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EXISTENCE AND STABILITY OF STATIONARY

SOLUTIONS TO THE ALLEN–CAHN EQUATION

DISCRETIZED IN SPACE AND TIME

Amy Poh Ai Ling and Masaharu Taniguchi

Abstract. The existence and stability of the Allen–Cahn equation dis-
cretized in space and time are studied in a finite spatial interval. If a
parameter is less than or equals to a critical value, the zero solution is
the only stationary solution. If the parameter is larger than the critical
value, one has a positive stationary solution and this positive stationary
solution is asymptotically stable.

1. Introduction

In this paper, we consider the following initial value problem for a differ-
ence equation given by

(1)







un+1
j − unj

τ
=

unj+1 − 2unj + unj−1

h2
+ f(unj ), 1 ≤ j ≤ N − 1, n ≥ 0,

un0 = unN = 0, n > 0

for a given initial value {u0j}1≤j≤N−1 satisfying u0j ≥ 0 for all 1 ≤ j ≤ N−1,

and f ∈ C1[0,∞) is a function f(u) = u(µ − g(u)). Now N is a positive
integer. Here we assume that g is strictly monotone increasing in u > 0
and satisfies g(0) = g′(0) = 0. We also assume that there exists a real
number m > 0 such that g(m) = µ. In other words, f satisfies the following
conditions

(A1) f(u)/u is strictly monotone decreasing in u > 0,
(A2) f(0) = 0, f ′(0) = µ for a constant µ > 0,
(A3) f(m) = 0 for a constant m > 0.

Note that constant states unj ≡ 0 and unj ≡ m satisfy the difference equation.
We also consider initial value problem for a difference equation given by

(2)























duj
dt

(t) =
uj+1(t)− 2uj(t) + uj−1(t)

h2
+ f(uj(t)),

1 ≤ j ≤ N − 1, t > 0,

u0(t) = uN (t) = 0, t > 0,

uj(0) = u0j , 0 ≤ j ≤ N.
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This difference equation is obtained from the space discretization of the
Allen–Cahn equation. Interesting questions about traveling fronts, for in-
stance, are about the existence of traveling waves, their monotonicity for
space, stability and its convergence rate to a traveling wave. About these
problems, for the continuous Allen–Cahn model, we refer the reader to
[1, 8, 12, 15, 3, 14], for example. The lattice system (2) arises in chemical
reaction theory [7, 9, 11] and biology [2, 10]. A similar model appears for
example in [6] in material science and in [13] in image processing. More pre-
cisely, [7] introduced coupled Nagumo equations and [9] considered cellular
automaton models. The authors in [11] use computers to find propagation
failure phenomenon of traveling wave. The lattice system on Z when zero is
a solution for these systems is discussed in [2] and they focused on conditions
forcing non-convergence to zero of solutions as time approaches infinity. For
a lattice system, propagation and its failure are considered in [10] .

Let {vj}1≤j≤N−1 be the stationary solution of the problem for (2). In
other words, it is a solution of the difference equation

(3)







vj+1 − 2vj + vj−1

h2
+ vj(µ − g(vj)) = 0, 1 ≤ j ≤ N − 1,

v0 = vN = 0.

The main assertion in this paper is as follows.

Theorem 1. Let h = 1/N for N ∈ N and let {unj } be the solution of

(1) with the initial value {u0j}1≤j≤N−1 with u0j ≥ 0 (1 ≤ j ≤ N − 1). Let

K = 1+max1≤s≤m |f ′(s)| and θ = τ/h2. Assume that τ > 0 is small enough

to satisfy

0 < 2eKτθ ≤
1

2
and

eKτ − 1

τ
+ eKτ min

0≤s≤m
f ′(s) > 0.

If µ ≤ 4
h2 sin

2
(

πh
2

)

, vj = 0 (0 ≤ j ≤ N) is the only stationary solution of

(1) with vj ≥ 0 (1 ≤ j ≤ N − 1). Moreover, one has

limn→∞max1≤j≤N−1 |u
n
j | = 0. If µ > 4

h2 sin
2
(

πh
2

)

, there exists a unique

stationary solution {vj}1≤j≤N−1 with vj > 0 (1 ≤ j ≤ N − 1). Assume 0 <
u0j < m (1 ≤ j ≤ N − 1), then one has limn→∞max1≤j≤N−1 |u

n
j − vj| = 0.

We also get the results for a semi-discrete equation (2).

Proposition 1. Let h = 1/N for N ∈ N and let {uj(t)} be the solution of

(2) with the initial value {u0j}1≤j≤N−1 with u0j ≥ 0 (1 ≤ j ≤ N − 1).
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If µ ≤ 4
h2 sin

2
(

πh
2

)

, the zero solution vj = 0 (1 ≤ j ≤ N − 1) is the

only solution of (3) with vj ≥ 0 (1 ≤ j ≤ N − 1). Moreover, one has

limt→∞max1≤j≤N−1 |uj(t)| = 0. If µ > 4
h2 sin

2
(

πh
2

)

, there exists a unique

positive stationary solution {vj}1≤j≤N−1 with vj > 0 (1 ≤ j ≤ N − 1). As-

sume 0 < u0j < m (1 ≤ j ≤ N−1), then one has limt→∞max1≤j≤N−1 |uj(t)−

vj | = 0.

An analogous result for the continuous model can be found in [16], this
is the discrete version of their claim.

The remainder of this paper is organized as follows. Section 2 is devoted
to discuss the comparison principles of (1). We discuss the relation between
the problems (1) and (2) in Section 3, which is useful in the proof of the
following sections. In Section 4, we establish the comparison principles for
the problem (2). We recall the fundamental eigenvalue problem for the
discrete Laplacian in Section 5. We show Theorem 1 in Section 6. The
proof of Theorem 1 is given in Section 7.

2. comparison principles for the space and time discrete model

In this section, we consider the following initial value problem for a dif-
ference equation (1). A basic comparison principle for the problem (1) is
the following proposition. See Proposition 2.1 of [5] for related work.

Proposition 2. Assume that

(4) 0 < 2eK1τθ ≤
1

2
, where θ =

τ

h2
,

K1 = 1 + sup1≤j≤N,n≥0 |g
n
j | and

gnj =

∫ 1

0
f ′(ϑunj + (1− ϑ)vnj ) dϑ.

Moreover, suppose

(5)
eK1τ − 1

τ
+ eK1τgnj > 0

for all n ≥ 0 and 1 ≤ j ≤ N . Let {vnj } and {unj } satisfy

un+1
j − unj

τ
≥

unj+1 − 2unj + unj−1

h2
+ f(unj ), 1 ≤ j ≤ N − 1

and

vn+1
j − vnj

τ
≤

vnj+1 − 2vnj + vnj−1

h2
+ f(vnj ), 1 ≤ j ≤ N − 1
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for n = 0, 1, 2 · · · . Assume that

(6) 0 ≤ v0j ≤ u0j ≤ m for all j ∈ Z.

Then

(7) 0 ≤ vnj ≤ unj ≤ m for all j ∈ Z, n = 0, 1, 2, · · · .

We remark that the condition (5) is automatically satisfied when τ →
0, because this condition can be reduced to K1 + gnj > 0. By a simple
calculation, we can check that wn

j = unj − vnj satisfies

wn+1
j − wn

j

τ
≥

wn
j+1 − 2wn

j + wn
j−1

h2
+ gnj w

n
j .

Hence Proposition 2 can be reduced to the following lemma.

Lemma 1. Let {gnj } satisfy supn≥0,1≤j≤N−1 |g
n
j | < ∞ and let {wn

j } satisfy
{

wn+1

j
−wn

j

τ ≥
wn

j+1
−2wn

j +wn
j−1

h2 + gnj w
n
j , 1 ≤ j ≤ N − 1, n ≥ 0,

w0
j ≥ 0 1 ≤ j ≤ N − 1.

Assume that (4) and (5), where K1 = 1 + sup1≤j≤N,n≥0 |g
n
j |. Then one has

wn
j ≥ 0 for all 1 ≤ j ≤ N − 1 and n ≥ 0.

Proof. Define W n
j := eK1nτwn

j . Then by a calculation, we can check that

W n+1
j −W n

j

τ
= eK1τ

W n
j+1 − 2W n

j +W n
j−1

h2
+ eK1τgnj W

n
j +

eK1τ − 1

τ
W n

j .

By solving this equation, we get

W n+1
j = θeK1τW n

j+1+(1−2eK1τθ)W n
j +θeK1τW n

j−1+τ
(eK1τ − 1

τ
+eK1τgnj

)

W n
j .

The right hand side is non-negative, hence by the induction argument, we
conclude that W n

j for all n ≥ 0 and 0 ≤ j ≤ N . �

Next we shall prove that the monotonicity of solutions in time is guaran-
teed.

Lemma 2. Suppose the same condition as Proposition 2 for the functions

ḡnj =

∫ 1

0
f ′(φun+1

j + (1− φ)unj ) dφ.

instead of {gnj }. Assume

0 ≤ u0j ≤ m for all j ∈ Z.

and

u1j ≥ u0j for all j ∈ Z.
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Then

(8) un+1
j ≥ unj for all j ∈ Z, n = 0, 1, 2, · · · .

Proof. We define w̄n
j =

un+1

j
−un

j

τ , then the lemma follows from Lemma 1. �

3. Relations between the two discrete Allen–Cahn equations

In this section we recall the standard Euler method to estimate difference
between the solution of the (1) and that of (2). Let T > 0 be positive
constant and consider an initial value problem for an ODE system

y ′(t) = F (y(t)), 0 < t ≤ T, y(0) = y0,

where y(t) = (y1(t), . . . , yN−1(t)) ∈ R
N−1 is a vector valued functions and

F : RN−1 → R
N−1 is a locally Lipschitz vector valued map with constant

L. More precisely, for any positive constant ρ > 0 there exists L > 0 such
that

(9) ‖F (z )− F (y)‖ ≤ L‖z − y‖ if ‖z − y0‖, ‖y − y0‖ ≤ ρ,

where ‖ · ‖ is the standard Euclidean norm. We also define

(10) M = sup
‖y−y0‖≤ρ

‖F (y)‖ < ∞.

We also choose small T > 0 such that MT ≤ ρ. We consider time variables

tn = nτ, 0 ≤ n ≤

[

T

τ

]

.

Here [T/τ ] is the largest integer that is less than or equals T/τ . The Euler
method is a scheme for obtaining an approximated value Y n+1 for y(tn+1)
using only the approximation {Y n}0≤n≤[T/τ ] for y(tn) and the vector func-
tion F, namely

(11)

{

Y n+1 = Y n + τF (Y n), 0 ≤ n ≤
[

T
τ

]

Y 0 = y0.

We define the global truncation error at step n by

(12) rn = Y n − y(tn).

{Y n}0≤n≤[T/τ ] is called the Euler approximation.

Proposition 3. Let {Yn}0≤n≤[T/τ ] be given by (11). Define L > 0 and

M > 0 by (9) and (10), respectively. Suppose that MT < ρ, then rn satisfies

‖rn‖ ≤ Mτ
2 eTL for 0 ≤ n ≤ [T/τ ].
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Proof. First we shall show that

(13) |Y n − y0| ≤ ρ 0 ≤ n ≤

[

T

τ

]

.

For the case n = 0 is trivial. Assume that it is holds true until n− 1. Then

Y n =

n
∑

i=1

(Y i −Y i−1) +Y 0 = τ

n
∑

i=1

F (Y i−1) + y0

and

‖Y n − y0‖ ≤ τ

n
∑

i=1

‖F (Y i−1)‖ ≤ Mtn ≤ MT ≤ ρ.

Thus (13) holds for all 0 ≤ n ≤ T
τ . Then one has

y(tn+1)−y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

F (y(t))dt = τ

∫ 1

0
F (y(tn+τs))ds.

Combining this with (11), we conclude

(14) rn+1 = rn − τ

∫ 1

0
(F (y(tn + τs))− F (Y j)) ds.

Here one has

‖y(tn + τs)− y(tn)‖ =
∥

∥

∥

∫ tn+τs

tn

y ′(σ)dσ
∥

∥

∥
=

∥

∥

∥

∫ tn+τs

tn

F (y(σ))dσ
∥

∥

∥
≤ Mτs.

Combining this with (14), one has

‖rn+1 − rn + F (y(tn))τ − F (Y n)τ‖ ≤ τ

∫ 1

0
LMτs ds =

1

2
LMτ2.

Here we apply an inequality

|F (y(tn))− F (Y n)| ≤ L‖y(tn)−Y n‖ ≤ L‖rn‖

together with the triangle inequality to conclude that

‖rn+1‖ ≤ ‖rn‖+‖F (y(tn))−F (Y n)‖τ+
1

2
LMτ2 ≤ (1+τL)‖rn‖+

1

2
LMτ2

for all 0 ≤ n ≤ K. By the induction argument starting from ‖r0‖ = 0, this
inequality yields

‖rn‖ ≤
LMτ2

2

n−1
∑

k=1

(1 + τL)k =
Mτ

2
{(1 + τL)n − 1} ≤

Mτ

2
eTL.

We complete the proof. �
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4. comparison principles for the space discrete model

First we prove the comparison principle for the discrete reaction-diffusion
equation. See Lemma 1 of [2] and Lemma 3.4 of [4] for related work.

Lemma 3. Let gj(t) be functions satisfying sup0≤j≤N,0≤t≤T gj(t) < ∞. Sup-

pose that functions wj(t) satisfy
{

d
dtwj ≥

wj+1−2wj+wj−1

h2 + gj(t)wj , 1 ≤ j ≤ N − 1, t > 0,

w0 = wN = 0, wj(0) ≥ 0, 1 ≤ j ≤ N − 1.

Then wj(t) ≥ 0 for all (j, t) ∈ {0, 1, , . . . , N} × (0, T ).

Proof. We discrete the time θ = τ/h2 ∈ (0, 1/2) and tn = nτ for some small
τ > 0 and denote the approximate value of wj(tn) by wn

j . Choosing τ > 0

sufficiently close to 0, we can assume without loss of generality (4) and (5)
holds. From Lemma 1, we conclude that wn

j ≥ 0 for all 1 ≤ j ≤ N − 1 and
n ≥ 0. Finally, by taking a limit τ → 0 and by applying Proposition 3, we
conclude that wj(t) ≥ 0 for all t ≥ 0. �

Proposition 4. Let T > 0 and suppose that real-value functions uj, vj :
[0, T ) → R are differentiable in t ∈ (0, T ) for each j ∈ {1, 2, . . . N − 1} and

satisfy

d

dt
uj −

uj+1 − 2uj + uj−1

h2
− f(uj)

(15)

≥
d

dt
vj −

vj+1 − 2vj + vj−1

h2
− f(vj), 1 ≤ j ≤ N − 1, t ∈ (0, T ),

u0 = uN = 0 = v0 = vN = 0, uj(0) ≥ vj(0), 1 ≤ j ≤ N − 1.
(16)

Then uj(t) ≥ vj(t) for all (j, t) ∈ {0, 1, . . . N} × (0, T ).

Proof. Let us define wj(t) = uj(t)−vj(t) for all 1 ≤ j ≤ N−1 and t ∈ (0, T ).
Then wj satisfies

d

dt
wj −

wj+1 − 2wj + wj−1

h2
≥ f(uj(t))− f(vj(t)).

Hence we obtain

d

dt
wj(t) ≥

wj+1(t)− 2wj(t) + wj−1(t)

h2
+ gj(t)wj(t),

where

gj(t) =

∫ 1

0
f ′(ϑuj(t) + (1− ϑ)vj(t)) dϑ.

Set K = 1+ sup0≤s≤m |f ′(s)|, and apply Lemma 3 to get the desired result.
�
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Next we establish the strong comparison principle. See Lemma 3.5 of [4]
for related work.

Proposition 5. Let T > 0 and suppose that real-value functions uj(t), vj(t) :
[0, T ) → R are differentiable in t ∈ (0, T ) for each j ∈ {1, 2, . . . N − 1}
and satisfy (15)-(16). Moreover there exists 1 ≤ J ≤ N − 1 such that

uJ(0) > vJ(0). Then uj(t) > vj(t) for all (j, t) ∈ {1, . . . N − 1} × (0, T ).

Proof. We define the function wj(t) as in the proof of Proposition 4. Set
K = 1 + sup0≤s≤m |f ′(s)|, and define wj(t) := e−KtWj(t), then we have

(17)
d

dt
Wj(t) ≥

Wj+1(t)− 2Wj(t) +Wj−1(t)

h2
+ {K + gj(t)}Wj(t).

By Proposition 4, all we need to prove is that the solution of (17) starting
from the initial data

WJ(0) > 0, Wj(0) = 0, for j 6= J

satisfies

Wj(t) > 0 for all 1 ≤ j ≤ N − 1.

If t1 ∈ (0, T ) is sufficiently small then WJ(t1) > 0. Moreover, we have

WJ−1(t1) > 0, WJ+1(t1) > 0

since the right hand side of (17) is positive at time t = 0 on j = J ± 1.
Proposition 4 implies that we can assume that Wj(t1) = 0 for |j − J | ≥ 2
without loss of generality. Then by a similar argument again, if t2 ∈ (0, T )
is sufficiently small, we get

WJ(t+ t2) > 0 for all J − 2 ≤ j ≤ J + 2.

Continuing the same argument, we have

Wj(t) > 0, for all 0 ≤ j ≤ N.

The proof is complete. �

We give a result which guarantee the monotonicity of solutions in time.

Proposition 6. Let T > 0 and suppose that real-value functions uj(t) :
[0, T ) → R are differentiable in t ∈ (0, T ) for each j ∈ {1, 2, . . . N − 1} and

satisfy

uj+1(0)− 2uj(0) + uj−1(0)

h2
− f(uj(0)) ≥ 0, 1 ≤ j ≤ N − 1, u0 = uN = 0,

Then d
dtuj(t) ≥ 0 for all (j, t) ∈ {0, 1, . . . N} × (0, T ).
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Proof. The function Uj(t) =
d
dtuj(t) satisfies

dUj

dt
=

Uj+1(t)− Uj(t) + Uj−1(t)

h2
+ f ′(uj(t))Uj(t).

Hence we can apply Proposition 4, since f ′ is smooth, and we conclude that
Uj(t) ≥ 0 for all t ≥ 0 and 1 ≤ j ≤ N . �

5. Eigenvalues and eigenfunctions

Let us introduce notations

v =















v1
v2
...

vN−2

vN−1















, A =
1

h2



















2 −1 · · · · · · 0
−1 2 −1 · · · 0
0 −1 2 −1
...

. . .
...

0 · · · −1 2 −1
0 · · · 0 −1 2



















and

‖v‖ =
√

v21 + v22 + · · · + v2N−1.

We also denote the standard inner products of two vectors v and w by
(v ,w). For the discrete Laplacian on a line it is well known that

p i =















sin θi
sin 2θi

...
sin (N − 2)θi
sin (N − 1)θi















, where θi =
iπ

N

for 1 ≤ i ≤ N − 1 and

(18) λi =
4

h2
sin2

(θi
2

)

.

These values are characterized by the min-max principle, and the next prop-
erty about the eigenvalue problem of the discrete Laplacian is useful in the
following argument.

Lemma 4. There exists a vector p̂1 whose components are all positive such

that

(19) Ap̂1 = λ1p̂1

and ‖p̂1‖ = 1. Moreover, the first eigenvalue is given by

(20) λ1 = min
v6=0

(Av, v)

(v, v)
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and the maximum eigenvalue is represented as

λN−1 = max
v6=0

(Av, v)

(v, v)

6. Proof of Proposition 1

We prove the non-existence result for a positive stationary solution. Now
we multiply v to both hand sides of (3) to obtain

−(Av , v ) +

N−1
∑

j=1

v2j (µ− g(vj)) = 0.

By (20), we get

−λ1‖v‖
2 +

N−1
∑

j=1

v2j (µ− g(vj)) ≥ 0.

and

(λ1 − µ)‖v‖2 +

N−1
∑

j=1

v2j g(vj) ≤ 0.

Hence we conclude that vj = 0 for all 1 ≤ j ≤ N − 1 provided that

4

h2
sin2

(πh

2

)

= λ1 ≥ µ.

Here we apply (18). Now we prove the convergence to the zero vector from
any solution of (2). Let us multiply the equation (2) by uj(t) and summing
for 1 ≤ j ≤ N − 1, we obtain a Lyapunov functional:

1

2

d

dt
‖u(t)‖2 =

N−1
∑

j=1

uj(t)u
′
j(t)

= −(Au(t),u(t)) + µ‖u(t)‖2 −

N−1
∑

j=1

uj(t)
2g(uj(t))

≤ −(λ1 − µ)‖u(t)‖2 −

N−1
∑

j=1

uj(t)
2g(uj(t)).

Note that the right-hand side is equal or less than zero for all t ≥ 0, hence
the trajectory is bounded for all t ≥ 0. From a general theory of dynamical
system, Lyapunov functional is constant on the omega limit set, that means
the right-hand side must be zero on the omega limit set. Since each term of
the right hand side is nonpositive and g is strict increasing and g(0) = 0, the
omega limit set consists of only zero sequence {vj}1≤j≤N−1 = {0}1≤j≤N−1.
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This means that the omega limit set of any solution consists of this single
point set, hence any solution {uj(t)}1≤j≤N−1 converges to zero as t → ∞.

Next, we prove the unique existence of a positive stationary solution for
the case

(21) µ >
4

h2
sin2

(πh

2

)

= λ1.

In order to prove it, we shall construct a supersolution and a subsolution
and consider time evolution from those initial data. Let us introduce a
supersolution, which is given by a constant vector

(22) v̄ =















v̄1
v̄2
...

v̄N−2

v̄N−1















=















m
m
...
m
m















,

where m > 0 is a real number satisfying g(m) = µ. By a calculation, it is
easy to check

(23)
v̄j+1 − 2v̄j + v̄j−1

h2
+v̄j(µ−g(v̄j)) =

{

0, 2 ≤ j ≤ N − 2,

−m/h2 < 0, j = 1, N − 1.

Thus the above constant vector is a supersolution. Next we shall introduce
a subsolution

(24) v =















v1
v2
...

vN−2

vN−1















= εp1 = ε















sin θ1
sin 2θ1

...
sin (N − 2)θ1
sin (N − 1)θ1















,

where ε > 0 is sufficiently small to be determined later. Then the assumption
g(0) = 0 together with the continuity of g, g(vj) ≤ µ for all 1 ≤ j ≤ N −1 if
ε ∈ (0, µ) is sufficiently small. On the other hand, (19) yields Ap1 = λ1p1.
Thus all we need to check is

−λ1p
j
1 + pj1(µ− g(εpj1)) ≥ 0

for all 1 ≤ j ≤ N − 1, where pj1 is the j-th component of the eigenvector p1.
Recall that g(0) = g′(0) = 0, thus by taking ε ∈ (0, µ) sufficiently small, we
get the desired inequality

−λ1 + µ− g(εpj1) ≥ 0.
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thus v is a subsolution. We denote the solution of this problem (2) starting
from the initial vector u0 = {u0j}0≤j≤N by u(t;u0). Define

ū(t) = u(t; v̄ ), u(t) = u(t; v ).

By Proposition 6, each component of ū(t) is monotone decreasing in t, and
each component of u(t) is monotone increasing in t. Thus we can define a
limit function

U = lim
t→∞

ū(t), V = lim
t→∞

u(t).

These vectors satisfy

Uj+1 − 2Uj + Uj−1

h2
+ Uj(µ− g(Uj)) = 0,

Vj+1 − 2Vj + Vj−1

h2
+ Vj(µ− g(Vj)) = 0.

Now we multiply the first equation by Vj and the second equation by Uj ,
calculate their difference and sum up together for j to get

(25)
N−1
∑

j=1

UjVj(g(Uj)− g(Vj)) = 0.

Here we used the symmetry relation (AU ,V ) = (U , AV ) of the discrete
Laplacian. By the monotonicity for time, Uj , Vj > 0 for all 1 ≤ j ≤ N − 1.
The comparison principle yields Uj ≥ Vj for all 1 ≤ j ≤ N − 1, hence
g(Uj) ≥ g(Vj). Thus g(Uj) = g(Vj) must hold for all 1 ≤ j ≤ N − 1
from (25). Since g is strictly monotone increasing for u > 0 to conclude
that Uj = Vj for all 1 ≤ j ≤ N − 1. Proposition 4 yields the convergence
result limt→∞max1≤j≤N−1 |uj(t)− vj | = 0 for any initial data satisfying the
inequalities 0 < u0j < m for all 1 ≤ j ≤ N − 1.

7. Proof of Theorem 1

The proof about the existence of the stationary problem has already done,
since the stationary problem is the same between (1) and (2).

Let us define the solution of (1) starting from the initial vector u0 =
{u0j}0≤j≤N by un(u0). Define ūn := un(v̄ ), where v̄ is given in (22). Lemma
2 implies that each component of ūn is nonnegative and monotone non-
increasing for n. Hence we can define

U := lim
n→∞

ūn.

By taking a limit n → ∞ in (1) and using the continuity of the function f ,
we obtain

Uj+1 − 2Uj + Uj−1

h2
+ f(Uj) = 0, 1 ≤ j ≤ N − 1.
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First we consider the case,

4

h2
sin2

(πh

2

)

= λ1 ≥ µ.

Under this assumption the only nonnegative stationary solution is zero vec-
tor, which implies that Uj = 0 for all 1 ≤ j ≤ N−1. Note that we can check
the assumption (4)-(5), and we can apply Proposition 2 and the comparison
principle. Hence 0 ≤ unj ≤ ūnj for all n ≥ 0 and 0 ≤ j ≤ N . By taking a
limit n → 0, we prove the desired result.

Next we consider the case

4

h2
sin2

(πh

2

)

= λ1 < µ

and prove the convergence to the positive stationary solution. Define

un := un(v),

where v is given in (24). This time by applying Lemma 2, we conclude that
each component of ūn is monotone non-increasing for n and each component
of un is monotone non-decreasing for n. Also all components of these vectors
are bounded from above and below. Hence there exists

U = lim
n→∞

ūn, V = lim
n→∞

un.

These vectors are solutions to the same stationary problem as discussed in
Section 6, and its proof is completely the same as that of Section 6. Now we
apply Proposition 2 to conclude that the solution unj satisfies unj ≤ unj ≤ ūnj
for all n ≥ 0 and 0 ≤ j ≤ N . Finally, by taking a limit n → 0, we can prove
the desired result.
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