
1 
 

Total words: 7209 1 

Photoelectro-Fenton as post-treatment for electrocoagulated 2 

benzophenone-3-loaded synthetic and urban wastewater 3 

Zhihong Ye, Juliana R. Steter, Francesc Centellas, Pere Lluís Cabot, Enric 4 

Brillas*, Ignasi Sirés* 5 

Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química 6 

Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 7 

Barcelona, Spain 8 

* Corresponding author: E-mail address: brillas@ub.edu (E. Brillas) 9 

       E-mail address: i.sires@ub.edu (I. Sirés)  10 

mailto:i.sires@ub.edu


2 
 

Abstract 11 

The removal of benzophenone-3 (BP-3), a ubiquitous pollutant in municipal wastewater 12 

treatment facilities, was optimal by means of a sequential electrocoagulation (EC) / UVA 13 

photoelectro-Fenton (PEF) treatment. Overall mineralization was attained upon combination of 14 

EC (Fe/Fe cell, 15 mA cm-2, 20 min) with PEF (boron-doped diamond/air-diffusion cell, 33.3 15 

mA cm-2, 720 min), being superior to EC/electro-Fenton (EF) and requiring shorter time than 16 

single PEF. In EC, an Al/Al cell yielded the largest removal of BP-3 in a simulated matrix at 17 

pH 11.0 due to precipitation of its neutral form caused by a substantial pH drop, with optimum 18 

current density of 15 mA cm-2. EC of BP-3-loaded urban wastewater at natural pH was quite 19 

effective also with a Fe/Fe cell, being preferred since it provided the required metal catalyst for 20 

subsequent treatment. Among the electrochemical advanced oxidation processes tested, PEF 21 

was superior to electrochemical oxidation with electrogenerated H2O2 (EO-H2O2) and EF, 22 

especially when using the boron-doped diamond instead of a RuO2-based anode, due to the 23 

oxidation of generated active chlorine and hydroxyl radicals, along with the photolytic action 24 

of UVA irradiation. GC-MS revealed the formation of 14 cyclic products in PEF treatment, two 25 

of them being also formed during EC. 26 

Keywords: Benzophenone-3; Electrocoagulation; Electro-Fenton; Oxidation products; 27 

Photoelectro-Fenton; Wastewater treatment 28 

  29 
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1. Introduction 30 

 Benzophenone-3 (BP-3, C14H10O3, 2-hydroxy-4-methoxybenzophenone, M = 228.25 g 31 

mol-1), also called oxybenzone, is widely employed as sunscreen agent due to its large ability 32 

to absorb UV light, limited photodecomposition and high lipophilicity (Abdallah et al., 2015). 33 

It is an active ingredient in lotions and personal care products including bath oils, soaps, 34 

mascaras and anti-aging creams (Downs et al., 2016). A release of 14,000 ton y-1 of BP-3 into 35 

the aquatic environment is estimated via wash-off from skin and clothes or indirectly via solid 36 

waste landfill leachate and wastewater treatment facilities (WWTFs), thereby being detected in 37 

natural water bodies, soil, fish and even in human milk (Gago-Ferrero et al., 2013; Downs et 38 

al., 2016). It has reached up to 7800 ng L-1 in untreated municipal wastewater, being reduced 39 

to 700 ng L-1 upon treatment (Liu et al., 2012). It has also been detected within the 10-20 ng g-40 

1 range in sewage sludge and 3-21 ng g-1 in fish (Liu et al., 2012). Its potential toxicity arises 41 

from endocrine disruption, genotoxicant actuation, pro-carcinogenic activity, mutagenic ability 42 

of derivatives and skin penetration in humans (Downs et al., 2016). 43 

 The water solubility of BP-3 (pKa = 9.65 (Gilberta et al., 2016; Li et al., 2016) is very high 44 

at pH > 10 where its anionic form predominates, whereas its neutral form prevailing at pH ≤ 9 45 

has very low solubility (< 5 mg L-1). Effective removal of BP-3 from synthetic aqueous matrices 46 

at pH 3-9 has been attained by biodegradation (Liu et al., 2012), ultrasound (Zúñiga-Benítez et 47 

al., 2016c), ozonation and peroxone oxidation (Gago-Ferrero et al., 2013), membrane catalytic 48 

ozonation (Guo et al., 2016), photo-Fenton (Zúñiga-Benítez et al., 2016b), TiO2/photocatalysis 49 

(Zúñiga-Benítez et al., 2016a) and UV/H2O2 (Gong et al., 2015). Most of these works only 50 

determined the decay kinetics of BP-3 at concentrations ≤ 1 mg L-1, but did not assess the 51 

formation of hydroxylated and/or chlorinated derivatives, potentially more toxic than BP-3 (Li 52 

et al., 2016). 53 
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 Recently, electrochemical advanced oxidation processes (EAOPs) have received great 54 

attention for wastewater remediation because they cause large mineralization of aqueous 55 

solutions containing organic pollutants (Asghar et al., 2015; El-Ashtoukhy et al., 2017; Silva et 56 

al., 2018). The most typical EAOP is electrochemical oxidation (EO), which can be utilized 57 

with electrogenerated H2O2 (EO-H2O2) (Panizza and Cerisola, 2009; Sirés et al., 2014; Särkkä 58 

et al., 2015). Fenton-based EAOPs such as electro-Fenton (EF) (Brillas et al., 2009; Martínez-59 

Huitle et al., 2015; Moreira et al., 2017) and photoelectro-Fenton (PEF) (Brillas et al., 2009; 60 

Brillas, 2014) are even more powerful. Their good performance results from the generation of 61 

the powerful oxidant hydroxyl radical (•OH). UVA light employed to irradiate the solution in 62 

PEF photolyzes photoactive intermediates, accelerating their conversion into CO2 and making 63 

it the most efficient EAOP (Wang et al., 2008; Salazar et al., 2012; Urzúa et al., 2013). 64 

However, main drawbacks for PEF application include long time needed to destroy large 65 

contents of organic matter and poor light penetration when solutions contain colloidal particles. 66 

To overcome these limitations, the use of electrocoagulation (EC) as pre-treatment has been 67 

recently envisaged (Thiam et al., 2014; Bocos et al., 2016). EC involves the in situ generation 68 

of coagulants from dissolution of an appropriate sacrificial anode (Fe or Al), forming flocs that 69 

precipitate and adsorb colloids and organics. Partial oxidation of the organic matter with 70 

generated •OH and active chlorine (Cl2/HClO/ClO−) in the presence of Cl− seems also feasible 71 

(Ghernaout et al., 2011; Ghernaout, 2013; Demirbas and Kobya, 2017). To date, sequential 72 

EC/EAOPs have only by examined by the dye Tartrazine (Thiam et al., 2014) and the antiseptic 73 

bronopol (Bocos et al., 2016) in synthetic solutions with ultrapure water. However, the viability 74 

of EC/EAOPs coupling has not been tested yet for urban wastewater, which contains natural 75 

organic water (NOM) that may exert some influence on the degradation of organic pollutants. 76 

Under these conditions, the treatment at natural pH can be performed, relying on the good 77 

performance of heterogeneous Fenton-like systems (Cheng et al., 2016, 2018a, 2018b). 78 
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 The present article reports the first EC/EAOPs coupling for the removal of an organic 79 

pollutant spiked into an effluent from primary wastewater treatment. BP-3 was selected as 80 

model molecule, being determined its decay kinetics and total organic carbon (TOC) removal. 81 

First, the EC treatment of BP-3 in a simulated matrix with the same ionic composition as the 82 

urban wastewater, at pH 11.0, was tested with cells containing Al or Fe anode to elucidate the 83 

role of the BP-3 acid-base equilibrium. Analogous EC trials were made using the real effluent 84 

at natural pH, where the neutral form was predominant. Then, the single EO-H2O2, EF and PEF 85 

treatments of urban wastewater at natural pH spiked with BP-3 were studied using a RuO2-86 

based or boron-doped diamond (BDD) anode and an air-diffusion cathode. Intermediates of 87 

BP-3 formed by EC and PEF were identified by gas chromatography-mass spectrometry (GC-88 

MS), leading to a route for BP-3 removal. Finally, sequential EC/EF and EC/PEF of BP-3-89 

loaded urban wastewater were examined to compare their performance with that of single 90 

EAOPs. 91 

2. Experimental 92 

2.1. Chemicals 93 

 BP-3 (98% purity) was provided by Sigma-Aldrich. The salts used as supporting 94 

electrolytes were purchased from Panreac and Merck. Analytical grade FeSO4•7H2O used as 95 

catalyst was purchased from J.T. Baker. High-quality Millipore Milli-Q water (> 18 MΩ cm) 96 

was used to prepare all synthetic solutions. Other chemicals were of HPLC or analytical grade 97 

from Panreac and Merck. 98 

2.2. Urban wastewater 99 

 The real sample was collected from the primary clarifier of a WWTF located near 100 

Barcelona. This facility treated 50,000 m3 d-1 of mixed urban and industrial wastewater. After 101 
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collection, the urban wastewater was preserved in a refrigerator at 4 ºC and was used in the next 102 

15 d to prevent anaerobic degradation. 103 

 According to Table S1, the primary treated effluent had pH ~ 8.0 and low conductivity, 104 

total carbon (TC), TOC and TN. Na+ prevailed over cations like K+, Ca2+ and Mg2+, with 105 

insignificant total iron content. Among anions, Cl− predominated over SO4
2−, both at relatively 106 

high contents. Table S2 summarizes the characteristics of 18 organic compounds detected for 107 

the raw wastewater by GC-MS, which included 17 cyclic (3 of them aromatic and 5 with N as 108 

heteroatom) and 1 aliphatic compounds. Worth mentioning, our target pollutant BP-3 was also 109 

contained in the real effluent. 110 

2.3. Electrolytic systems 111 

 The electrolytic trials were made in an undivided, open glass cell with a double jacket for 112 

circulation of thermostated water at 35 °C, under vigorous stirring by a magnetic follower. This 113 

temperature was selected because it is the maximum value to operate without significant water 114 

evaporation from the solution, thus obtaining the best reactivities during the degradation trials 115 

with reproducible measurements. In EC, the anode was an iron or aluminum plate with 116 

immersed area of 10 cm2. The same materials as well as stainless steel (AISI 304 or AISI 316L) 117 

plates of the same area were tested as cathode. The electrode pairs were placed alternately in 118 

parallel at distance of 1.0 cm. In EAOPs, the anode was a RuO2-based plate from NMT 119 

Electrodes (Pinetown, South Africa) or a BDD thin-film on Si supplied by NeoCoat (La Chaux-120 

de-Fonds, Switzerland). The cathode was a carbon-PTFE air-diffusion electrode from E-TEK 121 

(Division of De Nora N.A., Inc.), mounted as described elsewhere (Steter et al., 2016) and fed 122 

with air pumped at 1 L min−1 for continuous H2O2 generation. The area of all electrodes was 3 123 

cm2 and their distance was 1.0 cm, being prepared as described elsewhere prior to first use 124 

(Thiam et al., 2014). PEF was made under UVA irradiation (λmax = 360 nm, 5 W m−2) provided 125 

by a Philips fluorescent black light blue tube. 126 
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 Fresh solutions of pollutant contained 30 mg C L-1 BP-3 (0.178 mM) in simulated matrix 127 

(pH 11.0, stirring for 2 h) or 4 mg C L-1 BP-3 (0.024 mM) in urban wastewater (natural pH, 128 

stirring for 12 h). In the sequential EC/EAOPs, the EC-treated solutions were centrifuged for 129 

10 min at 4100 rpm to remove the sludge and easily collect the supernatant for post-treatment. 130 

2.4. Analytical procedures 131 

 The electrical conductance and pH were measured on a Metrohm 644 conductometer and 132 

a Crison GLP 22 pH-meter. Trials were carried out at constant current density (j) using an Amel 133 

2053 potentiostat-galvanostat. H2O2 concentration was determined using a Shimadzu 1800 134 

UV/vis spectrophotometer at 25 °C following a standard methodology (Welcher, 1975). 135 

Samples withdrawn from treated solutions were microfiltered (0.45 μm) before analysis. TOC 136 

was determined on a Shimadzu TOC-VCNS analyzer. Total nitrogen and concentration of 137 

anions and cations, including total iron, were obtained as reported elsewhere (Ridruejo et al., 138 

2017). 139 

 BP-3 content at λ = 277 nm and short-linear aliphatic carboxylic acids at λ = 210 nm were 140 

determined by reversed-phase and ion-exclusion HPLC using a Waters LC, as previously 141 

reported (Salazar et al., 2012; Ridruejo et al., 2017). In the former case, an acetonitrile/10 mM 142 

KH2PO4 (50:50 v/v) mixture at 1 mL min-1 was used as mobile phase and BP-3 was detected at 143 

retention time (tr) = 19.2 min, with limit of quantification = 0.15 mg L-1 and limit of detection 144 

= 0.05-0.10 mg L-1. 145 

 Table S3 summarizes all the electrochemical characteristics of the single and sequential 146 

assays performed with simulated matrix, Na2SO4 and urban wastewater. All experiments were 147 

made in duplicate and average results are given, with the corresponding error bars in figures. 148 

 The organic components of the raw urban wastewater and electrolyzed solutions under EC 149 

and PEF conditions were extracted with CH2Cl2 (3 × 25 mL). The resulting organic solution 150 

was dried over anhydrous Na2SO4, filtered and concentrated to ca. 1 mL to be analyzed by GC-151 
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MS using optimized analytical conditions (Salazar et al., 2012) and a NIST05 MS library for 152 

interpretation. The analysis was made with an Agilent Technologies system composed of a 153 

6890N gas chromatograph with a 7683B series injector and a 5975 mass spectrometer in 154 

electron impact mode at 70 eV. A nonpolar Agilent J&W DB-5 or a polar HP INNOWax 155 

column of 0.25 µm, 30 m × 0.25 mm, was employed. The temperature ramp was: 36 ºC for 1 156 

min, 5 ºC min-1 up to 300 ºC and hold time 10 min. The inlet, source and transfer line operated 157 

at 250, 230 and 280 ºC. 158 

3. Results and discussion 159 

3.1. EC treatment of BP-3 in a simulated matrix at pH 11.0 160 

 Comparative EC trials were made with 150 mL of 30 mg C L-1 BP-3 in simulated matrix 161 

at pH 11.0 using an Al or Fe anode. The composition of the simulated matrix mimicked the 162 

main ion content of urban wastewater (Table S1), with 1.8 mS cm-1 conductivity. Cathodes of 163 

the same materials as well as of AISI 304 or AISI 316L were employed to test the performance 164 

of each anode/cathode cell for 60 min at 10 mA cm-2, without pH regulation. Fig. 1a and b 165 

shows a gradual decay of normalized TOC with time in all cases, but profiles depended on each 166 

material. For each anode, the best anode/cathode combinations were Al/Al and Fe/Fe, attaining 167 

47.0% and 17.7% TOC removals with final pH of 9.5 and 10.8 and conductivities of 2.2-2.6 168 

mS cm-1. Moreover, BP-3 concentration decays reached 67.2% and 28.9% for these two cells. 169 

 Al3+ and Fe2+ are released to the bulk from sacrificial Al and Fe anodes via reactions (1) 170 

and (2) (Thiam et al., 2014; Bocos et al., 2016; Steter et al., 2016). At the cathode, H2 gas and 171 

OH− are produced from reaction (3), favoring the formation of insoluble metal hydroxides from 172 

reactions (4)-(6) (Ghernaout, 2013; Khandegar and Saroha, 2013; Brillas and Martínez-Huitle, 173 

2015). 174 

Al(s)  →  Al3+
(aq)  +  3e−         (1) 175 
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Fe(s)  →  Fe2+
(aq)  +  2e−         (2) 176 

2H2O  + 2e−  →  H2(g)  +  2OH−        (3) 177 

Al3+
(aq)  +  3OH−  →  Al(OH)3(s)        (4) 178 

Fe2+
(aq)  +  2OH−  →  Fe(OH)2(s)        (5) 179 

4Fe2+
(aq)  +  10H2O  +  O2(g)  →  4Fe(OH)3(s)  +  8H+

(aq)     (6) 180 

 The insoluble Al(OH)3 and Fe(OH)n flocs with large surface area precipitate removing 181 

pollutants by surface complexation, electrostatic attraction or sweep coagulation in Al/Al and 182 

Fe/Fe cells (Ghernaout, 2013; Khandegar and Saroha, 2013). It is noticeable that higher BP-3 183 

and TOC abatements were obtained using AISI 304/AISI 316L and AISI 316L/AISI 316L cells 184 

as compared to Fe/Fe cell (data not shown), due to the enhanced coagulation ability by the 185 

production of hydroxides from other metallic species contained in sacrificial stainless steel 186 

anodes, e.g., Cr-, Ni-, Mn- and Mo-based. However, the potential toxicity of these hydroxides 187 

prevent the large use of such anodes in EC. Fig. 1a and b also evidences the influence of the 188 

cathode material on TOC decay, suggesting the co-existence of reductive routes where BP-3 189 

and its byproducts can be transformed at the cathode surface into compounds with different 190 

tendency to be coagulated. 191 

 The greater BP-3 and TOC abatements using the Al/Al cell could be plausibly ascribed to 192 

the substrate precipitation from the pH decrease at 9.5 (< pKa = 9.65). Under such 193 

circumstances, the neutral form predominates, which is much more insoluble than its anionic 194 

counterpart present at pH 11.0. This was confirmed through an analogous EC trial upon pH 195 

regulated to 11.0. After 60 min, 27.1% BP-3 decay and 2.95% TOC reduction were found, 196 

values much lower than those obtained without pH regulation. 197 

 The effect of j on the performance of EC with Al/Al and Fe/Fe cells was further examined. 198 

It is expected that increasing j produces greater amounts of coagulants by acceleration of 199 
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electrode reactions (1)-(3), enhancing the removal of BP-3 and its products. Fig. 2a-d reveals 200 

BP-3 removals of 67.6%-71.4% and 57.0%-60.1% using Al/Al and Fe/Fe cells at 15 and 20 201 

mA cm-2. TOC abatements reached 54.1% for Al/Al cell at 15 mA cm-2 and 44.3% for the Fe/Fe 202 

one at 20 mA cm-2, slightly > 41.3% found for 15 mA cm-2. The fact that the Al/Al cell worked 203 

better at 15 mA cm-2 may be due to smaller BP-3 precipitation by the concomitant pH drop. 204 

The BP-3 removal was always larger than TOC abatement, meaning that BP-3 is rather 205 

transformed into byproducts by oxidation and reduction reactions, which are not so easily 206 

coagulated by Al(OH)3 and Fe(OH)n flocs and become accumulated in the bulk. 207 

 To better clarify the superiority of the Al/Al cell to remove BP-3 at pH 11.0, the influence 208 

of the pollutant content was studied at 10-30 mg C L-1 at the optimum 15 mA cm-2. Fig. S1a 209 

illustrates similar maximum BP-3 removal of 53.2%-58.3% starting at 10 and 20 mg C L-1, 210 

raising substantially to 67.6% at 30 mg C L-1. This agrees with the aforementioned precipitation 211 

of this molecule due to pH drop, occurring to larger extent at greater initial concentration. 212 

Similarly, Fig. S1b depicts a progressive increase of TOC decay from 39.7% to 54.1%, being 213 

again lower than BP-3 removal due to the formation of stable reduced and oxidized products. 214 

 Comparative EC trials using Na2SO4 were made to confirm the above behavior. With Fe/Fe 215 

cell, Fig. S2a and b reveals much larger BP-3 and TOC removals in simulated matrix as 216 

compared to EC in Na2SO4, since 57.0% and 39.4% were attained in the former medium, much 217 

larger than 41.3% and 20.1% in the latter one, which can be ascribed to additional oxidation 218 

with ClO−. In Na2SO4, BP-3 also disappeared more quickly than TOC, as result of the 219 

simultaneous cathodic reduction and even by •OH-mediated oxidation of BP-3 (Thiam et al., 220 

2014; Bocos et al., 2016). A smaller effect of the matrix was observed using Al/Al cell, where 221 

ca. 67 % BP-3 was removed from both media due to its precipitation upon pH drop, whereas 222 

TOC was abated more largely in the simulated matrix (54.1% vs. 44.6%), indicating the 223 

coagulation of products oxidized by ClO−. 224 
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3.2. EC treatment of BP-3 in urban wastewater 225 

 The EC treatment of BP-3 was extended to an urban wastewater matrix at natural pH 8.0 226 

(Table S1) using the Fe/Fe cell, envisaging its further combination with EAOPs. These tests 227 

were made with 4 mg C L-1 BP-3 (saturated solution of the neutral form) at 15 mA cm-2. 228 

 Fig. 3a shows a dramatic BP-3 decay of 69.6% during the first 5 min of EC process, which 229 

was followed by an increase of BP-3 concentration so that only 40% was effectively removed 230 

from 20 min of electrolysis. In the first stage, the formation of complexes of the neutral form 231 

of BP-3 with some components of urban wastewater stimulate the rapid coagulation with 232 

Fe(OH)n. The subsequent unexpected behavior arises from the gradual degradation of such 233 

natural components, causing the release of BP-3 entrapped in Fe(OH)n flocs to the bulk. The 234 

same trend was found using several pairs of Fe electrodes in parallel at 15 mA cm-2 each (data 235 

not shown), reinforcing the idea of BP-3 complexation. Conversely, this effect was not observed 236 

with Al/Al cell. Fig. S3 shows continuous BP-3 reduction by 50% in simulated matrix and 237 

urban wastewater at 15 mA cm-2, similarly to that obtained with Fe/Fe cell (Fig. 3a). This 238 

indicates that the suggested complexes of BP-3 do not coagulate on Al(OH)3 flocs. 239 

 Fig. 3b depicts gradual TOC abatement with the Fe/Fe cell, reaching 46.5% at 60 min, 240 

although 35% was attained at 15 min. To assess the decontamination, 6 cyclic compounds as 241 

soluble organic components after 20 min of electrolysis were identified by GC-MS (Table S4). 242 

All the molecules present in the raw wastewater (Table S2), except 2,2,6,6-tetramethyl-4-243 

piperidinone and BP-3, were completely removed by EC. New molecules like dioxybenzone 244 

and 2-hydroxy-4-methoxybenzaldehyde appeared in the electrolyzed solution, coming from 245 

hydroxylation and cleavage of BP-3. This confirms the proposed concomitant production of 246 

•OH during EC. 247 

3.3. Degradation of BP-3 in urban wastewater by EAOPs 248 
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 First, the ability of the air-diffusion cathode to electrogenerate H2O2 from reaction (7) 249 

(Brillas et al., 2009; Sirés et al., 2014) by the different EAOPs in the atypical media employed 250 

was investigated using a BDD anode and electrolyzing 100 mL samples of pH 8.0 at 33.3 mA 251 

cm-2 for 360 min. 252 

O2(g)  +  2H+  +  2e−  →  H2O2       (7) 253 

 Fig. S4 highlights a gradual H2O2 accumulation over time in all cases. In EO-H2O2, 41.1 254 

and 36.1 mM were finally obtained in the simulated matrix and urban wastewater. Oxidation of 255 

water at BDD anode originated physisorbed BDD(•OH) by reaction (8) (Marselli et al., 2003; 256 

Özcan et al., 2008; Panizza and Cerisola, 2009), which reacted with H2O2 to form the weaker 257 

oxidant hydroperoxyl radical (HO2•) via reaction (9) (Brillas et al., 2009; Sirés et al., 2014; 258 

Moreira et al., 2017). This caused its partial destruction, impeding higher accumulation. The 259 

smaller content obtained in urban wastewater suggests a slow H2O2 disappearance from reaction 260 

with some organic pollutants. When 10 mg L-1 Fe2+ was added to the urban wastewater (EF 261 

conditions), H2O2 was slowly accumulated up to 32.8 mM due to its additional removal from 262 

Fenton’s reaction (10) (Dirany et al., 2011; El-Ghenymy et al., 2013; Olvera-Vargas et al., 263 

2015). This content decreased to 24.9 mM under UVA irradiation in PEF mainly since Fenton’s 264 

reaction (10) accelerated by Fe2+ regeneration from photolysis of soluble Fe(III) species by 265 

reaction (11) (Flox et al., 2007; Thiam et al., 2015; Zhang et al., 2016). These findings 266 

corroborate that sufficient H2O2 was produced in complex matrices for a large •OH generation 267 

in EAOPs. 268 

BDD  +  H2O  →  BDD(•OH)  + H+  +  e−        (8) 269 

BDD(•OH)  +  H2O2  →  BDD(HO2•)  + H2O       (9) 270 

Fe2+  +  H2O2  →  Fe3+  +  •OH  +  OH−       (10) 271 

Fe(OH)2+  +  hν  →  Fe2+  +  •OH          (11) 272 
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 The degradation of 4 mg C L-1 BP-3 in urban wastewater at natural pH 8.0 by EAOPs was 273 

performed under the above conditions. Fig 4a depicts the concentration decay using active 274 

RuO2-based and non-active BDD anodes, as well as BP-3 was not photoactive upon UVA 275 

irradiation. At 33.3 mA cm-2, this pollutant was more rapidly removed with BDD and, 276 

regardless of the anode, the oxidation ability rose as EO-H2O2 < EF < PEF, always disappearing 277 

in 45 min. These results indicate that in EO-H2O2, BP-3 was simultaneously degraded by ClO− 278 

generated from Cl− oxidation at each anode and by RuO2(•OH) or, to a larger extent, by 279 

BDD(•OH). This agrees with the higher oxidation power expected for BDD (Brillas et al., 2009; 280 

Panizza and Cerisola, 2009; Sirés et al., 2014). The greater concentration decay in EF can be 281 

accounted for additional oxidation with •OH originated from Fenton’s reaction (10), whereas 282 

the superiority of PEF is due to the larger production of •OH induced from reaction (11). 283 

However, good pseudo-first-order BP-3 kinetics were obtained in the case of EO-H2O2 (inset 284 

of Fig. 4a), with apparent rate constants of 0.075 min-1 (R2 = 0.989) for RuO2-based and 0.085 285 

min-1 (R2 = 0.995) for BDD. This behavior suggests a constant production of all oxidants, 286 

whereas the presence of Fe2+ in EF and PEF did not allow a clear kinetic analysis. 287 

 The action of oxidizing agents in each process was more evident from TOC profiles. Fig. 288 

4b illustrates that BDD(•OH) always yielded much larger mineralization than RuO2(•OH), then 289 

being BDD a better anode. The best mineralization with 62.6% TOC decrease was achieved by 290 

PEF, followed by 55.5% TOC removal by EF. The superiority of PEF is mainly due to the 291 

photolysis of some intermediates, including Fe(III) complexes of final carboxylic acids (Ruiz 292 

et al., 2011; Olvera-Vargas et al., 2015; Thiam et al., 2015). However, these products could 293 

only be confirmed in the case of EO-H2O2, where maleic and oxalic acids were identified by 294 

ion-exclusion HPLC. Fig. 5a and b shows the time course of these acids using RuO2-based and 295 

BDD anodes. Their low content (< 0.50 mg C L-1) suggests that all treated solutions contained 296 
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a mixture of recalcitrant molecules coming from the degradation of BP-3 and organic 297 

components of wastewater. 298 

 Fe2+ concentration and pH are two key parameters in Fenton-based EAOPs since they 299 

modulate •OH production from Fenton’s reaction (10) (Brillas et al., 2009; Sirés et al., 2014; 300 

Martínez-Huitle et al., 2015). Fig. 6a and b show a little effect of Fe2+ content on BP-3 301 

degradation at natural pH in EF and PEF operating from 10 to 28 mg L-1. A slightly better 302 

performance was achieved with 10 mg L-1 Fe2+, suggesting lower •OH production at the highest 303 

Fe2+ content due to precipitation of the excess of iron ions at such high pH, which caused partial 304 

destruction of H2O2 by heterogeneous reaction (Brillas et al., 2009). Conversely, Fig. 6c and d 305 

reveal quicker degradation at pH 3.0 (optimum pH for Fenton’s reaction (10)) (Brillas et al., 306 

2009), for both treatments with 28 mg L-1 Fe2+. BP-3 disappeared in 20 min, a time < 45 min at 307 

pH 8.0 (Fig. 6a), and TOC was more largely reduced by 64.4% in EF and 72.5% in PEF. The 308 

superiority of BP-3 degradation at optimum pH 3.0 as compared to pH 8.0 is due to the faster 309 

degradation in the presence of larger amounts of •OH produced, either with BP-3, the organic 310 

components of urban wastewater or their products. Moreover, HClO was the dominant active 311 

chlorine species at pH 3.0, with much higher oxidation power than ClO− formed at pH 8.0 (Sirés 312 

et al., 2014). 313 

3.4. Detection of primary intermediates upon BP-3 degradation in a simulated water matrix 314 

 The primary intermediates generated from BP-3 (1) were identified in simulated water by 315 

GC-MS analysis of organic components produced after 2 min of PEF of 4 mg C L-1 BP-3 at pH 316 

8.0 using BDD/air-diffusion cell at 33.3 mA cm-2. Table S5 summarizes 14 cyclic molecules 317 

detected, including two direct hydroxylated derivatives of the parent molecule (2 and 3), three 318 

xanthene derivatives, non-chlorinated (4) or chloroderivatives (6 and 7), one dibenzenic 319 

intermediate (14), four monobenzenic intermediates (5, 11, 12 and 13) and four chlorobenzenic 320 
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derivatives (8, 9, 10 and 15). Note that 2 and 5 were also formed during EC treatment of BP-3 321 

(Table S4). The mass spectra of these products are given in Fig. S5. 322 

 From the above byproducts, a reaction sequence for the initial BP-3 degradation is 323 

proposed in Fig. 7. It can be valid for all EAOPs tested, since their main oxidants are hydroxyl 324 

radicals (BDD(•OH) and •OH), represented as •OH for the sake of simplicity, and active 325 

chlorine (HClO/ClO−). The route is initiated by hydroxylation of 1 either at position C-2’ to 326 

yield 2 or at position C-4 to give 3 with loss of methoxy group. Further hydroxylation of 2 327 

causes cyclization to form the xanthenone 4 or cleavage of the C(1’)-CO bond to produce the 328 

benzaldehyde 5. Chlorination of 4 yields consecutively the xanthenes derivatives 6 and 7, which 329 

undergo hydroxylation with cleavage of the cyclic structure to yield the benzenic compound 8. 330 

This byproduct is subsequently chlorinated to 9, finally transformed into 10 via 331 

hydroxylation/chlorination with release of Cl− and methoxy groups. On the other hand, 332 

hydroxylation of the aromatic rings of 3 causes its cleavage to yield 11 and 12, whereas the 333 

attack of •OH onto the CO group of 3 promotes acid 13. An esterification of 13 with an 334 

intermediate of 8 (possibly, 4-chlorophenol, resulting from the loss of methoxy group), yielded 335 

14. Alternatively, 13 may be converted into the chlorinated compound 15. 336 

3.5. Sequential EC/EF and EC/PEF treatments of BP-3 in urban wastewater 337 

 From the results for EC, j = 15 mA cm-2 and 20 min of electrolysis were chosen to 338 

electrolyze 150 mL of 4 mg C L-1 BP-3 spiked into urban wastewater at natural pH 8.0 using 339 

the Fe/Fe cell before treatment by EF and PEF. Fig. 8a and b depicts that 41% of BP-3 and 36% 340 

of TOC were removed by this pre-treatment, with total soluble iron of 7 mg L-1 and final pH 341 

8.2. EAOPs were then performed with 100 mL of supernatant liquid using BDD/air-diffusion 342 

cell at 33.3 mA cm-2 for 360 min. Fig. 8a shows that BP-3 disappeared after 45 min of EF and 343 

PEF, as well as in PEF with 10 mg L-1 Fe2+, all at natural pH. These results agree with the 344 

behavior of both single processes, meaning that BDD(•OH), ClO− and •OH in the bulk are the 345 
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main oxidants, without significant influence of Fe2+ addition since the catalyst supplied by EC 346 

is enough for an effective Fenton’s reaction (10) to produce •OH at this pH. Fig. 8a also shows 347 

a notable influence of pH on BP-3 removal, disappearing at 10 min by PEF with 10 mg L-1 Fe2+ 348 

at pH 3.0 due to the greater production of ●OH by enhancement of Fenton’s reaction (10) and 349 

simultaneous oxidation by HClO. In the same assays, Fig. 8b illustrates final TOC abatements 350 

of 72.5% by EF, about 80% in both PEF at natural pH, and 87.3% in PEF at pH 3.0. The larger 351 

mineralization by PEF can be associated with the photolysis of some products upon UVA 352 

irradiation that enhances its transformation into CO2, whereas the superiority of PEF at pH 3.0 353 

can be related again to the larger •OH generation and the presence of HClO. 354 

 To confirm the benefits of sequential EC/PEF, additional experiments to reach total 355 

mineralization (> 99% TOC reduction) were made. Fig. 9 reveals that urban wastewater was 356 

totally decontaminated in 820 min by PEF at natural pH by adding 10 mg L-1 Fe2+. Shorter 357 

times of 720 and 680 min were required using EC/PEF, with PEF performed at natural pH or 358 

at pH 3.0. As expected, faster mineralization was achieved at pH 3.0 owing to the reasons 359 

exposed above. Sequential EC/PEF at natural pH is then more useful in practice than single 360 

PEF because lower electrical consumption is needed to mineralize all contaminants. On the 361 

other hand, the final sludge of the EC pre-treatment should be managed conveniently. 362 

 For the most powerful sequential EC/PEF treatment at natural pH, the average cell voltages 363 

(Ecell) listed in Table S3 allowed determining the energy consumption, as explained elsewhere 364 

(Thiam et al., 2015). A low value of 2.36 kWh m-3 resulted in the EC pre-treatment, in contrast 365 

to much greater values of 172.8 and 345.6 kWh m-3 for the subsequent PEF treatment at 360 366 

and 720 min. These high consumptions could be reduced down to 136.8 and 273.6 kWh m-3 367 

upon replacement of the UVA lamp by sunlight, as proposed in earlier papers (Flox et al., 2007; 368 

Salazar et al., 2012; Brillas, 2014). 369 
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4. Conclusions 370 

• The Al/Al cell was proven as optimal for EC treatment of BP-3 in simulated matrix 371 

at pH 11.0 due to: (i) precipitation of the neutral form of BP-3 from pH decrease, 372 

(ii) coagulation of the anionic form with hydroxide flocs, (iii) reductive 373 

transformation and (iv) oxidation of BP-3 and its byproducts by generated ClO− and 374 

•OH. The three latter processes occurred in the Fe/Fe cell as well. 375 

• BP-3 spiked into urban wastewater at natural pH 8.0 treated by EC with Fe/Fe cell 376 

at 15 mA cm-2 showed a dramatic content decay thanks to coagulation of its 377 

complexes with components of the wastewater, followed by partial BP-3 378 

redissolution when they were oxidized by •OH and ClO−. 379 

• The oxidation power of EAOPs in this real sample rose as EO-H2O2 < EF < PEF, 380 

with larger effectiveness of the BDD/air-diffusion cell than using a RuO2-based 381 

anode. The superiority of PEF was due to additional photolysis of intermediates. 382 

• The organic molecules identified upon EC and EAOPs revealed a certain oxidation 383 

ability of EC process. 384 

• The sequential EC (Fe/Fe cell, 15 mA cm-2, 20 min)/PEF (BDD/air-diffusion cell, 385 

33.3 mA cm-2, 360 min) of BP-3-loaded urban wastewater at natural pH was much 386 

more powerful than EC/EF. The time needed for total mineralization by EC/PEF 387 

was shorter than in single PEF, then being sequential electrochemical processes a 388 

very interesting alternative. 389 
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Figure captions 537 

Fig. 1. Normalized TOC decay for the EC treatment of 150 mL of 30 mg C L-1 BP-3 in 538 

simulated matrix at pH 11.0 and 35 ºC using anode/cathode cells (10 cm2 electrode area) at 10 539 

mA cm-2. Anode: (a) Al and (b) Fe. 540 

Fig. 2. Normalized (a,c) BP-3 concentration and (b,d) TOC abatements for the solution of Fig. 541 

1 of pH 11.0, treated by EC with (a,b) Al/Al and (c,d) Fe/Fe cells. Current density: () 5 mA 542 

cm-2, () 10 mA cm-2, () 15 mA cm-2 and () 20 mA cm-2. 543 

Fig. 3. Normalized (a) BP-3 concentration and (b) TOC removals for the EC treatment of 150 544 

mL of 4 mg C L-1 BP-3 in urban wastewater at natural pH 8.0 and 35 ºC using Fe/Fe cell at 15 545 

mA cm-2. 546 

Fig. 4. Change of normalized (a) BP-3 concentration and (b) TOC for the treatment of 100 mL 547 

of 4 mg C L-1 BP-3 in urban wastewater at natural pH 8.0 and 35 ºC using (,,) RuO2-548 

based/air-diffusion and (,,) BDD/air-diffusion cells at 33.3 mA cm-2. Method: (,) 549 

EO-H2O2, (,) EF with 10 mg L-1 Fe2+ and (,) PEF with 10 mg L-1 Fe2+ and 6 W UVA 550 

irradiation. () Only 6 W UVA irradiation. 551 

Fig. 5. Time course of (a) maleic and (b) oxalic acids concentration during the EO-H2O2 of the 552 

sample of Fig. 4 using () RuO2-based/air-diffusion and () BDD/air-diffusion cells. 553 

Fig. 6. Normalized (a,c) BP-3 concentration and (b,d) TOC decays for 100 mL of 4 mg C L-1 554 

BP-3 in urban wastewater using BDD/air-diffusion cell at 33.3 mA cm-2 and 35 ºC. (a,b) Natural 555 

pH 8.0: EF with () 10 and () 28 mg L-1 Fe2+, and PEF with () 10 and () 28 mg L-1 Fe2+. 556 

(c,d) pH 3.0: () EF and () PEF, both with 28 mg L-1 Fe2+. 557 

Fig. 7. Proposed reaction sequence for the initial degradation of BP-3 by EAOPs, tested in 558 

simulated water matrix. 559 
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Fig. 8. Normalized (a) BP-3 concentration and (b) TOC decays for sequential EC/EAOPs 560 

treatment of 4 mg C L-1 BP-3 in urban wastewater at 35 ºC. () EC pre-treatment of 150 mL 561 

at natural pH 8.0 using Fe/Fe cell at 15 mA cm-2 for 20 min. Further degradation of 100 mL of 562 

supernatant liquid using BDD/air-diffusion cell at 33.3 mA cm-2 by: () EF and () PEF, both 563 

without addition of Fe2+, () PEF with 10 mg L-1 Fe2+ and () PEF at pH 3.0 with 10 mg L-1 564 

Fe2+. 565 

Fig. 9. Normalized TOC removal for 4 mg C L-1 BP-3 in urban wastewater at 35 ºC. () 100 566 

mL at natural pH 8.0 with addition of 10 mg L-1 Fe2+, treated by PEF with BDD/air-diffusion 567 

cell at 33.3 mA cm-2. EC/PEF process: () 150 mL of wastewater pre-treated by EC with Fe/Fe 568 

cell at 15 mA cm-2 for 20 min, followed by PEF treatment of 100 mL of supernatant liquid at 569 

() natural pH and () pH 3.0 with BDD/air-diffusion cell. 570 
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Fig. 8 
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Fig. 9 
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