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Abstract To create an estimable version for annual data of the hybrid new Keynesian
Phillips curve, one needs an expression for the expectation of next year’s inflation. The
rational expectations literature assumes that this expectation is equal to the realization
in the next year and an associated forecast error. This paper argues that this assump-
tion goes against the Wold decomposition theorem, and that it introduces correlation
between the error and a regressor. A more appropriate approach resorts to a MIDAS
type of model, where forecast updates for next year are created when for example
monthly inflation rates come in. An illustration to annual USA inflation, 1956–2016,
shows the merits of this MIDAS approach.

Keywords Inflation ·NewKeynesian Phillips curve ·Rational expectations ·MIDAS

JEL Classification E37 · E12

1 Introduction

The so-called hybrid newKeynesian Phillips curve (NKPC) for inflation receives quite
some attention in the recent literature. Mavroeidis et al. (2014) provide an excellent
survey, and earlier substantive accounts can be found in Calvo (1983), Gali (2008)
and Woodford (2003). A key feature in this literature is the inclusion of inflation
expectations in empirical models. Mavroeidis et al. (2014) provide an overview of
various ways to include those expectations, which range from the inclusion of various
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observable variables to survey-based expectations, see for example Preston (2005) for
an interesting account on surveys data. To set matters more precise: when considering
annual data, a basic version of a NKPC model for this year’s inflation includes as
explanatory variables the one-year lagged inflation, a measure of marginal costs, and
the expected value for next year’s inflation. The present paper focuses on this last
variable in this basic type of model.

In one part of the literature on the NKPC, notably Lanne and Luoto (2013), Gali
and Gertler (1999), and Gali et al. (2005), among others, a key assumption is rational
expectations. There it is commonly assumed that the expected value of next year’s
inflation is equal to the realized value of inflation in the next year plus the forecast
error for next year. Substituting the latter two terms in the model renders a model for
this year’s inflation being a function of one-year-ahead and one-year lagged inflation,
and the measure for marginal costs. Abstaining from the latter variable, in time series
terms, this model for inflation provides an exciting opportunity to include the past and
the future.

In the present paper, I argue that this assumption made in the RE literature is prob-
lematic for at least two reasons. First, the well-known Wold decomposition theorem
says that any time series is decomposable into a deterministic component (like a con-
stant and a trend) and a weighted sum of all current and past shocks (or prediction
errors). More precise for the case at hand, it is thus impossible that a current observa-
tion on inflation depends on a shock to inflation in the future. Of course, if an event
will take place, with known impact on inflation (think of a devaluation of a currency),
it can be included. Note that it is then not a shock but a deterministic event. Expert
adjustment of forecasts typically involves such actions. The second reason why the
assumption in the RE literature is problematic is that by construction the error term
in the estimable version of the NKPC model is perfectly correlated with one of the
regressors. Indeed, again Wold’s decomposition theorem tells us that the expected
value of the covariance between the current observation and the current shock is equal
to the variance of the shocks. To “instrument away” this nonzero covariance may be
a difficult task.

In this paper, I propose an alternative approach to including the expected value of
inflation. One could perhaps think of including this year’s inflation rate or past year’s
inflation rate, but this leads to the un-identifiability of the parameter associatedwith the
expectations. It seems better to resort to a MIDAS-type approach, which here entails
that the forecast for next year’s inflation is created based on information that comes in
as the current year proceeds. That information can be based on all kinds of monthly, or
evenweekly and daily sources. Think, for example, of daily observable hotel prices via
booking sites, or flight ticket prices. Just as an illustration, I will simply use monthly
inflation figures, inspired by Frijns and Margaritis (2008) who use early-in-the-day
volatility estimates to predict overall daily volatility. TheMIDAS approachmeans that
each month, one can update the NKPC model and re-estimate its parameters, because
new information comes in.

The outline of this letter is as follows. Section 2 formalizes the notions above
using simple expressions. Section 3 provides an illustration for USA inflation data
and shows, for example, that only using the first 4 months of the year with inflation
data delivers already quite accurate predictions. Section 4 concludes.
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2 An analysis

This section shows that replacing the expected value of next year’s inflation by the
realized value of inflation in the next year plus the forecast error for next year might
not be a good idea. Next, I provide alternative approaches, where the one based on
MIDAS-type modeling seems most useful.

Denote πt as the annual inflation rate, xt as a measure of marginal costs, and
Etπt+1 as the one-year-ahead expected value of inflation made at time t. The hybrid
new Keynesian Phillips curve (NKPC) can be summarized as

πt � μ + αEtπt+1 + βπt−1 + γ xt (1)

See equation (4) in Lanne and Luoto (2013). To estimate the parameters in this NKPC
model, one needs to replace the unobserved variable Etπt+1 by an observable variable.
In the rational expectations (RE) literature, it is custom to assume that

Etπt+1 � πt+1 + ωt+1

See Lanne and Luoto (2013, p. 564). This results in an estimable version of the NKPC
model like

πt � μ + απt+1 + βπt−1 + εt (2)

with

εt � αωt+1 + γ xt

The key assumption in the RE literature is that αωt+1 is distributed as independently
and identically (IID) over time. With this assumption, Lanne and Luoto (2013) use
Maximum Likelihood to estimate the parameters in (2).

There is, however, a problemwith this approach. The IID assumption of αωt+1 may
perhaps be defendable, but the key issue is that the error term in (2) is not independent
from one of the regressors. In fact,

E (πt+1, εt ) � αE (πt+1ωt+1) + γ E (πt+1xt )

First, one may wonder whether E (πt+1xt ) is equal to 0, and that seems hard to verify
using empirical data. Certainly, it holds that

E (πt+1ωt+1) � E(Etπt+1 − ωt+1, ωt+1) � −σ 2
ω �� 0

This makes a regressor and the error term in (2) to be correlated.
This insight basically follows from the familiar Wold decomposition theorem. This

theorem says that any time series yt can be written as the sum of a deterministic
component μt , including, for example, a constant and a trend, and a component that
includes a weighted average of current and past shocks εt , that is,
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yt � μt + θ0εt + θ1εt−1 + θ2εt−2 + · · · � μt +
∞∑

i�0

θiεt−i

Usually, θ0 is set equal to 1. Given availability of past shocks and the parameters for
these past shocks and the deterministic terms, it is clear that the Wold decomposition
implies that

Et yt+1 � μt+1 +
∞∑

i�1

θiεt+1−i

Hence, as μt+1 is deterministic and perfectly forecastable,

yt+1 � Et yt+1 + εt+1

In words, a time series is the sum of a predictable part and an unpredictable part, where
the latter is also called the forecast error. This expression also shows that

E (yt+1εt+1) � E (Et yt+1 + εt+1, εt+1) � 0 + E
(
ε2t+1

)
� σ 2

ε

So, replacing Etπt+1 in (1) by

Etπt+1 � πt+1 + ωt+1

does not seem the best option.
What then could we do? Let us go back to

πt � μ + αEtπt+1 + βπt−1 + γ xt

One may now decide to replace Etπt+1 by πt . This is also not a good idea for two
reasons. First, during a year, there is no information on πt in that total year, and only
at the end of the year, we know this year’s annual inflation rate. The second reason is
that then (1) becomes

πt � μ + απt + βπt−1 + γ xt

This is equivalent to

πt � μ

1 − α
+

β

1 − α
πt−1 +

γ

1 − α
xt

In that case, the parameters in the NKPC model are not identifiable.
The same problem arises when one decides to replace Etπt+1 by πt−1. This leads

to

πt � μ + (α + β) πt−1 + γ xt

where again the parameters are not identified.
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3 A MIDAS-based solution

There is a simple solution though, and that is that you do not replace Etπt+1 by πt ,
but, for example, by the monthly inflation rates that come in as the year proceeds.
These models are called MIDAS models, see Ghysels et al. (2006, 2007), Foroni et al.
(2015), and Breitung and Roling (2015) among many possible references.

Denoting πs,t as the inflation rate in month s of year t, relative to the same month
s in the previous year t−1, that is,

πs,t � 100(logCPIs,t − log CPIs,t−1)

where CPIs,t is the consumer price index in month s of year t. One can now replace
αEtπt+1 by

α1π1,t

α1π1,t + α2π2,t

α1π1,t + α2π2,t + α3π3,t

and so on, until

α1π1,t + α2π2,t + α3π3,t + · · · + α12π12,t

Inwords, this says that the forecast for next year’s inflation is first based on the inflation
rate in January, and next it is based on the inflation rates in January and February of
the current year, and so on. Note that the average of the twelve πs,t terms is not equal
to πt as

100 (logCPIt − logCPIt−1) �� 1

12

12∑

s�1

100(logCPIs,t − logCPIs,t−1)

Hence, during the current year, one can use monthly data as input to forecasts for next
year’s inflation.

4 Illustration for US annual inflation rates

Figure 1 displays the annual inflation rates for the USA, for the sample 1956–2016.
Figure 2 displays the annualized inflation rate observed in January as well as the yearly
data. Clearly, there is substantial common variation in the data. Figure 3 contains all
the monthly inflation rates and shows that there can be sizable variation in the data
within a year.
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Fig. 1 Annual CPI-based inflation, USA, 1956–2016
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Fig. 2 Annual inflation rate versus the inflation rate in January of the same year

There are variousMIDAS-type models to consider. The first type assumes that each
month new and relevant information might come is, and these models are

πt � μ + βπt−1 + εt

πt � μ + α1π1,t + βπt−1 + εt

πt � μ + α1π1,t + α2π2,t + βπt−1 + εt

. . .

πt � μ + α1π1,t + α2π2,t + · · · + α12π12,t + βπt−1 + εt

The parameters are estimated unrestrictedly, thereby following the format recom-
mended in Foroni et al. (2015), which is called the unrestricted MIDAS model, or in
short, UMIDAS.

123



On inflation expectations in the NKPC model 1859

-4

0

4

8

12

16

60 65 70 75 80 85 90 95 00 05 10 15

January February March
April May June
July August September
October November December

Fig. 3 Annualized inflation rates per month

Table 1 gives a selection of the estimation results.1 It is clear that there is substan-
tial variation across the estimated αs parameters across the UMIDAS models. This
reinforces that imposing structure on the parameters using, for example, Almon lags,
as is often done in the literature, does not make sense here.

Figure 4 presents the root-mean-squared prediction error and mean absolute error
for the test sample 2005–2016, where the parameters are estimated for 1956–2004.
The UMIDASmodel includes January (1), January and February (2),…, January–De-
cember (12). The graphs in Fig. 4 show that already quite some accurate forecasts can
be obtained when the model

πt � μ + α1π1,t + α2π2,t + α3π3,t + α4π4,t + βπt−1 + εt

is considered. This can also be learned from Fig. 5 which shows a sharp increase
in the R2 when the months January–April are included. Figure 6 gives a graphical
impression of how the parameter estimates develop.

Now that UMIDAS models are considered, it is also possible to look at alternative
forecast schedules, like, for example,

πt � μ + α1π1,t + α2π2,t + · · · + α12π12,t + βπt−1 + εt

πt � μ + α2π2,t + · · · + α12π12,t + βπt−1 + εt

πt � μ + α3π3,t + · · · + α12π12,t + βπt−1 + εt

. . .

1 When possible, given the degrees of freedom, all estimated models were examined using the Quandt-
Andrews unknown breakpoint test, where the null hypothesis is “No breakpoints with 15% trimmed data”.
For most estimated models this null hypothesis is not rejected. Detailed estimation results are available
upon request.
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Table 1 Estimation results for the models

β 0.187 (0.076) −0.192 (0.103) −0.084 (0.071) −0.002 (0.003)

α1 1.077 (0.099) −0.817 (0.243) 0.080 (0.010)

α2 1.835 (0.226) 0.123 (0.013)

α3 0.015 (0.008)

α4 0.123 (0.015)

α5 0.062 (0.019)

α6 0.105 (0.014)

α7 0.066 (0.012)

α8 0.089 (0.012)

α9 0.089 (0.015)

α10 0.077 (0.015)

α11 0.108 (0.015)

α12 0.066 (0.009)

R2 0.665 0.891 0.950 1.000a

Bold and italic means significant at the 5% level
aThe true score is 0.99959
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Fig. 4 Root-mean-squared prediction error and mean absolute error for the test sample 2005–2016, where
the parameters are estimated for 1956–2004. The UMIDASmodel includes January (1), January and Febru-
ary (2), …, January–December (12)
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Fig. 5 The R2 of the UMIDAS models where each time an additional month is included
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Fig. 6 Estimated parameters in UMIDAS models, where each time an additional month is included

πt � μ + α12π12,t + βπt−1 + εt

πt � μ + βπt−1 + εt

A selection of estimation results is presented in Table 2. Looking at the significant
parameters, it is clear that there is wide variety of possible relevant models.

Finally, it is also possible to see which of the monthly inflation rates can be viewed
as the most informative for forecasting next year’s inflation. For that purpose, one can
consider

πt � μ + α1π1,t + βπt−1 + εt

πt � μ + α2π2,t + βπt−1 + εt

. . .

πt � μ + α12π12,t + βπt−1 + εt
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Table 2 Estimation results for the models

β −0.002 (0.003) 0.006 (0.004) 0.060 (0.008) 0.337 (0.051)

α1 0.080 (0.010)

α2 0.123 (0.013) 0.210 (0.012)

α3 0.015 (0.008) 0.016 (0.012) 0.131 (0.026)

α4 0.123 (0.015) 0.093 (0.023) 0.143 (0.061)

α5 0.062 (0.019) 0.095 (0.029) 0.074 (0.078)

α6 0.105 (0.014) 0.094 (0.022) 0.153 (0.058)

α7 0.066 (0.012) 0.070 (0.018) 0.062 (0.049)

α8 0.089 (0.012) 0.079 (0.018) 0.014 (0.047)

α9 0.089 (0.015) 0.094 (0.023) 0.203 (0.060)

α10 0.077 (0.015) 0.093 (0.023) 0.038 (0.061)

α11 0.108 (0.015) 0.073 (0.022) 0.029 (0.059)

α12 0.066 (0.009) 0.078 (0.014) 0.100 (0.038) 0.676 (0.050)

R2 1.000a 1.000b 0.999 0.921

Bold and italic means significant at the 5% level
aThe true score is 0.999959
bThe true score is 0.999896

The estimation results appear in Table 3. The peak R2 value appears in August (0.983).
On the other hand, around April and May the R2 values are already quite high, and
also the associated parameter is close to 1, with a small standard error. In other words,
predictions from the NKPC model based on data available to and including April are
rather accurate for the finally to be obtained annual end-of-the-year inflation.2

2 Upon suggestion of one the reviewers, the MIDAS models were extended with survey forecasts. The
Michigan survey data were obtained from https://fred.stlouisfed.org/series/MICH. The data start in January
1978. They are available monthly. Each time the respondents are asked to make a forecast for the next
12 months. For the present purposes this means that only the quote in December each year is useful. When
this variable is added to themodel, the associated parameter is not significant. Next, the data from the Survey
of Professional Forecasters are obtained fromhttps://www.philadelphiafed.org/research-and-data/real-time-
center/survey-of-professional-forecasters. These expectations for next year’s inflation are collected every
quarter since 1981Q3. Hence, these expectations are the same within a particular quarter. The inclusion of
these survey-based forecasts results in four new MIDAS models. Wald tests and t tests on the significant of
these variables all resulted in the p values much higher than 5%. Details on the computations are available
upon request.
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Table 3 Estimation results for

...........

Month αs β R2

January 1.077 (0.099) −0.192 (0.103) 0.891

February 1.104 (0.068) −0.186 (0.070) 0.940

March 0.918 (0.049) 0.060 (0.050) 0.953

April 0.976 (0.037) −0.003 (0.038) 0.974

May 0.934 (0.032) 0.045 (0.033) 0.979

June 0.906 (0.032) 0.067 (0.033) 0.978

July 0.873 (0.029) 0.096 (0.030) 0.980

August 0.863 (0.027) 0.132 (0.027) 0.983

September 0.806 (0.027) 0.190 (0.028) 0.980

October 0.791 (0.033) 0.219 (0.034) 0.970

November 0.739 (0.043) 0.272 (0.045) 0.945

December 0.676 (0.050) 0.337 (0.051) 0.921

Bold and italic means significant at the 5% level

5 Conclusion

The hybrid newKeynesian Phillips curvemodel for annual inflation involves an expec-
tation of next year’s inflation. The common assumption in the rational expectations
literature is to include the actual next year’s inflation and prediction error. This assump-
tion leads to two inconveniences, that is, endogeneity of one of the regressors, and it
violates theWold decomposition theorem. A simple solution is presented which relies
on the MIDAS notion, that is, higher frequency data within the same year can be used
to create forecasts for next year’s inflation. An illustration to US annual inflation rates
with incoming monthly inflation rates showed the merits of this approach.
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