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ABSTRACT As it is well known, some versions of the Pepper robot provide poor depth perception due to
the lenses it has in front of the tridimensional sensor. In this paper, we present a method to improving that
faulty 3D perception. Our proposal is based on a combination of the actual depth readings of Pepper and
a deep learning-based monocular depth estimation. As shown, the combination of both of them provides a
better 3D representation of the scene. In previous works we made an initial approximation of this fusion
technique, but it had some drawbacks. In this paper we analyze the pros and cons of the Pepper readings,
the monocular depth estimation method and our previous fusion method. Finally, we demonstrate that the
proposed fusion method outperforms them all.

INDEX TERMS Computer vision, image denoising, image registration, object recognition.

I. INTRODUCTION
In recent years, the interest for humanoid and social robotics
has grown steadily. This expectancy has been fueled by the
recent advances in materials, devices and artificial intelli-
gence. In fact, a lot of manufacturers have already developed
its own humanoid robots. However, the most famous of them
is the Pepper robot, which has been created by Softbank
Robotics. Unlike the others, the Pepper robot has not been
developed to carry out heavy duty tasks or grasping objects
precisely. Instead of that, the Pepper robot is intended to
be deployed at indoor environments and has a clear social
appeal. Nonetheless, this robot is equipped with a range of
different sensors including color cameras, laser, ultrasonic
sensor, touch surfaces and bumper switches. In addition it
also features a depth camera. In the 1.8a version of the robot,
which is the top seller, an ASUS Xtion device is in charge
of the depth perception. This camera is widely used by the
research community and has been praised for its quality
despite being a low-cost device. However, the Xtion featured
by the Pepper Robot v1.8a is not working properly. The point
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clouds that it provides are noisy and distorted, and full of
artifacts. The scientific community believes that this is due
to the lenses that the robot wears right in front of the sensor,
but it has not been confirmed or denied by the manufacturer.

Anyway, the robot is used for a variety of research purposes
that includes object recognition using 3D data, such as [1],
or SLAM, such as [2], [3] or [4]. So, to implement these
methods on it would be a hard task because of the faulty depth
camera.

In addition to that specific issue, there are also a variety of
other problems that can affect all time of flight and structured
light cameras. For instance, these sensors provide low density
point clouds, or fail on specular surfaces.

In this paper, we propose a method to improve the point
clouds provided by the Pepper robot v1.8a but it can be
used to enhance all point cloud-based cameras. Our proposal
is able to provide higher density point clouds and fill the
depth information of specular surfaces by involving a deep
learning approach for depth estimation. A set of benchmarks
validate the improvement of our approach over the depth
maps provided by a Pepper robot v1.8a.

The paper is organized as follows: First, in Section II the
state-of the art in the field is presented. After that, Section III
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describes the issues of Pepper’s 3D camera and the issues
of another depth prediction techniques. Next, Section IV
details a description of the proposal. This is followed by the
Section V, where the procedures for testing the proposed
approach are described and the results of the experiments
are presented. Finally, Section VI includes the discussion and
conclusions of the work.

II. RELATED WORKS
This paper aims to overcome several existing three-
dimensional sensor weaknesses by merging point clouds pro-
vided by a real depth camera and an estimated depth map
from a deep learning approach. Therefore, this section is
divided into the three relevant subsections. In addition, it is
worth noting that this work is an extension of one of our
previous work [5].

A. DEPTH CAMERAS ISSUES
Researchers in various fields, in particular, computer vision,
human-computer interaction (HCI), augmented reality (AR),
and robotics, rely on the use of depth sensors for their
research. However, when it comes to the three-dimensional
representation of the environment, these sensors face sev-
eral problems. Factors related to deep noise maps were
approached from multiple perspectives.

In [6], the noise of the Kinect depth images is characterized
based on several elements. Their works also introduce a
standard nomenclature for these noise types. They observed
that there are four variables, namely, imaging geometry,
surface/medium property, sensor technology control spatial
noise, and object distance. These four control parameters and
the noise source were used to characterize the noise behavior
into axial, out-of-range, specular surface, shadow, lateral,
non-specular surface, band, residual noise and structural
classes. Every class summarizes the behavior of the noise
either from the reports of others or from their tests. Motion,
object distance, surface properties, and frame rate control the
behavior of the temporal noise. Some of the problemswith the
depth camera using this categorization are described below.

The out-of-range noise [7] is produced by objects too
near or too far. The characteristics of this noise are periphery
usually has a high adjacency with far or near depth, Shares
border with the image frame, and zero-depth (fails to estimate
depth). The control parameter of this noise is Object distance.

The lateral noise [8] is produced by shadow-like non-
uniformity at edges. The characteristics of this noise are
pronounced for vertical edges and straight edges. Error along
edges, varies linearly with depth, zero-depth, decrease with
nearby background, and occurs at both: non-shadow edges
and shadow.

In the case of the axial noise [8], it is produced by speckles
per unit area drops quadratically with increasing distance.
The characteristic of this noise is the accuracy decreases
quadratically with increasing depth [9] and Wrong Depth
(WD) value that occurs when the sensor reports a non-
zero-depth value, its accuracy depends on the depth itself.
The control parameter of this noise is Object distance.

The shadow noise [10] is caused by shadow-like non-
uniformity on the edges. The properties of this noise are
pronounced for vertical and straight edges. The error along
the edges changes linearly with depth, zero-depth, decreases
with nearby background, and occurs in both: non-shadow
edges and shadow.

The specular surface noise [6] is caused by surfaces that
are highly reflective to IR, so it fails to diffuse the speckle pat-
tern. These noise properties are consistent across the frames;
the zero-depth could be large irregular patches of zero-depth
not adjacent to the edge of the image.

The Band Noise [11] is produced probably due to the effect
of the windows of block correlation. The characteristics of
this noise are zero-depth, Spreads as a vertical band at the
left end, Has 8-pixels width. This occurs in all depth images.
The control parameter of this noise is Sensor Technology.

The Structural Noise [12] is produced by Low spatial reso-
lution of the sensor, wrapping of IR image by the lens, or dis-
parity to depth transform. The characteristics of this noise
are the depth of a plane varies at different points; Varia-
tions appear as waves, or circular ripples, Variations increase
with distance. The control parameter of this noise is Sensor
Technology.

In the case of the Residual Noise [11], its source is
unknown - observed even after careful calibration with
stereo-rig. The characteristics of this noise are Positive in the
center and negative at the periphery, Vertical periodic stripes
in-depth error, Independent of depth, and Dependent on the
presence of other objects. The control parameter of this noise
is Sensor Technology.

The Vibrating Noise [12] is produced by Speckle-based
triangulation, the presence of depth-edges and specular sur-
faces, and motion. The characteristics of this noise are the
depth of a stationary object vibrates with time, Vibrations
increase with distance, Error increases with X but not with
Y and Unstable Depth (UD) Value entailing reports a non-
zero-depth value. However, that value changes over time even
when there is no change of depth in the scene. The control
parameter of this noise is Object, Distance, Motion, Surface,
and Frame Rate.

B. SENSOR FUSION TECHNIQUES
In nature, it is widespread to identify species that can combine
different signals to recognize their environment. Humans
are capable of identifying their environment combining the
information provided by a variety of sensors such as the
auditory system, the speech system, the cutaneous system,
and the visual system. Now the utilization of fusion concepts
in technical areas is a discipline encompassing many fields
of science [13]. Sensor fusion provides a substantial possi-
bility to be able to overcome the physical limitations of the
detection systems. In the state-of-the-art are many different
definitions for data fusion.

Joint Directors of Laboratories (JDL) [14] defines data
fusion as ‘‘A multi-level process dealing with the association,
correlation, combination of data and information from single
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and multiple sources to achieve the refined position, identify
estimates and complete and timely assessments of situations,
threats, and their significance.’’

Elmenreich W. [13] defines sensor Fusion as the combi-
nation of data from the sensors or data that derives from
sensory data in such a manner that the output information is
in some sense better than it would be possible when these
sources were used individually. According to [15] the data
fusion techniques can be categorized into three non-exclusive
classes: (i) data association, (ii) state estimation, and
(iii) decision fusion.

Data Association Techniques [15]. The purpose of data
association methods is to define the set of observa-
tions or measurements produced by the same target through
time. The most commonly used techniques to solve the
data association problem are Probabilistic Data Association,
Nearest Neighbors and K-Means, Multiple Hypothesis Test,
Joint Probabilistic Data Association, Distributed Joint Prob-
abilistic Data Association,GraphicalModels andDistributed
Multiple Hypothesis Test.

State Estimation Methods [15]. State estimation meth-
ods determine the state of the moving target (typically the
position) given the observation or measurements. The most
common estimation methods are the Kalman filter,maximum
likelihood and maximum posterior, particle filter, the dis-
tributed Kalman filter, covariance consistency methods and
distributed particle filter.

Decision Fusion Methods [15]. Usually, a choice is made
based on the knowledge of the perceived situation, which
is given by several sources in this domain. The most com-
mon Fusion Methods are the the Dempster-Shafer Infer-
ence, bayesian methods, Semantic methods and Abductive
Reasoning.

Choosing the appropriate technique relies on the nature
of the problem and the assumptions that have been
made.

C. DEPTH ESTIMATION FROM MONOCULAR FRAMES
The estimation of depth based on image data has been under
study for some time, based on stereo vision [16]. However,
in this section, only the methods based on the monocular
depth predictions will be reviewed (they are chronologically
listed).

The first essay on this topic was published in 2005 by
A.Saxena [17]. The approach used a supervised learning
algorithm to estimate depth from a single monocular image.
The method used discriminative-trained Markov Random
Field (MRF) that included local and global features from the
images.

Filling the gap between 2005 and 2010, appeared publi-
cations such as [18]–[22] which also contribute to improve
monocular depth estimation task.

Liu et al. published [23] in 2010; they applied semantic
segmentation of the scene as a guide to the three-dimensional
reconstruction. The method also used MRF to enforce neigh-
boring constraints.

Then was [24] published, it presented a depth transfer
approach in three stages. The first stage was the search for
the candidate images. The second stage applied to warp to the
candidate and depth images. At the last stage, they interpo-
lated and smoothed the warped candidate depth values; these
outputs where the inferred depth.

Another approach was released the same year, [25], it was
based on the observation that of all the image + depth pairs
that were available online, there were probably many pairs
whose three-dimensional contentmatched a 2D input (query).

David Eigen wrote in 2014 one of the most exceptional
articles, [26]. Their approach relied on a coarse-scale network
to predict the depth of the scene on a global scale. This was
subsequently refined within the local regions using a large-
scale network. The two stacks were applied to the original
input, but also, the output from the coarse network was passed
to the fine network as an added to the first layer image feature.

In 2014 was also published [27]. The authors present an
approach to estimate the depth of a scene from a single image.
They used the superpixel terms to address this issue, making
the common assumption that each superpixel is planar.

In 2015, three different articles were released in this field:
[28] presented a deep convolutional neural field model for

estimating depths from a single image, aiming to explore the
capacity of deep CNN and continuous CRF jointly.

[29] have presented a new common framework for estimat-
ing the depth and normality of the surface of singlemonocular
images, consisting of regression through deep CNNs and
refinement through a hierarchical CRF.

[30] applied a trained Convolutional Neural Network
(CNN) to jointly predict a global layout composed of pixel-
wise depth values and semantic labels.

In 2016, Iro Laina et al. published [31], this work has been
used as our baseline in this article. Their methods was based
on the application of a fully convolutional architecture to
predict depth, endowed with novel up-sampling blocks, that
allowed for dense output maps of higher resolution and at the
same time required fewer parameters.

Also the same year was published [32]. It used as input an
image sized randomly and the outputs was a dense score map.
Then, they applied fully connected CRFs to get the final depth
estimation.

Another paper was [33], which captured scene details by
considering information contained in depth gradients. It pos-
tulated that local structure encoded with first-order derivative
terms.

In 2017 was published [34]. It predicted pixel-wise depth
from a single color image. They proposed a simple and effec-
tive dilated deep residual CNN architecture, which converged
with much fewer training examples and model parameters.

[35] proposed a supervised scheme for depth estimation
employing unlabeled video clips with synthesis of the view,
this is implemented using a depth CNN and a Pose CNN.

In 2018, [36] proposed three architectural and loss inno-
vations that lead to large improvements in monocular depth.
The innovations where: the introduction of a matching loss
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to solve the problem of occluded pixels. A automasking
approach to ignore pixels where no relative camera motion
is observed in monocular training. And a multi-scale appear-
ance matching loss that performs all image sampling at the
input resolution.

III. THE PEPPER ROBOT AND DEPTH
ESTIMATION PROBLEMS
This paper introduces a resolution to the problem of the 3D
camera for the Pepper Robot. First, we will briefly present
the specifications of the Pepper Robot. The Pepper robot was
developed by Aldebaran robotics, which is owned by Soft-
bank. It was designed to interact with humans. The dimension
of the Robot are: height 1.21 meters, width 0.48 meters,
and depth 0.425 meters. It has a weighs of 28 kilograms
(62 lb), and it contains a lithium-ion battery which allows
an operation time of approximately 12hrs. In the Head, are
two RGB cameras, four Mic, a 3D sensor, and three touch
sensors. In the hands are two touch sensors and in the legs:
two sonar sensor, six laser sensor, three bumper sensor, and a
gyro sensor. Figure 1 shows some of the sensor listings.

FIGURE 1. Sensors listed on the Pepper robot. The first image represents
the location of the microphone set. In the second image, the position of
two cameras are shown in color and also indicates the field of view. Third
and fourth images feature the 3D camera.

Currently, the Robot has three different hardware ver-
sions. The latest version 1.8 includes a brand-new three-
dimensional sensor. In the newer robot version, the depth
sensor was replaced per two 4 MPx color cameras, and
using a stereo algorithm provided depth perception. Outcome
depth maps are generated at 15 fps and have a resolution of
1280× 720. However, versions 1.6 and 1.8a, are equipped
both with the defective depth sensor, Asus Xtion. The Asus
Xtion depth sensor can provide depth maps with a resolution
of 320× 240 at 20 frames per second.

A. THE ISSUE WITH THE 3D SENSOR OF
THE PEPPER ROBOT
As already mentioned, the Pepper Robot has an Asus Xtion
sensor as a depth camera. Theoretically, this camera can pro-
vide accurate depth maps of the scenes. However, the Xtion
camera mounted on this Robot appears to provide erroneous
depth maps, which also results in incorrect point clouds.

As shown in Figure 2, this issue lies in a distorted repre-
sentation of tridimensional space. The resulting point clouds
reveal a wave-like pattern throughout the scene. This issue
becomes more evident when it represents plane artifacts, like
walls or floors, but it occurs throughout the whole scene.
Also, we noticed that the distortion worsens with increasing

FIGURE 2. In these images, it is shows an external standalone Xtion point
cloud and the Pepper Robot’s Xtion camera. Both images are taken from
the same point of view and represent the same scene. The white artifact
is a planar surface that, in this case, is a wall.

depth, namely, objects near to the sensor were less affected
than those further away.

In order to quantitatively evaluate the distortion of the
depth camera of the Pepper Robot, a simple experiment was
performed. We took a flat object and placed it at different
distances from the 3D sensor of the Pepper Robot. The dis-
tances varied between 1 and 3 meters, with an increase in
distance of 0.5meters. For each case, the corresponding depth
map was captured and projected into 3D space. Then, all the
points on the flat object were selected manually. Depth maps
and colored frames are recorded, making this step simple.
Then, we fitted a plane using RANSAC [37], setting the inlier
threshold to infinite. This process is done to ensure that all
points are unstable values. 60000 different plane were tested,
but only the one with the lowest RMSE is returned, this was
done due to the random nature of RANSAC. The results
of these experiments can be found in Figure 3. The mean
Euclidean distance from each point to the estimated plane is
reported for each experiment in the Figure.

FIGURE 3. This Figure shows the mean error per distance to the plane
reached by the Robot.

With the results obtained, we can affirm that the mean error
grows as the distance to the object increases. In other words,
the quality of the resulting point clouds gradually worsens.
In absolute terms, the 3D representation of the planar object
is reduced even when the object is as close as 1 meter. In this
case, the mean error is 20.36 mm, but the furthest point is
79.15mm from the plane. The furthest point in the 3-meter
experiment is 279.12mm. Methodological details related to
Pepper and the version of NaoQi used in this experiment can
be found in Section V. Figure 4 shows the point clouds and
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FIGURE 4. Estimated planes (in grey) for the point cloud representations
(in red) of a planar object. The first column is the same planar object
located at 1 meter from the sensor and the second column is the same
planar object located at 3.5 Meters. It is worth mentioning that the
representation is distant from accurate in both cases, and the problem
becomes worse as the distance increases.

the corresponding planes estimated for 1 and 3 meters for
qualitative assessment purposes.

It should be noted that this is not an isolated problem or a
flaw in our unit. To make sure of them, we have personally
contacted different researchers from different laboratories
and universities who have reported the same issue on the
Robot with the same version.

B. OTHER ISSUES RELATED TO 3D CAMERAS
There are other problems that commonly affect all sensors
based on time-of-flight and structured light. These technolo-
gies are used by most commercial depth cameras, such as
Microsoft Kinect and Asus Xtion. The first issue we are dis-
cussing is the impossibility of calculating the depth in shadow
that foreground objects project onto background objects. This
case produces some areas without depth enforcing around the
boundaries of the objects in the scene. The Figure 5 Shown,
this case. In there is no in the shadow of a conical form that
projects the chair in the foreground.

FIGURE 5. The leftmost image depicts the shadow effect issue of the
structured light and time-of-flight sensors. The rightmost image shows
another problem with these sensors, which is the incompatibility with
specular surfaces.

The incompatibility with specular surfaces is another issue.
Objects with specular surfaces are not properly sensed by
these devices. They produce faulty depth values or areas with
no depth information. This case is shown in Figure 5. As can
see, the depicted point cloud shows a hole in the place of the
specular object.

C. ISSUES RELATED TO MONOCULAR DEPTH ESTIMATION
The monocular depth estimation obtained by the Iro Laina
network has two main advantages. First, it provides estima-
tions for every pixel on the image, so it generates a very dense

FIGURE 6. Iro Laina’s approach produces trailing artifacts from the edges
of the objects prointing to the background.

FIGURE 7. RMSE of the distance to the real plane of the points inferred
by Iro Laina.

FIGURE 8. FusionV1 provided poor density point clouds as a result of a
strict filtering process.

FIGURE 9. RMSE of the distance to the real plane of the points fused by
FusionV1.

point cloud, and it also usually keeps the geometry of the
entities present in the scene.

Nevertheless, it produces several artifacts on the resulting
estimation. As shown in Figure 6, a trailing artifact is gener-
ated near the edges of the objects in the foreground pointing
the background.

We tested the accuracy of the scale and depth values by
carrying out the following experiment. We took images of a
planar object with the sensor located at certain distances from
it. Then, we estimated the depth maths with the Iro Laina’s
approach and computed the root mean square error (RMSE)
error between the actual distance and the obtained by the
sensor. Results of this experiment are shown in Figure 7.
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FIGURE 10. Scheme of the new fusion method FusionV2.

D. ISSUES RELATED TO THE PREVIOUS FUSION METHOD
In our previous work [38], presented at the Workshop of
Physical Agents 2018 (WAF 2018), we proposed a method
to fusion the depth information from Pepper and Iro Laina’s
approach. Despite the fact that it solved the trailing artifacts
contributed by the monocular depth estimation, our method,
hereinafter referred to as FusionV1, establishes a very restric-
tive filter and rejected a great quantity of points, as depicted
in Figure 8. As a result, the method provided low-density
point clouds. In addition, FusionV1 preserves the poorly
accurate depth predictions of Iro Laina’s approach as shown
in Figure 9.

IV. FUSIONV2: REFINING THE FUSION OF MONOCULAR
AND PEPPER DEPTH MAPS
In order to solve the main issues of FusionV1, we propose
changes to this previous method, that takes the noisy and
incorrect point clouds from Pepper and the point clouds as
provided by the Iro Laina’s method, and returns a new cor-
rected point cloud.

First, we obtain the raw point cloud from Pepper and make
no preprocessing.

Then, Iro Laina’s approach [31] estimates depth map from
a monocular frame using a fully convolutional neural net-
work. Then, both point clouds are summarized. The fusion
process consists inmixing the point cloud fromPepper’s cam-
era and the one estimated from the monocular color image.
This process is carry out as follows:

1) Align themonocular depth estimationwith Pepper’s
point cloud. First, we want to align both point clouds.
This step would be computationally expensive if we use

the whole points, so we perform uniform sampling on
the Pepper’s point cloud and obtain the corresponding
points from the monocular cloud (this step is straight-
forward because both are registered and obtained from
a depth map of the same resolution). Then, we align
the point cloud estimated with Iro Laina’s approach
with Pepper’s using a variant of the Iterative Closest
Point algorithm that employs the Single Value Decom-
position technique. This method not only calculates
translation and rotation between both point clouds but
the scale component is inferred too [39]. As a result,
the estimated point cloud with Iro Laina’s method is
set in the correct scale.

2) Calculate the planarity of every point in monocular
estimation. We calculate a planarity measure for each
point in the Iro Laina’s method estimated point cloud.
First, we search its neighboring points in the same point
cloud using a radial search within a range threshold r .
Then, we use RANSAC to fit a plane using these points.
This method is robust against outliers and calculates the
plane that better represents the data. Then, the ratio of
neighboring points whose distance to the plane is less
than a certain threshold of d is calculated. This ratio
is called planarity measure. If this ratio is higher than
a threshold of Tp, then the monocular estimation point
is inserted in the output points Cloud fused. Contrarily,
the output information is taken from the Pepper point
cloud.

The resultant point cloud has the density and geometric
shapes of the point clouds estimated by Iro Laina’s method
and preserves the correct depth values and scale provided by
Pepper. This approach is depicted in Figure 10.
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V. EXPERIMENTATION
The hardware setup we used is described next.

The experiments are carried out using version 1.8a of the
Pepper Robot, which includes an Asus Xtion as a 3D sensor.
Themanufacturer provides a set of parameters for the camera,
so it is not necessary to estimate the intrinsic parameters. The
center of the image in the X-axis is 319.5, and the center of
the image in the Y-axis is 239.5. Its focal length is 525. With
these parameters, we can project the provided depthmaps into
3D point clouds.

For the computation of the fusion method and the monoc-
ular depth estimation, we used an external computer with
8 GiB HyperX DDR3 RAM (Kingston) 1600 MHz on an
Asus P8H77-M PRO. Also, include a processor Intel Core
i5-3570 and an NVIDIA Quadro P6000 GPU. To execute the
DL tasks, we used TensorFlow 1.8 as the core with Keras
1.2.0. The OS used was Ubuntu 16.04. To accelerate the
computations, we used CUDA 9.0 and cuDNN v7.5.

FIGURE 11. Monocular captures of the scenes we used in the
experiments.

To ensure the reliability of our proposal, we have per-
formed a set of experiments. We took several captures of
a whiteboard of our workplace at different distances with
Pepper’s color camera and depth sensor, as seen in Figure 11.

We put to test the point clouds generated by Pepper,
Iro Laina’s method, our former fusion method FusionV1,
and our new fusion method FusionV2. As the generated
point clouds depicted more objects in addition to the pla-
nar object, we manually selected the whiteboard planes
and removed the remaining points. These resultant point
clouds, which are depicted in Figure 12, are used to the
experiments.

The first metric we tested is Planarity. This metric con-
sists in fitting the best possible plane for every cloud using
RANSAC, and calculate the RMSE of all the points. The
results are shown in Table 1 and Figure 13. As can be seen,
the planarity RMSE of the Pepper point clouds worsen as
the distance is increased. On the other hand, the planarity
RMSE of Iro Laina’s approach and both fusion methods are
more dependent on the visual features than on the distance ob
the objects to the sensos. Nonetheless these methods provide
better planar objects.

The second metric is Distance precision. This metric
consists in determine the difference between the estimated

FIGURE 12. Comparative of the generated planes from Pepper, Iro,
FusionV1, FusionV2 point clouds. On left images, Pepper and Iro clouds
are compared. On right images, FusionV1 and FusionV2 are compared.
This split has been done because Pepper and FusionV2 overlap in
distance, and Iro and FusionV1 are quite similar in distance and geometry.
On the left image, the less dense cloud corresponds to Pepper. On the
right image, the less dense cloud corresponds to FusionV1.

distance and the real one (we have measured the exact dis-
tance to the planes with a laser), and calculate the RMSE of all
the points. The results are shown in Table 2 and Figure 14.
As depicted in previous figures, the distance RMSE of the
Pepper planes is far better than the Iro’s, that suffers much
more problems with the scale of the cloud. However, our
method FusionV2 preserves the good distance estimation of
Pepper.

The last metric is Density. This metric measures the pro-
portion of good points (not NaNs) in respect of the totality of
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TABLE 1. Planarity results obtained for the point clouds provided by the
different methods at different distances. Distance is in meters whilst the
results are in millimeters.

FIGURE 13. RMSE distances of the point clouds to the fitted plane.

TABLE 2. RMSE distances of the point clouds to the real plane. Distance
is in meters whilst the results are in millimeters.

FIGURE 14. RMSE distances to the real plane for this experiment.

TABLE 3. Density of the point clouds.

points in the cloud. The results are shown in Table 3. These
results show the lack of resolution that suffers Pepper’s point
cloud and the good quality of Iro’s. Our previous method
FusionV1 inherits these bad density in some situations but
our new method, FusionV2, preserves the density quality
of Iro’s.

VI. CONCLUSION
We present a refinement of our previously proposed method
for improving the quality of the Pepper 1.8a depth map.

The camera of Pepper suffers some kind of radial dis-
tortion, arguably produced by its lenses, that produces sev-
eral artifacts on planes. In order to correct this geometrical
issue, we make use of the monocular depth estimation of
Iro Laina’s architecture, that performs better with planar
representation.

Wemake a fusion between the Pepper andmonocular point
cloud, aligning the second with the first one and looking
for planar areas. Thus, we provide a point cloud of better
quality.

In our previous paper, we suggested the improve of the
distance estimation provided by the monocular method.
As shown in the Experimentation section, our new fused
output point cloud represents far better the distance of the
scene than our previous one, and preserves the density of
points of the monocular depth estimation.
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