can be directly performed. A wide
variety of phase unwrapping methods and algorithms can be found in literature [50]. Also, a more
sophisticated method based on a Statistical-cost Network-Flow (SNAPHU) is proposed in [51].
Themajor problem of unwrapping is related to the noise and the multiple decorrelation factors that
degrade the quality of interferograms, to the point that the task may become unfeasible with very
noisy data. In this regard, each processing contribution explained in Chapter 3 is directly linked
with phase unwrapping, since each contribution is conceived with the goal of improving the quality
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of the phase and, hence, with the goal ofmaking the phase unwrapping process easier for both InSAR
or DInSAR applications.

(a) Master image intensity. (b) Original interferogram as com-
plex product of two coregistered
images. The phase contains both
the flat-earth and the topographic
components.

(c) Computed flat-earth reference
phase.

(d) Resulting phase after subtracting
the flat-earth component.

Figure 2.8: Interferogram generation.
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2.3 Differential SAR Interferometry

The formulation of (conventional) interferometry described in Section 2.2 assumes that the ground
surface is stationary (i.e., it has not changed) between each SAR acquisition. However, this is not
always true, since there can be displacements in the imaged surface. The clearest example of such
displacement, or motion, may be represented by the violent shaking of the Earth surface caused by
an earthquake, where there is a massive movement of the Earth’s crust. Since interferometry is sen-
sitive to topography, it is also sensitive to topographic displacements that happened in the time lapse
between the two acquired images. As a consequence, the interferometric phase in Equation 2.36 can
be reformulated as follows,

ΔΦ = ΔΦflat + ΔΦtopo + ΔΦdisp + ΔΦatmos + ΔΦnoise,

ΔΦ =
4π
λR1

B⊥ΔR
tan θ

+
4π
λR1

B⊥δh
sin θ

+
4π
λ
Δdisp + ΔΦatmos + ΔΦnoise.

(2.40)

The term ΔΦdisp represents the additional contribution to the interferometric phase when there is a
surface displacement. Additionally, note that noise contributions due to the atmosphere and the sys-
temnoise have been included to show the generic expression of the interferometric phase containing
all possible contributions.

Differential SAR interferometry (DInSAR) is an extension of conventional InSAR which focuses
on thedisplacement contribution to thephase. Inorder to isolate thedisplacement component, both
the reference phase and the topography must be removed. To this end, usually an external DEM is
used to synthesize the local topography of the imaged area. Since the orbital geometry is known,
the topographic component can be easily derived according to Equation 2.39 and the data provided
by the external DEM.This process is generally referred to as creating a synthetic interferogram with
both the flat-earth and the topographic components, that are then subtracted from the original inter-
ferogram to generate a differential interferogram the phase of which is directly related to the relative
motion of the ground. Once both terms have been subtracted, the resulting differential phase, in
absence of noise and atmospheric effects, is due to the deformation of the Earth surface between the
two images,

ΔΦdiff =
4π
λ

ρ, (2.41)

being ρ the ground displacement in the line of sight of the satellite. As introduced in Section 2.2, the
differential phase should be unwrapped to obtain absolute measurements of the ground motion.

DInSAR is nowadays a well-established tool for measuring changes in large areas with high accu-
racy. A wide variety of displacements can be monitored, ranging from the slow ground subsidence
(due, for instance, to groundwater extraction) [31] [52] [53] [54] to the fast and violent surface
movement caused by tectonic and volcanic activities [12] [9].
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As an example, a differential interferogram mapping the Mount Etna’s volcanic eruption (Italy)
that took place in May 2008, is shown. Images were acquired on dates 2008-/05-05 and 2008-05-
29 byRADARSAT-2 satellite. Once both images have been coregistered, an interferogram can be
formed as shown in Figure 2.9(c). As in the previous example of Figure 2.8, the flat-earth compo-
nent has a clear predominance throughout the scene, except in the central part of the image. Fig-
ure 2.9(d) shows the resulting interferogram after subtracting the reference phase. At this stage,
phase measurements contain both the topographic and the displacements contributions. The syn-
thesized topographic component is represented in Figure 2.9(e). Note the strong influence that the
topography has throughout the image, whichwas expected since the imaged area ismountainous. As
a consequence, a lot of fringes are present when the topographic phase is computed (Figure 2.9(e)).
After subtracting the topographic phase component, we obtain the differential phase and the re-
maining fringes represent the strong surface deformation caused by the eruption. In fact, each fringe
corresponds to a groundmotion of approximately 2.77 cm (half of the sensor’s wavelength which is
5.5468 cm).

A major limiting factor of SAR interferometry is decorrelation, which is present in almost every
interferogram (for instance, it is clearly visible in some areas of Figure 2.9(f)). If the signals of mas-
ter and slave images decorrelate, no measurement is possible and neither a DEM generation nor
the estimation of ground displacements can be done accurately. Consequently, decorrelation can
be regarded as the most critical factor towards a successful generation of InSAR and DInSAR final
products. An analysis of the different sources of decorrelation that degrade the quality of the phase
will be carried out in Subsection 2.3.1, since the whole Chapter 3 addresses this limitation of InSAR
imagery.
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(a) Intensity image. (b) Original interferogram. (c) Interferogram after flat-
earth phase subtraction.

(d) Topographic phase. (e) Differential interferogram.

Figure 2.9: Differential interferogram formation.
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2.3.1 Sources of Decorrelation

The interferometric phase constitutes a delicate product from which a wide variety of applications,
including the previously explained InSAR and DInSAR, can be derived. As a consequence, it is im-
portant to have an estimator of the phase quality. The so-called interferometric coherence (or simply
coherence) is the most widely used measure of the phase quality. Coherence yields the amount of
normalized complex correlation between two SAR images and is defined as

γ̂ =
E{S1S∗2}√

E{S1S∗1} · E{S2S∗2}
, (2.42)

where E{·} is the expectation operator and S1 and S2 are two complex and coregistered SAR images
(master and slave images). For practical purposes and under the assumption that signals S1 and S2
have an ergodic behavior, the expectation operator is usually substituted by a spatial average of an
ensemble of pixels inside a window [55]. Equation 2.42 therefore becomes

γ =
1
N

∑N
n=1 S1S

∗
2√

1
N

(∑N
n=1 S1S

∗
1
∑N

n=1 S2S
∗
2
) (N > 1), (2.43)

where N is the number of samples in the window. Note that the process of averaging a certain
number of pixels is equivalent to the multilook described in Subsection 2.1.3, which, again, has the
drawback of a resolution loss. Additionally, it is important to point out that the coherence cannot be
estimated on a pixel basis, i.e., the number of samples ormultilook number Nmust be different to 1.
Themagnitude of Equation 2.43, which ranges between 0 and 1, is usually employed as the estimator
of the phase quality, that is, we employ |γ| ∈ [0, 1]. Lower values of |γ| (close to 0)mean that signals
S1 and S2 are decorrelated and the phase at those points is noisy. On the contrary, coherence values
close to 1 identifies high quality phase measurements, since both signals are correlated.

Deeper analysis of the coherence and its relation with the quality of phase measurements have
been carried out in a statistical framework. More specifically, the pdf of the phase is related to the
coherence as [43]

pdf(φ) =
Γ(N+ 1/2)(1− |γ|2)Nγ cos(φ− φ0)
2
√
πΓ(N)(1− |γ|2 cos2(φ− φ0))N+1/2

+
(1− |γ|2)

2π
F1(N, 1; 1/2; γ2 cos2(φ− φ0)),

(2.44)

whereN is themultilook number, Γ is theGamma function, F1 is theGauss hypergeometric function
and the expected phase φ0 can be set to zero without loss of generality.
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From Equation 2.44, we can derive the phase variance σ2φ as a meaningful measure of the phase
noise as follows

σ2φ =
∫
φ
(φ− φ0)

2 pdf(φ)dφ. (2.45)

Based on 2.44 and 2.45, Figure 2.10 shows the phase standard deviation as a function of coherence
for a different number of looks. As it can be observed, higher coherence values are associated with
a lower standard deviation and vice-versa. In addition, it is shown that multilooking improves the
phase accuracy, but it entails the risk of losing too much spatial resolution.

Figure 2.10: Phase standard deviation as a function of coherence and a number of looks.

Figure 2.11(a) shows an example of coherence map of the Etna area. Coherence has been esti-
mated using a 5×5multilook. It can be clearly seen that areaswith a goodphase have high coherence
values, whereas noisy areas exhibit coherences which are almost 0.
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(a) Coherence map of the area of the
Mount Etna estimated using a 5×5
multilook.

(b) Differential phase.

Figure 2.11: Interferometric coherence as an indicator of the phase quality.

The total coherence follows a multiplicative model of decorrelation factors [56], and it can be de-
composed as a set of different contributions:

γ = γcoreg · γgeom · γDoppler · γvol · γtemp · γthermal, (2.46)

where

• γcoreg (Miss-registration decorrelation) is the decorrelation induced by miss-registration er-
rors during the coregistration step.

• γgeom (Geometrical decorrelation) is an important decorrelation factor caused by the different
incidence angles of each SAR acquisition used to generate an interferogram. The different
incidence angles introduce a frequency shift in the range dimension between the two images
spectra, i.e., the ground reflectivity spectrum of the first image is shifted in the second image.
As a result, both images have a common band, which is useful from the interferometric point
of view, but also a non-common band which introduces decorrelation. This specific noise
contribution is addressed with the proposed range filter method which will be detailed in
Chapter 3.

28



• γDoppler (Doppler decorrelation) is a noise source caused by Doppler frequency variations be-
tween the images. It is similar to the previous geometrical decorrelation but in azimuth di-
mension. It can be reduced by an appropriate filtering process.

• γvol (Volume decorrelation) is also a consequence of using two different images with different
look angles. A coherence degradation appears since there is an uncertainty in the phase due
to the presence of scatterers at different heights inside the resolution cell. It cannot be avoided
but is useful for some applications, like vegetation height retrieval.

• γtemp (Temporal decorrelation) is due to changes in the physical and geometrical properties
of the imaged area between each survey. The clearest example of this source of noise is rep-
resented by changes in vegetated or forest areas, where the vegetation water content or the
soil moisture change. It cannot be avoided. Temporal decorrelation is a major limitation of
SAR interferometry and can be clearly identified in the example of Figure 2.11 throughout the
phase image.

• γthermal (Thermal noise) is a decorrelation factor induced by the thermal noise in all electronic
systems, including SAR. It may be significant only in areas with a very low backscattering. Its
expression is a measure of the signal-to-noise ratio (SNR) of the system,

γthermal =
SNR

SNR+ 1
. (2.47)

As a summary, the interferometric processing chain is illustrated with the flow diagram of Fig-
ure 2.12.
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Figure 2.12: Flow diagram of the interferometric processing chain. Blocks highlighted in red
color represent the steps in which a processing contribution has been done.
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2.4 SAR Polarimetry

Polarimetry analyses how the polarization of an electromagnetic wave is modified when it interacts
with an object or the media. When the signal interacts with a particular target, a part of its energy
is absorbed and the rest is re-radiated as a new signal with new properties. As a consequence, po-
larimetry addresses the question of how these changes between the incident and the received wave
are suitable for characterizing the target and its features.

Historically, SAR systems transmitted electromagnetic signals which were linearly polarized in a
single direction, which could be horizontal (H) or vertical (V), and they received the backscattered
signal either in the same or in the opposite polarization. This combination of transmitted-received
polarization is referred to as polarimetric channel, and, therefore, it can be HH, VV, HV or VH. As
stated in Chapter 1, PolSAR systems gather different images as a result of multiple combinations of
polarization states. Specifically, a full or quad-polarimetric SAR system acquires four images corre-
sponding to every possible combination of transmitted and received polarization, i.e.,HH, VV, VH
and VV. If the system obtains just two combinations, it is called dual-polarimetric.

Electromagnetic radiations propagate in space in the form of two vectorial waves which aremutu-
ally linked, one wave corresponds to the electrical field E⃗(⃗r, t) and the other one corresponds to the
magnetic field H⃗(⃗r, t). Both fields are described as a function of time t and position r⃗, and are related
by theMaxwell Equations [57],

div E⃗ = 0,

div H⃗ = 0,
(2.48)

rot E = −∂H⃗
∂t

,

rot H⃗ = ε0μ0
∂E⃗
∂t

,

(2.49)

where ε0 = 8.8544 · 10−12 · N−1 · m−2 · C2 is the vacuum permittivity and μ0 = 1.2566 · 10−6 ·
m · kg · C−2 is the vacuum permeability, so that the electromagnetic waves propagate in vacuum at
the speed of light c,

c =
1

√
ε0 · μ0

≈ 3 · 108m/s. (2.50)

Electromagnetic waves are transverse, that is, the vibration is normal to the direction of propaga-
tion. Thereby, in a planar electromagnetic wave which propagates in the x direction, both the electri-
cal E⃗ andmagnetic fields H⃗ are normal to that direction and, at the same time, each field is normal to
each other, as represented in Figure 2.13. Taking this into account, the 3-D equations defined in 2.48
can be simplified by fixing the direction of propagation, say x, and therefore we can reduce the wave
field equations to a 2-D space in dimensions y and z. The equations that describe the propagation of
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the electric field in such dimensions are given by

Ey = Ay cos
[
ω
(
t− x

c

)
+ φy

]
,

Ez = Az cos
[
ω
(
t− x

c

)
+ φz

]
,

(2.51)

and
E⃗(x, t) = Ey⃗uy + Ez⃗uz, (2.52)

where u⃗y and u⃗z are the unitary vectors in dimensions y and z, respectively. If we impose δ = φz−φy,
we arrive to the expression of the polarization ellipsewhich can be represented as in Figure 2.14,

E2
y

A2
y
+

E2
z

A2
z
− 2

EyEz

AyAz
cos δ = sin2 δ. (2.53)

y

z

0

x

E

c

B

wavefront

Figure 2.13: Propagation of an electromagnetic wave.

The polarization state is defined by [58]

• Orientation φ ∈
[−π

2 , π
2

]
is the inclination of the major axis of the ellipse.

• Ellipticity τ ∈
[−π

4 , π
4

]
which represents the shape of the ellipse. Its sign defines the polar-

ization direction (i.e., in which direction the ellipse is turning). By convention, if τ < 0 the
electric field vector turns clockwise and if τ > 0 it turns counterclockwise.

• The amplitude of the polarization ellipse, defined as a function of the length of the major and
minor axes of the ellipse,

A =
√

E2
0y + E0z. (2.54)
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• The absolute phase of the ellipse φ which can be defined from its geometry as

φ =
1
2
arg (p⃗2 − q⃗2 − 2j p⃗⃗q) + nπ, (2.55)

being p⃗ and q⃗ the conjugate diameters of the polarization ellipse [58].
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Figure 2.14: Polarization ellipse for an electromagnetic wave propagating on dimension x and
at (x, t) = (0, 0).

Another way to describe the electrical field is by means of the Jones Vector. The idea of this repre-
sentation is to divide the space-time domain expression of E⃗(x, t) as

E⃗ =

[
Ey

Ez

]
=

[
E0y ejφy

E0z ejφz

]
, (2.56)

so that we have a representation of the electrical field in the orthogonal (or polarization) base {y, z}
which is independent from time. In terms of the polarization ellipse previously described, Equa-
tion 2.56 becomes

E⃗ = A ejφ
[
cos φ − sin φ
sin φ cos φ

][
cos τ
j sin τ

]
. (2.57)

Once we have briefly reviewed general concepts regarding the propagation of electromagnetic
waves, we can address the formulation of how radar targets are described from a polarimetric or
scattering point of view. As previously mentioned, when the radar transmits signals to the ground
surface, part of the transmitted energy is absorbed, part is backscattered and received, and most of
the energy is scattered in other directions (different frombackscattering). Formerly, this is described
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with Equation 2.58

E⃗S =
e−jkr

r
SE⃗I, (2.58)

where E⃗S and E⃗I represent the scattered and the incident electromagnetic fields respectively, k is the
wavelength number

(
2π
λ

)
, r is the range distance to the target, and S ∈ Mat2(C) is the scattering

matrix. This matrix describes the scattering behavior of a particular target, by relating the Jones vec-
tor of the incident field to the one of the scattered field. By using an orthogonal basis {ĥ, v̂} and a
given coordinate system which is the same for transmitting and receiving, the scattering matrix can
be expressed as [

ES
h

ES
v

]
=

e−jkr

r

[
Shh Shv
Svh Svv

][
EI
h

EI
v

]
. (2.59)

Each element of S can be differentiated by its index, so that the first index refers to the scattered
polarization and the second one refers to the incident polarization (for instance, the element Shv
corresponds to the complex backscattering coefficient obtained by transmitting with horizontal po-
larization and receiving with vertical polarization). Diagonal elements of the matrix are the copolar
terms, since they represent the scattering coefficients obtained using the same polarization for trans-
mitting and receiving. Off-diagonal elements are the cross-polar coefficients, since they come from
different polarizations in transmission and reception. The total power backscattered by the target,
called SPAN, can be obtained from S as

SPAN = |Shh|2 + |Shv|2 + |Svh|2 + |Svv|2. (2.60)

The scattering matrix can be vectorized by projecting it onto a group a matrices yielding the so-
called target vector k ∈ C4,

k =
1
2
Tr(SΨ) =


k1
k2
k3
k4

 (2.61)

where Tr{·} refers to the trace operator (the sum of the elements of the main diagonal), and Ψ de-
fines a group of complex orthogonal matrices of size 2 × 2. The lexicographic basis consists in a
straightforward ordering of the elements of Swith

{ΨL} =

{[
2 0
0 0

]
,

[
0 2
0 0

]
,

[
0 0
2 0

]
,

[
0 0
0 2

]}
(2.62)

which yields the target vector k4L ∈ C4

k4L = [Shh, Shv, Svh, Svv]T. (2.63)
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Another projection can be done bymeans of the Pauli matrices, named after the theoretical physicist
Wolfgang Pauli and which arise in his treatment of spin in quantum mechanics. The set of Pauli
matrices is

{ΨP} =

{
√
2

[
1 0
0 1

]
,
√
2

[
1 0
0 −1

]
,
√
2

[
0 1
1 0

]
,
√
2

[
0 −i
i 0

]}
(2.64)

which yields the target vector k4P ∈ C4

k4P =
1√
2
[Shh + Svv, Shh − Svv, Shv + Svh, i(Shv − Svh)]T. (2.65)

The advantage of using this set of matrices is that the obtained target vector is more related to the
physical scattering mechanism than by employing the lexicographic basis. In this regard, the first
element of the Pauli basis, i.e., channel HH + VV can be associated with surface scattering, where
the contribution of channelHH is in phasewithVV andboth present similar amplitudes. The second
elementHH − VV corresponds to a double-bound scattering mechanism, which, for instance, can
be originated from human-made structures such as buildings. The last two elements of the Pauli
channels represent a volume scattering [58], which is typically originated from vegetation canopy.
This is represented in Figure 2.15.

Ground

Volume

Double-bounce
Surface sca�ering

Volume sca�ering

Ground surface

Figure 2.15: Different scattering mechanisms.

Both vectorial representations are related by means of a unitary matrix transformation A4 ∈
U4(C), so that

k4L = A4k4P =
1√
2


1 1 0 0
0 0 1 −i
0 0 1 i
1 −1 0 0

 k4P. (2.66)

Additionally, if the SAR system is monostatic, that is, if the transmitter and the receiver are collo-
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cated, the reciprocity theorem implies that S is symmetric, i.e., Shv = Svh.

Thus, target vectors can be simplified as

k3L = [Shh,
√
2Shv, Svv]T, (2.67)

k3P =
1√
2
[Shh + Svv, Shh − Svv, 2Shv]T. (2.68)

Evidently, Equations 2.67 and 2.68 are not valid for bistatic systems where the transmitter and the
receiver are separated. In that case, Equations 2.63 and 2.65 must be used.

Target vectors represent an extension of a 1-D (single) backscattering coefficient to the diversity
of polarization states gathered by PolSAR systems, i.e., the 2 × 2 scattering matrix. An analysis of
these multidimensional data can be carried out by means of second order polarimetric statistics.
Considering the lexicographic base and a bistatic system, the covariance matrix C4 ∈ Mat4(C) is
defined as

C4 = E{k4LkH4L} =


E{ShhS∗hh} E{ShhS∗hv} E{ShhS∗vh} E{ShhS∗vv}
E{ShvS∗hh} E{ShvS∗hv} E{ShvS∗vh} E{ShvS∗vv}
E{SvhS∗hh} E{SvhS∗hv} E{SvhS∗vh} E{SvhS∗vv}
E{SvvS∗hh} E{SvvS∗hv} E{SvvS∗vh} E{SvvS∗vv}

 . (2.69)

Its equivalent for a monostatic system is given byC3 ∈ Mat3(C) as

C3 = E{k3LkH3L} =

 E{ShhS∗hh}
√
2E{ShhS∗hv} E{ShhS∗vv}√

2E{ShvS∗hh} E{ShvS∗hv}
√
2E{ShvS∗vv}

E{SvvS∗hh}
√
2E{SvvS∗hv} E{SvvS∗vv}

 . (2.70)

Considering the Pauli basis, we define the coherency matrix for the bistatic case, T4 ∈ Mat4(C),
and monostatic caseT3 ∈ Mat3(C)

T4 = E{k4PkH4P}, (2.71)

T3 = E{k3PkH3P}. (2.72)

The covariance and the coherency matrices are related as follows,

T4 =
1
2


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

C4


1 1 0 0
0 0 1 i
0 0 1 −i
1 −1 0 0

 , (2.73)
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T3 =
1
2

1 0 1
1 0 −1
0

√
2 0

C3

1 1 0
0 0

√
2

0 −1 0

 . (2.74)

Finally, a simple way of visualizing the polarimetric diversity and, simultaneously, recognizing by
naked eye the scattering mechanism that dominates in a particular area, is to generate a false color-
coded RGB image. By assigning each element of the target vector to a primary color component, we
can check that the response of each channel varies in distinct types of zones. Using the Pauli basis,
we can directly assign each element of the target vector in Equation 2.68 to a color as follows,

SHH − SVV = Red,

S2HV = Green,

SHH + SVV = Blue .

(2.75)

This is illustrated with Figure 2.16. It can be observed that in urban areas there is a clear predom-
inance of channel HH + VV (coded in red color), due to the human-made structures which con-
tribute to a double-bounce scattering mechanism. In vegetated zones, there is a major contribution
from channel 2HV associated with a volume scattering, and blue areas correspond to bare surfaces
where the lava flow has burned the vegetation that was present. Thus, a surface scattering associated
with channelHH− VV dominates.

(a) Google-Earth™ optical
image.

(b) Pauli RGB color-coded
image with R = SHH − SVV,
G = 2SHV, B = SHH+VV.

Figure 2.16: Polarimetric representation of the Mount Etna area using the Pauli basis.
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2.5 Polarimetric (Differential) SAR Interferometry

Polarimetric SAR Interferometry aims to combine the sensitivity of InSAR to topography, i.e. to the
vertical coordinate in the scene, with the polarizedmultichannel datawhich are sensitive to the target
physical features, i.e., dielectric constant, morphology, etc.

The first formulation of PolInSARwas presented in [27] by introducing amultidimensional com-
plex spacewhich contains all polarimetric and interferometric information. Thus, PolInSAR requires
the definition of a general framework in which we are able to generate interferograms (which come
from the combination of complex scattering coefficients of two images, as in the single-polarization
case) but in which we also take into account all polarization diversity. As a consequence, we can
analyze the relation between ’interferometric measurements’ (such as the phase or the coherence),
with ’polarimetric measurements’ (a specific polarization).

Let k1 and k2 be the two target vectors containing the polarimetric scattering associated with two
generic images S1 and S2. The coherence matrix (or covariance matrix if the lexicographic base is
used)T6 ∈ Mat6(C) can be defined as follows,

T6 = E

{[
k1
k2

] [
k1∗T k2∗T

]}
, (2.76)

where ∗T refers to conjugate transpose. Thematrix can be reformulated as

T6 =

[
T11 Ω12

Ω∗T
12 T22

]
, (2.77)

where matricesTii ∈ Mat3(C) (i = 1, 2) and matrixΩ12 ∈ Mat3(C) are defined as

T11 = E{k1k∗T1 },

T22 = E{k2k∗T2 },

Ω12 = E{k1k∗T2 }.

(2.78)

On the one hand, matrices T11 and T22 are the polarimetric coherency matrices which contain all
polarimetric information of each image S1 and S2 separately. On the other hand,Ω12 is a new 3× 3
complexmatrix which contains, in addition to polarimetric relations between both images, the inter-
ferometric information between the images for each polarization. The next step consists in making
use of these 3 matrices to create complex interferograms, i.e., how we can use the matrices to yield
two complex scalars which can be combined into an interferogram and extract its phase. This is done
by projecting k1 and k2 onto unitary complex column vectorsω1,ω2 ∈ C3, hereafter denoted as pro-
jection vectors. By means of the projection vectors, it is possible to obtain complex backscattering
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scalars μ1, μ2 ∈ C as

μ1 = ω∗T
1 k1,

μ2 = ω∗T
2 k2.

(2.79)

It is straightforward that an interferogram can be generated as the standard complex product of μ1
and μ2,

μ1μ
∗T
2 = (ω∗T

1 k1)(ω∗T
2 k2)∗T = ω∗T

1 Ω12ω2. (2.80)

and the interferometric phase can be directly extracted as

ΔΦ = arg(μ1μ
∗T
2 ) = arg(ω∗T

1 Ω12ω2). (2.81)

The expression of the generalized coherence is therefore given by

γ =
ω∗T
1 Ω12ω2√

ω∗T
1 T11ω1

√
ω∗T
2 T22ω2

, (2.82)

where its magnitude |γ| ∈ [0, 1] can be used as a phase quality indicator as in the single-polarization
case (Equation 2.43).

This leads us to analyze the important role that each projection vector has concerning the for-
mation of interferograms. The first point is that the interferometric phase in Equation 2.81 should
not be obtained from an arbitrary choice of ω1 and ω2, which could result in random phases [58].
Consequently, a first restriction has to me made to verify that

arg (ω∗T
1 ω2) = 0, (2.83)

which is directly satisfied ifω1 = ω2. This constraint is known asEqual ScatteringMechanism (ESM),
and must be fulfilled since the selection of different scattering mechanisms (defined by each projec-
tion vector) between both images could lead to a change in the phase center. Moreover, using this
approach we ensure that the coherence is only related to the interferometric contribution, which is
mandatory from the interferometric point of view.

The projection vectors allow us to explore the whole polarimetric space and, hence, to generate
interferograms resulting from the linear combinations of all possible polarimetric channels by the
definition of the projection vectors. Table 2.2 shows some examples of scattering mechanisms (de-
finedby the value of the projection vector) and their corresponding polarization channel [58] (index

i refers to the i− th element of the vector).

It is therefore intuitive to think that an ’optimum’ combination of polarimetric channels can be
computedby anappropriatedefinitionof theprojection vectorsω1 andω2. This is the goal ofPolDIn-
SARmethods that will be detailed in Chapter 3.

38



Polarization ω{1} ω{2} ω{3}

HH
√
2

√
2 0

VV
√
2 -

√
2 0

HV 0 0 1
HH+ VV 1 0 1

2HV 0 0 1

Table 2.2: Some scattering mechanisms and the associated polarimetric channel.

2.6 Image Classification

Image classification is the task of processing an input set of images with the goal of assigning to each
spatial unit (either a pixel or an ensemble of pixels grouped into an object) a class. Each class belongs
to a fixed set of categories (or labels) which are representative of a particular domain, such as land-
cover or crop types. From our point of view, the identification of visual concepts within an image is
a very trivial task due to our experience and knowledge, but it is a challenging task from a computing
point of view where the information is stored as digits, as illustrated in Figure 2.17.

186 187 187 180 179
177 185 185 185 180
169 174 185 184 181
172 164 174 182 176
171 165 160 169 170

Figure 2.17: What we see and what a computer ’sees’.

However, if done properly, the benefits from automating this kind of process are evident. Auto-
matically obtaining large thematic maps from imagery, automatic facial recognition and object iden-
tificationwithoutmanual intervention are just someexamples of the potential of image classification.

The automatic analysis of the input images is approached by the so-called machine learning algo-
rithms, which look for patterns in data. Particularly, machine learning can be defined as the different
methodswhich automatically recognize patterns in data, and use these uncovered patterns to predict
future observations and eventually make decisions [59]. The core of a machine learning approach
relies on probability, so that the main idea is that a probabilistic model enables us to describe the
complex system or phenomena underlying the data.

As previously stated in Chapter 1, machine learning is split into two areas: supervised and unsu-
pervised learning. In this PhD, we will focus on predictive or supervised learning, the goal of which

39



is to form a mapping from inputs X to outputs Y based on some input-output pairs. That is, super-
vised learning requires beforehand knowledge of the output class given some inputs. This group of
known samples is called the training set, whereas the unknown samples we want to classify (i.e., give
an output) define the testing set. Formerly, given a set of input-output pairs, we define the training
setD as

D = {(xi, yi)}Ni=1 (2.84)

where xi ∈ X are the input data, yi ∈ Y is the associated label, i.e., Y = [Class1,Class2, ...ClassNC]
(beingNC the total number of classes), andN is the number of training samples. It is important to
point out thatwe assume that each output class is exclusive (unique) and themulti-label classification
case is not considered. The problem now consists in assigning an output class to the testing setD′,

D′ = {(xi)}N
′

i=1, (2.85)

bymeans of a probabilisticmodel of prediction. In otherwords, given an input, themachine learning
algorithmwill assign the ’most probable’ class as output by drawing inferences from the training set.
By denoting as x the input samples from the training setD, a model can be defined according to the
probability distribution

p(y = yi|x,D), (2.86)

which provides the probability of obtaining class yi given inputs x. According to Equation 2.86, for
each class in Ywe train a separatemodel in order to yield themost probable class label ŷ bymaximiz-
ing the likelihood

ŷ = arg NCmax
yi=1

{
p(y = yi|x,D)

}
. (2.87)

One way to exemplify this classification approach is by means of a simple linear model shown as
follows. Let D = {(x1, y1), (x2, y2), (x3, y3)} be a training set where X = {x1, x2, x3} is the input
(observed) group of data and Y = {y1, y2, y3} define the known outputs. The example can be illus-
trated as in Figure 2.18. If we set themodel to a straight line definedby equation y = mx+b, the goal
of the algorithm is to learnmodel parametersm and b given the known data inD. Consequently, any
new sample xm can directly have an output according to the model. In the context of classification,
this would be similar to the assignment of a class given a new or unknown observation.

In the previous example, we could easily think that the straight line model was correct simply by
observing the data. However, when using real measurements, the derivation of a model that fits the
known data while accurately classifying unknown inputs is rather a non-trivial task. This is therefore
the real difficulty of a machine learning algorithm.
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X

Y

x1 x2 x3

y1

y2

y3

xm
0

Figure 2.18: Illustration of a supervised classification with a linear model.

There exist a large variety of approaches to designing algorithms that can ’learn’ and carry out the
task of performing a classification given an input set of data. In this work, we will just focus on a
decision tree-based [60] [61] classifier known asRandom Forests (RF) [62] [63]. The idea of decision
trees is to repeatedly divide input data (i.e., the training set) so that a model of decisions between
inputs and outputs is built. Decisions are binary, i.e., each node of the tree is split into two new subn-
odes according to a condition at that node. As a consequence, when a new sample is to be classified,
the tree is progressively transversed in such away that the new input is redirected to subnodes. When
the sample reaches the end of the tree, a class is automatically given. This is illustrated with the ex-
ample of Figure 2.19, where we have 4 different classes (represented by 4 different colors), and a set
of observations {X1,X2} which define the input dataset. A decision tree can be automatically gen-
erated with the labels of the dataset (the colors), as represented in Figure 2.19(b). In this case, we
impose that, if the condition of a node is verified, the input is redirected to the left branch of the tree,
otherwise it is redirected to the right side. Consequently, a model of decisions which map all inputs
of {X1,X2} to an output class has been created. A critical aspect in decision trees is how each node
is split, i.e., how we can find each threshold in Figure 2.19(b), since the goal is to create subnodes
(branches and leaves) based on an optimum criterion so that we can obtain an accurate classifica-
tion. This process is called tree growing. Accordingly, the algorithm has to seek the best ’division
criterion’ given by pair input-class to create new nodes in a recursive fashion (split after split). For
classification purposes, theGini indexGi is usually the cost function used to evaluate the quality of a
split,

Gi = 1−
NC∑
i=1

p2i (2.88)

whereNC is the number of classes and pi is the probability of class i.
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(a) Representation of input data.

X1 < 8

X2 < 3

X1 < 2

X2 < 3

Red
Orange Green

Blue Green

(b) Decision tree.

Figure 2.19: Construction of a decision tree based on two inputs {X1,X2}.
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A major drawback of decision trees is the high risk of overfitting or overlearning. Overfitting ap-
pears when the model described by the decision tree is very well adapted to the training data, and,
even though it seems positive, it can negatively impact on the performance of the model on new in-
puts. To deal with overfitting, EnsembleMethods are used, being RandomForests an example of such
methods. The Random Forests algorithm is an improved extension of a single decision tree. It is
actually a collection of n decision trees, where each tree is constructed by taking a certain number of
random samples (with replacement) from the training dataset in a process called Bagging (or Boot-
strap Aggregating). The number of trees used in the training step influences the final accuracy, so that
the larger n is, the more accurate the prediction will be, but the computational cost increases greatly.
By introducing randomness in the generation of trees, each one of them will be different and may
provide a different output. A rule has therefore to be imposed to decide which one is the final class
predicted by the algorithm. Usually, the final prediction of the ensemble is given as the mode of the
predicted classes. A scheme of the classifier is shown in Figure 2.20. However, it is in the multitude
of constructed decision trees where the robustness of RandomForests lies. Hopefully, by increasing
the diversity of decision trees during the training step, the resulting model will be better adapted to
newdata and overfittingwill be limited, which results in an improved predictive accuracy and, hence,
a better overall classification of data.

Training data

Tree 1 Tree 2 Tree n

Final class

...

Ensemble prediction

Class A Class B Class A

Figure 2.20: Simplified scheme of Random Forests Ensemble method.

Before applying the algorithm to a set of images, an example with 1-D data is provided to check
its performance. Consider the synthetic dataset represented in Figure 2.21(a), which consists in two
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different classes (red and blue colors) and two featuresX and Y. The total number of samples is 500.
Taking into account the concepts previously explained, the samples have been divided into a training
and a testing set. Specifically, 30% of samples have been used for training and the rest have been used
for testing. Once the algorithmhas been trained (i.e., an ensemble of decision trees has been grown),
the unlabeled data from which the testing set is composed are classified according to the Random
Forest method previously described.

Classification results are depicted in Figure 2.21(b). As it can be observed, themajority of testing
samples have been correctly classified. In fact, a global accuracy of 80% is obtained. Note that amore
detailed analysis of the accuracy of a given classification will be presented in Chapter 4. Moreover,
from the results we can easily make a segmentation of the features space in order to check ’where a
new sample will fall into’. That is, given a new input with features {xi, yi}, we can easily predict the
output. For instance, a new sample with {x = −1, y = −2} (red area) will be classified as Class 1 ,
whereas the classifier predicts that a sample with {x = −3, y = −1}will belong to Class 2.

2 1 0 1 2 3
X

2

1

0

1

2

Y

Class 1 - training samples
Class 1 - test samples
Class 2 - training samples
Class 2 - test samples

(a) Input data divided into training and test-
ing samples.

2 1 0 1 2 3
X

2

1

0

1

2

Y

(b) Classification results.

Figure 2.21: Example of classification with Random Forests with a 1-D synthetic dataset com-
posed of two classes and two features.

Thesamemethodology can be followedwith images. An image can be regarded as an ensemble of
individual samples which are spatially distributed. A group of pixels will be use to train the Random
Forests classifier and the rest of pixels can be used as testing samples. When using remote sensed im-
ages to classify, the group of pixels that define the training set is usually called as ground truth, which
refers to data collected on location by performing surface observation or measurements manually.
An example of simulated classification is shown in the following. For simplicity, only 3 classes have
been included and are represented in Figure 2.22. This image also represents the ground truth. A
set of 6 observations (which could have been gathered by any particular sensor) is represented in
Figure 2.23. Image values are randomly increased and decreased progressively, and a certain level of
noise is uniformly added to each image.
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Figure 2.22: Simulated ground truth with three different classes.

Figure 2.23: Classification example using Random Forests with a set of six synthetic images.

Concerning the classifier, different percentages of training samples have been used in order to
verify the theoretical aspects of overfitting previously explained. Specifically, the algorithm is trained
using 1%, 20% and 90% of samples. Results are shown in Figure 2.24.
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(a) Classified image using 1%
of samples for training.

(b) Classified image using 20%
of samples for training.

(c) Classified image using 90%
of samples for training.

Figure 2.24: Classification results on synthetic images using different percentages of training
samples.

It is clearly appreciated that with a larger number of training samples, the number of missclas-
sifications reduces. In fact, by employing 90% the number of errors is almost 0 (as shown in Fig-
ure 2.24(c), the classified image is almost equal to the ground truth), showing that the algorithm
is perfectly adapted to this specific set of data. In other words, the training data are very well mod-
eled. The drawback is if new samples are to be classified, the algorithm could perform poorly, that
is, the model is less portable because it was overfitted to the training set. Overfitting must therefore
be avoided. To this end, the simplest strategy is to split the known data into a train and a test set
(as shown in the previous example), but where the number of testing samples should be larger than
the number of training samples. Another interesting strategy is to include an additional validation
set, which is used to choose between differentmodels (for instance, to select the number of decision
trees or estimators to be used in the forest, etc).

46



3
Processing Contributions

Chapter 2 presented the theoretical aspects involved in both SAR interferometry and po-
larimetry, as well as their main applications. It also introduced the concept of decorrelation, which
constitutes amajor limitation for performing any interferometric process. This chapter is devoted to
presenting processing contributions developed throughout the PhD.Themain objective of each in-
dividual technique is to improve the quality of the phase data at different stages of the interferometric
processing, by means of the suppression of disturbing effects such as decorrelation and noise which
are present in every interferogram.

Chapter 3 is divided into three parts. The first one is related to range filtering. Range filtering,
also known as spectral shift filtering (in range dimension), is a commonly-used preprocessing step
used to remove the spectral misalignment between two images used to create an interferogram. It
can be regarded as a preprocessing step in the sense that it is performed prior to interferogram forma-
tion. However, it requires that both images have been properly coregistered. Different range filtering
methods are available in literature, each of them presenting different pros and cons. A deep revision
of all methods will be presented in Section 3.1.1, and a refined technique developed during the PhD
is proposed in Section 3.1.2.4. Results are shown in Section 3.1.3.

The second contribution consists in an advanced filter for the final interferometric phase. Unlike
the previous case, this filter uses an already-formed noisy interferogram as input. At this stage, the
goal is to reduce the remaining decorrelation effects that degrade the quality of the phase, and which
make it unsuitable for its further processing and exploitation. A wide variety of interferogram filters
have been proposed over the past years, being the well-known Goldstein filter [64] [65] the most
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commonly-used. It is a frequency-domain filter which is based on smoothing the 2-D Fourier Trans-
form of the interferogram. The filtering strength is controlled by a real parameter, defined between
zero and one, which is usually set by visual inspection of the original phase. This constitutes its main
drawback, since the filter may not be properly adapted to the local noise level of the interferogram.
In this regard, a noise-adaptive version of the filter was proposed in [66]. In thisModified Goldstein
filter, the filtering strength is adapted according to the interferometric coherence, which constitutes
a direct indicator of the phase quality as highlighted in Chapter 2. This allows to strongly filter low-
coherent areas while high-quality areas are barely filtered, so that the spatial resolution of the original
interferogram is better preserved. A revision of the Goldstein filter and different adaptive versions
is carried out in Section 3.2.1. Also, the influence of all parameters and operators involved in the
filtering process will be analyzed in detail. The proposed technique developed in this thesis is ex-
plained in Section 3.2.2. The filter relies on an iterative and coherence-adaptive Goldstein approach,
but it applies an innovative methodology which tries to remove the noise at all scales without over-
smoothing and blurring phase details, especially useful interferometric fringe patterns. Results with
both synthetic and real datasets are shown in Section 3.2.3.

The third and last processing contribution is related to PolDInSAR with single interferometric
pairs (i.e., single-baseline interferometry). Although the goal is also to improve the quality of the
phase, the improvement is achieved by means of algorithmic and mathematical processes which
explore all the available polarimetric space, rather than with pure signal processing techniques. A
revision of different polarimetric optimization algorithms is done in Section 3.3.2. Note that the
optimization must be understood as a maximization or minimization of a cost function related to a
phase quality criterion. Even though the coherence is the most common phase quality estimator,
alternative criteria will also be considered during the optimization process. Specifically, the phase
coherence (local correlation derived fromphase values) and the phase standard deviation constitute
two different quality criteria which can be used as cost functions. It is important to point out that all
of these quality estimators require a spatial average around a pixel neighborhood, i.e., a multilook of
a certain size has to be applied to the data in order to obtain values to optimize. Accordingly, after
some preliminary results are shown in Section 3.3.3, an evaluation of the multilook size in the opti-
mization is carried out in Section 3.3.4. Finally, a different formulation concerning the optimization
is explained in Section 3.3.5. In this case, a variation of the conventional formulation is proposed to
show the real phase quality improvement which can be obtainedwith the polarimetric optimization.
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3.1 Range Spectral Filtering

3.1.1 Generalities

Range filtering is a commonprocessing step in SAR interferometry, which is usually carried out right
after coregistration. Specifically, the filtering addresses the loss of coherence induced by the differ-
encebetween the incidence angles ofmaster and slave images used to forman interferogram. Inother
words, it tries to compensate the decorrelation due to the perpendicular baseline (see Figure 2.7).
Larger baselines result in higher decorrelation levels, to the extent that there is a limit fromwhich no
interferometric information can be exploited. This limit is the so-called critical baseline [39], which
means that both images are fully uncorrelated. Its expression is derived from the system parameters
as

B⊥,crit =
WRλ tan(θ − α)

c
, (3.1)

whereW is the range bandwidth, λ is the sensor wavelength, θ is the incidence angle, α is the local
terrain slope and R is the ground range which can be approximated by R = h/ cos(θ), being h the
satellite altitude. Taking into accountEquation 2.2, the expressionof the critical baseline is also given
by

B⊥,crit =
λR tan(θ − α)

δr
, (3.2)

being δr the slant range resolution [2].
Figure3.1 showsanexampleof critical baselines for sensorsERS-1,TerraSAR-XandRADARSAT-

2, the parameters of which are summarized in Table 3.1

Signal parameter ERS-1 TerraSAR-X RADARSAT-2
Wavelength [cm] 5.656 3.107 5.547
Altitude [km] 780 514 798

Range bandwidth [MHz] 16 150 100

Table 3.1: Determination of the critical baseline for ERS-1, TerraSAR-X and RADARSAT-2
systems parameters.

Themost intuitive explanation of baseline decorrelation comes from the spectral domain. There-
fore, the frequency-domain approach of interferometry is detailed in the following paragraphs. This
approach gives a relation between the spectra of two SAR images and their corresponding ground-
range (reflectivity) spectra defined by their ground-range wavenumbers. Accordingly, the frequency
shiftbetween two images is alsodenotedaswavenumber shift, as itwas initially introduced in [67] [68].
This wavenumber shift comes from a difference between the ground-range (object) and the slant-
range (data) spectra [42].

49



Figure 3.1: Critical baselines for sensors ERS-1, TerraSAR-X and RADARSAT-2 as a function
of the incidence angle. A slope (α) of 0◦ is assumed for the representation.

While the ground-range spectrum is directly related to the object reflectivity, the slant-range spec-
trum is characterized by the SAR imaging system parameters. Formally speaking, ground-range
wavenumber ky andwavenumber in elevation kz canbe expressed as a functionof the radar frequency
f0, the incident angle θ and the local terrain slope α, as

ky =
4πf0
c

sin(θ − α), (3.3)

kz =
4πf0
c

cos(θ − α). (3.4)

Since the incidence angles of master and slave images are different, ground-range wavenumbers
will alsodiffer. Thewavenumber shift canbemathematically obtainedbydifferentiatingEquation3.3
with respect to the incidence angle θ, i.e.,

Δky =
4πf0Δθ

c
cos(θ1 − α). (3.5)

being,Δθ = θ1−θ2 the look-angle difference and θ1 the look-angle of the reference (master) image.
Thus, as the radar is not monochromatic (each signal has a certain bandwidth centered around a
central frequency f0), Equation 3.5 states that once the ground range is projected onto the slant-
range, the spectral components of the object in one image are shifted to other frequencies in the
second image. A visual representation of this effect is shown in Figure 3.2.
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Figure 3.2: Illustration of the wavenumber shift principle.

Moreover, it is important to express this wavenumber shift in terms of frequency [68]. This allows
us to really understand the impact of thebaseline in interferometric processes, by comparing this shift
to the system bandwidthW. Specifically, the wavenumber shift of Equation 3.5 can be expressed as
an equivalent frequency shift as follows

Δf =
f0Δθ

tan(θ1 − α)
. (3.6)

Now, considering that the angular separation Δθ can be expressed, approximately, by means of the
baseline B⊥ and the slant range r0, as

Δθ ≈ B⊥

r0
, (3.7)

the frequency shift between an interferometric pair of two SAR images with a given baseline B⊥ is

Δf =
f0B⊥

r0 tan(θ1 − α)
=

cB⊥

λr0 tan(θ1 − α)
. (3.8)

The amount of spectral shift provides an indicator of the degree of decorrelation between both
images and, hence, it is an indicator of the amount of useful interferometric information which can
be extracted. In this regard, if the frequency shiftΔf is larger than the signal bandwidth, it means that
both SAR images are completely uncorrelated and cannot be used for interferometric processing,
which is the same concept as the critical baseline previously explained. However, if it is less than the
bandwidth, both images contain useful interferometric information and can be properly combined
into an interferogram after an adequate filtering (evidently, other sources of decorrelation are not be-
ing considered). In this last case, the previous reasoning yields that the images have a common spectral
band, which is useful from the interferometric point of view, but also a non-common band which in-
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troduces undesired noise. Although it is not useful for interferometric use, it is worth mentioning
that the non-common band allows to improve the resolution of a single SAR image by exploiting the
spectral shift principle [69]. Visually, the spectral shift showing both the common andnon-common
bands of the images spectra is represented in Figure 3.3.

fr

fr

Master

Slave

Common band

Δf

Figure 3.3: Illustration of the spectral shift between two images. Only the common band
(gray) contains useful interferometric information.

It is interesting to represent the variation of the frequency shift as a function of the local terrain
slope α. A particular case employing TerraSAR-X parameters (see Table 3.1) with an incident angle
of 30◦ and a perpendicular baseline of 300 m is shown in Figure 3.4. As it can be observed, at graz-
ing incidence, α = θ − 90◦ (−60◦ in this case), the frequency shift becomes exactly zero. Then, it
progressively increases with the terrain slope until it is equal to the range bandwidth and no informa-
tion can be extracted for interferometric use. At α = θ (the slope is equal to the incident angle), the
spectral shift becomes negative, causing range-reversed imaging [39] which corresponds to lay-over
areas. No information can be extracted if the slope is less than the grazing incidence angle (shadow
area) or if it belongs to the blind angle interval shown in Figure 3.4.

This leads to the conception of range filtering strategies in frequency domain, which have to ac-
curately estimate the spectral shift to properly remove the non-common band of the spectra, while
simultaneously preserving the useful (common) part. Without range filtering, the coherence and,
hence, the global quality of interferograms drops as a function of the perpendicular baseline. The
suppression of baseline decorrelation is therefore important to improve the quality of interferomet-
ric data and other products derived from this technique.

Finally, it is also important to point out that range filtering is not only of great interest for pure
interferometric applications. For instance, it is compulsory in forest studies based on PolInSAR,
where the local correlation (coherence) is used as an input to retrieval algorithms. Specifically, a
proper removal of the geometrical decorrelation has to be carried out so that coherence values are
not influenced by this noise factor, which could lead to inaccurate or erroneous results and estima-
tions.
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Figure 3.4: Spectral shift as a function of the local terrain slope with TerraSAR-X satellite
parameters. A baseline of 300m and an incidence angle of 30◦ have been considered.

3.1.2 A Review of Range Spectral FilteringMethods

Different spectral filteringmethods have been conceived in the past years. Evidently, the goal of all of
them is an appropriate estimation of the frequency shift between a pair of coregistered SAR images
which will be used to form an interferogram, as previously detailed. Once the shift is estimated, a
band-pass filter is built in order to remove the non-overlapping parts of the spectra. Themain aspect
that varies from one method to another relies on the estimation of the shift. The rest of the filter-
ing steps are common and can be summarized as follows. Firstly, the filtering removes the initial
spectral weighting applied to each image in order to limit side-lobe contributions of strong point tar-
gets [70] [71] [72]. Side-lobe control is especially important in urban environments, where there
exist a large number of strong scatterer. Also, its suppression becomesmore important as the resolu-
tion increases. Each SAR sensor has a specific spectral weighting. For instance, TerraSAR-X images
are weighted with a Hanning window with a coefficient α = 0.6 [73]. Its expression is

wh(k) = α − (1− α) cos
(2πk

N

)
, k = 1 . . .N, (3.9)

being N the number of samples. RADARSAT-2 images are weighted with a Kaiser-Bessel window
with coefficient β = 2.4 [74]. Its expression is given by

wk(k) =

I0

(
β
√

1− ( 2kN )
2

)
I0(β)

, k = 1 . . .N, (3.10)
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where I0 is the zeroth-order modified Bessel function of the first kind. Figure 3.5 shows an example
of these two spectral weighting windows with N = 512 samples. Note that the deweighting is,
evidently, obtained with the inverse functions of Equations 3.9 and 3.11 and that it is only applied in
range dimension. The azimuth window, which is usually the same, remains untouched.
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Figure 3.5: Spectral weighting windows applied to TerraSAR-X (Hanning, α = 0.6) and
RADARSAT-2 (Kaiser, β = 2.4) image products.

Secondly, the spectral shift Δf is estimated according to each method, and, once it is obtained, a
new spectral weightingwindow is constructed according to its value. Because the spectral shift is not
zero, the re-weighting windowwill be similar to the original but with some samples (or frequencies)
set to zero. Finally, this leads to a new and reduced range bandwidthW′ which is a function of Δf,

W′ = W− |Δf|, (3.11)

with a subsequent reduction of resolution in range, but with an increase in the correlation between
the images.

3.1.2.1 AdaptiveMethod

The method known as Adaptive is the most widely used [42] [75] [76]. It has the advantage that is
does not require any additional or external information, since the spectral shift between both images
is directly estimated from the data. However, a sufficient initial degree of correlation (coherence)
is required between the images, since a temporary interferogram is used to compute the spectral
displacement. As a consequence, this method provides good results in coherent areas but performs
poorly if other sources of decorrelation are present, especially when temporal decorrelation worsens
the quality of the data.

The core idea of thismethod relies on computing the power spectrum of a complex interferogram
and performing a peak analysis. Prior to interferogram formation, both the master and slave images
should be oversampled by a certain factor to ease the peak location (usually, a factor of 2 or 4 is
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enough). The spectral shift is directly provided by the location of the peak. The algorithm works in
blocks, i.e., the image is divided into small patches with a given number of pixels and lines. Although
each line of the block is individually filtered, a fixed number of lines inside the block is averaged in
order to reduce the interferogram noise. For instance, if the block has 500 lines, 25 lines can be aver-
aged to compute the power spectrum of the central one. Once the peak is located by the maximum
value of the power spectrum, a pseudo-SNR is also calculated. This signal-to-noise ratio is directly
related to the ’quality’ of the peak, i.e., if it really reflects the spectral displacement between the im-
ages or, contrarily, if it is a ’false’ maximum value in either a low-quality area or in an area greatly
influenced by topography, as we will see. The SNR can be computed as

SNR =
N · |Xpmax|∑
k̸=pmax |Xk|

, (3.12)

whereN is the number of range samples in the block,Xpmax is the maximum value of the power spec-
trum, and |X| is the averaged spectrum in range dimension of the interferogram. A threshold, which
allows the filter to proceed, is therefore set. Only if the SNR is above the threshold, a range line will
be filtered. Otherwise, the images should not be filtered to prevent a worse future interferogram if
the estimation of the peak is not accurate. If the peak is wrong, useful parts of master and slave sig-
nals can be eliminated, hence reducing the quality of the resulting interferogram with regards to the
original one.

At this point it is worth mentioning the influence of topography (represented by the local terrain
slopes) in the filtering process. Since the peak corresponds to the maximum value of the Fourier
transform of the interferogram, it can be regarded as the dominant frequency inside the range block.
In other words, the local frequency shift is equal to the fringe frequency. Accordingly, if topography
changes importantly, for instance, when the images cover a mountainous area as the one previously
shown in Figure 2.9(d) in Chapter 2, the peak will inevitably widen and will not be representative of
a single frequency shift.

Consequently, the filter would ideally require that inside the extracted block, the slope is either
flat or perfectly constant. In this regard, the filter can be tuned so that small interferogram patches
(with less pixels in range dimension) are processed. In this case, the filter would be better adapted
to the local topography but there may not be enough data to yield a fine spectrum resolution, so the
peak estimation would become less reliable. In practice, blocks of 128 or 64 pixels seem to perform
best, whereas a smaller number of pixels is not recommended.

3.1.2.2 Method Based onOrbits

The method based on orbits employs geometrical data (the baseline) derived from the orbit state
vector information to compute the spectral displacement. Then, it requires additional information
since the spectral shift is directly estimated by means of Equation 3.8. In order to better adapt the
filter to the local characteristics of the terrain, the filtering can be performed line by line, where each
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line is in its turn divided into smaller blocks. Blocks of 128 or 256 pixels are recommended. Then,
a single spectral shift within each block of the interferogram is computed. In order to improve the
filtering performance, it is proposed that the largest spectral shift is selected among all obtained val-
ues (128 or 256 depending on the block size). This choice leads to better filtering results with a
subsequent larger coherence improvement.

Finally, note that in this approach aflatEarth is assumed, i.e., the local terrain slope is kept constant
at zero (α = 0 in Equation 3.8). This obviously leads to a sub-optimal filtering performance in areas
with a steep topography, since the local slope variations of the surface are not considered. Therefore,
ignoring topography constitutes the main limitation of this method.

3.1.2.3 Slope-Adaptive Filtering

As explained in Sections 3.1.2.1 and 3.1.2.2, local topography plays an important role for determin-
ing the spectral shift. Therefore, the exploitation of a DEM, which contains information related to
the terrain height and, hence, from which the local terrain slopes can be estimated to improve the
performance of range filtering, becomes obvious. We will then call this method slope-adaptive range
filtering which, in principle, is based on the orbits method (Section 3.1.2.2), but taking into account
the slopes derived from an auxiliary DEM.The inclusion of elevation information was initially pro-
posed in [77], where a coarse surface is directly estimated from the complex interferogram bymeans
of multi-level frequency estimators followed by a phase unwrapping algorithm. Since the spectral
shift is equal to the fringe frequency caused by the topography in space domain, the estimated fre-
quencies can be used to filter in range. Although the proposed methodology has the advantage of
being completely automatic (everything is derived from the pair of images), it entails the risk of not
being accurate enough with low-quality and decorrelated data, where the estimation of frequencies
is a very difficult task.

Nevertheless, the slope-adaptive filtering scheme proposed in [77] can be easily adapted to use an
external DEM instead of estimating it from the original data. A first way of including a DEM in the
filtering process relies on performing a demodulation ofmaster and slave signals. This can be directly
achieved by using the synthetic interferogram derived from the DEM and the orbits which contains
the topographic phase contribution (see Figure 2.9(d)). Thus, both original SAR images S1 and S2
are demodulated according to

S1′ = S1 exp
(
− j

φDEM
2

)
,

S2′ = S2 exp
(
+ j

φDEM
2

)
,

(3.13)

where φDEM is the topographic phase derived from the DEM. Note that half of the topographic con-
tribution is used for themaster image, the other half for the slave image, and they are of opposite sign.
The next step consists in computing the spectral displacement, which can be directly estimated from
interferometric parameters (baseline and orbits). The simplest way is to globally filter the images
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by a constant Δf, usually the one providing the maximum displacement. Because the images are de-
modulated by half of the topographic phase, their spectra are respectively symmetrically shifted and
centered around the central frequency, without considering their range position. It follows that the
common band between the master and the slave images is aligned, and the images can be low-pass
filtered employing the same (symmetric) filter in frequency domain. Finally, the topographic phase
removed in Equation 3.14must be added back to the images by the respective conjugate operations,
leading to the range-filtered images S1f and S2f,

S1f = S′1 exp
(
+ j

φDEM
2

)
,

S2f = S′2 exp
(
− j

φDEM
2

)
.

(3.14)

This process is sketched in Figure 3.6.
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Figure 3.6: Spectral alignment of two images spectra by means of demodulation with a topo-
graphic phase, followed by a low-pass filtering.

Themain limitation of this approach comes from the constant spectral shift value used to filter the
whole images, which is generally not suitable since the filter may not be well matched in areas with
varying topography. Moreover, another disadvantage of this method is that the DEM information
remains not fully exploited.

3.1.2.4 Refined Slope-Adaptive Filtering

Once the different, state-of-the-art range filtering strategies have been reviewed, the refinedmethod
developed throughout the PhD can be explained in detail. The core idea consists in providing dif-
ferent methodologies to overcome the limitations of the previously explained filters bymeans of the
complete exploitation of an external DEM. It is important to clearly state that we will focus on the
problems that commonly-used filters have in areas with a steep and/or varying topography, since if
the area is rather flat, most methods provide acceptable results as the spectral shift is not influenced
by the terrain slope.

Firstly, the local terrain slopes (always in range dimension)must be computed. They can be easily
derived since the elevation is known. Consider the SAR geometry shown in Figure 3.7 over a region
with a given terrain slope α.
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Figure 3.7: Local terrain slope (α) acquisition geometry between two adjacent points (S and
S′).

Two adjacent pixels in the slant-range plane receive the backscattered signals frompointsP andP′.
Theheight differenceΔh between both points can be directly obtained from theDEMby computing
the local derivatives in range direction, i.e.,

Δh = h2 − h1. (3.15)

From trigonometry, we obtain the local slope between two adjacent pixels as [78],

α = arctan

(
sin θ

ΔR
Δh + cos θ

)
, (3.16)

being θ the incidence angle and ΔR the local slant range difference between the two consecutive
pixels.

Due to the presence of topography, the filter must be very well adapted to its local variations.
Therefore, it is strictly necessary to segment the images into small patches so that the variety of local
slopes is always considered. However, a problem arises if we have a topography like the one repre-
sented in Figure 3.8. In this case, the selection of the slope and, hence, the estimation of the spec-
tral displacement is not evident. Selecting the mean slope is not representative of the whole area,
whereas selecting the maximum value could result in a too coarse filtering (which could cause a loss
of resolution), and selecting the minimum could not be significant enough.

α=0

α>0 α<0

α=0Elevation

Filtering window or patch

Figure 3.8: Example of filtering problem where a variety of slopes (α) is present in the same
patch.
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In this regard, an optimal filtering can be obtained through a subdivision of the original window
into smaller sub-blocks, resulting in a multi-scale filtering, so that the filter is always adapted to any
kind of slope. If the topography exhibits strong spatial variations, smaller windows should provide
better spectral shift estimations which, consequently, result in a better filtering performance. On
the contrary, flat areas benefit from larger blocks. Visually, this is represented in Figure 3.9. For
simplicity, only 4 different window sizes are shown.

128 pixels

16 pixels

32 pixels

64 pixels

Different types
of slopes

....

Figure 3.9: Representation of the proposed multi-scale range filtering algorithm. An overlap-
ping factor of 50% is represented.

The proposed method is explained as follows. The algorithm works line by line by extracting a
number of range pixels, i.e., a 2-D block is not used since the filter is only applied in range direction
(this also allows a faster algorithm execution). Each range line is segmented into blocks of different
sizes. Sizesof 128, 64, 32 and16pixels areproposed. Note that anoverlap is fixed to avoid edgeeffects
between adjacent filtered blocks, as represented in Figure 3.9. The spectral shift is obtained bymeans
of geometrical parameters using Equation 3.8. Themaximum displacement value is always selected.
Once a given block is filtered with all window sizes, a quality criterion has to be established to de-
termine which one performed best. The interferometric coherence provides such quality estimator.
However, since the filtering is carried out only in range direction, the quality estimator corresponds
to the 1-D coherence (see Equation 2.43) where only range pixels are used. It follows that the final
lines of master and slave images are obtained as the ones for which the coherence is maximum. Note
that to avoid the effect of the coherence estimation bias, which depends on the number of samples,
coherence is always computed with a fixed window size. A general scheme of the filter is shown in
Figure 3.10.
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Figure 3.10: Block diagram of the proposed range filtering method.

An important aspect of the proposed method relies on the construction of the low-pass or band-
pass filter. Two different, yet (almost) equivalent strategies are proposed. On the one hand, both the
signals of master and slave images can be demodulated using the topographic phase according to the
process described in Section 3.1.2.3.

In this case, a symmetric low-pass filter, which is identical for master and slave, is directly built
according to Δf, i.e., we ’move’ the signals and we keep the same filter for both images. Note that the
value of Δf in pixels frequency is easily obtained by

Δfpixels =
Δf
RSR

, (3.17)

beingRSR the sampling rate in range dimension andwhich depends on the sensor. This is illustrated
with Figure 3.11. A Kaiser window with β = 2.4 (RADARSAT-2 spectral weighting) is used. Be-
cause the spectra are aligned, the filter keeps the useful common-band and removes the rest of each
signal.
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(b) Spectral shape of the low-pass filter: a Kaiser window of
128 pixels.

Figure 3.11: Low-pass spectral filtering after alignment of master and slave images. A spectral
displacement of 30 pixels is assumed.
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On the other hand, if both signals are not demodulated, a similar yet inverse procedure is carried
out. That is, we keep the signals and we adapt the filter to appropriately remove the non-common
bands. In this case, a different and non-symmetric filter is used for each signal. This is illustrated
with Figure 3.12. The same Kaiser window (β = 2.4 and 128 pixels) and the same spectral shift of
30 pixels are used. Note that a reversed filter is used for master and slave images.

Δf

Master image

Slave image

Δf
Common band

(a) Master and slave images spectra.
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(b) Spectral shape of the band-pass filter
used for master image.
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(c) Spectral shape of the band-pass filter
used for slave image

Figure 3.12: Band-pass spectral filtering of master and slave images. A spectral displacement
of 30 pixels is assumed.
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3.1.3 Results

To verify the performance of the proposed method against the others, we have analyzed the phase
quality improvement obtained after range filtering a pair of images covering the area of the Mount
Etna (Sicily, Italy). A picture of the area and its geographic location are shown in Figure 3.13.

Figure 3.13: Geographic location of the Mount Etna in eastern Sicily (Italy). Images were
extracted from ESA webpage and generated with Google-Earth©.

Specifically, the data set is composed of two coregistered SLC images acquired byRADARSAT-2
in May 2008. They were acquired using Fine Quad Swath 8 (FQ8) mode, the near and far range
incidence angles of which are 26.9◦ and 28.7◦ respectively. The processed image size is 2000×4000
pixels (range and azimuth respectively) and the polarimetric channel is HH. The main system pa-
rameters used in the filtering process are detailed in Table 3.2. The intensity of master image is rep-
resented in Figure 3.14(a) and the DEM providing height data is depicted in Figure 3.14(b).

Master date 2008-05-05

Slave date 2008-05-29

Perpendicular baseline [m] 586.547

Range bandwidth [Hz] 3.002442·107

DEM resolution [m] 10

Range spectral weighting Kaiser-Bessel window with β = 2.4

Table 3.2: Processed interferometric pair characteristics.
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(b) DEM height of the processed area.

Figure 3.14: Master image intensity and DEM height of the processed area.

Moreover, slant range slopes of the test scene are represented in Fig. 3.15. It can be observed that
this scene exhibits strong slopes throughout thewhole area and especially aroundMount Etna in the
central part of the image. It is important to mention that all the results discussed in this section are
only related to the range filtering process. That is, we will only show the quality improvement after
removing thebaselinedecorrelation. Concerning the adaptivemethod, blocks of 128×500pixels (in
range and azimuth dimensions respectively) are progressively extracted andfiltered, 35 azimuth lines
in each block are averaged to compute the power spectrum, and both images are oversampled by a
factor of 2 in range dimension. Additionally, aminimumsignal-to-noise ratio (SNR) threshold equal
to 3, allowing the filter to proceed, has been fixed. To show the impact of the window size (number
of samples) on this method, its performance is also tested with a block size of 32×500 pixels and 25
lines are averaged to compute the power spectrum. Concerning the method based on orbits, each
range line is divided into blocks of 128 pixels and the spectral shift is estimated with Equation 3.8
with a fixed (null) slope. Images are also filtered with the conventional slope-adaptive method after
including the demodulation with the topographic phase. In this case, a global spectral displacement
Δf is selected (the one providing the maximum shift).
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Figure 3.15: Local slopes of the terrain in slant range direction of the test area.
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Furthermore, the proposed slope-adaptive multi-scale algorithm is applied as a band-pass and
a low-pass filter, following both strategies described in Section 3.1.2.4. More specifically, each ex-
tracted range line is filtered four times with windows of 128, 64, 32 and 16 pixels and an overlap of
50% between adjacent blocks is set. To decide which block size performed better, the coherence of
a line is estimated with 15 samples.

The overall quality improvement is assessed with the coherence histograms shown in Fig. 3.16.
A multilook size of 9×5 pixels has been used for coherence computation. It can be observed that
all methods produce a significant improvement with respect to not filtering, as all histograms are
displaced towards higher values. This also proves that the original data were significantly influenced
by geometrical decorrelation.
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Figure 3.16: Coherence histograms after range filtering.

The adaptive method provides higher coherence values than the method based on orbits with a
constant slope. This is because in high SNRareas, the computation of the power spectrum is accurate
enough to yield a reliable estimate of the spectral displacement. However, it has the disadvantage
that some lines are not filtered due to the reasons previously explained in Section 3.1.2.1. This can
be illustratedwith three different cases as follows. In the first case, when there is sufficient correlation
between the images, the spectral displacement is verywell determinedas shown inFigure3.17,where
the slope is rather constant. Contrarily, a bad estimation of the spectral shiftmay come either from a
flat but decorrelated area (for instance, due to the presence of vegetation) or from a correlated zone
with a strongly variant topography. This is respectively illustrated with Figures 3.18(a) and 3.19(a),
where it can be observed that the averaged power spectrum is noisy and a dominant peak cannot be
correctly identified.
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(a) Computed power spectrum with the
adaptive method. A high SNR allows a clear
identification of the peak.
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(b) Slope of the filtered line.

Figure 3.17: Spectral displacement estimated with the adaptive method in a correlated area
with a flat topography.
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(a) Computed power spectrum with the
adaptive method. A low SNR does not
allow a clear identification of the peak.
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(b) Slope of the filtered line.

Figure 3.18: Spectral displacement estimated with the adaptive method in a decorrelated area
with a flat topography.
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(a) Computed power spectrum with the
adaptive method. A low SNR does not
allow a clear identification of the peak.
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(b) Slope of the filtered line.

Figure 3.19: Spectral displacement estimated with the adaptive method in a correlated area
with a rapidly variant topography.

The improvement can also be observed by looking at the resulting coherence maps of the pro-
cessed area, which are depicted in Figure 3.20. All methods show an overall increase in coherence
throughout the whole area. However, a further gain is obtained after including the multi-scale fil-
tering. This is better visualized by zooming into the squared area of the original coherence map in
Figure 3.20(a). The coherences of this region of interest (RoI) are shown in Figure 3.21, while the
corresponding interferometric phases are represented in Figure 3.22. It is clearly appreciated that
fringes are sharper in the filtered data, so that the global quality of the phase is improved and, hence,
the coherence is increased to a greater extent by the proposed method.

As an additional comparison, the improvement provided by each method at different coherence
intervals has been evaluated. Specifically, 10 coherence intervals are selected between 0 and 1. As
shown in Figure 3.23, slope-adaptivemethods provide the largest improvement. However, both pro-
posed algorithms are able to improve the coherence at all levels, outperforming the rest of the filters.
The adaptive method exhibits the worst result in low-coherence areas, proving that this method is
not able to filter areas strongly affected by other sources of decorrelation (improvement is almost
negligible for coherence values below 0.3), for which the constant-slope orbit-based method pro-
vides some coherence improvement. On the contrary, the adaptive method performs better than
the method based on orbits in highly coherent areas. In fact, it provides an improvement very simi-
lar to the slope-adaptive methods for coherence values greater than 0.8.
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(a) Original (b) Adaptive method (c) Method based on orbits

(d) Slope-adaptive (e) Slope-adaptive multi-scale
(band-pass)

(f) Slope-adaptive multi-scale
(low-pass)

Figure 3.20: Coherence maps of the processed area after range filtering.
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(a) Original (b) Adaptive method (c) Method based on
orbits

(d) Slope-adaptive (e) Slope-adaptive
multi-scale (band-pass)

(f) Slope-adaptive
multi-scale (low-pass)

Figure 3.21: Coherence improvement after range filtering in a specific region of interest.

(a) Original (b) Adaptive method (c) Method based on
orbits

(d) Slope-adaptive (e) Slope-adaptive
multi-scale (band-pass)

(f) Slope-adaptive
multi-scale (low-pass)

Figure 3.22: Phase quality improvement after range filtering in a specific region of interest.
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Figure 3.23: Coherence improvement for different intervals of coherence. Ten intervals are
selected within [0, 1].

A quantitative measurement of the improvement after range filtering is provided by the so-called
phase residues [7]. Phase residues correspond to inconsistencies in wrapped phase values, and repre-
sent a way to identify erroneous measurements which could produce inaccuracies during the phase
unwrapping step. Specifically, residues are detected by computing the local derivatives between ad-
jacent pixels along every dimension. That is, given a phase value φi at spatial indexes (p, q), we eval-
uate:

r1 = W(φi(p, q+ 1)− φi(p, q)),

r2 = W(φi(p+ 1, q+ 1)− φi(p, q+ 1)),

r3 = W(φi(p+ 1, q)− φi(p+ 1, q+ 1)),

r4 = W(φi(p, q)− φi(p+ 1, q)),

(3.18)

whereW is thewrapping operator. A residue exists at position (p, q) if the sumof the previous values
is not equal to 0, i.e., if:

4∑
i=1

ri/(2π) ̸= 0. (3.19)

Table 3.3 shows the remaining residues after range filtering with eachmethod. Both the improve-
ments in the whole area and in the specific RoI shown in Figure 3.22 are detailed.
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Residue number Improvement
Full area

Original 1512593 –
Adaptive method 1370349 9.4%
Method based on orbits (constant slope) 1317685 12.89%
Slope-adaptive 1273586 15.80%
Slope-adaptivemulti-scale (band-pass) 1113599 26.38%
Slope-adaptivemulti-scale (low-pass) 1085287 28.24%

Specific RoI

Original 28960 –
Adaptive method 21524 25.67%
Method based on orbits (constant slope) 20558 29.01%
Slope-adaptive 19546 32.51%
Slope-adaptivemulti-scale (band-pass) 17460 39.71%
Slope-adaptivemulti-scale (low-pass) 16998 41.30%

Table 3.3: Performance analysis of the different range filtering methods in the full processed
area and in the specific RoI shown in Figure 3.22.

Concerning the complete area, it is observed that the original number of residues is large, show-
ing that the original phase was considerably degraded by the noise. This is in line with the improve-
ment offered by the adaptive method, which is the worst among all tested range filters as a result of
the low-quality original interferogram (from which every spectral displacement is computed). The
slope-adaptive method exhibits a larger improvement than the method based on orbits with a con-
stant slope, proving that the inclusion of the slope information positively influences the filtering per-
formance. The largest improvement is clearly obtained with the proposed multi-scale strategy. By
looking at Table 3.3, the number of remaining residues is greatly reduced. In fact, the improvement
in terms of residues is close to the double of the one of the slope-adaptive method, showing that the
multi-scale filter is completely adapted to the local topography so that the filtering performance is
greatly enhanced. The major improvement of the proposed method is also obtained in the specific
RoI. As shown in Table 3.3, among all filters, the proposed slope-adaptive multi-scale method offers
the best result since it is able to reduce the number of remaining phase residues to a greater extent,
proving that the proposed methodology maximizes the range filtering performance.

Finally, it is interesting to visualize which window size provided the best result (i.e., the best co-
herence) in the processed area, so that the utility of testing multiple window sizes is justified. The
colormap of Figure 3.24 shows the window size which provided the best filtering result in the whole
processed area. By comparing Figures 3.15 and 3.24 it is deduced that there is a direct relation be-
tween the filtering window size and the local terrain slopes. In fact, it can be clearly observed that
small windows (especially of 16 pixels) provide the best result throughout the scene. This was ex-
pected since the images correspond to a mountainous area where strong terrain slopes are present.
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Only flatter areas benefit from larger window sizes (128 and 64 pixels).

128 pixels

64 pixels

32 pixels

16 pixels

A

B

Figure 3.24: Map of the block size providing the best filtering result in the processed area.

This is better visualized if we compare the filteringwindow sizes and the slopes of the two regions,
named as A and B in Figure 3.24. The first one (A) is located near the summit area of Mount Etna,
so that strong terrain slopes are present, as shown in Figure 3.25(a). In this case, by looking at Fig-
ure 3.25(b), the best filtering results are obtained with small windows (16 and 32 pixels have a clear
dominance in this area). In fact, the largest window (128 pixels) is almost never used. On the con-
trary, in the flat area (B) shown in Figure 3.26(a), larger window sizes (128 and 64 pixels) seems to
perform better, since more image blocks have been filtered with these window sizes, as shown with
Figure 3.26(b).
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Figure 3.25: Filtering window size providing the best result in an area where strong terrain
slopes are present.
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Figure 3.26: Filtering window size providing the best result in an flat area.
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From this study, we have found that conventional range filteringmethods are limited in areas with
huge topographic variations. The adaptive method has a double drawback: besides the influence
of topography, the filter is highly dependent on the original quality of the phase data. Then, the
method may not be appropriate in areas as the one shown in this section, since the filtering may be
either inaccurate (due to the influence of topography) or unfeasible (due to the SNR).The method
based on orbits (geometrical information of the interferometric pair) is less limited, since the images
will always be filtered because the spectral displacement is derived from external data. However, if a
DEM is not used (i.e., the local slope of the terrain is set to 0◦), its solution is not optimum in areas
with a rapidly variant topography. Slope-adaptivemethods are undoubtedly required. In this regard,
the adaptive filter proposed in [77] (assuming that an external DEM is provided) offers overall good
results. However, it only partially exploits the slope information derived from the DEM. We have
proved that the number of samples used in the filtering process has an influence on the final result.
The proposedmethod goes one step further and, simultaneously, overcomes all the disadvantages of
the previous filters and fully utilizes the information derived from an external DEM. We have seen
that the proposed strategy, even though it is evidentlymore computing-intensive than the rest of the
filters, is able to completely exploit the DEM and optimize the range filtering step in this kind of
complicated areas.
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3.2 Interferogram Filtering

Previously mentioned applications of both InSAR and DInSAR, such as DEM generation or geo-
hazards assessment/mapping, may become unfeasible with very deteriorated interferometric data
as a result of an important decorrelation. In this context, the development of filtering methods is
mandatory to improve the quality of the phase. This improvement is especially needed for the phase
unwrapping step, whichmay be very inaccurate with low-quality and noisy phase data. Accordingly,
the second processing contribution developed during this PhD deals with a final interferometric
phase filter. Even though it was initially conceived for differential applications, it can evidently also
be used in the context of InSAR. It is important to state that the goal of all filtering strategies relies
on appropriately removing phase noise while, simultaneously, preserving fine phase details. That is,
the original structure of the interferogram must remain unaltered so that useful information is not
lost due to overfiltering.

3.2.1 A review of Interferometric Phase FilteringMethods

3.2.1.1 The Goldstein Filter

The well-knownGoldstein filter [64] [65] is the most common and widely used interferogram filter.
As stated in Chapter 1, it has a simple implementation, a high computational efficiency and provides
good results. Its working principle consists in dividing the original noisy phase into 2-D blocks of
a certain size. Then, the Fourier Transform of each block is weighted by a smoothed version of its
intensity. The spectrum of the filtered interferogram is therefore obtained as

[Sf](fx,fy) = |[Sm](fx,fy)|α • S(fx,fy), (3.20)

whereS is theoriginal spectrumof the interferogramblock, |Sm| is the absolute valueof the smoothed
spectrum, (fx, fy) are the two-dimensional spatial frequencies (in range and azimuth directions), and
symbol • denotes the Hadamard or element-by-element multiplication. An important parameter of
the filter is α, which is a real number defined in the [0, 1] interval and has the biggest impact on the
effectiveness of the final filtering since it defines theweight of the smoothed spectrumwith respect to
the original spectrum. That is, it is directly proportional to the filtering strength. If α = 0, the filtered
spectrum will be equal to the original spectrum and no filtering occurs. However, the filtering be-
comes stronger as the values of α increases. Furthermore, the block dimensions are usually selected
as a power of two (32 × 32, 64 × 64 pixels …), in order to accelerate the two-dimensional Fast
Fourier Transform computation of each block. Also, an overlap between adjacent patches is usually
used. The overlap slows the algorithm execution but avoids discontinuities at the boundaries, which
is important to avoid blocking effects in the final phase images.

The smoothing operation is also performed in frequency domain. Specifically, it is achieved by a
convolution of the original power spectrum with a predefined square kernel, such as Boxcar (mean)
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or Gaussian kernels of a fixed size. An example of a 15×15 Gaussian kernel is shown in Figure 3.27
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Figure 3.27: 15×15 Gaussian kernel.

Themain drawback of the filter is related to the selection of parameter α, as it has to be manually
chosen by visual inspection of the original noisy phase. Moreover, the same value of α is used to filter
the whole phase, which is clearly non-optimumdue to the non-uniform distribution of noise. In this
regard, noisy areas benefit from larger values of α, but fixing a value close to 1 could cause a resolution
loss, especially in correlated areas where dense fringes are present. Consequently, a value of α = 0.5
is usually employed to ensure a balance between noise reduction and resolution preservation.

3.2.1.2 Adaptive Goldstein Filter

An adaptive Goldstein filter was proposed in [66]. In this case, the values of the filtering parameter
α were adapted to the noise level of each interferogram block. Accordingly, the values of α become a
function of the local coherence (Equation 2.43) as

α = 1− |γ̄|, (3.21)

where |γ̄| is the mean coherence of the effective filtering window. Note that the effective window
(non-overlapped area) is always employed to compute |γ̄| in order to prevent the mean coherence
from being influenced by coherence values from the overlapped and already filtered areas.

With thismodification, themain drawback of the original Goldstein filter formulation is, partially,
solved. Low-coherence parts of the interferogram are strongly filtered, as the values of α are larger,
and high-coherence parts are filtered less, resulting in less oversmoothing effects.

3.2.1.3 Pixel-Based Filtering

Besides the adaptive valuesof thefilteringparameter α, awindow-adaptivefilterwasproposed in [79].
Specifically, thismethod proposes to individually filter each pixel in the interferogramwithwindows
of different sizes, instead of extracting and filtering phase blocks. The size of each window is selected
as a function of the coherence and the phase standard deviation of the whole scene. Note that the
relationship between these two variables was previously given with Equation 2.44 and represented
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in Figure 2.10. As explained in [79], the window size selected to filter a pixel corresponds to the
square root of the multilook number provided by the crossing in Figure 3.28 of the coherence and
the standard deviation. For instance, if a pixel’s coherence is 0.4 and the computed phase standard
deviation of the interferogram is 0.75 radians, the crossing point corresponds to a number of looks
equal to 8. Then, the pixel will be filteredwith a

√
8 size, which can either be a 3×3window centered

on the pixel or a non-squared window.

0.75

Figure 3.28: Example of selected window size as a function of the coherence and the phase
standard deviation in the pixel-based filter.

Additionally, this filter introduces somemodifications concerning the spectrumprocessing. First,
local phase gradients in the filtering window are subtracted before filtering. This allows us to center
the spectrum and to obtain the dominant frequencies inside the filtering window, which is useful for
resolution preservation since they will be added back after smoothing the spectrum . This step will
be explained inmore detail in Section 3.2.2.2. Then, the spectrumof the compensated samples in the
filtering window is multiplied by a 2-D sinc function. This allows to retain the dominant frequency
components in the filteringwindowand to remove or greatly attenuate the rest of frequencies (which
are deemed as noise). Finally, the filtering parameter is modified to

α = 1− |γ|2, (3.22)

being |γ| the pixel coherence. This modification increases the filtering strength with respect to the
adaptive Goldstein filter described in Section 3.2.1.2 if the same block size is used. However, over-
smoothing is avoided since the size of the filtering block is small for coherent pixels as shown in
Figure 3.28.

In general, this filter provides acceptable results, especially concerning the preservation of fine
phase details (i.e., dense fringes). As shown in [79], the filter preserves the resolution of the original
phase very clearly, even in high-density fringe areas. However, it performs worse with very noisy
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interferometric phases. This is because the size of the filtering windowmight not be big enoughwith
very decorrelated data, which results in either an inaccurate estimation of the local fringe frequencies
or in an insufficient smoothing. It is worthmentioning that an important issue related to this filtering
strategy is that the adaptivewindowsizes are computedwith regard to thephase standarddeviationof
the whole scene. Unfortunately, a single value of phase standard deviation does not reflect correctly
the noise level in all areas of the interferogram, as noise is not uniformly distributed.

3.2.1.4 Recursive Adaptive Spectral Filter (RASF)

In the case of very decorrelated interferometric phases, a complete removal of the noise in combina-
tionwith an appropriate resolution preservation is a very arduous task. Manual tuning of the filtering
parameters would be necessary to obtain an optimum performance (block size, kernel size, etc...).
An interesting strategy for this purpose is to filter repeatedly the interferogram. This methodology
was proposed in [80].

The core idea consists in applying the coherence-adaptive Goldstein filter with filtering windows
of decreasing size in an iterative fashion. Noise suppression is more effective with larger filtering
windows, since they provide a better estimate of the power spectrum of the interferogram patch
as a large number of pixels are considered in the estimation. Therefore, the smoothing operation
is more significant, i.e., the filter is better adapted to the signal. As a consequence, large windows
are employed in the first iterations of the algorithm (for instance, a window of 256×256 pixels).
Then, thewindow size is progressively divided in half until it reaches aminimum size, for instance, an
8×8 window. Additionally, it is proposed to use the correlation based only on phases values, usually
denoted as phase coherence ρ. As in the case of the coherence estimator shown in Equation 2.43,
the phase coherence requires a spatial average ofM samples around a pixel neighborhood:

ρ =
1
M

√√√√M−1∑
m=0

cos2(φm) +
M−1∑
n=0

sin2(φm), (3.23)

where φm is the mth phase sample. As explained in [80], two different phase coherence maps are
computed at each iteration. Thefinal correlation ρ̂ value fromwhich thefilteringparameter α = 1−ρ̂
will be calculated is

ρ̂ =

ρ− Δρ, if ρ∗ > ρ

ρ∗, otherwise
(3.24)

where ρ is the original phase coherence, ρ∗ is the phase coherence after subtraction of the local phase
ramp, and Δρ = ρ∗ − ρ. As it can be deduced from (3.24), the values of the correlation coefficient
ρ̂ will be, in general, small. The subtraction of the local phase ramp will increase the values of the
original phase coherence, i.e. ρ∗ > ρ. Then, ρ − Δρ < ρ, and consequently, the values of α will
be larger in comparison to the ones of the modified Goldstein filter. Therefore, the resulting phase
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is likely to be more filtered. This iterative filtering strategy has however proved to be very effective
in noise reduction, even with extremely noisy interferograms [80], but overfiltering effects are more
likely to occur.

3.2.2 Improved Phase Filter Based on an IterativeMethod

During this PhD, an improved filter for SAR interferometry has been developed. The goal is to pro-
pose a completely adaptive, non-parametricmethodwhich is able to suppress phase noise at all levels
while, simultaneously, the original spatial resolution of phase images is preserved. In other words, it
has to provide a very strong filtering in decorrelated areas while high-coherent areasmust remain un-
touched so that useful interferometric information is not lost by overfiltering. To this end, aN-step
iterative filter, as the previously explainedRASF in Section 3.2.1.4, seems to be the most attractive
solution. Then, the proposed method relies on the iterative and adaptive Goldstein approach, but
includesmajor changes which are able to overcome the previouslymentioned limitations. In this re-
gard, a specific smoothing kernel derived from the combination of a Chebyshev interpolator and the
pseudo-inverse is proposed. Also, the subtraction of the local phase ramp is performed at two dif-
ferent steps of the algorithm. On the one hand, it allows to remove any remaining bias which could
influence coherence estimations. On the other hand, it allows to remove useful fringe patterns prior
to the filtering step, so that only the remaining noise is filtered and the original spatial resolution is
preserved. Another important modification consists in smoothing the interferogram in the spatial
domain, instead of doing it in frequency domain as with all the previous methods. By doing so, the
filtering becomes more significant and results in a more important noise reduction. The block dia-
gramof thedevelopedfilter is shown inFigure 3.29. Themain steps of the algorithmwill be explained
in detail in subsections 3.2.2.1 and 3.2.2.2.

 

Original interferogram

Coherence estimation Obtain the filtered 
spectrum 

Add local phase rampGenerate filtering kernel

Subtract local phase ramp
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Figure 3.29: General scheme of the proposed filter.
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3.2.2.1 Kernel Generation

The Goldstein filter and its variants obtain the filtered interferogram by the inverse Fourier Trans-
form(2D-IFFT)of the product of the smoothed spectrumand theoriginal spectrum, that is, the 2D-
IFFT of Equation 3.20. The low-pass operation is also carried out in frequency domain, by means
of a predefined kernel. In the proposed filter, the smoothing operation is applied in the spatial do-
main. Then, the original spectrum is weighted by the spectrum of the smoothed block by means of
Equation 3.20, as in the Goldstein filter case.

As previously stated, the filtermakes use of a specific smoothing kernel based on the combination
of a Chebyshev interpolator and the pseudo-inverse. The idea of testing whether this specific kernel
provides better results than others, comes from the fact thatChebyshev interpolators arewidely used
in ApproximationTheory [81], which is concerned with how either known or unknown functions
can be approximated by a set of simpler functions. Concretely, Chebyshev nodes, namely the roots
of theChebyshevpolynomials of the first kind, are usually used as nodes in polynomial interpolation,
due to both their good performance and their minimization of the Gibbs phenomenon [81].

For simplicity, we will start by deriving the kernel in 1-D (i.e., a regular array). Consider a generic
1-D functionF(x)defined in [−1, 1]. We assume that its value is approximately known atN abscissas
xp, i.e., there exist a set of values f̂p such that

f̂p ≈ F(xp), (p = 1, 2, . . . , N), (3.25)

for N points xp ∈ [−1, 1]. The derivation of the convolution kernel is carried out by means of the
following steps.

1. First, we assume that F(x) can be well approximated by a Chebyshev sum of order Kx of the
form

F(x) ≈
Kx−1∑′

k=0

ckTk(x), (3.26)

where the prime (’) indicates that the k = 0 summandmust bemultiplied by 1/2 (halved), ck
is a set of unknown coefficients, and Tk(x) is the Chebyshev polynomial of the first kind and
order k, the trigonometric expression of which is given by

Tk(x) ≡ cos(k arccos x), |x| ≤ 1. (3.27)

Chebyshev polynomials can also be obtained by means of the following recurrence relation,

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(3.28)
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The first seven Chebyshev polynomials of the first kind (T0 . . .T6) are represented in Fig-
ure 3.30.
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Figure 3.30: Representation of the first seven Chebyshev polynomials of the first kind.

2. Using Equation 3.25 and the model in Equation 3.26, we estimate the set of coefficients cp
using the pseudo-inverse of the linear system implicit in Equation 3.26.

3. For any x, we estimate F(x) by inserting in Equation 3.26 the coefficients cp obtained in the
previous step.

4. If we fix a specific x and the abscissas xp are regularly spaced, then the previous step delivers a
convolution kernel, given that Equation 3.26 depends linearly on the coefficients cp.

5. Note that all the previous steps can also be applied to a generic function G(z) varying in any
interval [a, b], simply by introducing the change of variable

x = −1+ 2
z− a
b− a

. (3.29)

In step 1, we have interpolated F(x) using a Chebyshev sum with Kx coefficients. As previously
mentioned, this interpolator is well known in approximation theory for its excellent performance.
Actually, its minimax error is close to that of the minimax polynomial [81, Th. 6.13], and the in-
terpolator converges to F(x) as Kx increases just assuming that the function is continuous [81, Th.
6.5]. That is, the interpolation error goes to zero as the order increases. In addition, the interpolation
allows us to view F(x) as a signal the spectrum of which is the set of coefficients ck. To see this point,
we must recall the basic variable change in Chebyshev interpolation, which is

x = cos θ, θ ∈ [0, π]. (3.30)
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In terms of θ, (3.26) is

F(cos θ) ≈
Kx−1∑′

k=0

ck cos(kθp), (3.31)

being
θp ≡ arccos xp. (3.32)

Thus, we are viewing the function as a cosine polynomial. Note that since the cosine is an even
function, if F(x) is continuous then F(cos θ) is continuous at all θ. In step 2., we use the pseudo-
inverse to estimate the coefficients ck. Specifically, we first combine Equations 3.25 and 3.26 into the
linear model

f̂p ≈
Kx−1∑′

k=0

ckTk(xp), (3.33)

In matrix notation, the system of Equation 3.33 is of the form

f̂ ≈ Tc, (3.34)

where

[̂f]p ≡ fp, [T]p ≡ t(xp), [c]k ≡ ck, (3.35)

and

t(x) ≡

{
Tk(x), k > 0
1/2, k = 0.

(3.36)

The pseudo-inverse (†) provides the estimate of c

ĉ ≡ T†̂f, (3.37)

that minimizes in the coefficients ck the quadratic error

N∑
p=1

∥∥∥̂fp − Kx−1∑′

k=0

ck cos(kθp)
∥∥∥2. (3.38)

In step 3, we may estimate F(x) at any point x using coefficients ĉ. This estimator is obtained by
replacing ck with the elements of ĉ in Equation 3.26. Its matrix form is

F̂(x) ≡ T(x)Tĉ = t(x)TT†̂f. (3.39)

Step 4 is a particular case of step 3, in which we take x = 0 and assume that the abscissas xp are
regularly spaced and sorted in increasing order. In this case, we have that the vector multiplying f̂ in
Equation 3.39 is a reversed convolution kernel. In other words, if the sequence xp is infinite, then we

83



may filter it using the kernel
[kch]p ≡ [t(0)TT†]N−p+1. (3.40)

Step 5 is straight forward, given thatwemay estimate the function by considering the variable change
of Equation 3.29,

F(x) = G
(b+ a

2
+

b− a
2

x
)
. (3.41)

Now, we may extrapolate the previous formulation to the 2-D case. Consider a two-dimensional
functionF(x, y), defined in [−1, 1], and a set of samples f̂p taken at abscissas xp, yp, p = 1, 2, . . . , N,
we start by introducing a bi-variate Chebyshev model for F(x, y),

F(x, y) ≈
Kx−1∑′

k=0

Ky−1∑′

r=0

ck,rTk(x)Tr(y). (3.42)

We want to estimate the coefficients ck,r such that they verify

f̂p ≈
Kx−1∑′

k=0

Ky−1∑′

r=0

ck,rTk(xp)Tr(yp). (3.43)

In matrix form, this system reads
f̂ ≈ T2Dc2D, (3.44)

where
[̂f]p ≡ fp, [c2D]k+(r−1)Kx ≡ ck,r, (3.45)

and
[T2D]p,k+(r−1)Nx ≡ [tx(xp)]k[ty(yp)]r. (3.46)

As in the 1-D case, the coefficients’ estimate are provided by the pseudo-inverse ofT2D

ĉ2D ≡ T†
2Df̂, (3.47)

and the estimate F̂(0, 0) is given by

F̂(0, 0) ≡ t2D(0, 0)Tt†2Df̂, (3.48)

where
[t2D(x, y)]k+Kx(r−1) ≡ [tx(x)]k[ty(y)]r, (3.49)

and where tx(x) and ty(y) have respective lengths Kx and Ky, and follow the definition in Equa-
tion 3.36.

Then, we assume that abscissas (xp, yp) are those in a regular grid of sizeNx×Ny andN = Nx ·Ny,
i.e., they define a regularly-spaced and symmetric grid of points in [−1, 1]× [−1, 1] of sizeNx×Ny,
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which corresponds to the size of the convolution kernel (in samples). Abscissas (xp, yp) follow the
equations:

xp = x0 + Δx(α(p)− 1), (3.50)

yp = y0 + Δy(β(p)− 1), (3.51)

for a fixed position (x0, y0) and positive increments Δx and Δy, where α(p) and β(p) are the only
non-negative integers such that p = α(p) + Nx(β(p) − 1) with 0 ≤ α(p) < Nx. For this grid, we
obtain from Equation 3.48 the convolution kernel

[k]α+1,β+1 ≡ [t2D(0, 0)Tt†2D]N−(α+Nxβ), (3.52)

where α = 0, 1, . . . , Nx − 1 and β = 0, 1, . . . , Ny − 1. In practice, we imposeNx = Ny, i.e., we
will construct a squared kernel. Also, we assume that the polynomial order in each dimension is the
same, that is, Kx = Ky.

It is worth mentioning that both the size of the kernel and the polynomial order have an impact
on the future filtering results. However, the size of the convolution kernel is more significant. Larger
kernels will provide a stronger filtering. For this reason, the size of the convolution kernel will vary
in each filtering iteration, as a function of the patch size.

Finally, Figure 3.31 shows an example of some 2-D kernels based on previous formulation.
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Figure 3.31: Example of convolution kernels based on Chebyshev interpolators.

3.2.2.2 Fringe Frequencies’ Estimation

Interferograms are characterized by the presence of fringes, which provide information about topog-
raphy (InSAR) or about strong terrain deformations caused by geohazards (DInSAR).These fringes
affect the estimation of the coherence between combined SAR images [82] [43] [55]. As a conse-
quence, any estimation bias should be removed. A simple way to carry this out is to locally estimate
the spatial frequencies of the fringes. Although different algorithms can be used [77] [83], theMax-
imum Likelihood Estimator [84] [85] provides accurate results and can be easily implemented. As
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detailed in [84], the interferometric phase can be locally modeled by a 2-D sine function. Accord-
ingly, inside a (2P+1)×(2Q+1) window, the signal is of the form

Zp,q = e2πj(fxp+fyq), (3.53)

being {fx, fy} the local two-dimensional frequencies at spatial indexes (p, q). Note that the noise
term is omitted for simplicity. Then, inside the window centered on pixel (p0, q0), the frequency of
the fringes can be estimated with

{̂fx, f̂y} = max
fx,fy

∣∣∣∣∣
p0+P∑

x=p0−P

q0+Q∑
y=q0−Q

Zp,qe−2πj(fxp+fyq)

∣∣∣∣∣
 , (3.54)

which corresponds to the position of the maximum value of the signal spectrum. It is important to
point out that the accuracy of the estimation can be greatly improved by zero-padding the original
signal, which results in a finer frequency resolution, at the expenses of a higher computational cost.

Additionally, the main phase component θ̂0 can be estimated as the Fourier Transform of Z eval-
uated at {̂fx, f̂y} spatial frequencies. That is, the argument of Equation 3.54. It follows that both the
estimated 2-D frequencies {̂fx, f̂y} and the phase θ0 can be subtracted to obtain a slope-compensated
or flattened interferogram (that is, ideally, an interferogram without fringes), as

Ẑp,q = Zp,qe−2πj[(̂fxp+̂fyq)−θ̂0]. (3.55)

In this regard, without the presence of noise, the values of Ẑ tend to zero, as any residual phase
gradient has been removed and any phase offset has also been subtracted from the original phase
values. However, in the presence of noise, fringe frequencies should be removed and the remaining
phase values should provide a true estimate of the noise present in the original signal.

Finally, this is illustratedwith the following examples. Figure 3.32(a) shows a simulated andnoise-
free phase (256×256 pixels) where fringe frequencies have been added. The associated coherence
map, computedwith Equation 3.23 and amultilook size of 15×15 pixels, is shown in Figure 3.32(b).
The removal of the dominant frequencies is carried out with Equation 3.54 where a window of 8×8
pixels has been used for the estimation. The resulting flattened phase and the estimated fringe fre-
quencies are depicted in Figures 3.32(b) and 3.32(c) respectively. Adding back the estimated fringe
pattern and the main phase component yields a result equal to the original phase, as shown in Fig-
ure 3.32(d). In addition, this process increases the mean coherence from 0.7201 to 0.9996, which is
a more reasonable value since there is no noise. This also clearly shows the impact of the fringes on
the estimation of the coherence.
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(a) True phase. (b) Correlation. (c) Flattened phase.
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(d) Estimated fringe frequen-
cies

(e) Fringe frequencies
added back.

Figure 3.32: Estimation of local fringe frequencies in the absence of noise. The correlation
after subtraction of the local fringes is not shown since it is a completely white image.

The same process is followed in Figure 3.33 with the previous phase but some noise is included
(standard deviation of 1 rad). Note how the coherence is increased in the dense fringe areas (in fact,
it is globally increased from 0.42 to 0.64). Also, note that the resulting phase in Figure 3.33(d) is
correctly ’defringed’, even if the estimation is not as accurate as in the previous example, as shown
in Figure 3.33(e). It is useful to note that the remaining values reflect the noise level of the original
phase (Figure 3.33(d)).

Moreover, it is interesting to visualize that the process has a ’filtering effect’ (Figure 3.33(f)), due
to the fact that only one frequency is being extracted. As a consequence, a reduction of the noise is
obtained if the estimation is correct. However, if the noise obscures the original signal, wrong phase
ramps may be estimated (note that even pure noise will have a dominant component in its Fourier
Transform). This leads to obtaining wrong fringe frequency estimates and to the appearance of dif-
ferent artifacts, as shown inFigure 3.34(b). Nevertheless, if appropriately integrated into the filtering
process, the estimationof the local fringe frequencies is able to provide a goodbalance betweennoise
reduction and resolution preservation.
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(a) Original noisy phase. (b) Correlation. (c) Correlation after
subtracting the domi-
nant fringe frequencies.

(d) Flattened phase.
0.0
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(e) Estimated fringe frequen-
cies

(f) Fringe frequencies
added back.

Figure 3.33: Estimation of local fringe frequencies in the presence of a moderate level of noise.

(a) Original noisy phase. (b) Resulting phase after sub-
tracting and adding back esti-
mated frequencies.

Figure 3.34: Estimation of local fringe frequencies in the presence of a high level of noise.
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3.2.2.3 Iterative and Adaptive Denoising

The filter has to be able to completely remove the noise in wide and low-frequency areas, and to pre-
serve the resolution in dense (high frequency) fringe areas. To this end, an iterative, non-parametric
and completely adaptivemethodology is proposed. Theoriginal noisy interferogram is filtered a num-
ber of times with decreasing filtering windows. Large windows are employed in the first filter iter-
ations, for instance, a 256×256 window. At each iteration, the filtering window size is reduced by
half, until aminimum size of 8×8 pixels is reached. Note that both the initial and final sizes are input
parameters of the algorithm, so they can be adapted according to the original quality of the inter-
ferogram. That is, more filtering iterations can be used if the original phase is very noisy, whereas a
few iterations may be enough with good quality input data. In the last case, an initial size of 64×64
or 32×32 pixels should provide a very good result and has the advantage of being computationally
faster.

Moreover, the filtering kernel is also adaptive, so it varies in each iteration of the algorithm. The
size of the kernel is set as the square root of the size of the filtering window. Accordingly, it varies
from

√
256×

√
256 to

√
8×

√
8 pixels (rounded to nearest integer). This allows a stronger filtering

effect when larger windows are used.

Additionally, the subtraction of the local phase ramp by means of (3.54) and (3.55) is employed
in two different steps of the proposed method. First, local fringes are removed from the original
phase prior to coherence estimation. In this regard, the removal of the local phase ramp causes an
increase in correlation and, hence, coherence values provide amore accurate estimation of the noise
level, as shown with the previous simulations in Figures 3.33 and 3.34. This coherence will be used
to compute the values of the filtering parameter α in each iteration.

The only parameter that is kept fixed for every iteration is the multilook size, i.e., the number of
samples used to estimate the coherence. In this regard, conventional window sizes are used, for in-
stance, 5 × 5 or 7 × 7 windows. Note that, as coherence globally increases, the values of α will
be smaller than in other methods, but the iterative filtering will progressively denoise the original
phase. Also, the local fringes are also removed from the original signal prior to the filtering step, i.e.,
when an interferogram patch is extracted. Then, only the spectrum of the remaining values (which
are deemed as noise) is filtered, so the information related to the deformation fringes is better pre-
served.

Finally, the whole process is illustrated with Figure 3.35 where a single block of simulated phase
is filtered with a single iteration. Note that the fringes are properly removed before filtering (Fig-
ure 3.35(b)) so that only the remaining noise is filtered with a spatial convolution with the kernel.
The filtered phase in Figure 3.35(e) is obtained in frequency domain by applying Equation 3.20,
and the final result is obtained after adding back estimated fringe frequencies from the original noisy
phase.
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(a) Original noisy phase. (b) Defringed phase. (c) Spatial convolution.
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(d) Smoothed spectrum. (e) Filtered phase. (f) Final result.

Figure 3.35: Filtering process of a single block with the proposed algorithm. The mean co-
herence, estimated with a 5×5 window, of the block is 0.652 and the filtering parameter α is
0.348.

3.2.3 Results

This section is devoted to validate the effectiveness of the proposed filter with different datasets.
Both simulated data and real interferograms are used. The performance of the filter is compared
quantitatively with different, state-of-the-art methods described in the previous Section 3.2.1.

3.2.3.1 Synthetic Datasets

A synthetic interferogram is generated as the sum of a smooth function, corresponding to a 2-D
Gaussian distribution, and a highly-variant (high frequency) 2-D arctangent function. The smooth
surface can be generated according to

Slow = 3(1− x)2 · e−(x2)−(y+1)2 − 10
(x
5
− x3 − y5

)
· e−x2−y2 − 1

3
· e−(x+1)2−y2 , (3.56)

and the high frequency surface is simply simulated with

Shigh = arctan(x). (3.57)

The high gradient function will be especially useful to detect overfiltering effects. Visually, the sim-
ulated phase is shown in Figure 3.36(c). The size of the data is 1000×1000 pixels.
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(a) Smooth 2-D Gaussian
function.

(b) Variable and increasing
high frequency phase.

(c) Simulated phase.

Figure 3.36: Noise-free synthetic phase.

Then, different levels of noise are added to the original phase. For the sake of simplicity, noise
is uniformly added by fixing a certain standard deviation, which is computed as a function of the
coherence and the number of looks by means of Equations 2.44 and 2.45. Specifically, a number of
looks L = 9 has been fixed and four different values of mean coherence |γ̄| are set. This yields the
four noise standard deviations shown in Table 3.4, which vary from 0.509 rad and 2.569 rad. Note
that the largest standard deviation has been manually set to test the performance of every method
in an extremely noisy scene, since this value is out the limit derived from Equations 2.44 and 2.45,
which is about 1.8 rad.

Interferogram |γ̄| L σφ [rad]
I1 0.50 9 0.509
I2 0.30 9 0.941
I3 0.15 9 1.367
I4 – – 2.569

Table 3.4: Characteristics of the four simulated interferograms.

The performance of all filters is assessed by the number of residues [7], previously introduced in
Section 3.1.3Moreover, the advantage of testing simulations is that the true phase is known. Conse-
quently, another quantitative measure of the filtering performance is given by themean square error
(MSE), which provides a quantitativemeasure of the difference between the true (noise-free) phase
and the filtered phase. A ’perfect’ filtered interferogram is obtained if MSE = 0, and larger MSE
values indicate a poor filtering performance. This error can be calculated as

MSE = E
{
|arg(ej(φF−φtrue))|2

}
(3.58)

where φF is the filtered phase and φtrue is the noise-free phase. It is important to stress that in order
to correctly compare the performance of all filters, the same parameters have been employed when
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possible, i.e., when a common parameter value can be used. Accordingly, the original Goldstein, its
adaptive version and theRASF filters use the same 7×7 Gaussian kernel as the smoothing operator.
The spatial bandwidth of the Gaussian kernel is 2.5. Regarding the pixel-based algorithm, the power
spectrum is weighted with a 3× 3 sinc function, as proposed in [79]. In the proposed method, an
adaptive kernel is generated at each filtering iteration, and its size varies as a function of the filtering
window size, as previously mentioned. Moreover, all the block-based filters employ an overlap of
3/4 of the size of the filtering window. Thismeans that the window advances 1/4 of its size between
two consecutive patches. The rest of the filtering parameters are summarized in Table 3.5.

Filter Window size (pixels) Coherence estimation (pixels) Filter parameter α
Goldstein 256×256 5×5 0.9

Adaptive Goldstein 256×256 5×5 Adaptive
Pixel-based Adaptive 5×5 Adaptive

RASF 256×256 to 8×8 5×5 Adaptive
Proposed method 256×256 to 8×8 5×5 Adaptive

Table 3.5: Filtering parameters of each method.

Note that a patch size of 256 × 256 pixels has been used in both the original Goldstein and
adaptive Goldstein filters. This patch size is larger than the one proposed in the original publica-
tions [64] [66], which is 32× 32 pixels. The reason of using this patch size is to enhance the result
provided by both conventional methods. As stated previously, larger filtering windows offer better
results in noise reduction. Consequently, filtering results with a 32 × 32 window would have pro-
vided worse results in terms of noise reduction and residues elimination, and the comparison with
the rest of the methods would not have been fair.

Figure 3.37 shows the filtering results of the interferogram named I1 in Table 3.4, which is the
one with the highest quality. All the filters show good results in this case, and the noise is almost
completely suppressed. Fringe continuity is preserved with all the adaptive methods but not with
the standard Goldstein filter, where oversmoothing effects are clearly visible in the dense fringe area
of the central part of the interferogram. This illustrates theneedof using adaptivefiltering, since some
fringes are lost due to the large value of α (0.9). This value of α certainly provides an optimum result
in wide areas of the image, where noise reduction is almost total, and the filtered phase is identical to
the true phase since the filter is strong even if the phase quality is already high. This can be observed,
for instance, in the bottom right corner or Figure 3.37(b). However, a value of α of 0.9 is not suited
for high-frequency areas, and the phase will be inevitably overfiltered. Table 3.6 summarizes the
quantitative results according to both quality criteria previously detailed. We can see that the few
residues in the original phase are reduced to 0 in all cases. Among them, the proposed filter has the
best result in terms of MSE.
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(a) Original noisy phase. (b) Goldstein. (c) Adaptive Goldstein.

(d) Pixel-based. (e) RASF. (f) Proposed method.

Figure 3.37: Filtering results of the first simulation with different methods.

Residue number Improvement MSE
Interferogram I1
Original 86 – 0.264
Goldstein 0 100% 0.019
Adaptive Goldstein 0 100% 0.081
Pixel-based 0 100% 0.063
RASF 0 100% 0.031
Proposedmethod 0 100% 0.011

Table 3.6: Performance analysis of different filters with the first simulation.
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Results of filtering interferogram I2 are shown in Fig. 3.38. Note that a phase standard deviation
of 0.941 clearly worsens the quality of the original phase and the noise level is noticeably higher than
in the previous simulation.

(a) Original noisy phase. (b) Goldstein. (c) Adaptive Goldstein.

(d) Pixel-based. (e) RASF. (f) Proposed method.

Figure 3.38: Filtering results of the second simulation with different methods.

Althoughnoise is almost completely suppressedwith theoriginalGoldsteinmethod, some fringes
are lost in the central area due to overfiltering. Concerning the adaptive Goldstein and the pixel-
based filters, they both show good results, especially in fringe preservation. However, noise reduc-
tion is not as effective as with theRASF and the proposed iterative method.

This simulation is also useful to prove that if not properly controlled, an iterative algorithm entails
the risk of filtering too much. This can be observed by comparing Figures 3.38(e) and 3.38(f). Al-
though both iterative methods offer the best results in noise suppression, the proposed filter is able
to simultaneously preserve useful fringe information without altering the original phase structure.
This optimum performance is also shown in terms of residues and MSE values in Table 3.7. The
proposed method is able to completely eliminate phase residues and yields the best MSE value.

Then, according to these two simulations, we can deduce the proposed filter offers a larger im-
provement whenever the phase gradient or the noise are high, proving that it achieves the best bal-
ance between noise suppression and fringe preservation, in comparison with the rest of methods.
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Residue number Improvement MSE
Interferogram I2
Original 66391 – 0.941
Goldstein 164 99.75% 0.022
Adaptive Goldstein 442 99.33% 0.091
Pixel-based 2627 96.04% 0.253
RASF 12 99.98% 0.041
Proposedmethod 0 100% 0.019

Table 3.7: Performance analysis of different filters with the second simulation.

The third simulation corresponds to interferogram I3. Filtering results are represented in Fig-
ure 3.39 and the improvement in terms of residues and MSE is summarized in Table 3.8. As shown
in Figure 3.39(a), the noise level is very high and the spatial continuity of the fringes is not that clear
since the noise obscures these parts of the signal. This is also reflected with the large number of
residues present in the original phase.

As it can be observed in Figures 3.39(b) and 3.39(c), both the standardGoldstein and its adaptive
version exhibit almost the same performance as a result of the low coherence values, which make
the filtering parameter α to be large and, hence, the filtering strong. The number of residues is also
similar for these two filters.

In the pixel-based filter, the size of the individual filtering windows is not enough to completely
suppress the noise with just a single filtering operation, as shown in Figure 3.39(d). The number of
residues of the filtered interferogram is the largest among all the filteringmethods and so is theMSE,
showing that the performance of the pixel-based filter is limited with very noisy input phases.

TheRASF and the proposed filter show the best results in terms of residues andMSE, but none of
them is able to correctly preserve the fringes of the central part of the phase. Betweenboth, theRASF
exhibits more discontinuities than the proposed method. In this regard, in the presence of a high
level of noise, the estimation of the local phase ramps becomes a very challenging task, as previously
mentioned in Section 3.2.2.2. Consequently, a complete noise reduction, which requires the use
of larger filtering windows, along with fringe preservation, which benefit from smaller windows, is
nearly unattainable and the phase is more likely to be overfiltered.
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(a) Original noisy phase. (b) Goldstein. (c) Adaptive Goldstein.

(d) Pixel-based. (e) RASF. (f) Proposed method.

Figure 3.39: Filtering results of the third simulation with different methods.

Residue number Improvement MSE
Interferogram I3
Original 264907 – 2.135
Goldstein 6600 97.51% 0.117
Adaptive Goldstein 8519 96.78% 0.228
Pixel-based 52034 80.36% 1.043
RASF 95 99.96% 0.094
Proposedmethod 71 99.97% 0.080

Table 3.8: Performance analysis of different filters with the third simulation.

The result can be enhanced by fixing a smaller initial size of the filtering window. Figure 3.40
shows the resulting phases after applying the proposed method with smaller initial window sizes.
As expected, noise suppression becomes less effective with smaller windows, but the phase is less
likely to be overfiltered and the fringes are better preserved. When an initial window size of 64×64
or 32×32 is used, the detailed features in the central part of the image are correctly preserved, but
noise is less reduced in low-frequency areas. Nevertheless, noise reduction is still very effective and
the improvement is quite remarkable, as Figures 3.40(b) and 3.40(c) show. It is worth mentioning
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that the frequency of the simulated fringes bymeans of the arctangent function is extremely high and,
in practice, such abrupt phase changes are usually not present in real SAR interferograms. However,
it is convenient to test the algorithm with both extreme noise levels and strong phase gradients.

(a) 128×128. (b) 64×64. (c) 32×32.

Figure 3.40: Filtering results of the third simulation with the proposed method with different
initial window sizes.

Finally, the last simulation corresponds to an extremely noisy interferogram where a very high
standard deviation has been used to add noise to the original data. All the filtering results are rep-
resented in Figure 3.41. Apparently, the original phase seems to be pure noise, so that the phase
structure is completely masked by the noise, as shown in Figure 3.41(a).

As in the previous simulation, theGoldstein filter and themodifiedGoldstein filters offer the same
results, as the coherence values are close to 0, making the filter parameter α very close to 1.

However, both filters do not recover useful measurements (even with a 256×256 filtering win-
dow) and the original and filtered phases seem to be the same. Concerning the pixel-by-pixel filter,
the maximumwindow size has been used to filter each pixel in the image. Noise reduction is almost
negligible with this filter.

As it can be seen in Figures 3.41(e) and 3.41(f), both iterative filters are able to greatly suppress
the noise and, at least, to recover some parts of the original signal. Moreover, the proposed method
shows a better performance in the spatial smoothness of the phase values, whereas theRASF filter
presents some artifacts and more discontinuities in the filtered phase. Obviously, the recovering of
the detailed fringes is almost unfeasible with such a degraded original interferogram. The filtering
results for this interferogram are summarized in Table 3.9. As expected, only the iterative methods
present a major improvement in terms of the final number of residues. It can be observed that the
proposed filter offers again the best result in terms of residues and MSE. Instead, the improvement
is much less significant with the other three filters.
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(a) Original noisy phase. (b) Goldstein. (c) Adaptive Goldstein.

(d) Pixel-based. (e) RASF. (f) Proposed method.

Figure 3.41: Filtering results of the fourth simulation with different methods.

Residue number Improvement MSE
Interferogram I4
Original 331415 – 3.145
Goldstein 328696 0.82% 3.068
Adaptive Goldstein 328654 0.83% 3.069
Pixel-based 269945 18.55% 3.147
RASF 4293 98.71% 0.523
Proposedmethod 863 99.73% 0.401

Table 3.9: Performance analysis of different filters with the fourth simulation.

3.2.3.2 Comparisonwith Conventional Kernels

It is important tomention that the effectiveness of the proposedmethod not only relies on the use of
the specific smoothing kernel. In this regard, interferogram I3 has been filtered using the proposed
scheme but with different smoothing kernels. Specifically, besides the proposed kernel based on
Chebyshev polymomials, a Gaussian and a mean kernel have also been tested. To provide a better
comparison, a single filtering iteration using a block size of 32×32 pixels has been used. According
to the proposed formulation, the size of each kernel is 6×6 pixels (closest integer to

√
32). The re-
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sulting phases are shown in Figure 3.42 and the quantitative results are summarized in Table 3.10.
By comparing Figure 3.42(a) with Figures 3.42(b) and 3.42(c), it is clearly appreciated that the pro-
posed kernel offers a more significant smoothing effect, which is translated into a stronger noise
reduction and a better overall quality of the phase. This better performance is also reflected in terms
of residues and MSE values, as shown in Table 3.10. However, it must be pointed out that conven-
tional kernels provide an acceptable result, proving that the complete iterative strategy, involving
each step of the block diagram of Figure 3.29, can also be applied with conventional kernels with
similar results.

(a) 6×6 proposed kernel. (b) 6×6 mean kernel. (c) 6×6 Gaussian kernel.

Figure 3.42: Filtering results of the third simulation with three different kernels.

Residue number Improvement MSE
Interferogram I3
Original 264907 – 2.135
Gaussian kernel 16701 93.58% 0.454
Mean kernel 13244 94.92% 0.407
Proposed kernel 2231 99.14% 0.212

Table 3.10: Performance analysis of the proposed method with three different filtering kernels.

3.2.3.3 Results with Real Data

Different real SAR interferograms have been processed to test the performance of the proposed
method and to compare its advantage over conventional filters. It is important to point out that the
filtering parameters are the same as the ones of the previous simulations, which were summarized in
Table 3.5.

It is also important to note that, since a true phase is not available with real data, only phase
residues provide a quantitative measure of the performance of each filter. In all cases, each filter
is tested with the original interferogram at full resolution. That is, there is no previous filtering (such
as a multilook) so that the noise suppression capability of each filter can be truly evaluated.
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All the real datamapped a sudden geophysical event, such as a volcanic eruption or an earthquake.
Accordingly, the co-seismic or the co-eruption pair will be processed. That is, we will analyze the inter-
ferogram formed by two images which embrace the earthquake or the volcanic occurrence (i.e., the
first image was gathered before and the second one after the event). Consequently, each differential
interferogram to be filtered reflects a strong deformation pattern of the Earth surface caused by the
associated tectonic or volcanic activity.

The first real dataset corresponds to a differential interferogram mapping the Mount Etna’s vol-
canic eruption in May 2008. Etna is the highest active volcano in Europe, located in the eastern
coast of Sicily (Italy) in the Metropolitan City of Catania. Its geographic location was previously
shown in Figure 3.13.

The analyzed interferogram is the result of the combination of two images which were acquired
in dates 2008-05-05 and 2008-05-29 byRADARSAT-2 in beammode FQ29. The near and far range
incidence angles are 46.8◦ and 48.0◦, respectively. The size of the processed scene is 3300×6000
pixels in range and azimuth respectively, and the polarimetric channel is HH+VV.

All filtered differential phases are represented in Figure 3.43 and the quantitative evaluation of the
results is shown in Table 3.11. It can be seen in Figure 3.43(a) that the original data present a very
highdegreeof decorrelation throughout the scene. This canbemainlydue to temporal decorrelation,
since the images are acquired at a revisit time of 24 days, and due to the presence of vegetation in the
area. This is translated into a very large number of phase residues (almost 20% of the total number
of pixels), as shown in Table 3.11.

A visual inspection of Figure 3.43(d) shows that the pixel-basedmethod is not able to properly re-
move the noise with decorrelated input data. This is also deduced from the large number of residues
that the filtered phase still has. Concerning theGoldstein filter and its adaptive algorithm, the filtered
phases of which are shown in Figures 3.43(b) and 3.43(c), the improvement in noise reduction is no-
ticeable but the number of phase residues remains relatively high. Furthermore, fromFigures 3.43(e)
and 3.43(f), it is deduced that noise can only be almost completely suppressed by filtering the orig-
inal interferogram multiple times. In this regard, both the RASF and the proposed method show
an extraordinary result. However, the RASF-filtered phase still has some artifacts and discontinu-
ities whereas the resulting phase with the proposed method is cleaner, smoother and more spatially
continuous, and the strong phase gradients caused by the deformation are properly preserved. This
better performance is also reflected in terms of residues’ suppression. As shown in Table 3.11, the
proposed filter offers the best result and is able to almost completely eliminate all the original phase
residues. In fact, only 1657 residues are finally detected, which is approximately 10 times less than
withRASF.
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(a) Original noisy phase. (b) Goldstein. (c) Adaptive Goldstein.

(d) Pixel-based. (e) RASF. (f) Proposed method.

Figure 3.43: Filtering results of the RADARSAT-2 dataset with different methods.
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Interferogram Residue number Improvement
Original 3794446 –
Goldstein 480836 87.33%
Adaptive Goldstein 917458 75.82%
Pixel-based 1632938 56.97%
RASF 17981 99.52%
Proposedmethod 1657 99.96%

Table 3.11: Performance analysis of different phase filters for RADARSAT-2 dataset.

Moreover, it is interesting to check the improvement in terms of coherence. Figure 3.44 shows
the histograms of differential coherence before and after filtering with each method. The proposed
method offers the largest improvement, followed by the other iterative method (RASF). In fact, be-
fore filtering, 68% of pixels had a coherence value below 0.5. After filtering with the proposed al-
gorithm, only 0.6% of pixels (specifically, 132220 out of a total of 19800000 pixels) have a coher-
ence below this threshold. Finally, Figure 3.45 shows the visual impact on the differential coherence
maps after filtering the data with the proposed method. It can be seen that the coherence is greatly
increased throughout the whole area. Only the zone around the volcano crater (in the central part of
Figure 3.45(b)), still presents low coherence values due to the presence of filtering artifacts (fringes)
caused by the extreme decorrelation in the original data in this specific area.
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Figure 3.44: Coherence histograms of the RADARSAT-2 dataset before and after filtering with
each method.
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(a) Original coherence. (b) Coherence after filtering.

Figure 3.45: Differential coherence maps before and after filtering the RADARSAT-2 dataset
with the proposed method. Coherence was estimated with a 7×7 boxcar kernel.

Another dataset from a different sensor is also shown. Specifically, an interferogrammapping the
Kilauea volcanic eruption of March 2011 has been processed. Kilauea is one of the world’s most ac-
tive volcanoes, and it has been erupting almost continuously since 1983. Kilauea volcanoonHawaii’s
Big Island has been widely studied by scientists to understand volcanic eruptions for disaster pre-
paredness and geohazards forecasting. Its geographic location is shown in Figure 3.46.

Imageswere acquired in dates 2010-01-06 and 2011-05-05 by theUninhabitedAerial Vehicle Syn-
thetic Aperture Radar (UAVSAR), which is an airbone L-band SAR operated by NASA [86]. The
near and far range incidence angles are 22.37◦ and 66.48◦ respectively. The processed image size
is 2300×3000 pixels (range×azimuth) and the interferogram corresponds to the HH polarimetric
channel.

Filtering results are represented in Fig. 3.47 and the quantitative improvement is shown in Ta-
ble 3.12. It can be observed that in this case all filters show a good performance in both noise sup-
pression and resolution preservation.

Note that the quality of the original data, shown in Figure 3.47(a), is better than in the previous
case. As a result, noise suppression by each method is better achieved. The pixel-based filter pre-
serves the majority of deformation details, but noise suppression may not be enough in some noisy
areas. For the rest of the filters, the improvement in terms of residues is remarkable.
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Hawaiian Islands

Figure 3.46: Geographic location of the Kilauea Volcano in Hawaii (USA). Images were ex-
tracted from ESA webpage and generated with Google-Earth©.

In fact, more than 93% of the residues are eliminated and the interferometric phase fringes cor-
responding to the deformation are well preserved. However, the proposed filter still shows the best
results in terms of residues removal.

Interferogram Residue number Improvement
Original 773368 –
Goldstein 7785 98.99%
Adaptive Goldstein 49064 93.66%
Pixel-based 147002 81.00%
RASF 968 99.87%
Proposedmethod 800 99.91%

Table 3.12: Performance analysis of different phase filters for UAVSAR dataset.

As in the previous example, it is interesting to visualize the impact on the coherence. Histograms
of Figure 3.48 showhow the coherence is greatly improvedwith each filter. Note that all themethods
offer good results, since the quality of the original data was significantly high. The proposedmethod,
however, still shows the best improvement. Additionally, the increase in coherence can be visualized
with the coherence maps of Figure 3.49. The coherence was estimated using a 7×7 boxcar filter.
Note that some parts of the image are white since the noise was almost completely removed from
the original interferogram.

104



(a) Original noisy phase. (b) Goldstein. (c) Adaptive Goldstein.

(d) Pixel-based. (e) RASF. (f) Proposed method.

Figure 3.47: Filtering results of the UAVSAR dataset with different methods.
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(a) Complete histograms.
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(b) Highest histogram values.

Figure 3.48: Differential coherence histograms of the UAVSAR dataset before and after filter-
ing with each method.

(a) Original coherence. (b) Coherence after filtering.

Figure 3.49: Coherence maps before and after filtering the UAVSAR dataset with the proposed
method. Coherence was estimated with a 7×7 boxcar kernel.

The last illustration of the filtering performance is carried out with a Sentinel-1 interferogram,
which mapped again the Kilauea volcano. More precisely, it mapped a relatively recent eruption
that took place in May 2018. The volcano actually experienced the largest eruption in at least 200
years [87]. Violent lava explosions followed by a massive crater collapse generated a strong earth-
quake onMay 4.

Images were acquired in dates 2018-05-02 and 2018-05-08 by Sentinel-1 in InterferometricWide
Swath (IW)mode. The near- and far-range incidence angles are 30.89◦ and 36.67◦ respectively, and
thepolarimetric channel isVH.Thesizeof theprocessedarea is 3300×1700pixels (range×azimuth).
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The filtered differential phases are represented in Figure 3.50. Firstly, note the large number of
fringes that are present in the interferometric phase as a consequence of the massive ground move-
ment. Also note that the noise is not uniformly distributed, i.e., some areas are more affected by
noise than others. In this regard, decorrelated areas in the bottom right corner of the image in Fig-
ure 3.50(a) may be due to presence of lava in the second acquisition, which changed the surface
properties. Concerning the filtering results, the pixel-based method offers a poor result in noisy ar-
eas, as in the previous noisy datasets (both synthetic and real). The conventional and adaptiveGold-
stein filters provide approximately the same result. Both filters are able to suppress the noisy except
in some very noisy areas. The best results, shown in Figures 3.50(e) and 3.50(f), are obtained with
the iterative algorithms. However, the proposed filter offers a smoother and cleaner interferometric
phase (for instance, in the bottom right corner of the image). The result of all filters is also evaluated
with the number of phase residues in Table 3.13. As it can be seen, the proposed method offers the
best result, since the cancellation of residues is almost total.

Interferogram Residue number Improvement
Original 752123 –
Goldstein 72255 90.39%
Adaptive Goldstein 127982 82.94%
Pixel-based 267321 64.46%
RASF 2635 99.64%
Proposedmethod 714 99.91%

Table 3.13: Performance analysis of different phase filters for Sentinel-1 dataset.

Finally, the improvement is also reflected with the histograms of differential coherence shown in
Figure 3.51. Although the coherence is greatly increased by all methods, the proposed filter provides
the largest improvement.
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(a) Original noisy phase. (b) Goldstein.

(c) Adaptive Goldstein. (d) Pixel-based.

(e) RASF. (f) Proposed method.

Figure 3.50: Filtering results of the Sentinel-1 dataset with different methods.
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Figure 3.51: Differential coherence histograms of the Sentinel-1 dataset before and after filter-
ing with each method.

(a) Original coherence. (b) Coherence after filtering.

Figure 3.52: Coherence maps before and after filtering the Sentinel-1 dataset with the pro-
posed method. Coherence was estimated with a 7×7 boxcar kernel.
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3.2.3.4 Additional Filter Improvements

An evident drawback of the proposed filter is its computational cost. Obviously, since the input
noisy interferogram is to be filtered repeatedly, the computation time increases with the number of
iterations. To solve this inconvenience, a simple stopping criterion was devised. This criterion con-
stitutes a trade-off between the algorithm performance and its computation time. Since the phase is
progressively denoised, coherence is also increased after each filter iteration. The stopping criterion
is directly related to this increase in coherence. Then, at any filter iteration i, the coherence difference
map is computed, i.e.,

Δγ = |γ i| − |γ i−1|, (3.59)

where |γ i| and |γ i−1| are the coherence maps obtained at iterations i and i− 1 respectively.
Note that the criterion is block-dependent, that is, the algorithm checks if the mean coherence

difference of an interferogram block is above a certain threshold (for instance, 0.1 or 0.05). If this
is verified, the block is filtered. Otherwise the block is not filtered until the next iteration when the
coherence difference map is computed again. In this way, the progressive denoising is automatically
adapted to each resolution level.

Compute coherence
 difference map 

Coherence es�ma�on

Δγ =γ
i
 - γ(i-1)

Δγ > threshold ?

Extract interferogram
block 

Yes

No

Filter block at itera�on i  

Itera�on i

Figure 3.53: Adaptive stopping criterion diagram.
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An example of the resulting improvement in computation time is provided with the simulation
shown in Figure 3.54 and in Table 3.14. As it can be observed, the inclusion of this simple criterion
provides almost the same filtering result but the computational time is greatly reduced.

(a) Original noisy phase. (b) No stopping criterion. (c) Stopping criterion: quality
threshold = 0.05.

Figure 3.54: Filtering results of a simulated interferogram with and without including the stop
criterion. The noise standard deviation is 1 rad.

Residue number Improvement MSE Execution time (s)

Original 5709 – 0.4988 –
No stopping criterion 0 100% 0.0067 86
Stopping criterion 0 100% 0.0071 17

Table 3.14: Execution times for phase filtering with the proposed method. The filter was ex-
ecuted in a personal computer having an Intel Core i7-8700 with a clock rate of 3.80 GHz and
16 GB of RAM. The code is written in Interactive Data Language (IDL) and is not parallelized.

3.2.3.5 Impact on Phase Unwrapping

Even if phase unwrapping is beyond the scope of this thesis, the benefits of filtering for the un-
wrapping process deserve to be illustrated. In this regard, a simple simulation has been carried out.
Among the different phase unwrapping methods which are available in literature [50], the efficient
and simple method based on the 2-D Discrete Cosine Transform (DCT) has been used [88]. This
approach is composed of the following steps.

1. Compute the local derivatives of the wrapped phase φ in both dimensions,

ρi,j = (φi+1,j − 2φi,j + φi−1,j) + (φi,j+1 − 2φi,j + φi,j−1), (3.60)

being {i, j} each pixel spatial index.
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2. Compute the 2-D DCT of ρi,j to yield ρ̂i,j. The cosine transform C of signal x is given by

Cm,n =
M−1∑
i=0

N−1∑
j=0

4xi,j cos
[ π
2M

m(2i+ 1)
]
cos
[ π
2N

n(2j+ 1)
]
, (3.61)

whereM andN are the total number of samples in each dimension.

3. Modify ρ̂i,j to obtain φ̂i,j according to

φ̂i,j =
ρ̂i,j

2
(
cos( πiM) + cos( πjN )− 2

) . (3.62)

4. Unwrapped phase values are directly provided by the 2-D Inverse DCT of φ̂i,j. The inverse
transform can be obtained by means of

ci,j =
1

MN

M−1∑
i=0

N−1∑
j=0

w1(m)w2(m)Cm,n cos
[ π
2M

m(2i+ 1)
]
cos
[ π
2N

n(2j+ 1)
]
, (3.63)

where

w1(m) =

{
1/2, m = 0,
1, 1 ≤ m ≤ M− 1,

(3.64)

and

w2(m) =

{
1/2, n = 0,
1, 1 ≤ n ≤ N− 1.

(3.65)

Tovisualize the impactof thefilter onphaseunwrapping, a simulated2-Dphasewill beunwrapped
and rewrapped again. Evidently, the rewrapped phase should ideally be identical to the original one.
Random noise with 1 rad of standard deviation is included.

In Figure 3.55, the original noisy phase (Figure 3.55(a)) was unwrapped and rewrapped again. As
shown in Figure 3.55(c), noise influences the process and an erroneous phase is obtained. It can also
be observed that some fringes are lost.

Now, the noisy phase of Figure 3.55(a) was input to the proposed filter and the same process
of unwrapping and rewrapping is performed. The result is depicted in Figure 3.56. It can be clearly
observed that the unwrapping of the phase performedbetter, so that the rewrapped phase is (almost)
identical to the filtered one.

112



(a) Original noisy phase. (b) Unwrapped phase. (c) Rewrapped phase.

Figure 3.55: Phase unwrapping and rewrapping of a noisy phase.

(a) Filtered phase. (b) Unwrapped phase. (c) Rewrapped phase.

Figure 3.56: Phase unwrapping and rewrapping of a filtered, cleaner phase.
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3.3 PolDInSAROptimization

3.3.1 Introduction

The recent launch of newer SAR spacecrafts with polarimetric capabilities, such as TerraSAR-X,
Sentinel-1/2 or PAZ, motivated the development of a new analytical framework in which interfero-
metric and polarimetric methods can be properly combined. In the context of differential interfer-
ometry with multitemporal datasets (i.e., time series exploiting the temporal baseline of the acqui-
sitions) for subsidence analysis, the benefits of including all the available polarimetric information
have been intensively proved [31] [33] [89] [19] [90] [91] [92]. The quality of the results is greatly
improved, in terms of the number of reliable pixels, deformation measurement accuracy and spatial
coverage, compared to single-polarimetric DInSAR time series.

Conversely, in this work we focus on the polarimetric optimization of single-baseline datasets, that
is, whenonly a pair of images is processed. Thegoal of the optimization relies on improving the phase
quality of interferograms, aswith the filtering strategy previously detailed in Section 3.2, by exploring
all the polarimetric diversity offered bymodern SAR sensors. The rationale behind the optimization
is to find the optimum combination of polarimetric channels, so that the phase quality is automatically
enhanced. Awide variety of optimization algorithms are available in literature [58] [31] [33]. In the
following sections, they will be described. Evidently, each method requires a quality criterion from
which the optimization will be carried out. As previously stated in Section 2.3.1, the interferometric
coherence is a direct indicator of the phase quality. It can be therefore deemed as the figure of merit
to be maximized.

3.3.2 Algorithms

3.3.2.1 BEST

The simplest optimization algorithm is denoted as Best [29]. This approach selects, among the dif-
ferent available polarimetric channels, the one which offers the highest coherence. For instance, in
a dual-pol SAR system which gathers images from channels VV and VH, the phase of each pixel is
selected from the channel which provides the best coherence, i.e.,

γBest = max{|γVV|, |γVH|}. (3.66)

Note that this simplemethoddoesnot use thePol(D)InSAR formulation explained inSection2.5.
Consequently, it does not exploit the full potential that polarimetry offers, since just a discrete set
of projections are tested and, hence, it does not provide an optimum solution to the optimization
problem. Its implementation is, however, straightforward and its computation time is very fast since
only a few comparisons are needed.
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3.3.2.2 Sub-Optimum ScatteringMechanism

The Sub-Optimum ScatteringMechanism (SOM) is a more sophisticated approach which explores
all possible combinations of orientation φ and ellipticity τ in the scattering matrix [93], previously
introduced in Section 2.4 and defined by Equation 2.59. Thismethod expresses the scatteringmatrix
S defined in the linear polarization basis {ĥ, v̂} in a new orthogonal basis {â, b̂} as a function of φ
and τ, by means of the following unitary transformation [94] [58]:

Sab =

[
Saa Sab
Sab Sbb

]
= UT

2SU2, (3.67)

being the transformation matrixU2 given by

U2 =

[
cos φ − sin φ
sin φ cos φ

][
cos τ j sin τ
j sin τ cos τ

][
ejφ0 0
0 e−jφ0

]
(3.68)

and where the absolute phase φ0 is usually set to 0 since it does not provide polarimetric or interfer-
ometric information. The optimization consists therefore in exploring all the possible values of the
pair {φ, τ} and selecting the combination which maximizes the coherence, i.e.,

γSOM = max
φ,τ

{|γab|, |γbb|}. (3.69)

where,

|γaa| =
E{|Saa,1Saa,2|}√

E{|Saa,1|2} · E{|Saa,2|2}
,

|γab| =
E{|Sab,1Sab,2|}√

E{|Sab,1|2} · E{|Sab,2|2}
.

(3.70)

Saa,i and Sab,i are the copolar and cross-polar channels in the newbasis defined by the orientation and
the ellipticity, for the first (i = 1) and second (i = 2) images forming the interferogram [33]. Then,
the optimization is made by selecting the phase of the optimum polarimetric channel resulting for
the best combination of φ and τ.

Finally, even though thismethod providesmore accurate solutions, it remains sub-optimum since
only a subspace of projections (derived from each combination of φ and τ) is tested.

3.3.2.3 Exhaustive Search Polarimetric Optimization (ESPO)

Exhaustive Search Polarimetric Optimization (ESPO) will be referred to as any algorithm which fully
explores the diversity of polarimetric combinations to derive higher quality interferograms. The
most intuitive idea consists in finding the projection vector ω which maximizes the generalized co-
herence defined in Equation 2.82. It is important to note that the Equal Scattering Mechanism
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(ESM) constraint is always satisfied. That is, we impose that ω1 = ω2 in Equation 2.82, so we only
consider a single projection vector, simply denoted as ω.

Unlike the previous algorithms Best and SOM, the exhaustive search provides the most optimal
solution to the optimization problem because the whole available polarimetric space is being ex-
plored. That is, this method searches the combination of polarimetric channels that provides the
best coherence. To do so, it is necessary to introduce the parameterization of the projection vector
ω.

On the one hand, for fully polarimetric data, ω can be expressed as a function of four real param-
eters (α, β, δ, ψ) [58] as

ω =

 cos(α)
sin(α) cos(β)ejδ

sin(α) sin(β)ejψ

 ,



0 ≤ α ≤ π/2,

0 ≤ β ≤ π/2,

−π ≤ δ < π,

−π ≤ ψ < π.

(3.71)

On the other hand, for dual-pol images, ω is parameterized as

ω =

[
cos(α)
sin(α)ejψ

]
,

0 ≤ α ≤ π/2,

−π ≤ ψ < π.
(3.72)

At this point, theESPOalgorithmconsists in finding the values of parameters α, β, δ and ψ (or only
α and ψ in the dual-pol case), the ranges of which are finite and known andwhich provide the highest
coherence. The algorithm can be implemented either with a brute-force search or in two steps. In the
former case, a fine sampling of α, β, δ and ψ is performed and the solution is directly provided by the
combinationwhichmaximizes the coherence. Themajor drawback of this approach is the extremely
slow computation time, since a very large number of possible combinations has to be evaluated for
each pixel in the interferogram. In fact, the algorithm is of polynomial time (O(n4) in Big-Onotation).
Thismeans, for instance, that setting a fine sampling of 100 points for each parameter, i.e., a sampling
of 1◦ for {α, β} and 3.6◦ for {δ, ψ}, approximately 108 operations per pixels are needed. Amore fine
sampling of 1000 points per variable would require 1012 operations per pixel, which could result in
months or years of computation.

Because of this slow computation time, a two-step approach is usually chosen. This consists in
using a coarser sampling of each variable followed by a numerical method to refine the solution.
Usually, the Conjugated Gradient Method is applied [95] [96]. In this way, the computation time is
greatly reduced.

Thehigh computational cost ofESPO isbecause the coherenceoptimization is carriedout in a 4-D
space (in thequal-pol case). That is, the algorithmmaximizes a four-dimensional functiondefinedby
α, β, δ and ψ. Alternativemethods were proposed in [97] and [98]. Specifically, the Improved Signal-
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to-Noise Ratio Optimization (IM-SNR-OPT) [98] divides the original 4-D optimization problem
into three independent and successive searches of 2-D, 1-D and 1-D, greatly accelerating the com-
putation time. The key point of this new algorithm consists in defining a new parameterization of the
projection vector ω. In this regard, this new definition of ω is directly related to the SNR of the ac-
quisitions, and can automatically be used tomaximize the coherence as with the previous algorithm.
However, the new parameterization does not depend simultaneously on four different variables, so
that the exhaustive search is divided and the computation time is greatly reduced.

Using the Pauli basis, the information of each polarimetric channel of acquisition i can be split
into a signal part and a noise part as

(SHHi + SVVi ) = (SHHi + SVVi )S + (SHHi + SVVi )N,

(SHHi − SVVi ) = (SHHi − SVVi )S + (SHHi − SVVi )N,

(S2HVi ) = (S2HVi )S + (SHHi )N,

(3.73)

where S andN are the signal and noise parts, respectively. Each element in Equation 3.73 is therefore
of the form

(SHHi + SVVi ) = y0ejα0 + η0,

(SHHi − SVVi ) = y1ejα1 + η1,

(S2HVi ) = y2ejα2 + η2,

(3.74)

so that, for instance, y0 corresponds to the amplitude of channel HH+VV, α0 its phase and η0 is the
associated noise component. According to Equation 3.74, the expression of the target vector (see
Equation 2.68 in Chapter 2) is

kSi =
1√
2
[y0ejα0 , y1ejα1 , y2ejα2 ]T, (3.75)

and the projection vector is

ω∗T =
[
1 x01ejθ01 x2ejθ02

]
,

x01, x2 ∈ [0 ∞]

θ01, θ02 ∈ [−π π].
(3.76)

From Equation 3.76 we can derive the expression of the complex backscattering coefficient (equiv-
alent to the one in Equation 2.79):

μSi = ω∗T
i ki,

μSi =
1√
2

(
y0ejα0 + x1y1ej(α1+θ1) + x2y2ej(α2+θ2)

)
.

(3.77)

Backscattering coefficients are characterized by an amplitude A and a phase β, i.e., they can be ex-
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pressed as
μSi = Aejβ, (3.78)

being its power
μSPi = A2. (3.79)

Moreover, assuming that noise follows a zero-mean Gaussian distribution with variance δ2, i.e.,
η1, η2, η3 ∼ N(0, δ2), its power is

μNP
i = (1+ x1 + x2)δ2. (3.80)

So, finally, the SNR is given by

SNR =
μSPi
μNP
i
,

SNR =
A2

(1+ x1 + x2)δ2
.

(3.81)

According to Equation 3.81, noise power μNp
i does not depend on either θ1 or θ2 and signal power

only depends on θ1 and θ2 [97]. It follows that the SNR can be optimized in two steps. First, ampli-
tude A is maximized by fixing an initial value of x1 and x2 and optimizing θ1 and θ2. Then, the SNR
is improved by searching optimum values of x1 and x2 with the previously obtained θ1 and θ2.

Although the computation time of this optimization is greatly reduced (the original 4-D problem
is divided into two successive 2-D optimizations), a further gain can be obtained with the following
considerations [98]. Imposing the third element of Equation 3.76 to be 0, i.e., x2ejθ2 = 0, we obtain
a new parameterization of ω (denoted as ω0) as

ω∗T
0 =

[
1 x01ejθ01 0

]
,

x01 ∈ [0 ∞],

θ01 ∈ [−π π],
(3.82)

so that Equation 3.77 is now converted to

μS0i =
1√
2
(y0ejα0 + x1y1ej(α1+θ01)),

μS0i = A0ejβ0 ,
(3.83)

and a new SNR value is given by

SNR0 =
A2

(1+ x01)δ2
. (3.84)

This allows to independently optimize x01 and θ01 so that the first 2-D optimization previously de-
scribed is in its turn divided into two independent 1-D optimizations. The whole process can be
summarized as follows.
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1. Set the initial values of x01, x01 and x2.

2. Optimize θ01 with the initial value of x01 by means of Equation 3.82. θ1 is also automatically
obtained since θ1 = θ01. This is the first 1-D optimization.

3. Optimize θ2 with Equation 3.76 with the previously obtained θ1, x1 and x2. This is the second
1-D optimization.

4. Optimize x1 and x2 with the obtained values of θ1 and θ2 also with Equation 3.76. This is the
2-D optimization.

5. Optionally, the process can be iterated from step 2 to step 4. In each iteration, the new initial
values of x01, x1 and x2 used in step 1, are set to the optimized ones of the previous iteration.

Finally, aswith the original ESPO, two implementation approaches can be used. On the one hand,
a fine gridmethod canbe considered at the expense of a high computational load. On theother hand,
a coarse grid followedby a conjugatedgradientmethodcanbeused togreatly improve the algorithm’s
execution time.

3.3.3 Preliminary Results

Thefirst approach to phase quality optimization consisted in applying the previously explained algo-
rithms to a set of quad-polarimetric SAR images. Specifically, the same pair ofRADARSAT-2 images
covering the Mount Etna’s eruption and described in Section 3.2.3.3 has been used. The processed
image size is 3700×6000 pixels. A Pauli RGB composite image of the area was previously depicted
in Figure 2.16.

Once thedata structures arebuilt according toPol(D)InSAR formulationdescribed inSection2.5,
phase quality optimization is carried out bymaximizing both the (conventional) interferometric co-
herence γ (Equation 2.82) and the phase coherence ρ (Equations 2.81 and 3.23). That is, both es-
timators are used as figure of merit in the optimization process. It is worth mentioning again that
each estimator requires a spatial average of a certain number of samples, i.e., a multilook has to be
applied. In this case, a boxcar filter of 15×15 pixels is selected. Moreover, the same implementation
strategy has been followed for ESPO and IM-SNR-OPT algorithms, which consists in the definition
of a coarse grid/sampling followed by a CGM numerical refinement. Concerning the ESPO algo-
rithm, a sampling of 30◦ has been used for parameters α and β, and a sampling of 45◦ for δ and ψ.
Concerning the SNRmethod, the step size for θ1 and θ2 is 45◦ and the step size for log x1 and log x2
is 2.

Figure 3.57 shows the coherence histograms for different polarimetric channels: co-polar chan-
nelsHH andVV, first Pauli channelsHH+VV andHH−VV, and the optimumones. As expected, a
global increase in both |γ| and ρ is obtained. Pixels that originally had a very lowcoherence (between
0 and 0.2) now present increased coherences distributed around 0.2-0.4 in the optimized channels.
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Moreover, pixels with high coherences in any polarimetric channel (greater than 0.8) also have their
values increased in the optimized channels, but this increase is rather small. Also, note that from the
original channels, the first one in the Pauli basis, i.e., HH+VV offers the highest coherence.
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(a) Coherence optimization.
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(b) Phase coherence optimization.

Figure 3.57: Histograms of coherence for different polarimetric channels, HH, VV, HH + VV,
HH− VV and optimum channels.

Moreover, looking at the histograms in Figure 3.57 it is important to point out that the perfor-
mance of both polarimetric optimization algorithms is nearly the same. In terms of |γ| optimiza-
tion, the obtained optimum interferograms would be almost identical, as the histograms provided
by ESPO and IM-SNR-OPT almost overlap. In terms of ρ optimization, it seems that the ESPO al-
gorithm offers more improvement in comparison to the SNRmethod, especially for low values of ρ
(around 0.1 and 0.3). However, as expected by the theoretical analysis of each algorithm, the SNR
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method has a considerably faster execution, showing the advantage that this algorithm has against
ESPO.

Coherence
optimization

Phase coherence
optimization

Algorithm ESPO IM-SNR-OPT ESPO IM-SNR-OPT

Execution time 1240 s 600 s 33933 s
(≈ 9 h 20 min)

10510 s
(≈ 2 h 50 min)

Mean value 0.4483 0.4469 0.3807 0.3711

Table 3.15: Computation time and global result obtained with both polarimetric optimization
algorithms. Times correspond to the execution on a Dell Workstation equipped with a 12-core
AMD Opteron (2.3 GHz) and 192 GB of RAM, without code parallelization.

Additionally, by observing both histograms in Figure 3.57, it seems that optimizing the phase co-
herence offers a larger improvement than optimizing the conventional coherence, especially for high
values. This is because the initial coherence values were already higher for |γ| than for ρ. Indeed, the
final number of high coherent pixels is larger in the |γ| optimization case. This can be verified with
the histograms shown in Figure 3.58.
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Figure 3.58: Histograms of coherence and phase coherence for channels HH+VV and the opti-
mum channels.

Theimprovement is also reflectedbydirectly looking at the coherencemaps of the optimumchan-
nel. For comparison purposes, Figure 3.59 shows the coherence maps of channels HH+VV and the
optimum channel. As it can be observed, the improvement is significant especially in urban and
neighboring areas, where the number of coherent pixels is increased.
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(a) Coherence map of channel HH+VV. (b) Coherence map of the optimum chan-
nel.

Figure 3.59: Coherence maps of channels HH+VV and the optimum channel after coherence
optimization with ESPO.

Despite the promising results in terms of coherence, the real purpose of this optimization is to
obtain amore reliable interferometric phase, since differential phase is themain input for geophysical
analysis of ground deformation. In this regard, highly coherent areas exhibit a less noisy phase (such
as the urban zones previously mentioned), but decorrelated areas (for instance, due to vegetation)
are almost as noisy as in any of the original channels. This is shown with the differential phases in
Figure 3.60. It can be observed that noise is slightly reduced, especially in some decorrelated areas,
but in general the improvement is negligible for practical purposes. In this regard, it seems that noise
reduction is mainly achieved bymultilooking, and the proposed polarimetric optimization does not
provide a further improvement in phase quality.
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(a) Differential phase of channel HH+VV. (b) Differential phase of the optimum
channel.

Figure 3.60: Differential phases of channels HH+VV and the optimum channel after coherence
optimization with ESPO.

A possible explanation for such minor improvement lies in the optimization itself, which works
on a pixel basis. That is, each pixel is individually optimized and has a specif value of the projection
vector ω. Therefore, the optimum projection vector for two adjacent pixels can be different, even
if they belong to the same kind of land cover. Then, the quality of the resulting phase may not be
improved significantly, since different phase centers can be retrieved due to the selection of different
polarimetric channels in neighbor pixels. This is assessed with the images representing the optimum
values of α, β, δ and ψ (ESPO) and x1, x2, θ1 and θ2 (IM-SNR-OPT) that are shown in Figure 3.61. It
is clearly observed that, from the four parameters defining the projection vectorω in each algorithm,
only the images of α and β (slightly) and x1, x2 resemble the scene land-cover, showing some areas
with rather homogeneous values of this parameter. Instead, the other parameters are much nois-
ier. Accordingly, the spatial variability shown in Figure 3.61 suggests that these parameters should
be kept fixed during the optimization process. Finally, to test whether the spatial variation in the
projection vector is the only reason for the small improvement in phase quality obtained with the
optimization, a more detailed analysis of noise is carried in Section 3.3.4.
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Figure 3.61: Computed optimum parameters α, β, δ and ψ (ESPO) and x1, x2, θ1 and θ2 (IM-
SNR-OPT) of the whole processed area.

3.3.4 Influence of theMultilook Size andNoise Analysis in Homogeneous Areas

Besides the problem of the spatial variability of the projection vectors mentioned in the previous
Section 3.3.3, it is convenient to analyze the effect that themultilook size has in the optimization. Be-
cause the coherence is being used as the quality criterion, the original matrixT6 (see Equations 2.77
and 2.78) which contains all the polarimetric and interferometric information, has to be averaged.
This leads to an important noise reduction (especially if a large number of pixels are averaged) at
the expenses of a significant resolution loss, as previously mentioned in Section 2.3.1. Accordingly,
the effect of themultilook size in the optimization will be analyzed in detail. That is, we will evaluate
howmuch coherence and, hence, howmuchphase quality improvement is obtained bymeans of this
prefiltering (multilooking) followed by the polarimetric optimization process. To this end, the same
optimization is performedwith different multilook sizes: from 3×3 to 21×21 independent samples
average. Additionally, the Non-Local SAR filter (NL-SAR) [46] is also tested. This filter has the ad-
vantage that it effectively reduces noise while preservingwhen necessary the spatial resolution of the
original images, as non-contiguous pixels are averaged according to a similarity criterion. Moreover,
the SNR method is used as the polarimetric optimization algorithm, since it provides almost the
same solution as ESPO but at a reduced computation time, as shown in the previous Section 3.3.3.

Figure 3.62 shows the coherence maps of the optimum channels for a different number of looks.
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Concerning theNL-SAR filtering parameters, a search window size of 25×25 pixels and a patch size
of 5×5 pixels have been used. For comparison purposes, the coherence map of the 1st channel in
the Pauli basis, i.e. HH+VV, is also shown.

(a) 3×3. (b) 9×9. (c) 19×19. (d) NL-SAR.

(e) 3×3. (f) 9×9. (g) 19×19. (h) NL-SAR.

Figure 3.62: Coherence maps of channels HH+VV (top) and the optimum (bottom) for differ-
ent number of looks.

Comparing the two rows of coherence maps in Figure 3.62, we observe that coherence is globally
increased with the polarimetric optimization, especially with a 3×3multilook. In that case, an over-
estimationof the coherence associatedwith the small number of samples averagedwas expected [55]
(hence the higher coherences in both rows), and polarimetry provides sensitivity to the shapes and
orientations of the elements within the multilooked pixels thanks to the reduced size of the esti-
mation window. The largest increase in coherence is obtained with this multilook size. In fact, the
mean coherence of the whole area is increased by 0.31 (from 0.53 to 0.84), and the mean phase co-
herence is increased by 0.40 (from 0.47 to 0.87). The positively biased estimator makes coherence
to be increased even in areas where it should be null theoretically, such as over the sea (right part of
the image of Figure 3.62(e)). In addition, it must be stated that the bias in coherence estimation is
increasedwhenwe combine two ormore polarimetric channels to optimize the coherence, since the
additional degrees of freedom allow us a mathematical maximization of the coherence, regardless of
the scattering physics present in the scene. From Figure 3.62, we also conclude that as the multilook
size increases, the initial values of estimated coherence decrease. This is due to two factors: less bias
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in coherence estimation andmixing of nonhomogeneous pixels in the averagingwindow. Regarding
the optimum values, there is an inability to find a polarimetric combination the response of which
is significantly better than others, making the final improvement less evident in comparison with
smaller multilook sizes. For instance, with a multilook size of 19×19 pixels, the mean coherence
is only increased by 0.09 (from 0.33 to 0.42) in the whole processed area. This variable coherence
increase is represented, as a function of the multilook size, in Figure 3.63. It is observed that the
improvement is inversely proportional to the multilook size.
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(b) Phase coherence optimization.

Figure 3.63: Average coherence and phase coherence improvement between channels HH+VV
and the computed optimum channel for different number of looks (from 3×3 to 21×21 pixels).

Moreover, concerning the optimization applied to the non-local filtered data, the improvement
is quite remarkable as shown in Figure 3.62(f). Coherence is greatly increased in the whole inter-
ferogram (the mean of the scene increases by 0.20), especially in relevant areas related to surface
deformation around the volcano crater and in urban areas. However, in this case it is not overesti-
mated in decorrelated zones, as it was obtained with a 3×3 multilook. This is seen in the sea area of
the right side of the images, where the coherence is not notably increased. This is in line with res-
olution preservation and with the mixing of only homogeneous pixels. In fact, both the optimized
and non-optimized coherence maps in Figures 3.62(d) and 3.62(h) show a significant resolution
preservation, in comparison with, for instance, the maps in Figures 3.62(b) and 3.62(f).

The improvement is also illustrated in Figure 3.64 with the histograms of coherence of all polari-
metric channels. The largest increase is clearly observed when coherence is estimated with small
windows, especially with 3×3 pixels. Pixels that originally had a very low coherence (between 0 and
0.4) now present coherences ranging from 0.45 to 0.9 in the optimum channel. Moreover, pixels
with high coherences in any polarimetric channel (greater than 0.8) also have their values increased
in the optimum case. As previously stated, this increase is larger with a 3×3 window and decreases
progressively. Specifically, with a 3×3 multilook, 69.3% of pixels present coherence values greater
than 0.8 in the optimumchannel, whereas only 17.9%of pixels (difference of 51.4%)present this per-
centage in the HH+VV channel. However, in the 9×9 case, 16.3% of pixels have coherence values
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greater than 0.8 in the optimum channel against 12.4% in the HH+VV channel (difference of just
3.9%) and this difference in high end coherence values decreases even more when larger estimation
windows are used.

(a) 3×3. (b) 9×9.

(c) 19×19. (d) NL-SAR.

Figure 3.64: Histograms of estimated coherence for different polarimetric channels (HH, VV,
HH+VV and HH-VV) and the optimum channels for different number of looks.

The same effect is observed when the phase coherence is optimized¹, as shown in Figure 3.65.
That is, a major improvement is obtained for small estimation windows which decreases when large
estimation windows are used.

¹Note that the phase coherence is not optimized if the original T6 matrix is filtered with NL-SAR, since the code
published in [46] does not provide the location of the neighbors of each pixel. However, the result would have been very
similar to coherence optimization.
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(a) 3×3. (b) 9×9.

(c) 19×19.

Figure 3.65: Histograms of estimated phase coherence for different polarimetric channels (HH,
VV, HH+VV and HH-VV) and the optimum channels for different number of looks.

Besides coherence, we need to check the phase improvement obtained at different optimization
cases. The differential phases of the optimum channel and the HH+VV channel are displayed in
Figure 3.66. First, we have selected the differential phases corresponding to themultilook size which
provided the largest improvement, i.e., the 3×3multilook. In this regard, comparing Figures 3.66(a)
and 3.66(b), it seems that there is not a true phase quality improvement even if coherencewas greatly
improved throughout the area, so that noise reduction is mainly achieved by multilooking and the
optimization does not provide a significant additional improvement. Then, the same is observed in
the 9×9multilook case shown in Figures 3.66(c) and 3.66(d): noise was reduced to a greater extent
with the largest multilook size (and the spatial resolution was also reduced), but decorrelated zones
do not present any real improvement with regards to the conventional HH+VV channel. In fact, we
observe that there is almost no difference between channels, proving again that phase improvement
is due to the multilook filter of the original SLC data.
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(a) 3×3 multilook, HH+VV
channel.

(b) 3×3 multilook, optimum
channel.

(c) 9×9 multilook, HH+VV
channel.

(d) 9×9 multilook, optimum
channel.

Figure 3.66: Differential phases of channels HH+VV and the computed optimum channel for
two different number of looks.
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Even though the global quality of the phase is not significantly improved, different conclusions can
be derived from this study. It is deduced that a tradeoff between coherence improvement provided
by polarimetric optimization, and noise reduction bymultilooking must be considered. On the one
hand, applications in which the number of coherent pixels is relevant (such as PSI [15] [31] [33]),
would benefit from smaller multilook sizes since the polarimetric optimization provides a larger im-
provement. On the other hand, applications in which a cleaner and smoother phase is required
would benefit from larger multilook sizes for a stronger noise reduction. However, unfortunately,
PolDInSAR algorithms would not be able to provide an additional phase improvement. Evidently,
in this last case, a direct filtering strategy is recommended since a very largemultilook would worsen
too much the spatial resolution of the interferogram, and more sophisticated techniques are neces-
sary.

Apart from the multilook size, the spatial variability of the projection vectors should also be ana-
lyzed so as to test if it was the reason for the limited phase quality improvement, as previously stated.
To this end, four different Regions of Interest (ROI) are selected and represented with the square
polygons in Figure 3.67. Each region corresponds to a different land-cover type: a rural area, a vege-
tated area, an area without vegetation (i.e., a bare surface), and a changed area which was altered by
the lava flow after the volcanic eruption. The size of each ROI is 200×200 pixels.

Figure 3.67: Composite RGB image of the processed area showing the four different ROIs: ru-
ral area (black square), vegetated area (green square), area without vegetation (yellow square)
and changed area (red square).
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Thesameoptimizationprocess has been carriedout over the fourROIs. Insteadofmaximizing the
coherence, theoptimization consists inminimizing the standarddeviationof eachROI.Note that the
phase standard deviation provides a reliable estimate of the noise and can be directly estimated from
the phase values, provided that the set of pixels belongs to a homogeneous area and phase gradients
are eliminated prior to its computation.

Moreover, unlike the previous analysiswhere eachpixel had a specific associated projection vector
ω (see Figure 3.61), in this case a single optimum projection is computed for the whole ROI, hence
avoiding local changes in ω. That is, all pixels in each ROI will be projected onto the same combi-
nation of polarimetric channels. As in the previous coherence analysis, the process is repeated for
different multilook sizes, which vary again from 3×3 to 21×21 pixels. The phase standard deviation
of the non-local filtered data is also considered.

Results are summarized inTable 3.16. For comparison purposes, we have also estimated the phase
standard deviation of channel HH+VV.

As it can be seen, vegetated and changed areas exhibit the highest standard deviation values, show-
ing an extreme level of noise, which was expected due to temporal decorrelation. The rural area has
a slightly lower value, and finally the bare surface area is less affected by noise. Due to the multilook
processing, the initial noise is reduced for all area types, so phase standard deviation values become
lower as the multilook size increases, especially for the bare surface and the rural areas which seem
to be free of noise for larger multilook sizes. However, if we compare the standard deviation of the
optimum channel and the HH+VV channel for any multilook size, the improvement is rather mini-
mum. That is, there is not a significant noise reduction with regards to the conventional channel. It
follows that noise suppression ismainly achieved (again) bymultilooking and that the pixel-by-pixel
strategy was not the reason for the minor phase quality improvement.
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Phase standard deviation [rad]

Area type

Multilook
size Channel Rural With

vegetation
Without
vegetation Changed

SLC Optimum 1.645 1.762 0.721 1.786
HH+VV 1.657 1.769 0.788 1.789

3×3 Optimum 1.451 1.704 0.302 1.762
HH+VV 1.461 1.712 0.303 1.769

5×5 Optimum 1.275 1.652 0.271 1.738
HH+VV 1.285 1.663 0.272 1.745

7×7 Optimum 1.110 1.597 0.259 1.708
HH+VV 1.123 1.611 0.262 1.718

9×9 Optimum 0.961 1.539 0.252 1.695
HH+VV 0.972 1.557 0.254 1.702

11×11 Optimum 0.829 1.481 0.247 1.670
HH+VV 0.840 1.507 0.249 1.695

13×13 Optimum 0.721 1.423 0.242 1.653
HH+VV 0.734 1.459 0.245 1.676

15×15 Optimum 0.621 1.365 0.238 1.627
HH+VV 0.647 1.409 0.241 1.657

17×17 Optimum 0.539 1.299 0.235 1.601
HH+VV 0.578 1.355 0.238 1.633

19×19 Optimum 0.475 1.262 0.231 1.580
HH+VV 0.516 1.301 0.235 1.618

21×21 Optimum 0.425 1.221 0.228 1.569
HH+VV 0.468 1.248 0.231 1.598

NL-SAR Optimum 1.276 1.657 0.248 1.686
HH+VV 1.293 1.669 0.251 1.729

Table 3.16: Comparison of the phase standard deviation in the four analyzed areas between
channels HH+VV and the optimum channel for different number of looks
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3.3.5 Alternative Implementation

Up to this point, it seems that the polarimetric optimization does not provide a significant phase
quality improvement or, at least, it does not provide a further quality increase in comparison with
simply multilooking the data. In order to test if PolDInSARmethods can achieve a true phase qual-
ity improvement, an alternative formulation has been tested. It is a procedure similar to the one
described in [99] but where the ESM constraint is always satisfied and the expression of the gener-
alized coherence (Equation 2.82) is considered as the cost function.

Because the coherence is to be optimized, a reduction of the spatial resolution is implicitly re-
quired. The proposed methodology consists in applying the aforementioned optimization algo-
rithms at full resolution. That is, each pixel is individually optimized and, only during the optimiza-
tion process the surrounding pixels are averaged to locally compute the coherence, but the original
data are never filtered. This is illustrated with Figure 3.68. Note that there is not any previous mul-
tilooking of the original data, and the optimization is performed on a pixel basis by progressively
extracting 3×3 adjacent windows.

Li
ne

s

Pixels

Central pixel

Neighbor

Figure 3.68: Polarimetric optimization of individual pixels.

The reason of using this window size is two-fold. Firstly, as previously analyzed in Section 3.3.4,
a 3×3 multilook provided the largest coherence improvement. It is therefore preferable to use this
windowsize. Secondly, the reduced size of thewindowprevents the risk of employingheterogeneous
pixels during the optimization of the central one. In this way, after a pixel is optimized, it positively
influences the optimization of the adjacent one, in such a way that the coherence is maximized and
a cleaner phase can be obtained.

This method has been applied to the dataset of quad-polarimetricRADARSAT-2 images. Specif-
ically, the two-step SNR method has been employed and the interferometric coherence has been
used as a figure of merit. Figure 3.69 shows the differential phases of channel HH+VV and the opti-
mum channel. Note that, unlike in the previous analysis, these phases are at full resolution. As it can
be observed, even though the area is significantly affected by decorrelation and the noise level re-
mains high, an important improvement of the phase quality is obtained bymeans of the polarimetric
optimization. The improvement is also evaluated with the coherence histograms represented in Fig-
ure 3.70. It is clearly observed that now there is a much larger difference between the conventional
and the optimum channels (comparing Figures 3.68 and 3.64) which is translated into a real phase
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quality improvement. For comparison purposes, the HH+VV interferogram was filtered with the
adaptive Goldstein method. Note that the same filtering parameters as the ones proposed in [66]
have been used, that is, a filtering window of 32×32 pixels and a 3×3mean kernel as the smoothing
operator. As shown in Figure 3.70, even though the filter provides the highest coherence values, the
optimizationprovides a remarkable result, which is similar to the oneobtained after directly applying
a filter.

(a) HH+VV. (b) Optimum.

Figure 3.69: Differential phases of channels HH+VV and the computed optimum channel after
applying the polarimetric optimization.
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Figure 3.70: Coherence histograms of channels HH+VV and the optimum channel and the
Goldstein filtered interferogram.
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The associated coherence maps are shown in Figure 3.71. As expected, coherence is increased
throughout the area.

(a) HH+VV. (b) Optimum.

Figure 3.71: Coherence maps of channel HH+VV and the optimum channel. Coherence was
estimated with a 5×9 multilook.

Amore detailed visualization of the improvement is shownwith the different ROIs in Figure 3.72.
An urban area, a deformation area with strong phase gradients, and a correlated area (i.e., an area in
which the coherence was already high) are selected. As it can be observed, a significant increase in
phase quality is obtained, especially in the correlated area shown in Figure 3.72(f). The method is
only limited in very decorrelated zones. In these areas, although there is an improvement, the noise
remains relatively high. The major advantage of the method concerns the resolution preservation.
In fact, since each pixel is individually optimized, the original spatial resolution of the interferogram
is never reduced. As shown in Figure 3.72(d), fringe continuity is greatly improved and preserved.

This is an advantagewith regards to filtering, where there is a higher risk of losing toomuch spatial
resolution if not appropriately done. It is concluded that this approach finally succeeded in proving
that a polarimetric optimization of the coherence can be performed to improve the quality of differ-
ential interferograms.
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(a) Urban area. HH+VV. (b) Urban area. Optimum.

(c) Deformation area. HH+VV. (d) Deformation area. Optimum.

(e) Correlated area. HH+VV. (f) Correlated area. Optimum.

Figure 3.72: Detail differential phases of channels HH+VV and the optimum channel after
coherence optimization.
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4
Multitemporal InSAR for Crop TypeMapping

The last chapter of this thesis deals with an innovative exploitation of InSAR data. Specifi-
cally, this chapter concerns the exploitation of the interferometric coherence for crop type mapping, that
is, to analyzewhether the coherence constitutes a valuable featurewhich can be used as input to clas-
sificationmethods in order to construct digital crop typemaps. In this regard, it is worthmentioning
that in the context of SAR, the images’ intensity (i.e., the backscattering coefficient) constitutes the
traditional input to classification methods [100] [101]. However, InSAR data have proven effective
and valuable in this context, as shown in previous works concerning the automatic mapping of the
land-cover of vast areas [102] [103] [104].

As previously stated in Chapter 2, image classification is approached as a machine learning prob-
lem. The classification can be either supervised or unsupervised. In this case, we will always con-
sider a supervised approach in which we have a previous knowledge of some characteristics of the
area to be analyzed. That is, we have an external ground truth which is used to train a model with
some known input-output pairs. Then, the rest of the dataset is classified according to the previously
trained model. Moreover, as also indicated in Chapter 2, we will make use of a specific ensemble
method denoted as Random Forests, which is an extension of the single decision tree classifier. Fi-
nally, the impact of the polarization will also be evaluated. That is, we will analyze the influence, in
terms of accuracy, that different polarimetric channels have during the classification process.
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4.1 Multitemporal CoherenceMatrix

In Chapter 2, the concept of the local correlation between two coregistered SAR images was intro-
duced. Specifically, the interferometric coherence defined with Equation 2.43, represents the nor-
malized correlation between two single SAR images. This concept can be extended to time series,
namely, series of images spanning a certain period of time. In this regard, if a given dataset is com-
posed byN SAR images, S1 . . . SN, we can build aN×NHermitian, positive semi-definiteTemporal
Covariance Matrix Ĉ as

Ĉ =


E{|S1|2} E{S1S∗2} E{S1S∗3} . . . E{S1S∗N}
E{S2S∗1} E{|S2|2} E{S2S∗3} . . . E{S2S∗N}

...
...

... . . . ...
E{SNS∗1} E{SNS∗2} E{SNS∗3} . . . E{|SN|2}

 , (4.1)

where E{} refers to the mathematical expectation which, in practice, is substituted by a spatial aver-
age (multilook). Note that the covariance matrix Ĉ contains the evolution of the radiometric infor-
mation (that is, the series of backscatterer intensities) in its main diagonal, and all possible interfer-
ometric combinations of the dataset in its off-diagonal elements.

FromEquations 2.43 and4.1, we can easily derive the expressionof theTemporalCoherenceMatrix
Γ̂, which is a normalization of the previous covariance matrix Ĉ,

Γ̂ =


1 γ12 γ13 . . . γ1N
γ21 1 γ23 . . . γ2N
...

...
... . . . ...

γN1 γN2 γN3 . . . 1

 . (4.2)

Note that Γ̂ contains the complex correlation (coherence) between all possible combinations of im-
ages of the dataset. Taking the norm of each element of Γ̂ directly yields the coherence coefficients
of each element of the dataset. The coherence matrix is symmetric (i.e., |γ ij| = |γ ji|), so that the
upper (or lower) diagonal elements provide the useful coherence data to be used as input to any
classification algorithm. It is therefore easily verified that if a given dataset containsN SAR images,
the number of distinct combinations isN · (N− 1)/2.

Moreover, from Equations 4.1 and 4.2, it is deduced that elements which are closer to the main
diagonal of thematrices have a shorter temporal baseline. In this regard, the superdiagonal elements
of Γ̂ (elements located immediately above the main diagonal) correspond to the shortest baseline in-
terferometric combinations.
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4.2 Results

Theclassificationprocess is performed in a specific agricultural area located close to the city of Sevilla
(Andalucía), in the south-west of Spain. A ground truth of the analyzed area is available and is de-
picted in Figure 4.1. Ground truth data were provided by the Regional Government of Andalucía
and FEGA (Spanish Agrarian Guarantee Fund), and they come from official cadastral information.
As shown in Figure 4.1, a wide variety of agricultural crops were cultivated during the year 2017.
Specifically, we distinguish 17 types of crops, being cotton and tomatoes the oneswhichweremostly
cultivated throughout the area.

Moreover, all the results shown in this chapterhavebeenobtainedbyusingSentinel-1data. Specif-
ically, all available SLC images of year 2017 (59 images in total) coming from orbit 154 (incidence
angle of 38.7◦) gathered by the two-satellite constellation Sentinel-1 A/B in interferometric wide
swath mode have been considered. It is important to note that the constellation of Sentinel-1 satel-
lites is able to provide SAR images with a reduced repeat cycle of 6 days, with respect to the original
12-day repeat cycle when just one satellite (Sentinel-1 A) was in orbit. From the interferometric
point of view, this represents an advantage in terms of the quality of the data since they are less af-
fected by temporal decorrelation.

After accurate coregistration and calibration of Sentinel-1 images [105], a large stack of interfer-
ograms corresponding to all possible master-slave combinations is obtained. In addition, data from
polarimetric channels VV and VH are available and will be used either solely or jointly. Also, it is
important to note that in this work we will only consider a short-baseline subset of the whole set of
interferometric combinations. Specifically, coherences coming from 6, 12 and 18 days of temporal
baselines between image-pairs will be used.

Furthermore, coherence was estimated using a conventional boxcar filter (multilook) of 4×19
pixels, which yields a pixel resolution of 60×80 meters (taking into account that the original image
resolution was 3×22 meters in range and azimuth respectively). Coherence maps are then over-
sampled by a factor of 3×4 and geocoded¹ [106] [107] into a common reference grid (in UTM
coordinates) of size 1000×1000 pixels, so that the same geometry and pixel spacing of 20m are used
in the ground truth and the coherence data.

Finally, Figure 4.2 partially shows the temporal coherence matrix of the processed area (only the
first 10 combinations of image pairs are shown). It is clearly observed that the coherence progres-
sively decreases as the temporal baseline (in days) between master and slave pairs increases, as pre-
viously stated.

¹Geocoding is theprocess of projectingSARdata into a standard cartographic coordinates system, such as geographic
(latitude and longitude) or Universal Transverse Mercator (UTM) coordinates.
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Figure 4.1: Ground truth of the processed area. Colors correspond to 17 different types of
agricultural crops: Cotton, Tomato, Sugar beet, Maize, Fallow, Sunflower, Carrot, Soft
wheat, Sweet potato, Alfalfa, Hard wheat, Pepper, Quinoa, Pumpkin, Chickpea, Potato,
and Onion.
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Figure 4.2: Temporal coherence matrix of the processed area between 2017-01-03 and 2017-
03-04. The polarimetric channel is VV.

4.2.1 Preprocessing of Ground Truth data

In Section 2.6, we have seen the influence of the number of training samples in the classification
process by means of Random Forests. In this regard, ground truth data must be correctly sampled
in order to avoid undesired effects such as overfitting. The first step consists in dividing the original
grounddata represented in Figure 4.1 into a training set and a testing test in such away that half of the
fields of each crop type are randomly assigned to each set. This approach is followed to ensure that
there is enough spatial distance between pixels of the same crop type, which is not always satisfied
if just a random selection of pixels is done to build the training and the testing sets [108]. This also
avoids the spatial autocorrelation [109] of training pixels, which positively or negatively influences
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the classification of surrounding pixels in specific areas after training the model. The division of the
ground truth is represented in Figure 4.3.

(a) Fields composing the training set. (b) Fields composing the testing set.

Figure 4.3: Ground truth preprocessing: for each crop type, half of the fields are used for
training and the other half for testing.

By looking at Figure 4.3(a), it can be easily seen that the number of fields and, hence, the number
of pixels of each crop type varies significantly among classes. Specifically, the number of samples of
each set and of each crop type is shown in Table 4.1. It is deduced that some classes are predominant
(cotton, tomato and sugar beet) whereas other classes present a reduced number of samples in the
dataset (especially potato and chickpea). In other words, the training dataset is imbalanced. This
might be aproblem from the classificationpoint of view, since anoverfit towards predominant classes
might happen and minority classes are more likely to be misclassified, reducing the quality of the
results. To solve this inconvenience, the original training set is equally subsampled in such a way that
the same number of samples of each crop type is used to train our model. The resulting subsampled
ground truth is represented in Figure 4.4. Note that now, each of the 17 classes has the same number
of pixels in the training set. Specifically, each class has 388 pixels, which is the number of samples of
chickpea (which is the class with the smallest number of pixels, as shown in Table 4.1).
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Training set Testing set Total

Crop type Number of fields Number of samples Number of fields Number of samples Number of fields Number of samples

Cotton 560 53193 560 55918 1120 109111
Tomato 391 35511 391 35943 782 71454
Sugar beet 235 18523 236 19673 471 38178
Maize 72 6004 73 6260 145 12272
Sunflower 40 3226 41 3232 81 6458
Fallow 41 604 41 808 82 1404
Carrot 35 2315 36 2505 71 4820
Onion 30 1689 30 1749 60 3456
Soft wheat 22 1608 23 1738 45 3346
Sweet potato 21 1082 21 1697 42 2779
Alfalfa 20 1890 20 2106 40 3996
Hard wheat 18 1457 18 1982 36 3439
Pepper 16 680 17 744 33 1424
Quinoa 16 936 16 1470 32 2406
Pumpkin 13 975 13 1193 26 2168
Chickpea 11 388 11 437 22 825
Potato 7 388 8 512 15 900

Table 4.1: Characteristics of the ground truth data showing the original number of training
and testing samples of each crop type.

Figure 4.4: Equal subsampling of the training dataset. Each class has 388 pixels so that the
total number of training samples represent around 2.5% of the total number of pixels of the
ground truth data. Equal subsampling is carried out randomly.
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4.2.2 AccuracyMetrics and PerformanceMeasures

It is very important to introduce the variety of measures that will be systemically used to describe
the accuracy of all classifications. Once the classification is performed and the thematic map of crop
types is obtained, the testing set (shown in Figure 4.3(b)) is used to evaluate how accurate themodel
is performing. The following quality measures and metrics have been considered [34] [110].

• Confusionmatrix (or contingency table). It is themost usual formofpresenting the accuracy
of a supervised classification. Assuming that we haveK different classes, the confusionmatrix
is defined as

C =


c11 c12 c13 . . . c1K
c21 c22 c23 . . . c2K
...

...
... . . . ...

cK1 cK2 cK3 . . . cKK

 , (4.3)

where each element cij ofC contains the number of pixels belonging to class jwhich are classi-
fied as class i. Therefore, it is deduced that the elements of themain diagonal of the confusion
matrix correspond to correct classifications, whereas the rest are missclassifications.

• Global accuracy. It defines the overall proportion of correctly classified samples, and can be
employed to summarize the overall accuracy of the classification. It is directly provided by the
trace of the confusion matrix divided by the total number of testing samples (i.e., the sum of
the whole confusion matrix).

• Kappascore. It is a statisticwhichmeasures the inter-observer reliability. That is, it provides a
value of how closely all classified samplesmatch the ground truth data but taking into account
random chance. It can be calculated as

κ =
Pr(correct classification)− Pr(random chance classification)

1− Pr(random chance classification)
, (4.4)

where Pr()means probability of its argument.

An estimator of κ can be derived from the rows and columns of the confusionmatrix as [34]:

κ =
N
∑n

i=1 mi,i −
∑n

i=1 GiPi
N2 −

∑n
i=1 GiPi

, (4.5)

where i is the class label,N is the total numberof testing samples,mi,j is thenumberof correctly
classified samples (i.e, the trace of the confusionmatrix), Pi is the number of predicted values
belonging to class i (sum of row i) and Gi is the number of ground truth samples belonging
to class i (sum of column i). Values of κ lie between -1 and 1. A value of 1 implies complete
agreement, whereas lowers values indicate less agreement.
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• Producer’s accuracy. It is the result of dividing the number of correctly classified samples of
class i by the total number of elements of class i. In terms of the confusion matrix, it corre-
sponds to the result of dividing element cii by the total of column i. The producer’s accuracy
is complement of omission error.

• User’s accuracy. It is the result of dividing the number of correctly classified samples of class
i by the total number of samples that were classified as i. In terms of the confusion matrix, it
corresponds to the result of dividing element cii by the total of row i. The user’s accuracy is
complement of the commission error.

4.2.3 Preliminary Results: Impact of an Imbalanced Training Dataset

In order to show the impact of an imbalanced dataset and the importance of a correctly sampled
training set, the following preliminary test has been carried out. The Random Forests classifier² is
applied both by using the original training set of Figure 4.3(a) and the equally subsampled training
set shown in Figure 4.4. In this case, only the shortest temporal baseline has been considered (i.e.,
6-day coherences) and only the data of VV polarization have been used. Note that this polarization
is selected since it is known to have a SNR higher than VH.

Figure 4.5 shows the crop type maps obtained with each approach. By comparing Figures 4.5(a)
and 4.5(b), it is clearly observed that the classifier has favored the majority classes. That is, the num-
berof pixels classified as cottonand tomato is significantly largerwhen themodelwas trainedwithout
an equal sampling of the training set, as shown in Figure 4.5(a).

²Random Forests implementation from scikit-learn library [63], written in Python language, has been used in this
work. The number of trees is set to 100 and the remaining parameters are set to default.
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(a) Classified image obtained when the
RF was trained without equal sampling.

(b) Classified image obtained when the
RF was trained with equal sampling.

Figure 4.5: Classification results obtained with Random Forests using two different training
models: without and with class balance. Shortest temporal baseline coherences (6 days) of
channel VV were used as input to the classifier.

Moreover, the differences of accuracy become evident if we compare the confusion matrices of
each case. On the one hand, Figure 4.6 shows the normalized confusion matrix obtained when the
model was trained with an imbalanced number of training samples. By looking at the main diagonal
of thematrix, it is clearly seen that the threemajority classes (cotton, tomato and sugar beet) present
the highest accuracies (which are higher than 85%). On the contrary, minority classes exhibit a very
lowaccuracy, which is almost 0%(especially for classes sweet potato, pumpkin, chickpea andpotato).
It is deduced that the training model is biased towards the majority classes and that there exist an
important confusion between classes. This can be verified by looking at the row (predictions) of
each individual class. For instance, class sweet potato (9% of correct classifications) has beenmainly
misclassified as cotton (57%) and tomato (30%).

On theotherhand, Figure4.7 represents thenormalizedconfusionmatrixwhen theRFwas trained
with the same number of samples (balanced subsampling of each class). It is observed that the accu-
racy of majority classes remains high (86%, 72% and 90% for cotton, tomato and sugar beet, respec-
tively), but now the accuracy of the other classes has notably improved. For instance, the accuracy
of chickpea increases from 3% to 53%, and the accuracy of fallow increases from 25% to 61%. In ad-
dition, it is deduced that the confusion between classes is greatly reduced. For instance, class sweet
potato presents now less confusion between cotton (it goes down from 57% to 29%) and tomato (it
goes down from 30% to 21%) and the same effect is obtained for the remaining minority classes of
the dataset.
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Figure 4.6: Confusion matrix obtained with Random Forests with an imbalanced sampling of
the training set. Shortest temporal baseline coherences (6 days) of channel VV were used as
input to the classifier.
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Figure 4.7: Confusion matrix obtained with Random Forests with a balanced sampling of the
training set. Shortest temporal baseline coherences (6 days) of channel VV were used as input
to the classifier.
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The rest of accuracy measures of each approach are summarized in Table 4.2. Results show a re-
markable global accuracy in both cases. In fact, it is almost the same (77.51% and 77.55%) for both
imbalanced and balanced datasets. This allow us to show that the global accuracy not always pro-
vides a meaningful overview of how well a classifier is performing, and that a deeper analysis of the
confusion matrix should always be carried out by computing class-level accuracies. In this regard, if
the training dataset is imbalanced, a high global accuracy is obtained because themajority classes are
very well classified, but it does not reflect how poorly minority classes are handled. The same con-
clusion is derived from the Kappa scores, which are almost identical. Note that in both cases, Kappa
scores are however very good (in fact, according to [111], values between 0.61 and 0.80 indicate a
substantial agreement).

Class-level accuracies are represented in Table 4.2 by both the producer’s and user’s accuracies.
Without equal sampling of the training set, it is observed that the largest producer’s and user’s accu-
racies are obtained for the majority classes (cotton, tomato and sugar beet), while minority classes,
such as maize, fallow, pumpkin or chickpea, exhibit low or very low accuracies. In fact, as shown
in Table 4.2, the user’s accuracy of these classes is 31.48%, 25.24%, 1.64% and 2.74%, which indi-
cates a very poor classification. Nonetheless, user’s accuracies significantly increase when themodel
was trained with the equally-sampled set, maximizing the accuracy of each class in a more balanced
way. For instance, user’s accuracy of the previously mentioned classes (maize, fallow, pumpkin and
chickpea) significantly improves to 62.16%, 61.40%, 23.90% and 53.32%, respectively.

Evidently, the higher the producer’s anduser’s accuracies are, the better the classification of a given
class is. However, it is important to understand the information each accuracy is providing. Con-
sider, for instance, maizewhich has, without equal sampling of the training set, a producer’s accuracy
of 67.14%. Thismeans that 67.14%of pixels which aremaize on the reference data (training set) have
been correctly identified. However, the associated user’s accuracy of such class is only 31.48%, which
means that only 31.48% of pixels identified as maize actually belong to this class in the testing set.
Accordingly, producer’s accuracy reveals the quality of the classification of the training set, whereas
the user’s accuracy indicates the quality of the predictions/reality and, hence, it is a direct measure
of how well the classifier performed for each class. Conversely, when a balanced training set is used,
the producer’s accuracy of class maize decreases to 47.28% but the user’s accuracy is almost doubled
to 62.16%, which indicates that this class is much better distinguished. It can also be observed that
the same effect is obtained with the rest of the classes, showing that the model is better adapted.

From this studywehave proven the impact that an imbalanced training set has on the classification
process. We have seen that if reference data are not appropriately sampled and the number of pixels
of each class varies greatly, inaccurate classifications are obtained since the model is biased towards
predominant classes (classeswhich havemore training pixels). Wehave also shown that the problem
is solved in this case by setting a balanced subsampling for each class (exactly the same number of
samples for every class). As a result, the accuracy of each individual class is greatly improved and so
does the accuracy of the overall classification. Finally, it is important to mention that this strategy
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will be followed for the rest of the results shown in this work, i.e., the same training data shown in
Figure 4.4 will be used.

Without equal sampling With equal sampling

Crop type Producer’s accuracy User’s accuracy Producer’s accuracy User’s accuracy

Cotton 83.70% 89.31% 88.55% 85.92%
Tomato 72.17% 84.82% 88.24% 72.25%
Sugar beet 80.14% 86.87% 87.48% 90.01%
Maize 67.14% 31.48% 47.28% 62.16%
Fallow 37.89% 25.24% 31.79% 61.40%
Sunflower 76.01% 32.21% 43.14% 56.42%
Carrot 52.33% 35.89% 48.67% 54.13%
Onion 51.85% 24.87% 48.94% 52.16%
Soft wheat 68.34% 66.04% 51.63% 65.86%
Sweet potato 49.17% 8.78% 28.93% 39.72%
Alfalfa 79.32% 60.69% 47.34% 76.08%
Hard wheat 56.45% 50.45% 49.47% 47.98%
Pepper 8.69% 1.61% 11.97% 19.22%
Quinoa 67.01% 43.67% 59.88% 76.87%
Pumpkin 11.19% 1.64% 15.53% 23.90%
Chickpea 13.19% 2.74% 45.96% 53.32%
Potato 13.97% 3.71% 41.24% 41.24%

Global accuracy 77.51% Global accuracy 77.55%
Kappa score 0.68 Kappa score 0.70

Table 4.2: Accuracy assessment of crop type classification with Random Forests obtained with
each approach of ground-truth preprocessing: with and without an equal sampling of training
data.

4.2.4 Influence of Temporal Baseline

In previous Section 4.2.3, the Random Forests classifier was applied using 6-day coherences of po-
larimetric channel VV. As shown with Figure 4.7 and Table 4.2 (with equal sampling of the training
set), in general good classification results have beenobtained: anoverall accuracy of 77.55%, aKappa
score of 0.70, and 13 out of 17 classes present an accuracy higher than 50%. In this section, the effect
of the length of the temporal baseline is to be analyzed. In this regard, besides using 6-days coher-
ences, the two second shortest baselines (12 and 18 days) will be considered, both individually and
combined, so as to check if a further gain is obtained when including more data.

The first test consists in applying the classifier employing 12 and 18-day coherences individually.
Note that only the data of VV polarization will be used in order to obtain a reliable comparison with
the results of Section 4.2.3, in which the shortest baseline (6 days) coherence matrices of channel
VV were considered. Figure 4.8 shows the normalized confusion matrix obtained in each case.
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(a) 12 days of temporal baseline.
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(b) 18 days of temporal baseline.

Figure 4.8: Confusion matrices obtained with Random Forests using coherences from the sec-
ond and third shortest temporal baselines individually (12 and 18 days).
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By comparing the main diagonals of confusion matrices of Figure 4.7 (6 days) and Figures 4.8(a)
and 4.8(b), it is clearly observed that the accuracy of almost all classes progressively decreases as the
temporal baseline increases. For instance, the accuracy of class alfalfa goes down from 76% (6 days)
to 71%(12days) and to 67%(18days). Only the accuracies of classes softwheat and sweet potato are
higherwhen a longer baseline is used. This progressive loss of accuracy is summarized inTable 4.3, in
which the accuracy differences, taking as reference the accuracy obtainedusing the shortest temporal
baseline coherences, are calculated. It can be seen that there is a larger loss of accuracy between 6
and 18-day coherences than between 6 and 12-day coherences. This is certainly caused by the higher
level of decorrelation which is present in coherence images (see Figure 4.2) when longer baselines
are used, which degrade the quality of interferometric data.

Temporal baselines

6 and 12 days 6 and 18 days

Crop type Accuracy difference Accuracy difference

Cotton +5% +8%
Tomato +2% +6%
Sugar beet +3% +8%
Maize +3% +11%
Fallow +2% +1%
Sunflower +3% +8%
Carrot +2% +1%
Onion +0% +0%
Soft wheat -7% -3%
Sweet potato -4% +6%
Alfalfa +5% +9%
Hard wheat +10% +8%
Pepper +3% -2%
Quinoa +9% +10%
Pumpkin +9% +15%
Chickpea +24% +43%
Potato +11% +8%

Table 4.3: Comparison between accuracy differences obtained when using different temporal
baselines. In both cases, the accuracy obtained using 6-day coherences is selected as reference.
A positive percentage indicates that the shortest temporal baseline (6 days) presents a higher
accuracy, whereas a negative percentage indicates that a better result is obtained when using
either 12 or 18-day coherences.

Moreover, global accuracy estimators and the rest of class-level accuracies are shown in Table 4.4.
As expected, a generalized loss of accuracy is obtainedwhen the longest temporal baseline of 18 days
is used. The user’s accuracy of nearly all crop types decreases, and so does the global accuracy of the
classification and the associated Kappa score. However, it is worth mentioning that using longer
baselines individually does not entail a dramatic loss of accuracy. In fact, the global accuracy goes
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down from 77.55% (see Table 4.2), when using the shortest baseline of 6 days, to 73.82% (12 days)
and to69.66%(18days). Also, there is not a significant difference in termsof theoverallKappa scores
obtained in each case (0.70, 0.66, and 0.60 for 6, 12 and 18-day coherences respectively).

Temporal baselines

12 days 18 days

Crop type Producer’s accuracy User’s accuracy Producer’s accuracy User’s accuracy

Cotton 86.04% 81.13% 85.31% 77.57%
Tomato 87.58% 60.69% 88.07% 65.79%
Sugar beet 83.45% 86.78% 79.30% 81.41%
Maize 47.16% 59.38% 37.04% 49.15%
Fallow 30.06% 58.80% 33.07% 54.40%
Sunflower 36.93% 52.73% 29.10% 48.20%
Carrot 48.58% 52.46% 48.78% 52.77%
Onion 43.73% 51.81% 33.79% 52.52%
Soft wheat 54.51% 72.58% 46.95% 66.92%
Sweet potato 26.60% 44.20% 18.21% 36.95%
Alfalfa 33.93% 70.58% 26.46% 66.51%
Hard wheat 41.18% 39.40% 31.21% 30.61%
Pepper 8.15% 15.86% 8.69% 17.07%
Quinoa 51.15% 68.16% 42.70% 69.46%
Pumpkin 8.60% 14.56% 3.82% 7.28%
Chickpea 39.42% 28.15% 19.28% 16.02%
Potato 21.41% 31.84% 26.96% 37.70%

Global accuracy 73.84% Global accuracy 69.66%
Kappa score 0.66 Kappa score 0.60

Table 4.4: Accuracy assessment of crop type classification wuth Random Forests using coher-
ences from the second an third shortest temporal baselines individually (12 and 18 days).

Another test consists in incorporating information from the different temporal baselines to the
classification process. That is, to simultaneously use coherence data coming from both 6 and 12
days, and even 6, 12 and 18 days of temporal baselines. In each case, coherences of channel VV are
considered. The resulting confusion matrices are represented in Figure 4.9. It can be seen that there
is almost no improvement when additional baselines are added: accuracies of each individual class
are very similar to the ones obtained using the shortest baseline of 6 days (see Figure 4.7).
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(a) 6 and 12 days.
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(b) 6, 12 and 18 days.

Figure 4.9: Confusion matrices obtained with Random Forests employing coherences from the
first two and first three shortest temporal baselines.
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The rest of accuracy measures are summarized in Table 4.5. It can be seen that the impact of in-
cluding two additional baselines is very limited. As shown in Table 4.5, there is almost no difference
in terms of the class-level accuracies of each crop type when all the data (three baselines) are simul-
taneously used. Moreover, almost the same global accuracies and Kappa scores are obtained in both
classifications.

Temporal baselines

6 and 12 days 6, 12 and 18 days

Crop type Producer’s accuracy User’s accuracy Producer’s accuracy User’s accuracy

Cotton 88.26% 85.02% 87.59% 84.37%
Tomato 89.36% 72.59% 88.57% 71.62%
Sugar beet 86.70% 89.62% 86.07% 89.97%
Maize 47.58% 64.04% 48.55% 63.37%
Fallow 30.31% 62.54% 33.57% 61.07%
Sunflower 42.99% 55.95% 42.25% 55.70%
Carrot 53.05% 52.50% 54.36% 55.69%
Onion 48.27% 55.30% 48.85% 56.07%
Soft wheat 49.49% 69.22% 52.78% 69.09%
Sweet potato 28.33% 45.14% 25.90% 42.96%
Alfalfa 45.46% 73.65% 42.90% 72.65%
Hard wheat 44.95% 39.12% 46.21% 41.87%
Pepper 12.65% 21.64% 15.00% 21.37%
Quinoa 61.36% 74.42% 56.91% 78.71%
Pumpkin 12.75% 19.08% 8.52% 13.44%
Chickpea 37.56% 34.55% 44.44% 37.53%
Potato 38.61% 54.30% 34.58% 43.36%

Global accuracy 77.21% Global accuracy 76.72%
Kappa score 0.70 Kappa score 0.69

Table 4.5: Accuracy assessment of crop type classification with Random Forests using coher-
ences from the first two and first three shortest temporal baselines.

4.2.5 Influence of Polarization

The influence of polarization diversity is also to be evaluated in this work. As previously stated,
among the two polarimetric channels provided by Sentinel-1, the VV component is known to have
a higher SNR than the VH counterpart. As a consequence, the quality of coherence data coming
from channel VV is always higher and, hence, the Random Forests classifier is expected to perform
better with this polarization. A quick analysis of the classification results obtained using VH data
with 6 days of temporal baseline as input effectively proves this statement. Figure 4.10 represents
the normalized confusion matrix obtained for such a classification. It is observed that a clear loss of
accuracy is obtained for all classes, if we compare the main diagonal of Figure 4.10 with the one of
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the confusion matrix obtained using the VV component with the same baseline configuration (pre-
viously shown in Figure 4.7). The same conclusion is derived by looking at the class-level accuracies
shown in Table 4.6: both the producer’s and user’s accuracies are lower than when the single VV po-
larization is used (see Table 4.2), and so is the global accuracy (decreases from 77.55% to 69.06%)
and the Kappa score (decreases from 0.70 to 0.60).
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Figure 4.10: Confusion matrix obtained with Random Forests using 6-day coherences from VH
polarization.
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Crop type Producer’s accuracy User’s accuracy

Cotton 85.20% 78.69%
Tomato 81.84% 60.76%
Sugar beet 83.20% 84.58%
Maize 49.28% 58.78%
Fallow 24.83% 47.56%
Sunflower 26.75% 37.91%
Carrot 36.96% 44.51%
Onion 29.66% 38.84%
Soft wheat 43.89% 66.29%
Sweet potato 14.27% 38.83%
Alfalfa 28.26% 71.01%
Hard wheat 36.50% 42.21%
Pepper 7.74% 19.36%
Quinoa 57.99% 48.37%
Pumpkin 6.64% 17.03%
Chickpea 12.87% 9.84%
Potato 22.93% 16.80%

Global accuracy 69.06%
Kappa score 0.60%

Table 4.6: Accuracy assessment of crop type classification with Random Forests using coher-
ences from the shortest temporal baseline (6 days) of VH polarization.

The real evaluation of the effect of polarization consists in checking if the combination of both
polarimetric components (VV and VH) yields an additional gain of accuracy and better results. To
this end, coherence data of channels VV and VH are jointly used during the classification process.
Moreover, all the temporal baselines are also considered in order to check if a maximum amount of
information (three baselines and two polarimetric components) provides a further gain of accuracy.

Normalized confusion matrices obtained in each case are shown in Figure 4.11. Firstly, for the
same temporal baseline of 6 days, including both polarimetric channels yields a better result for al-
most all crop types. This can be verified by looking at the main diagonal of confusion matrices of
Figures 4.7 and 4.11(a). Whilst the accuracy of predominant classes remains high (for instance, it
barely varies for cotton, tomato and sugar beet), other classes are better identified. For instance,
the accuracy for classes carrot, onion and soft wheat increases respectively from 54%, 52% and 66%
(when single polarization VV is used) to 57%, 63% and 72% when both channels are processed.

Secondly, it seems that adding the coherences of the other two temporal baselines (12 and 18
days) along with the additional polarization does not have a significant impact on the accuracy. In
fact, the best final results are obtained when the shortest temporal baseline of 6 days is exploited
individually. This can be verified by comparing themain diagonals of normalized confusionmatrices
of Figures 4.11(a), 4.11(b) and 4.11(c).
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(a) 6 days of temporal baseline.
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(b) 6 and 12 days of temporal baseline.
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(c) 6, 12 and 18 days of temporal baseline.

Figure 4.11: Confusion matrices obtained with Random Forests employing coherences from
different temporal baselines and dual polarization.

Finally, Table 4.7 summarizes class-level accuracies and overall accuracy parameters. Firstly, we
can say that an increase in accuracy is obtained when dual-polarized data are jointly used. It can be
observed that the best global accuracy obtained so far, which is 77.55% when using channel VV and
the shortest temporal baseline, has improved to 79.19% when both polarizations are exploited and
the same baseline is used. An improvement concerning the Kappa score is also obtained (from 0.70
to 0.73, as shown in Tables 4.2 and 4.7). Moreover, the producer’s and user’s accuracies of almost
every individual class are increased, so that a better identification/classification of each crop type is
attained.

Unfortunately, the inclusion of the coherences from the other two baselines does not provide an
additional improvement. In fact, as shown inTable 4.7, the best classification result is obtainedwhen
only the data from the shortest baseline (6 days) are considered. The differences of accuracy are,
however, very small (79.19%, 78.69% and 78.48% in terms of global accuracy, and 0.73, 0.72 and
0.71 in terms of Kappa score, and both the producer’s and user’s accuracies progressively decrease
when more baselines are added to the classification process).
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Temporal baselines

6 days 6 and 12 days 6, 12 and 18 days

Polarization VV +VH VV+VH VV+VH

Crop type Producer’s accuracy User’s accuracy Producer’s accuracy User’s accuracy Producer’s accuracy User’s accuracy

Cotton 88.14% 87.05% 87.56% 86.44% 87.77% 85.89%
Tomato 88.99% 74.54% 89.22% 73.73% 89.26% 74.46%
Sugar beet 86.96% 90.77% 86.73% 90.31% 85.74% 90.06%
Maize 58.24% 61.33% 57.54% 63.81% 58.27% 65.72%
Fallow 32.74% 61.56% 32.78% 61.24% 34.65% 61.40%
Sunflower 44.65% 60.82% 45.33% 59.89% 46.27% 58.49%
Carrot 53.55% 57.21% 55.85% 56.29% 57.37% 57.37%
Onion 57.97% 62.88% 57.35% 61.46% 56.81% 64.00%
Soft wheat 55.29% 72.52% 56.01% 73.63% 50.41% 76.24%
Sweet potato 29.56% 40.72% 30.81% 46.73% 27.61% 41.72%
Alfalfa 48.27% 76.19% 44.58% 75.87% 43.52% 75.40%
Hard wheat 53.73% 50.86% 57.73% 49.97% 56.28% 40.29%
Pepper 17.41% 25.54% 16.38% 21.91% 20.00% 25.13%
Quinoa 64.37% 78.91% 63.11% 77.76% 60.49% 76.67%
Pumpkin 18.28% 25.03% 15.87% 25.74% 14.42% 22.36%
Chickpea 39.29% 43.25% 38.44% 31.58% 50.28% 41.42%
Potato 54.50% 59.18% 43.44% 49.80% 42.66% 48.83%

Global accuracy 79.19% Global accuracy 78.69% Global accuracy 78.48%
Kappa score 0.73 Kappa score 0.72 Kappa score 0.71

Table 4.7: Accuracy assessment of crop type classification with Random Forests using coher-
ences from different temporal baselines and dual polarization.

4.2.6 Analysis of the Temporal Evolution of the Coherence

In this section, we further analyze the results shown in previous Sections 4.2.5 and 4.2.5, so as to pro-
vide anexplanationofwhy someclasses arepoorly identified. By looking at thenormalizedconfusion
matrix in Figure 4.11(a), it is seen that only 4 classes present an accuracy below 50%. These classes
are sweet potato, pepper, pumpkin and chickpea. From the same confusion matrix, it is directly
deduced that sweet potato is mostly confused with cotton since 31% of pixels have been wrongly
identified as such (this is readily seen in the matrix by looking at the row of predictions and check-
ing the associated column showing the true class label). Similarly, the confusion matrix shows that
pepper and pumpkin are also confused with cotton (47% and 36% ofmisclassifications respectively)
and chickpea is confused with sunflower (24% of misclassifications).

As detailed in Sections 4.2.1 and4.2.3, ground truth data have been appropriately prepared in such
a way that overfitting, underfitting and class imbalance are avoided. Accordingly, the reason for the
inaccurate classification of these four crop types should be related to the coherence data themselves.
Specifically, itmaybedue to a similar temporal evolutionof the coherence for these classes. Figure 4.12
shows the temporal evolution of coherence values associated with every crop type throughout the
whole year for each polarimetric channel. The locations of the fields of each crop type are extracted
from the reference dataset. Then, coherence associated with each class is aggregated to produce a
single mean and standard deviation for each date. By looking at Figure 4.12, it is observed that the
evolution in time of each crop type is different. Also, note that channel VV always offers a larger
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coherence than channel VH, which was expected as a result of the higher SNR of the copolar com-
ponent as previously stated. However, both channels exhibit a similar trend in time.

The evolution of each class is directly related to the crop growing cycle. Accordingly, each crop
has its specific growing and harvesting periods. These periods may be identified by means of the
evolution of the coherence. In this regard, in the absence of crop (either because it has not been
planted yet or because it has been harvested) higher coherence values are expected since parcels are
bare fields, hence without volume and temporal decorrelation. Conversely, as the crop is growing,
a decrease in coherence might happen since the crop is dynamically changing between successive
observations. This is easily verified by looking at Figure 4.12(e), in which it can be seen that pixels
belonging to class fallowhave high and stable coherence values throughout thewhole year. However,
the rest of classes exhibit important variations during the year. Note that a significant coherence loss
for all crop types is observed for the last image of November. This drop was caused by a rain event
between the images.

Based on this reasoning, by looking at Figure 4.12(j) it seems that sweet potatoes start growing
aroundMay, since from this month coherence progressively decreases until it reachesminimum val-
ues during summer (July-September). Then, coherence increases till the end of the year. Now, look-
ing at Figure 4.12(a), it is easily seen that pixels associated with class cotton have almost the same
temporal evolution. Comparing Figures 4.12(m) and 4.12(o) with Figure 4.12(a), it is seen that
both classes, pepper and pumpkin, exhibit also the same temporal variation as cotton. Moreover,
the same is observed between classes chickpea and sunflower. In this case, coherence is relatively
high during the first months of the year ( January-March) and remains stable between 0.5 and 0.7.
Then, it begins to decrease from April to July and from then on it increases again till December.

It can be therefore deduced that those crop types which present an important confusion (i.e.,
classes which are less reliably detected) exhibit a very similar temporal evolution during the year.
This similar variation of coherence values is the most probable reason for getting an inaccurate iden-
tification of some crop types by means of the Random Forests classifier.
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(a) Cotton.
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(b) Tomato.

January
February

Mars
April

May
June

July August
September

October

November

December

0.0

0.2

0.4

0.6

0.8

1.0

Co
he

re
nc

e

VV
VH

(c) Sugar beet.
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(d) Maize.
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(e) Fallow.
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(f) Sunflower.
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(g) Carrot.
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(h) Onion.
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(i) Soft wheat.
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(j) Sweet potato.
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(k) Alfalfa.
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(l) Hard wheat.
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(m) Pepper.
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(n) Quinoa.
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(o) Pumpkin.
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(p) Chickpea.
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(q) Potato.

Figure 4.12: Evolution in time of the coherence associated to each crop type of the dataset.
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4.2.7 Summary

A summary of the most important points derived from the analysis performed in this chapter is pre-
sented in the following list.

• Influence of the training set. We have seen how poorly the classifier performs when an im-
balanced training set is used as input, that is, when all classes are not equally represented.
In this case, we have shown that the classifier is clearly biased towards predominant classes,
whereas theminority classes are not correctly identified. A simpleway to fix this issue consists
in undersampling the dataset in such a way that each class is represented with exactly the same
number of pixels. This leads to an unbiased classifier which is able to better distinguish every
individual class. Consequently, class-level accuracies notably improve and an overall better
result is obtained.

• Temporal baseline. From this study, it has been shown that there is not any improvement
when multiple temporal baselines are jointly considered. In fact, results show that the best
accuracy is obtained when just the shortest baseline (6 days) is used.

• Polarization. Significantly different results are obtained for the two available polarizations.
It has been proved that theVV component offers better results than the ones of VH.However,
the combination of both polarimetric channels performs better with an improvement of 1-2%
of overall accuracy approximately with respect to the use of VV channel individually.

• Confusion between classes and temporal variations of the coherence. There are some
classes that are not being correctly identified by the classifier. In this regard, we have seen that
classes which exhibit similar temporal evolutions of coherence have a higher confusion.
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5
Conclusions and Future Research Lines

This thesis dealt with different processing techniques and applications of SAR interferometry,
which is based on processing and exploiting the phase difference between pairs of SAR images. In
this last chapter, a revision of themain results is presented in the following paragraphs, so as to prove
that the main objectives of the thesis have been properly accomplished. Moreover, some directions
for future research are also proposed at the end of this chapter.

5.1 Main Conclusions

We have seen that the quality of the interferometric phase is the most crucial factor for deriving
robust and precise products by means of interferometry. The major limitation of InSAR is the in-
evitable decorrelation which degrades the quality of phase data. Accordingly, central to this thesis
was the development of innovative methods and algorithms to reduce such undesired and disturb-
ing effects caused bymultiple sources of noise. These new and improvedmethods were presented in
Chapter 3.

Firstly, we have shown the difficulty in appropriately removing baseline decorrelation in areas
strongly influenced by topography. Conventional and state-of-the-art methods may perform poorly
in this kind of areas, either because the topography is not considered or because it is only partially
exploited. The proposed range filter has shown how to overcome these limitations by fully utilizing
an auxiliary DEM from which the local topography can be extracted. In this regard, results corre-
sponding to the area ofMount Etna, shown in Section 3.1.3, prove that the proposedmethod is able
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to extensively eliminate the geometrical decorrelation between both SAR images, regardless of the
smoothness of the topography since the algorithm is automatically adapted to all types of surface
variations. Consequently, as also shown in Section 3.1.3, the quality of the resulting interferogram is
greatly enhanced: noise is better reduced in comparison with the rest of methods, which leads to an
overall better phase quality and a higher correlation between the images. Moreover, the range filter
has shown to be able to recover some useful interferometric fringes in some areas where the other
methods are unable to achieve it.

Secondly, we have seen that almost every interferogram presents large areas where no phase mea-
surements are possible because of remaining sources of decorrelation. Especially, the unavoidable
temporal decorrelation is translated into random and noisy phases which provide no useful infor-
mation and are not suitable for further processing. Filteringmethods are thenmandatory to remove
noisy values from the original phase images. In this regard, an advanced phase filter for the final in-
terferometric phase has been developed. The goal of the proposed method is to completely remove
any remaining phase noise at all levels. To do so, a non-parametric, automatic, adaptive and iterative
methodology has been followed. We have shown that the proposed filter goes one step further in
terms of noise reduction and phase quality improvement. Accordingly, the goal of the filter is not
only to suppress the noise, but also to ensure that the original phase structure is not modified (i.e.,
phase details are not blurred due to overfiltering effects). These two simultaneous objectives require
a strongnoise reduction alongwith an accurate fringepreservation (which canbeunderstoodas edge
preservation in image domain). Properly carrying out both objectives is probably the most difficult
task concerning interferogram filtering. As we have seen in Section 3.2, a stronger noise reduction
entails the risk of loosing too much phase details and, contrarily, a better preservation of the origi-
nal phase structure may lead to an insufficient noise reduction in low-coherent areas. The proposed
method has shown to overcome the limitations of conventional phase filters based on the Goldstein
method, since it provides a very strong noise reduction along with a good resolution preservation. A
complete removal of phase noise is achieved by: 1) iteratively filtering the original noisy phase with
windows of decreasing size, 2) local adaptivity to the noise level of each interferogram patch and,
3) spatial smoothing of the estimated noise by means of adaptive filtering kernels, either based on
Chebyshev interpolators or conventional Gaussian/mean kernels.

All the results shown in thisworkprove that the proposedfilter always offers the best performance,
both with synthetic interferograms and real SAR data from different sensors. It has been shown that
the proposed filter is able to intensively eliminate any remaining decorrelation and is able to yield a
smooth and noise-free phase which is suitable for further processing. Moreover, strong phase gradi-
ents (interferometric fringes) are correctly preserved, so that the original resolution of the interfero-
grams is appropriately retained and overfiltering effects are limited. Furthermore, we have seen that
almost no phase residues are present in the filtered phase, that is, a reduction close to 100% is always
achieved. This is of special interest for the phase unwrapping step, which may be impossible or very
inaccurate with noisy input phases. In addition, the filtering process yields a massive increase in the
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overall coherence of the processed areas.

It is important tonote that the filter is completely non-parametric anddoesnot require anymanual
tunning of its parameters. Only the size of the initial filtering window can be changed according to
the original quality of the interferogram. In this regard, very noisy phases would benefit from a larger
initial window size (for instance, 256×256 pixels as proposed) and more filtering iterations. High-
quality interferograms would require less iterations. However, setting a large initial size for filtering
high-quality input phases only has an important impact on the computation time and not on the
final result, due to the accurate adaptivity of the filter to the local level of noise. In other words, even
if a large initial size is set, the phase will not be overfiltered in the subsequent filtering iterations (in
fact, it will almost remain untouched), which is an advantage of the proposed method. This led to
the inclusion of a stopping criterionwhich evaluates the improvement after two consecutive filtering
iterations. Specifically, if just aminor improvement is obtainedbetween two iterations, the filter does
not proceed since it is considered that the quality of the interferogram block is high enough, and the
computation time is reduced. Evidently, this condition is adaptive and varies with the local level of
noise, so that the noisiest areas are filtered at each iteration, whereas less noisy areas may be filtered
only in the first iterations.

PolDInSAR analysis carried out in Section 3.3 shows that conventional polarimetric coherence
optimization methods are limited with single-baseline data. In this regard, we have seen that phase
improvements aremainly obtained bymultilooking the original interferogram, but the optimization
does not provide a significant additional gain even though coherence is globally increased. How-
ever, it is important to mention that the coherence improvement varies significantly depending on
the multilook size. It has been shown that larger improvements are obtained when smaller multi-
look sizes are used. This is certainly because the positively biased estimator allows a mathematical
maximization of the coherence. In these cases, the resulting number of high-coherent pixels is con-
siderably larger than in conventional channels. However, we have shown that there is not a real im-
provement in terms of phase quality, since phase data remain very noisy and unsuitable for practical
purposes. Conversely, larger multilook sizes provide a significant noise reduction, at the expenses
of an important degradation of spatial resolution. In this regard, noise is effectively reduced, but the
polarimetric optimization does not provide a significant improvement with respect to conventional
channels. As a result, we might say that the polarimetric optimization is ineffective since the phase
quality improvement is directly achieved by multilooking the original data.

A different processing approach was adopted to test if some phase improvement can eventually
be obtained if the polarimetric optimization was performed without multilooking. To this end, the
idea consisted in individually optimizing each pixel of the interferogram in such away that the spatial
average required for the coherence estimation was only performed during the optimization process.
That is, coherence was locally computed and optimized by using the closest neighbor pixels, but
the whole interferogramwas never multilooked. By doing so, we are able to really evaluate if a phase
quality improvement is obtainedbymeans of the polarimetric optimization. This processing strategy
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shows that a significant reduction of phase noise is globally achieved. In this regard, results show that
correlated areas exhibit a much cleaner phase and that noise level remains high only in extremely
decorrelated parts of the interferogram. Moreover, results also show that the spatial continuity of
interferometric fringes is improved. This represents an important advantage of the method, since
phase noise is effectively reduced and, simultaneously, the original resolution of the phase is never
degraded. It is also worth mentioning that the process exhibits a similar improvement to the one
obtained after directly applying a standard phase filter, which is very remarkable.

Finally,Chapter 4presenteda study showing theperformanceof interferometric SARdata for gen-
erating automatic thematicmaps of crop types. Specifically, we have testedwhether themultitempo-
ral coherence constitutes a valuable feature for crop type classifications using Random Forests, one
of the most popular supervised machine learning algorithms. The generic conclusion of the study
is that coherence is indeed useful and provides overall highly accurate results. We have shown that
global accuracies vary between 70% and 80%, depending on the input dataset provided to the clas-
sifier.

Wehave seen the importance of appropriately sampling the data given to the trainingmodel. It has
been shown that class-level accuracies (i.e., the identification of every single class of the dataset) are
verydissimilar if an imbalanceddataset is used. In this case, themodel is biased towards predominant
classes and the classifier ismuchmore sensitive to detectingmajority classes (the number of pixels of
which is larger), whereas minority classes are poorly identified. The problem of class imbalance has
been solved by resampling the input dataset. Specifically, majority classes are subsampled in such a
way that every class of the training dataset presents exactly the same number of pixels. Results show
that this strategy enables a much more balanced and accurate classification of every single class of
the dataset.

Moreover, we have evaluated the influence of including different combinations of temporal base-
lines and polarizations in the classification process. On the one hand, it has been seen that including
coherences coming frommultiple baselines does not have a positive influence on the results. In fact,
coherence data coming from the shortest temporal baseline (in this case, 6-day coherences) provides
the best overall accuracy. When data from longer temporal baselines are added (12 and 18 days), the
quality of the results is slightly worse. On the other hand, results show that each polarization (VV
and VH) has a different sensitivity. In this regard, using the data of the VV component as input pro-
vides better results than using the ones of the VH counterpart. However, it has been shown that the
information coming from both polarimetric components is somehow complementary, since jointly
using the data of both polarizations as input to the classifier improves the quality of the classification.
In fact, the best classification result shown in this work has been obtained when coherences of the
shortest temporal baseline (6 days) and of both polarimetric channels are used.

Finally, it is important to mention that the classifier still has some difficulties in properly identify-
ing some classes. A reason for this is the very similar evolution in time that the coherencesmeasured
at some crop types present during the year, resulting in an important confusion between such classes
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and a poor discrimination of the classifier.

5.2 Future Research Lines

The last section of the PhDThesis is devoted to providing some ideas for the continuity of this re-
search. Firstly, some improvements and additional studies can be done to each processing technique
presented in this work. Concerning the range filter, it would be interesting to test it with other data
retrieved fromother SAR sensors with different repeat-pass cycles and incidence angles, so as to bet-
ter evaluate its performance and, eventually, verify if it presents any limitationwhich could be solved.
It would be also interesting to develop a robust method for the automatic estimation of fringe fre-
quencies (and hence, of the spectral shift between two images), in presence of any level of noise.
Even though this is indeed a very challenging task, it would be beneficial for the range filtering step
since no external information would be required. A pre-filtering of the original data followed by the
frequency estimator could be studied as a possible strategy.

Concerning the final interferometric phase filter, it is planned to be improved by considering ex-
treme noise levels and by including aminimumquality threshold (besides the already includedmax-
imum threshold) from which the filter should proceed. This is especially useful to avoid the estima-
tion of wrong phase ramps and the appearance of associated artifacts in the filtered signal if some
areas are fully uncorrelated. For instance, if an interferogram contains sea areas fromwhich no useful
phase can be recovered, it would be beneficial to directlymask out these areas without filtering them,
hence avoiding wrong fringe frequencies’ estimates and accelerating the filtering process. Moreover,
variations of the original Goldstein filter formulation could be analyzed. Specifically, a new filter,
which uses values of the filtering parameter α beyond 1, could be conceived to evaluate if a much
stronger noise reduction can be obtained. The challenging task here consists in defining an adequate
relation between the local level of noise in a given interferogram patch and the new values of α, in
order to limit overfiltering effects. However, if appropriately designed, a few filtering iterations (or
even a single iteration) would attain the same noise reduction as the method proposed in this work,
which iterates several times.

Alternative ways to apply PolDInSARoptimizationmethods to the improvement of phase quality
in single-baseline datasets could be studied. For instance, change detection techniques, based on
polarimetry, couldbe employed to complement the interferometric coherence to evaluate thequality
of the data in different areas. Furthermore, since the pixel-based polarimetric optimization at full
resolution provided remarkable results, an important future research topic would be the extension
of this processing technique to multitemporal datasets. Therefore, it would be interesting to apply
this methodology to large stacks of interferograms in order to check if the quality of final products
improves. For instance, the inclusion of this approach can be compared with conventional PSI and
with different phase quality optimization methods involved in full-resolution PSI processing.

Finally, future analysis of crop type classifications must be carried out with the inclusion of addi-
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tional features. The combination of radiometric (image intensities) and interferometric information
should be the first choice of inputs to be evaluated. The inclusion of additional features, for instance,
derived from polarimetric SAR processing (entropy, anisotropy, etc.) should also be tested to check
whether a further gain of accuracy can be obtained when a classifier is provided with further infor-
mation. Moreover, alternative classification approaches and, especially, deep learning algorithms
(neural networks, convolutional neural networks, etc.) should be considered as a very powerful tool
in this topic.
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