
A p-step Formulation for the Capacitated Vehicle Routing Problem

Twan Dollevoet1, Pedro Munari2, and Remy Spliet1

1Econometric Institute, Erasmus University Rotterdam, the Netherlands

2Production Engineering Department, Federal University of São Carlos, Brazil

Econometric Institute Report Series: EI-2020-01

Abstract

We introduce a p-step formulation for the capacitated vehicle routing problem (CVRP). The param-

eter p indicates the length of partial paths corresponding to the used variables. This provides a family

of formulations including both the traditional arc-based and path-based formulations. Hence, it is a gen-

eralization which unifies arc-based and path-based formulations, while also providing new formulations.

We show that the LP bound of the p-step formulation is increasing in p, although not monotonically.

Furthermore, we prove that computing the set partitioning bound is NP-hard. This is a meaningful result

in itself, but combined with the p-step formulation this also allows us to show that there does not exist

a strongest compact formulation for the CVRP, if P 6= NP . While ending the search for a strongest

compact formulation, we propose the search for the strongest formulation of the CVRP with a number of

variables and constraints limited by a polynomial of fixed degree. We provide new strongest such formu-

lations of degree three and higher by using a corresponding p-step formulation. Furthermore, the results

of our experiments suggest that there are computational advantages from using the p-step formulation,

instead of traditional arc-based and path-based formulations.

1 Introduction

The capacitated vehicle routing problem (CVRP) is a classical optimization problem in the field of oper-

ations research. It is the problem of delivering demands of customers from a depot using homogeneous

vehicles with limited capacity at minimal costs. Together with its numerous extended versions, it has

many practical applications and is much studied, see Toth and Vigo (2014).

The most successful exact approaches for the CVRP rely on an integer or mixed integer linear program-

ming formulation. We distinguish between two types of formulations that are dominant in the scientific

literature. Arc-based formulations use binary variables indicating whether an arc is used, while path-

based formulations use binary variables indicating the use of a path, i.e., route. Examples of arc-based

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/286390836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

formulations are the single-commodity flow formulation (Gavish 1984), the two-index vehicle flow formu-

lation (Laporte and Nobert 1987), and the two-commodity flow formulation (Baldacci et al. 2004). The

main example of a path based formulation is the set partitioning formulation, which was first introduced

by Balinski and Quandt (1964) and is studied extensively since. Arc-based formulations are known for

relatively weak LP bounds which can be computed fast, while path-based formulations have stronger LP

bounds which require more time to compute.

The LP bound of the set partitioning formulation, referred to as the set partitioning bound, is usually

computed with a column generation algorithm which has exponential worst-case computation time. Fast

algorithms for the CVRP like that of Pecin et al. (2017), typically make use of such a column generation

algorithm in which they additionally employ route relaxations that allow cyclic routes. An important

example is the ng-route relaxation of Baldacci et al. (2011). Applying a route relaxation effectively yields

a new path-based formulation, which is often still referred to as a set partitioning formulation. The

result is an LP bound which, although weaker, can usually be computed in pseudo-polynomial time.

Alternatively, researchers have been pursuing a strongest compact formulation, since these provide LP

bounds that can be computed in polynomial time. A recent overview in which multiple formulations are

compared can be found in Letchford and Salazar-González (2015). To the best of our knowledge, the

current strongest compact formulation is due to Leggieri and Haouari (2017).

In this paper, we present a new formulation of the CVRP which we refer to as the p-step formulation.

It makes use of variables corresponding to partial paths of length precisely p, or at most p if the partial

path starts at the depot. The p-step formulation can be considered a family of formulations, one for

each positive integer value of p. Observe that when p is one, the p-step formulation is an arc-based

formulation, while for p larger than the number of customers in an instance the p-step formulation is a

path-based formulation. The p-step formulation could therefore be considered a generalized formulation

of the CVRP, with arc-based and path-based formulations at its extremes. Moreover, it provides new

formulations based on partial paths in between these extremes.

We are not the first to consider a formulation for the CVRP based on partial paths. Perhaps the

best documented study is the technical report by Jepsen and Petersen (2009). They consider a giant

tour representation of a solution to the CVRP which is decomposed in partial paths. A formulation is

presented in which the decision variables indicate which partial paths are selected. They conclude after

only some preliminary experiments that they do not want to pursue their idea further, without doing a

more in depth analysis.

For our p-step formulation, we provide a detailed analysis. We show that the 1-step formulation is

equally strong as the single-commodity flow formulation (Gavish 1984) and that the LP bound of the p-

step formulation increases in p until ultimately reaching the set partitioning bound, although the increase

is not necessarily monotonic. This provides opportunities to work with a formulation that has stronger

LP bounds than the single-commodity flow formulation, but which could be computed more efficiently

than the set partitioning bound. In that sense, the formulation could be regarded in the same way as the

more traditional route relaxations.

2

In this paper, we also prove the seemingly unrelated fact that computing the set partitioning bound

of the CVRP is NP-hard. This result justifies the use of exponential time algorithms, such as column

generation, to compute the set partitioning bound. Moreover, it provides insight into why researchers

have been more successful using route relaxations, instead of using the set partitioning formulation with

elementary paths.

This complexity result in combination with our p-step formulation enables us to prove that no strongest

compact formulation exists, if P 6= NP . The argument is that for any compact formulation, a compact

p-step formulation can be found which is not weaker. This means that researchers no longer have to

search for the strongest compact formulation. However, we argue that it is still relevant to instead

search for strongest formulations with the number of variables and constraints of fixed polynomial degree.

Subsequently, we point out new strongest known formulations with the number of variables and constraints

of fixed polynomial degree three and higher.

We additionally investigate whether the p-step formulation has the potential to provide computational

advantages. Note that the p-step formulation is complementary to any approach using an arc-based

or path-based formulation, and merely provides additional opportunities corresponding to intermediate

values of p. Hence, we are particularly interested whether faster computation times can be obtained using

intermediate values of p. Demonstrating this is difficult, since it is not clear what algorithms are most

efficient for intermediate values of p.

Using a branch-price-and-cut algorithm we show that the lowest computation times correspond to

intermediate values of p for 4 out of 22 considered benchmark instances from the literature. To strengthen

this result, we provide new instances constructed in such a way that intermediate values of p consistently

outperform the arc-based and path-based formulation. Although these results are dependent on the used

algorithm and instances, they provide evidence that there is potential for computational gains using the

p-step formulation. We believe that our results merit further research into new algorithms to pursue this

potential.

We summarize our contributions as follows. We introduce a new family of formulations that generalize

the traditional arc-based and path-based formulation. We prove that computing the set partitioning

bound is NP-hard, and use this result in conjunction with our p-step formulation to additionally show

that there does not exist a strongest compact formulation. This way, we conclude the research in pursuit

of the strongest compact formulation, but we also point out the relevant research direction of finding the

strongest formulation with a limited number of variables and constraints. We provide the new strongest

known formulation with a polynomial number of variables of fixed degree three and higher. Finally, we

provide computational results which suggest that there is potential for computational gains of using a

p-step formulation.

This paper is organized as follows. In Section 2, we present the p-step formulation. In Section 3,

we analyze the LP bound of the p-step formulation. In Section 4, we present the algorithm that we

use in our computational experiments. In Section 5, we present improvements to the p-step formulation

which in conjunction with our algorithm serve to strengthen the LP bounds and simultaneously provide

3

computational gains. In this section we also point out new strongest known formulations with the number

of variables and constraints of fixed polynomial degree three and higher. In Section 6 we provide the results

of our computational experiments. Finally, we conclude the paper in Section 7.

2 A p-step formulation

Even though the CVRP is a well known problem, we provide a description in Section 2.1 both for the

sake of completeness and to introduce the notation that we use in this paper. Furthermore, in Section 2.2

we define p-steps and provide a new binary programming formulation of the CVRP which makes use of

these p-steps. We describe in Section 2.3 how a compact version of this formulation is obtained.

2.1 The capacitated vehicle routing problem

Consider a directed graph G = (N,A). Here N = {0, . . . , n + 1} is a set of locations such that 0

represents the starting depot, n + 1 the ending depot and N ′ = {1, ..., n} is the set of customers, and

A = {(i, j) : i, j ∈ N, i 6= j, i 6= n + 1, j 6= 0}. Each customer i ∈ N ′ has a demand qi > 0. For ease

of notation let q0 = qn+1 = 0. An unlimited amount of vehicles of capacity Q is available for satisfying

demand. Vehicles traverse an elementary path from 0 to n+ 1, referred to as a route, to satisfy demand

of all customers along the path. The total demand of the customers on a single route cannot exceed the

capacity of a vehicle, and demand cannot be split, i.e., every customer is visited exactly once. We assume

qi ≤ Q for all i ∈ N . The cost of traversing an arc (i, j) ∈ A is cij ≥ 0. The capacitated vehicle routing

problem (CVRP) is the problem of finding routes to satisfy all customer demands while the total costs

are minimized.

2.2 Binary programming formulation

Next, we present a new binary programming formulation of the CVRP. Let a p-step r be a pair (Pr, dr).

Here Pr is an elementary path in G that 1) either traverses exactly p arcs, thus visiting p + 1 nodes, or

2) starts at 0 and traverses at most p arcs. Furthermore, dr represents the cumulative demand of the

customers on a route prior to arriving at the first location on Pr. We refer to dr as the prior demand of

r and we denote by q(r) the total demand of the customers visited on the p-step r. The p-step is called

feasible if 0 ≤ dr + q(r) ≤ Q and we denote by Rp the collection of all feasible p-steps.

In our formulation, we concatenate p-steps to represent routes. Two p-steps r and s can be concate-

nated if and only if the last location i ∈ N ′ of r is the first location of s, and the total demand after

leaving i on r matches that of s, that is, dr + q(r) = ds + qi. Observe that every route can be represented

as a concatenation of feasible p-steps. Moreover, in our formulation we enforce that a customer can only

be visited once. This way, we ensure in our formulation that any concatenation resulting in a path from

0 to n + 1, does not only satisfy the capacity constraint, but is also elementary and therefore represents

a route.

4

We introduce additional parameters which we use in our formulation. Let air be the degree of customer

i on the path Pr corresponding to p-step r. That is, air is 2 if customer i ∈ N ′ is visited once by p-step r,

unless i is the first or last node on Pr in which case air is 1, and 0 otherwise. To represent the concatenation

of p-steps in our formulation, we introduce eir and qir. Let eir be 1 if i is the first location on Pr, −1 if i

is the last location on Pr, and 0 otherwise. Furthermore, let qir be dr + qi if i is the first location on Pr,

−dr − q(r) if i is the last location on Pr, and 0 otherwise.

Finally, let the binary p-step variable xr indicate whether p-step r is used. The CVRP can be formu-

lated as the following binary program.

min
∑
r∈Rp

crxr (1)

∑
r∈Rp

airxr = 2 ∀i ∈ N ′ (2)

∑
r∈Rp

eirxr = 0 ∀i ∈ N ′ (3)

∑
r∈Rp

qirxr = 0 ∀i ∈ N ′ (4)

xr ∈ {0, 1} ∀r ∈ Rp (5)

The total costs are minimized in the objective function (1). Constraints (2) ensure that every customer

is visited exactly once. Constraints (3) and (4) ensure that if a p-step is selected that ends at node i then

also a p-step is selected that starts at node i with sufficient prior demand. Constraints (5) represent the

binarity conditions on the p-step variables x. We refer to formulation (1)-(5) as the p-step formulation.

2.3 Compactness

Because the prior demand dr is continuous, the number of p-steps in Rp is infinite and by extension so are

the number of variables xr, unless Q = qi for all i ∈ N ′. However, we can redefine the p-step formulation

to only include a finite number of p-steps. This is achieved by only considering p-steps for which the prior

demand is minimal or maximal, so that any other p-step can be represented as a convex combination of

the extremes. To make this more precise, first observe that the p-step formulation remains valid when

replacing the equalities (4) by inequalities as follows

∑
r∈Rp

qirxr ≥ 0 ∀i ∈ N ′. (6)

In this case, a strict inequality of (6) can be interpreted as a vehicle carrying empty space which is

erroneously considered as prior demand by some p-step. Moreover, the LP bounds do not change, since

we can lower the erroneous prior demands to obtain a new solution in which (6) are satisfied with equality,

without changing the objective value.

Next, we replace the binarity conditions (5) on the p-step variables by binarity conditions on the

5

arc-flow, as is standard practice when using a set partitioning formulation for the CVRP. To make this

explicit, let the binary arc-flow variable θij indicate whether arc (i, j) ∈ A is used. Also, let the binary

parameter brij indicate whether arc (i, j) ∈ A is used by p-step r. The binarity conditions are replaced by

∑
r∈Rp

brijxr = θij ∀(i, j) ∈ A (7)

xr ≥ 0 ∀r ∈ Rp (8)

θij ∈ {0, 1} ∀(i, j) ∈ A. (9)

Constraints (7) and (9) allow a single route in a solution to be represented by a convex combination of

several routes, only if every arc in A is selected binarily. This enables us to drop the binarity conditions

on the p-step variables as is done in (8). Note that it is not even necessary to impose xr ≤ 1 for all r ∈ Rp,

since this is implied by (2), (3) and (8). We are now ready to also limit the number of p-step variables

and obtain a formulation with a finite number of variables.

Proposition 1. The p-step formulation (1)-(5) has the same optimal solution value and LP bound as

(1)-(3) and (6)-(9) while limiting Rp to include only:

1. All p-steps r that start at 0 with prior demand dr = 0.

2. All p-steps r that do not start at 0 nor end at n+ 1 with prior demand dr = 0.

3. All p-steps r that do not start at 0 nor end at n+ 1 with prior demand dr = Q− q(r).

4. All p-steps r that do not start at 0 and end at n+ 1 with prior demand dr = Q− q(r).

Proof. It is standard to replace the binarity conditions on the route variables by binarity conditions on

the arc-flow. This does not affect the optimal solution value nor the LP bound. Furthermore, consider

a solution of the p-step formulation, or its LP relaxation, using p-step r. If r starts at 0 with dr > 0, it

could be replaced by p-step r′ = (Pr, 0), without violating any of the constraints, in particular not (6),

and without changing the cost. Similarly, if r ends at n + 1 while dr < Q − q(r), it can be replaced by

r′ = (Pr, Q− q(r)). Finally, if r does not start at 0 nor ends at n + 1 and has prior demand 0 < dr <

Q− q(r), it can be represented by a convex combination of r1 = (Pr, 0) and r2 = (Pr, Q− q(r)).

Applying Proposition 1 yields a p-step formulation with a finite number of variables. In fact, it is a

compact formulation of the CVRP, with the number of variables being of order np+1.

3 LP bounds

In Section 3.1, we describe the progression of LP bounds with p. That is, we compare the LP bounds of

the p-step formulation for different values of p. We then show that computing the set partitioning bound

is NP-hard in Section 3.2, and use that result to prove that there does not exist a strongest compact

6

formulation if P 6= NP . Finally, we compare the LP bounds to those of other formulations of the CVRP

in Section 3.3.

3.1 Progression of LP bounds

The p-step formulation is properly defined for p ∈ N>0, i.e., for all p ∈ N, p ≥ 1. Denote by zp the

LP bound of the p-step formulation for a particular choice of p. Observe that for an instance with n

customers, it holds for p ≥ n + 1 that Rp = Rn+1 and as a result zp = zn+1 for all p ≥ n + 1. Note

that zn+1 is the set partitioning bound. Next, we analyze how the LP bounds of the p-step formulation

progress when p increases from 1 to n+ 1. It turns out that the LP bound does not necessarily increase

monotonically in p, although a gradual increase does occur. In what follows, we make this statement

more precise.

Proposition 2. For any p,m ∈ N>0 it follows that zp ≤ zpm.

Proof. Consider an optimal solution x∗ to the LP relaxation using pm-steps. Any given pm-step r can

be cut into k separate p-steps r1, . . . , rk, ending at locations n1, . . . , nk respectively, where k is at most

m. The prior demands dri are straightforwardly chosen as dri = dr +
∑i−1

j=1

(
q(rj)− qnj

)
. We define

x′ri = x∗r for all 1 ≤ i ≤ k. It is easily verified that x′ is a feasible solution using exclusively p-steps, while

maintaining the same objective value. This shows that zp ≤ zpm.

Using Proposition 2, it follows immediately that any p-step formulation is at least as strong as the

arc-based formulation obtained for p = 1.

Corollary 3. For any p ∈ N>0, it holds that z1 ≤ zp.

Furthermore, no p-step formulation is stronger than the set partitioning formulation obtained for

p = n+ 1.

Corollary 4. For any p ∈ N>0, it holds that zp ≤ zn+1.

Proof. Since for any integer k ≥ n + 1 it holds that zk = zn+1, by Proposition 2 it follows that zp ≤

z(n+1)p = zn+1.

When comparing a p-step formulation with a q-step formulation, for p < q, the LP bound is in general

only non-decreasing when q is an integer multiple of p, as described in Proposition 2. Otherwise, it can

occur that the LP bound decreases.

Proposition 5. For any p, q ∈ N>0 such that p < q and q is not an integer multiple of p, there exists an

instance of the CVRP for which zp > zq.

The proof of Proposition 5 can be found in Appendix A. In this proof, we construct an instance for

which zp > zq. Here we exploit the following reason which we found for LP bounds to decrease while

increasing p to q. Suppose customers appear close together in clusters, while the clusters and the depot

are far apart. Consider for example clusters of two customers, then any 2-step will cover at most two

7

arcs of which at least one is long. In contrast, 3-steps exist that have exactly one long arc out of three.

At least half of the arcs selected in a solution to the LP relaxation of the 2-step formulation will be long,

while a solution using 3-steps might be constructed that uses a lower ratio of long arcs. As a result, there

are instances for which z2 > z3. In Appendix A, we construct such an instance for all p, q ∈ N>0 such

that p < q and q is not an integer multiple of p. Note that we begin Appendix A by first showing another

result, namely that the flow out of and into the depot are both at least 1
Q

∑
i∈N ′ qi. This is similar to

what Gouveia (1995) showed for the single-commodity flow formulation of the CVRP. We use this result

to prove Proposition 5.

For completeness sake, we provide the following two propositions. They show that for any p and q

such that p < q there exists an instance in which the LP bounds are equal, and an instance in which the

LP bound is higher for q.

Proposition 6. For any p, q ∈ N>0 such that p < q, there exists an instance of the CVRP for which

zp = zq.

Proof. Consider any instance in which the demand of every individual customer equals the vehicle capacity.

It follows that zp = zq.

Proposition 7. For any p, q ∈ N>0 such that p < q, there exists an instance of the CVRP for which

zp < zq.

The proof of Proposition 7 can be found in Appendix B.

We now have a full characterization of the LP bounds for varying values of p. The LP bound zp

increases from z1 to zn+1 when p increases, although not monotonically. A decrease is potentially, but

not necessarily, observed when increasing p to a value which is not an integer multiple of p. For increases

of p to integer multiples of p, a decrease never occurs.

3.2 A strongest compact formulation

Consider a p-step formulation for any fixed value of p. On the one hand, the p-step formulation is weaker

than the set partitioning formulation by Corollary 4 and Proposition 7. On the other hand, the p-step

formulation does provide the set partitioning bound for all instances with the number of customers strictly

less than p. Therefore, for a sufficiently large but fixed p, the p-step formulation is a compact formulation

which is practically indistinguishable from the non-compact set partitioning formulation. Next, we discuss

the implications of this observation in the context of finding a strongest compact formulation. We first

show that computing the LP bound of the set partitioning formulation of the CVRP is NP-hard. We then

show that it follows that there does not exist a strongest compact formulation, if P 6= NP , since for any

compact formulation a p-step formulation can be found that is not weaker.

Proposition 8. Computing the set partitioning bound of the CVRP is NP-hard.

The proof of Proposition 8 can be found in Appendix C. It is a polynomial time reduction of the

partition problem. Although the partition problem is NP-hard (Karp 1972), a pseudo-polynomial time

8

algorithm does exist (Garey and Johnson 1979). Therefore, it is still an open question whether computing

the set partitioning bound of the CVRP is strongly NP-hard, or whether a pseudo-polynomial time

algorithm exists.

Since the same polynomial time reduction can be used for any lower bound on the CVRP that is at

least as strong as the set partitioning bound, the next corollary follows, which is used to prove that no

strongest compact formulation exists for the CVRP, if P 6= NP .

Corollary 9. No polynomial time algorithm exists that provides a lower bound for the CVRP which is at

least as strong as the set partitioning bound, unless P = NP .

Proposition 10. If P 6= NP , there does not exist a strongest compact formulation of the CVRP.

Proof. A compact formulation of the CVRP can be used to compute a lower bound for the CVRP in

polynomial time. By Corollary 9, unless P = NP , no compact formulation exists that provides at least

the set partitioning bound. Hence, for any given compact formulation, at least one instance of the CVRP

exists for which the corresponding LP bound is strictly less than the set partitioning bound. Let nI be

the number of customers of such an instance I.

Consider a p-step formulation, with p fixed such that p ≥ nI + 1. This formulation provides the set

partitioning bound for instance I. Hence, it is a compact formulation that is not weaker. Since this can be

done for any compact formulation, we conclude that if P 6= NP , there does not exist a strongest compact

formulation.

The consequence of Proposition 10 is that the pursuit of a strongest compact formulation for the CVRP

is over. Moreover, it shows that the usefulness of a strong compact formulation might be limited. Although

compact formulations typically exhibit weaker LP bounds than non-compact formulations, their practical

use stems from being able to compute the LP bounds in polynomial time. If the number of variables

and constraints is large, and polynomial time is therefore still very long, this advantage disappears in

practice. This is clearly the case for a p-step formulation with a fixed but large value of p. Hence,

classifying formulations on whether they have a polynomial number of constraints and variables may not

be sufficient for practical purposes. Instead, we think that it is better to classify formulations according

to the number of variables and constraints being polynomial of fixed degree, and pursue the strongest

formulation within these classes. Obviously, we should then focus on those classes of formulations for

which efficient algorithms can be devised.

3.3 Comparison with other formulations

Fixing the value of p provides a p-step formulation that can be directly compared to other formulations

of the CVRP. In this section, we discuss such comparisons in particular for formulations with a quadratic

and cubic number of variables and constraints, and comment briefly on formulations with a higher number

of variables and constraints.

9

Let us first consider the 1-step formulation, by comparing it to the single-commodity flow formula-

tion (SCF) attributed to Gavish (1984). Both formulations have a quadratic number of variables and

constraints.

Proposition 11. The 1-step formulation is equally strong as SCF.

The proof of Proposition 11 can be found in Appendix D, along with SCF for ease of reference. There

we first provide the somewhat stronger result that actually for any choice of p, the p-step formulation is

at least as strong as SCF.

For more comparisons with the 1-step formulation, we refer to Letchford and Salazar-González (2015),

where a detailed comparison is presented of a selection of formulations of the CVRP which includes SCF.

These comparisons immediately extend to the 1-step formulation.

It is worth noting that the compact 1-step formulation provided by (1)-(3) and (6)-(9), uses n2 − n

more continuous variables and n2 + n less constraints than SCF, if we do not consider non-negativity of

variables as constraints. Moreover, to compute just the LP bound using the 1-step formulation, the arc-

flow variables and corresponding constraints do not need to be considered. The LP bound is obtained by

solving (1)-(3), (6) and (8). This means that the LP bound can be computed with the 1-step formulation

using 2n less variables and 2n2 + 2n less constraints than SCF. In particular, the number of constraints

becomes linear instead of quadratic, if we do not consider non-negativity of variables as constraints.

Next, we consider formulations of the CVRP with a cubic number of variables. In particular, we

consider the formulation by Leggieri and Haouari (2017), which they refer to as F3. To the best of our

knowledge, F3 was previously the strongest known compact formulation. This formulation not only has

a cubic number of variables but also a cubic number of constraints. To be precise, it has 2n3 + O(n2)

variables and 6n3 + O(n2) constraints. Given the extensive nature of F3, for the sake of brevity we

substantiate our claims using empirical evidence only.

For now, we leave the question open of how the 2-step formulation compares to F3. We come back to

this question in Section 5.4, where we compare a stronger 2-step formulation with F3 and show that it is

not weaker. This makes the comparison with the 2-step formulation less relevant and we do not pursue

it further.

Instead, consider the 3-step formulation. Although it has a quartic number of variables instead of

cubic like F3, it is still noteworthy that it is not weaker than F3. Consider for example the instance

E-n13-k4 introduced by Christofides and Eilon (1969). The LP bound of this instance provided by F3

is 240.972, while z3 = 241.648. This is noteworthy because F3 was, to the best of our knowledge, the

strongest compact formulation. Therefore, it was also the strongest formulation with at most a quartic

number of variables. However, the combination of F3 and the 3-step formulation is even stronger. Clearly,

it is not weaker than both F3 and the 3-step formulation separately, and it is in fact stronger than F3 as

can be observed from the LP bound 241.926 for instance E-n13-k4. By using even larger values of p, even

stronger formulations can be found.

10

4 Algorithm

We present an algorithm to compute the LP bound of the p-step formulation and embed this in a branch-

and-bound algorithm to solve the CVRP. The purpose is to experimentally compare the computation

times of using the p-step formulation for different values of p. To facilitate this comparison, we think it

is best to use a single algorithm for all values of p. Of course, different algorithms might be better suited

for specific values of p.

As the number of variables grows large when p increases, we use a column generation algorithm to

compute the LP bounds. Column generation is an algorithm in which initially only a limited number of

variables are included in the formulation, yielding the so called restricted master problem (RMP). The

RMP is solved and next negative reduced cost variables are searched for, by solving a pricing problem.

The algorithm proceeds iteratively. At each iteration, either at least one negative reduced cost variable

is added to the RMP, or it is concluded that no negative reduced cost variables exist. In the latter case

the solution to the current RMP is the optimal solution to the LP relaxation.

In our column generation algorithm, we use the compact formulation (1)-(3) and (6)-(9). In the RMP,

we include all variables θ but we initially limit the number of p-step variables x. In Section 4.1, we describe

how we model the resulting pricing problem and in Section 4.2 we provide an exact algorithm to solve this

pricing problem. Furthermore, in Section 4.3 we describe a preprocessing procedure based on the p-step

formulation to aid our exact pricing algorithm. In Section 4.4 we show how additional computational

gains can be achieved when dealing with symmetric CVRP instances. This is relevant since many of the

benchmark instances used to compare algorithms in the scientific literature are actually symmetric. In

Section 4.5, we present our branch-price-and-cut algorithm in which we embed our column generation

algorithm. Finally, in Section 4.6 we point out some differences between our algorithm and the fastest

algorithms for the CVRP, and provide arguments for our choices in algorithm design.

4.1 Pricing problem

Let λ, µ, ν and π be the dual variables associated with constraints (2), (3), (6) and (7) respectively. For

ease of notation, let λ0 = λn+1 = µ0 = µn+1 = ν0 = νn+1 = 0. Consider the p-step (Pr, dr) such that s is

the start and f is the final node on Pr. The reduced cost RC(r) of the variable xr is

RC(r) =
∑

(i,j)∈Pr

(cij − πij − 2λj)− λs + λf − µs + µf − νs (dr + qs) + νf (dr + q(r)) .

The pricing problem is to find a feasible p-step, for which the reduced cost is minimal. Recall that a

feasible p-step consists of an elementary path Pr of length at most p if s = 0 or exactly p if s 6= 0, and

prior demand 0 ≤ dr ≤ Q− q(r).

To the best of our knowledge, this problem has not been studied before. However, next we describe how

to decompose the pricing problem to obtain a polynomial number of more familiar problems. Consider

the decomposition into separate problems with fixed start node s and fixed final node f 6= s, which we

11

also refer to as pricing problems, or (s, f) pricing problems. Note that we need not consider n + 1 as a

starting node nor 0 as a final node. This way, we obtain (n+ 1)n pricing problems.

For each (s, f) pricing problem, it can be determined immediately whether the minimal or maximal

value should be assigned to the prior demand. Observe that in the expression for the reduced cost of xr,

dr has linear coefficient νf −νs. Hence, if νf ≥ νs it is optimal to assign dr the minimal value 0, otherwise

it is optimal to assign dr the maximal value Q− q(r).

Given the optimal assignment of the prior demand, we model each (s, f) pricing problem as an ele-

mentary shortest path problem with a capacity constraint and a requirement on the path length. To do

so, we compute an appropriate constant cost and we assign costs to each arc in A, such that the total cost

of an (s, f) path in G is the reduced cost of a corresponding p-step variable. These costs are dependent

on whether the minimal or maximal value should be assigned to the prior demand.

If the minimal value is assigned, the constant cost is Csf = −λs + λf − µs + µf + (νf − νs) qs. To

each arc (i, j) we assign the cost c′ij = cij − πij − 2λj + νfqj . For the maximal value, the constant cost is

Csf = −λs + λf −µs +µf + (νf − νs)Q. To each arc (i, j) we assign the cost c′ij = cij − πij − 2λj − νsqj .

The reduced cost of the variable corresponding to a path Pr and prior demand dr are the sum of the arc

costs and the constant cost Csf .

A path is considered feasible if the demand of all customers on the path does not exceed the capacity Q,

and if s = 0 the path consists of at most p arcs, and if s 6= 0, the path consists of exactly p arcs. After

selecting the optimal choices of prior demand, each of the (n+ 1)n pricing problems is now the problem

of finding a feasible elementary path in G that minimizes the reduced costs.

4.2 Exact pricing algorithm

Observe that the pricing problem is polynomially solvable, since the number of p-step variables is of order

np+1. Hence, the pricing problem could for instance be solved in polynomial time by enumerating all

p-steps. However, the number of p-step variables is exponential in p, which means that as p increases such

an approach quickly becomes intractable.

Instead, we solve the (s, f) pricing problems using a bidirectional labeling algorithm (Righini and Salani

2006) with decremental state space relaxation (Righini and Salani 2008) and completion bounds. The

complete algorithm resembles the algorithm of Martinelli et al. (2014) which is designed to solve elementary

shortest path problems with a capacity constraint. In Appendix E, we describe the algorithm in more

detail in order to highlight the slight modifications we made to deal with the additional path length

limitation, and to discuss some minor implementation details for the sake of reproducibility. We make use

of the unreachability vector proposed by Feillet et al. (2004) in our representation of a label. Furthermore,

we make use of ng-paths introduced by Baldacci et al. (2011) to allow cycles in the decremental state

space relaxation. Note that this still means we solve the elementary shortest path problem and, although

possible, in our experiments we do not apply ng-path relaxation to the formulation. Finally, note that

the (s, f)-pricing problems can be solved in parallel.

12

4.3 Preprocessing

Next, we present preprocessing techniques that we use to eliminate some redundant (s, f)-pricing problems

and to reduce the size of others. Recall that a p-step (Pr, dr) is feasible if 0 ≤ dr ≤ Q− q(r). Therefore,

if for all p-steps r for which Pr is an (s, f)-path it holds that Q − q(r) < 0, there does not exist such a

feasible p-step. In this case we do not need to consider the (s, f)-pricing problem. For a subset Y ⊆ N

and y ∈ N>0, we define Q(Y, y) = Q−min{
∑

k∈S qk : S ⊆ N ′\Y, |S| = y} as the remaining capacity of a

vehicle which also visits the y customers with lowest demand, excluding customers in Y . By the preceding

argument, we do not consider the (s, f)-pricing problem if s 6= 0 and qs + qf > Q({s, f}, p− 1). Observe

that this criterion can be checked in a preprocessing phase.

Note that if there are no feasible p-steps departing from a customer, then all feasible p-steps arriving

at this customer can be removed from the formulation as well, since they can never be part of a feasible

solution. Similarly, all p-steps departing from a customer can be removed if no feasible p-steps arrive

there. In this case, we remove the corresponding (s, f) pricing problems during preprocessing.

In our implementation, we actually introduce a copy Gsf of the graph G for each (s, f)-pricing problem

and subsequently solve the pricing problem on Gsf instead. We eliminate nodes and arcs from Gsf as

follows. For i ∈ N ′, such that s 6= 0, i and f are all different, suppose that p ≥ 2 and that qs + qi + qf >

Q({s, i, f}, p − 2). In this case node i can be removed from Gsf because no feasible p-step exists that

visits s, i and f . Similarly, for (i, j) ∈ A, such that s 6= 0, i, j and f are all different, if p ≥ 3 and

qs + qi + qj + qf > Q({s, i, j, f}, p − 3) then arc (i, j) can be removed from Gsf . Observe that also the

removal of nodes and arcs can be done in a preprocessing phase.

Observe that, for p ≥ 2, qs +qf > Q({s, f}, p−1) implies qs +qi +qf > Q({s, i, f}, p−2) for all i ∈ N ′.

Furthermore, for p ≥ 3, qs + qi + qf > Q({s, i, f}, p − 2) implies qs + qi + qj + qf > Q({s, i, j, f}, p − 3)

for all (i, j) ∈ A and (j, i) ∈ A. As a result, preprocessing might be most efficient if first (s, f)-pricing

problems are eliminated, then nodes are removed and finally arcs are removed.

4.4 Symmetric CVRP

The symmetric CVRP is a subclass of CVRP in which the costs to traverse an arc are symmetric, i.e,

cij = cji for all (i, j) ∈ A. Next, we illustrate that for the symmetric CVRP we only need to consider

one pricing problem of every pair consisting of the (s, f) pricing problem and the (f, s) pricing problem.

Consider a p-step (Pr, dr) such that Pr starts at s and ends at f . Also consider a p-step (Pr′ , dr′), such

that Pr′ is the reverse of Pr. Assume without loss of generality that νf ≥ νs. It follows that the p-steps

r and r′ have the lowest reduced costs when dr = 0 and dr′ = Q− q(r). The difference in reduced costs

is the following:

RC(r)−RC(r′) = −2µs + 2µf − νsqs + νfqf + (νf − νs)Q

If RC(r)−RC(r′) ≤ 0, we conclude that the (s, f) pricing problem yields a p-step with lower reduced

costs than the (f, s) pricing problem, otherwise the (f, s) pricing problem yields a p-step with lower

13

reduced costs. Therefore, when solving an instance of the symmetric CVRP, in our algorithm we only

consider the most promising of the two pricing problems. This halves the number of pricing problems to

be considered of those which start and end in N ′.

4.5 Branch-price-and-cut

Next, we summarize the branch-price-and-cut algorithm which we use in our experiments. The details

can be found in Appendix F. Our algorithm resembles any common branch-price-and-cut algorithm for

vehicle routing problems, see Costa et al. (2019). We use a column generation algorithm to compute the

LP bound at each node in the branching tree. We strengthen the bounds by adding rounded capacity,

framed capacity, homogeneous multistar, strengthened comb and 2 edge hypotour inequalities using the

package of heuristic separation algorithms of Lysgaard (2003), see also Lysgaard et al. (2004). To branch,

we likewise use a procedure in the package of Lysgaard (2003).

4.6 Remarks on our algorithm

For our experiments, it seems sensible to use as much as possible conventional, tried-and-tested method-

ology developed for the CVRP. However, we omit some techniques that are commonly part of the fastest

algorithm.

The algorithm by Fukasawa et al. (2006) dynamically decides between using an arc-based and path-

based formulation, and numerical experiments show that depending on the instance either can result

in the fastest overall computation time. Since the work of Fukasawa et al. (2006), lower computation

times have been predominantly achieved using algorithms that require strong lower bounds. Strong lower

bounds can be exploited by arc fixing (Irnich et al. 2010) and route enumeration (Baldacci et al. 2008),

which also require a strong upper bound. To acquire strong lower bounds, the set partitioning bound has

been further strengthened using subset row inequalities (Jepsen et al. 2008), or the more computationally

appealing limited memory subset row inequalities (Pecin et al. 2017). Also the ng-route relaxation has

been introduced by Baldacci et al. (2011) allowing for significantly faster computation while not severely

weakening the LP bounds. These techniques are combined in fast algorithms like that of Pecin et al.

(2017).

We do not use any route relaxation, because in our experiments we particularly want to demonstrate

the differences between the p-step formulation for different values of p, and we do not want to obscure

the results by using cyclic paths instead of elementary paths. Note that preliminary experiments with

ng-route relaxations suggest typical behavior, i.e., lower computation times of the LP bounds and a small

decrease of these LP bounds.

We also do not use so-called non-robust cuts, like the subset row inequalities (Jepsen et al. 2008).

These are valid inequalities for the set partitioning formulation which alter the structure of the pricing

problem. Unlike the robust cuts used in our algorithm, they cannot be immediately applied for the p-step

formulation. However, this might be done by a careful modification of the inequalities, and we leave this

14

for future investigation.

Arc fixing and route enumeration are most successful when good upper and lower bounds are available.

In the context of a p-step formulation, we point out two counteracting effects. On the one hand, for smaller

values of p the bounds are lower, making these strategies less successful. On the other hand, particularly

route enumeration suffers from lengthy paths used in the formulation. When considering the p-step

formulation, only paths of a limited length need to be enumerated, which could yield a computational

advantage. Further investigation is required which we consider beyond the scope of this paper.

Observe that arc-based and path-based formulations have been the object of study for decades. A

competitive algorithm using a p-step formulation might require a similar amount of effort into algorithmic

development. It follows that our branch-price-and-cut algorithm is not competitive in terms of computa-

tion times with the fastest algorithms reported in the literature. Our purpose is to investigate whether

there is sufficient potential for computational advantages, to merit further algorithmic development.

5 Improvements

In this section we present ways of strengthening the p-step formulation without increasing the number of

variables and constraints. In Section 5.1, we explain that the well-known 2-cycle elimination constraints

can be included by actually decreasing the number of variables and constraints. In Section 5.2, we show

how the domain of the prior demand dr of a feasible p-step can be limited to strengthen the formulation,

and to potentially reduce the number of variables. Furthermore, in Section 5.3, we provide a specialized

version of limiting the domain of the prior demand, which allows for computing the LP bounds using

our column generation algorithm. In Section 5.4, we investigate the LP bounds of the improved p-step

formulations and compare the improved 2-step formulation with F3. Finally, in Section 5.5 we provide

new strongest known formulations with the number of variables and constraints limited by a polynomial

of fixed degree three and higher.

5.1 2-cycle elimination

We next explain how the inclusion of 2-cycle elimination constraints is achieved by reducing the number

of variables and constraints. We replace the variables θij for the directed set of arcs A by their undirected

counterparts, corresponding to the set of edges E. This limits the number of variables θij and the number

of constraints (7). Technically, this also requires a redefinition of brij . Now, for (i, j) ∈ E, let brij be 1 if

arc (i, j) ∈ A or (j, i) ∈ A is used by p-step r. Observe that we do not redefine the p-steps, they still

correspond to paths using the directed arcs A. The new undirected p-step formulation is given by (1)-(3),

(6), (8) and

15

∑
r∈Rp

brijxr = θij ∀(i, j) ∈ E (10)

θij ∈ {0, 1} ∀(i, j) ∈ E. (11)

Although this redefinition of variables is common when working with formulations of the symmetric

CVRP, it might not be obvious that it is valid in the asymmetric case. Therefore, we state this as a

proposition for which we provide a proof in Appendix G.

Proposition 12. The undirected p-step formulation is valid for the CVRP.

Observe that the undirected p-step formulation is also stronger than the directed version provided by

(1)-(3), (6)-(9). By (10) and (11) we implicitly impose the 2-cycle elimination constraints θij + θji ≤ 1,

for i, j ∈ N ′, which are not implied by the directed p-step formulation.

5.2 A strong p-step formulation

The p-step formulation can be further strengthened by making use of the following observation. Note

that any p-step that does not end at the depot, needs to be followed by at least one more p-step. Using

this observation, we can identify p-steps that can never be selected in a solution. Indeed, if the total load

of a p-step r is too high, visiting p − 1 customers after visiting the last customer on r would result in

violating the vehicle capacity. Therefore, although such a p-step r might be selected in a solution to the

LP relaxation, it is not required for a p-step formulation to be valid. As a consequence, we can restrict

the domain of the prior demand dr corresponding to feasible p-steps, yielding a stronger formulation.

To do so, we make use of the remaining capacity function Q(Y, y), as defined in Section 4.3. Like Rp,

let the set of feasible p-steps Rp
Strong include all p-steps r ending at the depot for which the corresponding

prior demand dr satisfies 0 ≤ dr ≤ Q− q(r). Moreover, for any p-step r which visits locations L and does

not end at the depot, the prior demand dr satisfies 0 ≤ dr ≤ Q(L, p− 1)− q(r).

Clearly Rp
Strong ⊆ Rp, if we ignore the compactification of Rp described in Proposition 1. Hence, using

Rp
Strong instead of Rp in the p-step formulation (1)-(5) yields a non-weaker formulation. In Section 6, we

show that the strengthened p-step formulation is really stronger, and not equally strong, by providing

examples in which the LP bounds are strictly better. However, our column generation algorithm is not

suited to compute these LP bounds. Instead, we compute the bounds as follows. Note that like in

Proposition 1, a compact formulation can also be obtained using Rp
Strong. In our numerical experiments

we generate a priori all p-steps in Rp
Strong required for constructing this compact formulation, and solve

the resulting linear programming problem. This is only tractable for small values of p.

Note that for an instance in which all customer demands fit in one vehicle, i.e.,
∑

i∈N ′ qi ≤ Q, it holds

that Rp = Rp
Strong, so all LP bounds are the same. In this case, the instance can be modified without

changing the solution, by setting Q = n and qi = 1 for all i ∈ N ′. Defining Rp
Strong as if dealing with the

modified instance, yields a stronger formulation than Rp also for these instances.

16

5.3 A specialized p-step formulation

We present a third set of p-steps which includes more p-steps than Rp
Strong but less than Rp. We introduce

this specialized set to provide stronger LP bounds than those using Rp, while simultaneously attempting

to speed up the column generation algorithm. That is, it is a specialized version specifically designed in

conjunction with our column generation algorithm.

Let Rp
CG be a set of feasible p-steps defined similar to Rp

Strong. Like Rp, it also includes all p-steps r

which end at the depot and for which the prior demand dr satisfies 0 ≤ dr ≤ Q − q(r). Moreover, for

any other p-step r, starting at s ∈ N and ending at f ∈ N ′, the prior demand dr satisfies 0 ≤ dr ≤

Q({s, f}, p− 1)− q(r).

It follows that Rp
Strong ⊆ Rp

CG ⊆ Rp and also for Rp
CG a compact formulation can be obtained like

in Proposition 1. To compute zCG
p , we modify the column generation algorithm presented in Section 4.

In particular, we modify the capacity of the (s, f) pricing problems. Instead of a capacity Q, we impose

the lower capacity Q({s, f}, p − 1), if f ∈ N ′. Observe that these capacities can be computed in a

preprocessing stage, and are only dependent on the starting node and final node of the path. Note that

this is not possible in the case of Rp
Strong.

Additionally, the preprocessing procedure described in Section 4.3 is modified to take these alternate

capacities into account. That is, for s, f ∈ N ′ the (s, f) pricing problem is now eliminated if qs + qf >

Q({s, f}, 2p − 2). Node i ∈ N ′, such that s, i and f are all different, is now removed from Gsf if

qs +qi +qf > Q({s, i, f}, 2p−3). Finally, arc (i, j), for i, j ∈ N ′, such that is s, i, j and f are all different,

is now removed from Gsf if qs + qi + qj + qf > Q({s, i, f}, 2p− 4).

5.4 LP bounds of the improved formulations

Denoting the LP bounds corresponding to Rp
Strong and Rp

CG while also including the 2-cycle elimination

constraints, by zStrong
p and zCG

p respectively, we find zp ≤ zCG
p ≤ zStrong

p , since Rp
Strong ⊆ R

p
CG ⊆ Rp. Note

that the progression of LP bounds, as described by Propositions 2 through 7 and Corollary 3, equivalently

apply to zStrong
p and zCG

p .

Next, we revisit the comparison of p-step formulations with other formulations. When p = 1 or

p = n + 1, then Rp = Rp
Strong = Rp

CG and the corresponding LP bounds are the same. Hence, zStrong
1

and zCG
1 are equal to the LP bound of SCF with 2-cycle elimination constraints, and zStrong

n+1 and zCG
n+1 are

equal to the set partitioning bound.

Recall that F3 by Leggieri and Haouari (2017) is, to the best of our knowledge, currently the strongest

compact formulation with a cubic number of variables and a cubic number of constraints. We show

numerically that this is no longer the case. Consider an instance with 5 customers located on a regular

pentagon with sides of length 8, and a single depot at the center. Hence, rounded to the nearest integer,

the distance between the depot and all other customers is 7, and the distance between two customers that

are not adjacent on the pentagon is 13. All customers have demand 2, while the vehicle capacity is 7.

The LP bound of this instance provided by F3 is 48.5714 while zCG
2 = zStrong

2 = 50.

17

Note that F3 is also not weaker. Consider for example again instance E-n13-k4 of the CVRP introduced

by Christofides and Eilon (1969). The LP bound of this instance provided by F3 is 240.972, while

zCG
2 = zStrong

2 = 239.711. So neither F3 nor the 2-step formulation dominates. Moreover, the combination

of these formulations is stronger. For example, the LP bounds of the combination of F3 and the 2-step

formulation using Rp
CG or Rp

Strong are both 240.988 for E-n13-k4. We conclude that the combination of F3

and the p-step formulation using Rp
Strong is the new strongest known compact formulation with a cubic

number of variables and a cubic number of constraints.

5.5 New strongest known formulations of fixed size

We present new strongest known formulations with the number of variables and constraints limited by

a polynomial of fixed degree three and higher. We make use of the p-step formulation with 2-cycle

elimination and using Rp
Strong, with LP bound zStrong

p . Consider the combination of the 1-step through

p-step formulations. One way of formulating this combination is by using separate k-step variables for k

is 1 through p, while using a single set of arc-flow variables θ to link them, and expressing the objective

function in terms of θ.

Denoting the LP bound by z′p it follows that z′p ≤ z′p+1. Note that the LP bounds are monotonically

increasing. Moreover, it follows that maxk∈{1,...,p}{zStrong
k } ≤ z′p, showing that the LP bounds of these

combined formulations are at least as strong as those of the p-step formulations. Moreover, for p ≥ 2,

also combining this formulation with F3, results in the new strongest known compact formulation of the

CVRP with the number of variables of order np+1, and a cubic number of constraints.

It is unclear how to efficiently compute the LP bound of this formulation. However, note that not all

formulations from 1 through p are required in this combination. Consider the combination of formulations

only for a set of indices I constructed as follows. Initialize I = ∅, and iterate backwards from k = p to

k = 1. Include k in I only if I contains no integer multiple of k. It follows by Proposition 2, that the LP

bounds remain the same, although the size of the formulation is reduced.

6 Computational experiments

In this section, we present the results of computational experiments with the p-step formulation. In

Section 6.1, we demonstrate the LP bounds of the p-step formulation using various values of p, for

benchmark instances from the literature. In Section 6.2, we discuss the corresponding computation times.

Finally, in Section 6.3 we present experiments in which we use our branch-price-and-cut algorithm to find

an optimal solution to the CVRP.

Our algorithms are implemented in C++ and compiled in Visual Studio 2015 (Platform Toolset v140).

We use CPLEX 12.8 to solve the RMP at each iteration of the column generation algorithm. Furthermore,

we use CPLEX 12.8 to compute the LP bounds of the p-step formulation defined by Rp
Strong, since our

column generation algorithm cannot be applied for this purpose. All experiments are run on an Intel(R)

Xeon(R) CPU E5-1620 v3 processor, with 16 GB of RAM. In some experiments we run pricing algorithms

18

Table 1: LP bounds using 2-cycle elimination.
Instance p-steps p : 2 3 4

E-n13-k4 Rp 239.39 241.65 247.00
Rp

CG 239.71 243.16 247.00
Rp

Strong 239.71 243.16 247.00

E-n22-k4 Rp 350.06 354.38 359.56
Rp

CG 350.52 354.49 359.73
Rp

Strong 350.52 354.49 259.73

E-n23-k3 Rp 531.68 535.87 535.57
Rp

CG 531.76 535.87 538.82
Rp

Strong 531.76 535.87 538.82

E-n30-k3 Rp 449.71 450.60 454.73
Rp

CG 449.80 451.30 454.78
Rp

Strong 449.80 451.30 OoM

E-n31-k7 Rp 363.52 368.27 370.17
Rp

CG 363.57 368.35 370.18
Rp

Strong 363.57 368.35 370.18

E-n33-k4 Rp 785.63 793.35 798.07
Rp

CG 785.81 793.50 798.18
Rp

Strong 785.82 793.50 -

in parallel using up to 8 parallel threads. In each of our experiments, we use a time limit of 3600 seconds

of wall clock time. We use the following values for the parameters mentioned in Appendix F: XArcs = 10,

XColAdd = 100 and XColPool = 1000.

6.1 LP bounds

We provide a brief illustration of the LP bounds of the p-step formulation presented in this paper. Because

we can include 2-cycle elimination constraints by reducing the number of variables and constraints, we do

so in all experiments.

Table 1 shows the LP bounds of the p-step formulation for Rp, Rp
CG and Rp

Strong, for a selection of the

instances. In Table 1, we have included some of the smaller E instances (Christofides and Eilon 1969) of

the CVRP as indicated by the first column, for low values of p as indicated by the last 4 columns. This

allows us to also compute the LP bounds within the time limit, specifically using Rp
Strong. We do not

include the case p = 1, since the LP bounds are equal for all variants. The second column indicates which

variant of the p-step formulation is considered. Note that the problem corresponding to these instances

are a version of the CVRP that additionally impose that precisely k vehicles should be used. This can

easily be incorporated in the formulation by enforcing
∑

j∈N θ0j = k, which does not void the theoretical

analysis in this paper, nor are modifications to the algorithm necessary.

The dash in Table 1 indicates that the algorithm did not terminate within the time limit, while

OoM indicates that the computer went out of memory when generating p-steps. It is clear that using

Rp
CG provides stronger bounds than using Rp, while given the nature of our algorithm these bounds are

typically also computed faster. Furthermore, only for small values of p are we able to compute the LP

19

bounds using Rp
Strong. Therefore, we only consider the p-step formulation using Rp

CG for the remainder of

the computational experiments presented in this paper.

We have included the LP bounds of this formulation for all E instances and A instances (Augerat

1995) in Appendix H. Interestingly, the LP bounds that we can compute within the time limit, are

monotonically increasing in p for all 27 A instances and 10 out of 13 E instances. A decrease is observed

twice for instance E-n23-k3 and once for the instances E-n31-k7 and E-n51-k5. This illustrates that

although a decrease can be observed as described in Proposition 5, this is not often the case for the

benchmark instances.

6.2 Computation time of column generation

Next, we demonstrate the computational performance of our column generation algorithm used to compute

LP bounds. When computing the LP bound of the p-step formulation, there are two counteracting effects

which affect the computation time of our pricing algorithm. As p increases, the worst-case number

of computations of our labeling algorithm increases exponentially, while at the same time the number

of pricing problems decreases from quadratic in the number of customers to one. Observe that when

all pricing problems are solved in parallel, the worst-case computation time to solve a pricing problem is

expected to increase in p. This does not mean that it should necessarily be expected that the computation

time of our column generation algorithm increases with p, as other factors like the number of iterations

also play a role. Next, we illustrate the computational performance of our column generation algorithm

on benchmark instances.

Table 2 provides the computation times for a selection of A instances provided in the first column, and

values of p provided in the last seven columns. The largest A instances are chosen because the effect of

parallelization is most pronounced there. The set partitioning bound is guaranteed for p = 17 for instance

A-n61-k9, while for the other instances this is guaranteed only for larger p. Therefore, we have chosen to

present result for values of p equally spread between 1 and 16, and additionally p = n+ 1.

The second column of Table 2 indicates the implementation. Here, sequential means that all pricing

problems are solved sequentially, while 8-threads means that the pricing problems are solved in parallel

using up to 8 threads. Optimistic represents a lower bound on the computation time that might have

been achieved when solving all pricing problems in parallel. It is obtained by using the sequential im-

plementation, but instead of using the cumulative computation time of the pricing problems, only the

maximum at each iteration is used to compute the computation time. We consider this a lower bound on

the computation time of full parallelization, as it does not include any overhead of a parallel implemen-

tation. Note that a dash indicates that the algorithm reached the time limit of 3600 seconds wall clock

time. Because the optimistic implementation actually runs pricing problems sequentially, it happens that

the 8-thread implementation finds a solution in time while optimistic does not.

We can see that indeed parallelization reduces computation time. Even in the optimistic case, the

observed computation times do not become monotonically increasing in p for all instances, although it

20

Table 2: Computation times in seconds of computing LP bounds.
Instance Implementation p : 1 4 7 10 13 16 n+ 1

A-n61-k9 Sequential 0.35 11.70 119.23 286.23 1027.07 - 359.06
8-threads 0.39 6.45 43.78 110.90 294.91 - 351.10
Optimistic 0.37 4.08 13.10 75.28 125.09 - 352.63

A-n62-k8 Sequential 0.38 10.23 89.79 619.75 263.86 681.42 212.23
8-threads 0.38 6.33 34.80 236.93 62.15 240.92 145.64
Optimistic 0.36 3.72 7.24 12.10 15.87 69.25 209.77

A-n63-k9 Sequential 0.41 13.29 199.47 442.23 760.62 2724.58 50.85
8-threads 0.38 6.95 52.60 122.96 177.35 771.82 41.10
Optimistic 0.41 4.06 7.28 35.30 54.56 140.69 49.72

A-n63-k10 Sequential 0.42 10.42 200.24 260.52 1010.16 2475.37 23.32
8-threads 0.42 5.83 53.71 59.81 302.84 132.66 34.75
Optimistic 0.39 3.74 8.82 24.14 55.75 258.62 22.91

A-n64-k9 Sequential 0.48 10.72 245.34 666.07 1271.17 - 1126.11
8-threads 0.49 7.82 78.30 204.69 280.62 786.56 696.48
Optimistic 0.46 5.16 19.50 46.70 147.87 - 1107.69

A-n65-k9 Sequential 0.48 15.79 338.29 293.34 767.62 2255.19 99.70
8-threads 0.48 6.19 78.91 121.31 239.45 588.43 123.50
Optimistic 0.47 5.16 21.35 39.46 61.87 146.97 96.73

A-n69-k9 Sequential 0.57 17.00 330.79 1912.05 1419.08 2966.77 418.51
8-threads 0.57 10.35 82.89 687.58 508.49 608.27 309.22
Optimistic 0.58 6.11 16.83 76.13 125.22 164.91 408.41

A-n80-k10 Sequential 1.06 41.34 587.82 - - - -
8-threads 1.03 20.30 167.06 2202.50 1384.88 1679.24 -
Optimistic 1.01 11.55 29.54 - - - -

21

does so for some instances. We remark that we have observed more variation in computation times for

the 8-thread implementation compared to the sequential implementation.

Table 2 serves to give an impression of the potential gains of parallelization. For a complete picture of

the computation times for varying values of p, we provide the computation times of the LP bounds for all

values of p of the E and A instances in Appendix I, corresponding to the implementation using 8 threads.

6.3 Computation time of branch-price-and-cut

We provide empirical evidence of the computational potential of using the p-step formulation. Recall

that the used p-step formulation corresponds to SCF for p = 1 and to the set partitioning formulation

for p = n + 1, with 2-cycle elimination. Therefore, the p-step formulation is in particular new for

intermediate values of p, i.e., values of p for which the p-step formulation does not correspond to an arc-

based and path-based formulation. If there are instances for which intermediate values of p correspond

to the lowest computation time, we consider this empirical evidence of computational potential.

In Appendix J, we provide the computation times of our algorithm for the E and A instances with not

more than 50 customers. We identified 4 instances out of 22 for which the fastest computation time is

found for an intermediate value of p: instance E-n31-k7 and p = 8, instance A-n37-k6 and p = 12, instance

A-n44-k6 and p = 10, and instance A-n46-k7 and p = 11. Moreover, we construct new instances that are

specifically designed to favor intermediate values of p. For these instances, our algorithm consistently has

the lowest computation time for intermediate values of p. We believe this is sufficient evidence to conclude

that there is potential in developing new algorithms specifically designed for the p-step formulation, with

the goal of decreasing computation time.

We create new instances of the CVRP as follows. We generate C clusters of Q customers each. We

assume unit demand so the customers in a single cluster fit precisely in a vehicle of capacity Q. Within

the clusters, the customers are positioned at equal intervals on a circle of diameter R. The centers of the

cluster are positioned at equal intervals on a circle of diameter 100 centered at the origin. We place the

depot far away at coordinate (10000, 10000). The travel costs are Euclidean and rounded to two decimal

places. Precisely C vehicles must be used.

In Table 3, the computation times in seconds are provided for eight instances and for the values of p

from 1 through Q + 1, since Q is the maximum number of customers that can be visited on a route. A

dash indicates that our algorithm did not terminate within the time limit. Table 3 demonstrates that for

these instances our algorithm is fastest for intermediate values of p.

7 Conclusion and future research

In this paper we have introduced the p-step formulation of the CVRP. It can be considered a generalization

of the traditional arc-based and path-based formulations. We use this formulation to show that there does

not exist a strongest compact formulation for the CVRP, if P 6= NP . We have also shown that computing

the set partitioning bound of the CVRP is NP-hard. This justifies why the best performing algorithms

22

Table 3: Computation times in seconds of branch-price-and-cut.
R C Q p : 1 2 3 4 5 6 7 8 9 10

0.0 4 8 13.71 42.46 216.56 355.58 160.13 0.14 1.99 0.34 3.67
9 29.52 107.26 367.02 1078.37 0.13 54.93 16.84 3.66 0.64 12.54

5 8 33.28 658.82 - 234.40 0.21 0.16 0.12 0.92 11.74
9 396.98 - - - - - 0.18 0.17 3.89 65.85

0.1 4 8 0.24 0.51 1.92 1.06 0.16 0.18 0.08 0.51 1.47
9 0.12 0.25 0.89 1.44 0.34 0.26 0.18 0.11 1.36 865.55

5 8 0.99 1.16 6.08 1.58 0.15 0.15 0.14 1.48 193.25
9 0.24 0.33 1.88 2.23 0.45 0.45 0.37 0.22 5.35 2165.89

in the literature do not use this bound, but typically resort to weaker bounds, e.g., obtained by route

relaxations.

Although the search for the strongest compact formulation is over, we think it is relevant to develop

stronger formulations with the number of variables and constraints limited by a polynomial of fixed degree.

It is not clear, for instance, what the strongest formulation of the CVRP is using a quadratic number

of variables and constraints. In this paper we have provided new strongest known formulations for the

CVRP with the number of variables of fixed polynomial degree three and higher. Nonetheless, it remains

an open question whether the set partitioning bound can be computed in pseudo-polynomial time, or

also indeed what the strongest pseudo-compact formulation of the CVRP would be. In light of the p-step

formulation, we conjecture that no strongest pseudo-compact formulation exists for the CVRP.

The experiments presented in this paper provide empirical evidence that the p-step formulation could

potentially contribute to faster algorithms for the CVRP. To pursue the computational potential, the

use of route relaxation, non-robust cuts, arc fixing and route enumeration can be further investigated.

Moreover, we emphasize that in our current algorithm we decompose the pricing problem in a substantial

number of familiar problems. Other approaches might be devised to deal with the pricing problem.

The p-step formulation can be extended to problems other than the CVRP. The simplest way to

achieve this, is by using the arc-flow variables θ to model additional constraints. For example, time

window constraints can now be modeled resulting in a formulation of the VRPTW. Moreover, we can

also model capacity constraints differently, to avoid the use of the prior demand dr. One could model

capacity constraints through the arc-flow variables using for instance the Miller-Tucker-Zemlin constraints

(Desrochers and Laporte 1991). The effect is a reduction in LP bounds, but also a potential reduction of

the complexity of the pricing problem.

References

Augerat P (1995) Approche polyèdrale du problème de tournées de véhicules. PhD thesis Institut Nationale

Polytechnique de Grenoble.

Baldacci R, Hadjiconstantinou E, Mingozzi A (2004) An exact algorithm for the capacitated vehicle rout-

23

ing problem based on a two-commodity network flow formulation. Operations Research 52(5):723–

738.

Baldacci R, Christofides N, Mingozzi A (2008) An exact algorithm for the vehicle routing problem based

on the set partitioning formulation with additional cuts. Mathematical Programming 115(2):351–385.

Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and pricing strategies for the vehicle

routing problem. Operations Research 59(5):1269–1283.

Balinski M, Quandt E (1969) On an integer program for the delivery problem. Operations Research

12(2):300–304.

Christofides N, Eilon S (1969) An Algorithm for the Vehicle Dispatching Problem. Journal of the Opera-

tional Research Society 20(3):309–318.

Costa L, Contardo C, Desaulniers G (2019) Exact Branch-Price-and-Cut Algorithms for Vehicle Routing

Transportation Science published online in Articles in Advance 28 June 2019.

Desrochers M, Laporte G (1991) Improvements and extensions to the Miller-Tucker-Zemlin subtour elim-

ination constraints. Operations Research Letters 10(1):27–36.

Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An Exact Algorithm for the Elementary Shortest

Path Problem with Resource Constraints: Application to some Vehicle Routing Problems. Networks

40(3):216–229.

Fukasawa R, Longo H, Lysgaard J, Poggi de Aragão M, Reis M, Uchoa E, Werneck R (2006) Robust

Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem. Mathematical Program-

ming 106(3):491–511.

Garey M, Johnson D (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness

(WH Freeman & Co, New York).

Gavish B (1984) The delivery problem: new cutting plane procedures. Presented at the TIMS XXVI

conference, Copenhagen.

Gouveia L (1995) A result on projection for the vehicle routing problem. European Journal of Operational

Research 85(3):610–624.

Irnich S, Desaulniers G, Desrosiers J, Hadjar, A (2010) Path-reduced costs for eliminating arcs in routing

and scheduling. INFORMS Journal on Computing 22(2):297–313.

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-

routing problem with time windows. Operations Research 56(2):391–406.

Jepsen M, Petersen B (2009) Partial Path Column Generation for the Vehicle Routing Problem. Kgs.

Lyngby: DTU Management No. 12.

Karp R (1972) Reducibility among combinatorial problems. Complexity of computer computations,

(Springer, Boston) 85–103.

Laporte G, Nobert Y (1987) Exact algorithms for the vehicle routing problem. North-Holland Mathematics

Studies 132:147–184.

24

Leggieri V, Haouari M (2017) Lifted polynomial size formulations for the homogenous and heterogeneous

vehicle routing problems. European Journal of Operational Research 263(3):755–767.

Letchford A, Salazar-González J (2015) Stronger multi-commodity flow formulations of the Capacitated

Vehicle Routing Problem. European Journal of Operational Research 244(3):730–738.

Lysgaard J (2003) CVRPSEP: A package of separation routines for the capacitated vehicle routing prob-

lem. Technical report, Department of Management Science and Logistics, Aarhus School of Business,

Aarhus, Denmark.

Lysgaard J, Letchford A, Eglese R (2004) A new branch-and-cut algorithm for the capacitated vehicle

routing problem. Mathematical Programming 100(2):423–445.

Martinelli R, Pecin D, Poggi M (2014) Efficient elementary and restricted non-elementary route pricing.

European Journal of Operational Research 239(1):102–111.

Pecin D, Pessoa A, Poggi M, Uchoa E. (2017) Improved branch-cut-and-price for capacitated vehicle

routing. Mathematical Programming Computation 9(1):61-101.

Righini G, Salani M (2006) Symmetry helps: Bounded bi-directional dynamic programming for the ele-

mentary shortest path problem with resource constraints. Discrete Optimization 3(3):255–273.

Righini G, Salani M (2008) New Dynamic Programming Algorithms for the Resource Constrained Ele-

mentary Shortest Path Problem. Networks 51(3):155–170.

Toth P, Vigo D (2014) Vehicle Routing, Problems, Methods, and Applications. (Society for Industrial and

Applied mathematics), 2nd.

A Proof of Proposition 5

Before presenting a proof of Proposition 5, we first provide another result which will be used in our proof.

The following lemma is similar to what Gouveia (1995) showed for the single-commodity flow formulation

of the CVRP. It states that the flow out of and into the depot is at least the total demand divided by the

vehicle capacity.

Lemma 13. Denote by R0 and Rn+1 the p-steps connected to the starting and ending depot respectively,

and let x be a feasible solution of the LP relaxation of the p-step formulation. Then

∑
r∈R0

xr =
∑

r∈Rn+1

xr ≥
1

Q

∑
i∈N ′

qi.

Proof. By (3), for any feasible solution, the amount of selected p-steps starting and ending at any location

i ∈ N ′ is equal. We can rewrite these equalities using the following notation. For every i ∈ N , let R+
i

be the collection of p-steps that start at i, and let R−i be the collection of p-steps ending at i. Note that

25

R+
0 = R0 and R−n+1 = Rn+1. Using this notation and (3), it follows that

∑
r∈R+

i

xr =
∑
r∈R+

i

xr −
∑
r∈Rp

eirxr

=
∑
r∈R+

i

(
1− eir

)
xr +

∑
r∈R−i

(
−eir

)
xr

=
∑
r∈R−i

xr.

To show that the flow out of and into the depot is also the same, we first derive

∑
r∈R0

xr +
∑
i∈N ′

∑
i∈R+

i

xr =
∑
i∈N

∑
r∈R+

i

xr

=
∑
r∈Rp

xr

=
∑
i∈N

∑
r∈R−i

xr

=
∑

r∈Rn+1

xr +
∑
i∈N ′

∑
i∈R−i

xr.

Combining the above shows that ∑
r∈R0

xr =
∑

r∈Rn+1

xr.

To derive a bound on the flow out of or into the depot, we proceed by relating the demand to the p-step

variables. We use q+
r to denote the demand of the first location on p-step r. Note in particular that we

define q+
r = 0 for all p-steps starting at the depot. Using (2), (3) and (4) or (6), it follows that

∑
i∈N ′

qi≤
∑
i∈N ′

(
1

2

∑
r∈Rp

airxr −
1

2

∑
r∈Rp

eirxr

)
qi +

∑
i∈N ′

∑
r∈Rp

qirxr

=
∑
r∈Rp

∑
i∈N ′

qi
1

2

(
air − eir

)
xr +

∑
r∈Rp

∑
i∈N ′

qirxr

=
∑
r∈Rp

(
q(r)− q+

r +
∑
i∈N ′

qir

)
xr.

Note that the first inequality is valid both for (4) and for (6). In case (4) is considered, the inequality

can be replaced by an equality. Observe that for every r ∈ Rp \ (R0 ∪Rn+1), that is, for every p-step

that does not start nor end at the depot, qir is nonzero for exactly two customers i ∈ N ′. In particular,

it holds that

q(r)− q+
r +

∑
i∈N ′

qir = q(r)− q+
r + (dr + q+

r)− (dr + q(r))

= 0

26

We now obtain

∑
i∈N ′

qi≤
∑
r∈Rp

(
q(r)− q+

r +
∑
i∈N ′

qir

)
xr

=
∑

r∈R0\Rn+1

(−dr − q+
r)xr +

∑
r∈Rn+1\R0

(dr + q(r))xr +
∑

r∈R0∩Rn+1

(q(r)− q+
r)xr

≤
∑

r∈Rn+1

Qxr,

where we use 0 ≤ dr + q+
r and q(r)− q+

r ≤ dr + q(r) ≤ Q to derive the final inequality. This shows that∑
r∈Rn+1

xr ≥ 1
Q

∑
i∈N ′ qi.

We now repeat Proposition 5 and provide a proof.

Proposition 5. For any p, q ∈ N>0 such that p < q and q is not an integer multiple of p, there exists an

instance of the CVRP for which zp > zq.

Proof. In this proof, we first present an instance of the CVRP. Then, we provide a feasible solution to

the LP relaxation of the q-step formulation for this instance. Finally, we show that any feasible solution

to the LP relaxation of the p-step formulation for this instance has a higher cost, showing zp > zq.

As q is not an integer multiple of p, there exist integers m ≥ 1 and k ∈ {1, . . . , p − 1} such that

q = pm + k. Consider the following instance with n = (m+ 1) p customers. In this instance, the travel

costs are equal to the Euclidean distances between locations. The customers appear in m+ 1 clusters of

p customers. The clusters are located on the vertices of a regular convex (m + 1)-polygon with edges of

length 1. Within a cluster the travel costs are 0 (or negligibly small), while traveling from a customer to

a customer in a neighbouring cluster has cost 1 (or negligibly close to 1). Finally, the depot is located far

away, and travel from any customer to the depot has a very large cost which is (negligibly close to) C > 1.

All customers have unit demand and the vehicle capacity is Q = p+ pq
k . By construction, Q > p+ q holds

because k < p.

For ease of notation, let the clusters be numbered from 1 to m+ 1 as they appear along the boundary

of the polygon. As a result, the cost of traveling between a customer in cluster c and c + 1 is 1, for

1 ≤ c ≤ m, as is the cost of travel between clusters m+ 1 and 1. Similarly let the customers be numbered

such that customers (c− 1)p+ 1 to cp are in cluster c.

Next, we construct a feasible solution for the LP relaxation of the q-step formulation of this instance.

To do so, first consider the following path P t
c visiting all customers in cluster c in order of numbering,

but cyclically permuted t times, for 0 ≤ t < p.

P t
c = (c− 1)p+ 1 + (t mod p)→ . . .→ (c− 1)p+ 1 + ((t+ p− 1) mod p)

For example, if we consider cluster c = 2 in case each cluster contains p = 4 customers, and the

customer are cyclically permuted t = 2 times, then P t
c = 7 → 8 → 5 → 6. Next, we concatenate these

paths for all clusters, starting with cluster c and obtain the path P (c, t), for 1 ≤ c ≤ m+ 1 and 0 ≤ t < p.

27

P (c, t) = P t
1+(c−1) mod (m+1) → P t

1+(c) mod (m+1) → . . .→ P t
1+(c+m−1) mod (m+1)

For example, if m+ 1 = 3 and p = 3, P (2, 1) = 5→ 6→ 4→ 8→ 9→ 7→ 2→ 3→ 1. Note that the

cost of traversing all arcs in any path P (c, t) is m.

Finally, we truncate path P (c, t) by removing the last arcs, to construct a path P (c, t, q) traversing

exactly q arcs. Note that also the cost of traversing all arcs on any path P (c, t, q) is m. Moreover, observe

that for a given position between 1 and q + 1, every customer i ∈ V ′ appears at that position on exactly

one path P (c, t, q), among all 1 ≤ c ≤ m + 1 and 0 ≤ t < p. Similarly, we introduce truncated paths

P (c, t, q− 1) traversing the first q− 1 arcs of P (c, t). Note that the total arc costs of these paths are also

m.

Using the above paths, we now present a feasible solution to the LP relaxation of the q-step formulation.

It selects all of the following q-steps with a positive value, for all 1 ≤ c ≤ m+ 1 and 0 ≤ t < p:

Type 1 (0→ P t
c , 0) with total demand p,

Type 2 (P (c, t, q), 0) with total demand q + 1,

Type 3 (P (c, t, q − 1)→ n+ 1, Q− q) with total demand q.

Observe that given the value of Q, each selected q-step r is feasible since 0 ≤ dr + q(r) ≤ Q. The

q-steps of type 1 and 3 are selected with value 1
Q each, and the q-steps of type 2 are selected with value

Q−p−q+1
Qq . We verify that this is indeed a feasible solution.

First observe that the selection of p-steps is non-negative. Next, consider (2). Observe that every

customer i ∈ N ′ appears once as the last node of exactly one q-step of type 1, once as the first and once as

the last node of a q-step of type 2, and once as the first node of a q-step of type 3. In these cases, air = 1.

Moreover, every customer i ∈ N ′ appears as not the first or last node for p− 1 times on a q-step of type

1, for q − 1 times on a q-step of type 2 and q − 1 times on a q-step of type 3. Here, air = 2. Therefore, it

follows for all i ∈ N ′ that

∑
r∈Rp

airxr =
1

Q
+
Q− p− q + 1

Qq
+
Q− p− q + 1

Qq
+

1

Q

+ 2

(
(p− 1)

1

Q
+ (q − 1)

Q− p− q + 1

Qq
+ (q − 1)

1

Q

)
= 2.

Hence, the suggested solution satisfies (2). Similarly, we verify that also (3) are satisfied. Since every

customer i ∈ N ′ appears as the last node of one q-step of type 1 and one of type 2, and as the first node

of one q-step of type 2 and one of type 3, it follows that

28

∑
r∈Rp

eirxr =− 1

Q
− Q− p− q + 1

Qq
+
Q− p− q + 1

Qq
+

1

Q

= 0.

Finally, we verify that (4), and also (6), are satisfied. Note that for a q-step of type 1 with customer

i ∈ N ′ as last location it holds that qir = −p. For a q-step of type 2 with i as first location qir = 1, while if

i is the last location qir = −(q+1). Moreover, for a q-step of type 3 with i as first location qir = (Q−q+1).

It follows that

∑
r∈Rp

qirxr =
−p
Q

+
Q− p− q + 1

Qq
− (q + 1)

Q− p− q + 1

Qq
+
Q− q + 1

Q

= 0.

We conclude that the suggested solution is feasible for the LP relaxation of the q-step formulation.

Moreover, observe that the cost of a q-step of type 1, 2 and 3 is C, m and C + m respectively, and n of

each type are selected in the solution. As a result, the cost of the provided solution is 2n
Q C + n(Q−p+1)

Qq m.

Hence, zq ≤ 2n
Q C + n(Q−p+1)

Qq m.

We complete this proof by showing that any feasible solution to the LP relaxation of the p-step

formulation for this instance has a higher cost than the presented solution to the q-step formulation. Let

us first separately consider the p-steps connected to a depot. Denote by R0 the p-steps connected to the

starting depot 0, and denote by Rn+1 the p-steps connected to the ending depot n + 1. Observe that

R0 ∩Rn+1 contains all p-steps that start at 0 and end at n+ 1. For such p-steps r ∈ R0 ∩Rn+1 it holds

that cr ≥ 2C, and for the p-steps r ∈ R0∪Rn+1 \R0∩Rn+1 it holds that cr ≥ C. This allows us to derive

the following bound on the costs of the selected p-steps in any feasible solution to the LP relaxation of

the p-step formulation.

∑
r∈R0∪Rn+1

crxr ≥
∑
r∈R0

Cxr +
∑

r∈Rn+1

Cxr

Next, we derive a bound on
∑

r∈Rp xr, which could be interpreted as the amount of selected p-steps,

by relating it to the degree of each node in a solution. For every p-step r ∈ Rp \ (R0 ∪Rn+1), which are

the p-steps not connected to a depot, it holds that exactly p arcs are traversed. Observe that for such a

p-steps r it holds that
∑

i∈N ′ a
i
r = 2p, and equivalently 1

2p

∑
i∈N ′ a

i
r = 1. Similarly, for all r ∈ Rn+1 \R0

it holds that 1 +
∑

i∈N ′ a
i
r = 2p. For all r ∈ R0, we know that at most p arcs are traversed. Hence, for all

r ∈ R0 \ Rn+1 it holds that 1 +
∑

i∈N ′ a
i
r ≤ 2p, and for r ∈ R0 ∩ Rn+1 it holds that 2 +

∑
i∈N ′ a

i
r ≤ 2p.

Combining these observations, and using (2) yields

29

∑
r∈Rp

xr ≥
1

2p

∑
r∈Rp

∑
i∈N ′

airxr +
∑
r∈R0

xr +
∑

r∈Rn+1

xr

=
n

p
+

1

2p

∑
r∈R0

xr +
∑

r∈Rn+1

xr

 .

Finally, we derive a bound on the solution value of any feasible solution to the p-step formulation.

Using that for any p-step r ∈ Rp \R0 ∪Rn+1 it holds that cr ≥ 1, it follows that

∑
r∈Rp

crxr =
∑

r∈Rp\(R0∪Rn+1)

crxr +
∑

r∈R0∪Rn+1

crxr

≥
∑

r∈Rp\(R0∪Rn+1)

xr +
∑
r∈R0

Cxr +
∑

r∈Rn+1

Cxr

≥
∑
r∈Rp

xr +
∑
r∈R0

(C − 1)xr +
∑

r∈Rn+1

(C − 1)xr

≥ n

p
+

(
C − 1 +

1

2p

)∑
r∈R0

xr +
∑

r∈Rn+1

xr

≥ n

p
+

(
C − 1 +

1

2p

)
2n

Q

=
2n

Q
C +

n(Q− 2p+ 1)

Qp
,

where we used Lemma 13 in the last inequality. As this holds for all feasible solutions, the last expression

is a lower bound on zp.

Comparing the LP bounds of the q-step formulation and the p-step formulation, we observe

zp − zq ≥
(

2n

Q
C +

n(Q− 2p+ 1)

Qp

)
−
(

2n

Q
C +

n(Q− p+ 1)

Qq
m

)
=
n (Q(q −mp) + (p− 1)(mp− q)− pq)

Qpq

=
n (Qk − pk − pq + k)

Qpq
.

Because Q = p+ pq
k , we find for this instance that

zp − zq ≥
nk

Qpq

> 0.

This proves the claim.

30

B Proof of Proposition 7

We repeat Proposition 7 and provide a proof.

Proposition 7. For any p, q ∈ N>0 such that p < q, there exists an instance of the CVRP for which

zp < zq.

Proof. Consider an instance with n = p + 1 customers with unit demand. In this instance, the travel

costs are equal to the Euclidean distances between locations. The customers are located at the vertices of

a negligibly small regular convex (p + 1)-polygon. The depot is located far away, such that the distance

between the depot and each of the customers is (negligibly close to) C. Finally, the vehicle has capacity

2(p+ 1).

Next, we construct a feasible solution to the LP relaxation of the p-step formulation. Let P t be the

path starting with an arbitrary but fixed customer, visiting all other customers in order of appearance

along the edges of the polygon, cyclically permuted t times, for 0 ≤ t ≤ p. Furthermore, let P (t, p− 1) be

path P t truncated after traversing the first p − 1 arcs. Using these paths, we now present a solution to

the LP relaxation of the p-step formulation. It selects all of the following p-steps with a positive value,

for all 0 ≤ t ≤ p:

Type 1 (0→ P (t, p− 1), 0) with total demand p,

Type 2 (P t, 0) with total demand p+ 1,

Type 3 (P (t, p− 1)→ n+ 1, p+ 2) with total demand p.

The p-steps of type 1 and 3 are selected with value 1
2(p+1) each, and the p-steps of type 2 are selected

with value 3
2p(p+1) . Similar to the proof of Proposition 5 found in Appendix A, one can verify that this is a

feasible solution. Moreover, observe that the cost of a p-step of type 1, 2 and 3 is C, 0 and C respectively.

As a result, the cost of the provided solution is 2(p+1)C
2(p+1) = C.

Given that q ≥ p + 1 = n, all q-steps start or end at the depot and visit at most n customers. It

follows that cr ≥ C and that ∑
i∈N ′

ari < 2n

for all q-steps r ∈ Rq. For any solution xr to the LP-relaxation of the q-step formulation, it follows from

(2) that

2n =
∑
i∈N ′

∑
r∈Rq

arixr

=
∑
r∈Rq

∑
i∈N ′

arixr

<
2n

C

∑
r∈Rq

Cxr

≤ 2n

C

∑
r∈Rq

crxr.

This shows that zq > C ≥ zp. The claim follows.

31

C Proof of Proposition 8

We repeat Proposition 8 and provide a proof.

Proposition 8. Computing the set partitioning bound of the CVRP is NP-hard.

Proof. We provide a polynomial time reduction of the partition problem, which is known to be NP-hard

(Karp 1972). In the partition problem, a set of integer numbers D = {d1, . . . , dk} is provided. The

problem is to determine whether a subset S of these numbers exist such that
∑

i∈S di = 1
2

∑
i∈D di, yes

or no.

We create an instance of the LP relaxation of the set partitioning formulation of the CVRP as follows.

Introduce a customer for each number, i.e., N ′ = {1, . . . , k}, with demand qi = di for all i ∈ N ′. Let the

vehicle capacity be Q = 1
2

∑k
i=1 di. Define the travel cost between the depot and any customer as 1, i.e.,

c0i = ci(n+1) = 1 for i ∈ N ′. All other travel costs are 0.

For an instance of which the answer to the partition problem is yes, a set S exists such that
∑

i∈S qi =

Q, and also for S̄ = D\S it holds that
∑

i∈S̄ qi = Q. Hence a feasible solution to the LP relaxation of the

set partitioning formulation of the CVRP can be found, by selecting one route visiting all customers in

S and another to visit the customers in S̄. The total cost of this solution is 4, hence the set partitioning

bound of the CVRP is in this case 4 or less. Noting that the solution we have constructed is a feasible

solution to the CVRP, we conclude that actually any lower bound on the optimal solution value is at

most 4 for this instance.

For an instance of which the answer to the partition problem is no, there does not exist a set S

such that
∑

i∈S qi = Q. Hence, for any feasible route visiting a subset of customers S, it holds that∑
i∈S qi ≤ Q−1 since all demands are integer. Therefore, the solution to this instance is the same as that

for a related instance, which we construct by changing the vehicle capacity to Q′ = Q− 1. By Lemma 13

found in Appendix A we know that the flow out of and into the depot is at least 1
Q′

∑
i∈N ′ qi > 2. Hence,

the total cost of any feasible solution is strictly larger than 4.

This shows that the partition problem can be solved by computing the set partitioning bound of the

CVRP. Indeed if the set partitioning bound is strictly larger than 4, the answer is no, and otherwise the

answer is yes. We conclude that computing the set partitioning bound of the CVRP is NP-hard.

D Proof of Proposition 11

Before proving Proposition 11, we first provide SCF. This mixed integer programming formulation makes

use of the continuous variables fij which can be interpreted as the total load carried by the vehicle

traversing arc (i, j) ∈ A. The formulation is the following.

32

(SCF) min
∑

(i,j)∈A

cijθij (12)

∑
j∈N

θji = 1 ∀i ∈ N ′ (13)

∑
j∈N

θij = 1 ∀i ∈ N ′ (14)

∑
j∈N

fji −
∑
j∈N

fij = qi ∀i ∈ N ′ (15)

qjθij ≤ fij ∀(i, j) ∈ A (16)

fij ≤ (Q− qi) θij ∀(i, j) ∈ A (17)

θij ∈ {0, 1} ∀(i, j) ∈ A (18)

The objective (12) is to minimize the total costs. Constraints (13) and (14) are the indegree and

outdegree constraints. Constraints (15) ensure that after visiting a customer the vehicle load is reduced

by the demand. Constraints (16) specify that when visiting a customer, a vehicle should carry at least

the demand. Furthermore, constraints (17) ensure that the vehicle load does not exceed the capacity.

Finally, (18) specify the domains of the arc-flow variables.

Before presenting a proof of Proposition 11, stating that the 1-step formulation has the same LP bound

as SCF, we first show a stronger result. We show that actually for any choice of p, the p-step formulation

is at least as strong as SCF.

Lemma 14. For any p ∈ N>0, the p-step formulation is at least as strong as SCF.

Proof. Consider any feasible solution (x, θ) to the LP relaxation of the p-step formulation (1)-(5). We

show that there exists a corresponding solution to the LP relaxation of SCF with the same objective

value, proving the p-step formulation is at least as strong as SCF.

Define q(r, i) as the sum of the demands of the customers that are visited on p-step r ∈ Rp up to and

including location i ∈ N , if i is visited by r, and set

fij =
∑
r∈Rp

brij(Q− dr − q(r, i))xr.

Next, we show that (θ, f) is a feasible solution of the LP relaxation of SCF with the same objective value

as (x, θ).

33

First consider the objective value. By definition, the objective value of (θ, f) is given by

∑
(i,j)∈A

cijθij =
∑

(i,j)∈A

cij
∑
r∈Rp

brijxr

=
∑
r∈Rp

 ∑
(i,j)∈A

cijb
r
ij

xr

=
∑
r∈Rp

crxr.

Next, we show that the solution satisfies all constraints of the LP relaxation of SCF. Like in the proof of

Lemma 13, let R+
i be the collection of p-steps that start at i, and let R−i be the collection of p-steps that

end at i. Furthermore, let R=
i be the collection of p-steps that include i but do not start nor end at i.

Note that in the proof of Lemma 13, we demonstrate that
∑

r∈R+
i
xr =

∑
r∈R−i

xr for any i ∈ N ′. Using

this and (2), we derive for all i ∈ N ′ that

1 =
1

2

∑
r∈Rp

airxr

=
1

2

∑
r∈R+

i

xr +
∑
r∈R=

i

xr +
1

2

∑
r∈R−i

xr

=
∑
r∈R+

i

xr +
∑
r∈R=

i

xr

=
∑
r∈R=

i

xr +
∑
r∈R−i

xr.

We now obtain for all i ∈ N ′,

∑
j∈N

θji =
∑
j∈N

∑
r∈Rp

brjixr

=
∑
r∈Rp

∑
j∈N

brji

xr

=
∑

r∈R=
i ∪R

−
i

xr

= 1,

showing that (13) are satisfied. Similarly,

∑
j∈N

θij =
∑
j∈N

∑
r∈Rp

brijxr

=
∑
r∈Rp

∑
j∈N

brij

xr

=
∑

r∈R+
i ∪R=

i

xr

= 1,

34

showing that (14) are satisfied. To verify that (15) are satisfied, we derive for i ∈ N ′ that

∑
j∈N

fji −
∑
j∈N

fij =
∑
j∈N

∑
r∈Rp

(
brji(Q− dr − q(r, j))− brij(Q− dr − q(r, i))

)
xr

=
∑
r∈R+

i

xr
∑
j∈N

(
−brij(Q− dr − qi)

)
+
∑
r∈R=

i

qixr +
∑
r∈R−i

xr
∑
j∈N

(
brji(Q− dr − q(r, j))

)

=Q

− ∑
r∈R+

i

xr +
∑
r∈R−i

xr

+
∑
r∈R+

i

qirxr +
∑
r∈R=

i

qixr +
∑
r∈R−i

xr
(
qir + qi

)

=qi

 ∑
r∈R=

i ∪R
−
i

xr

+
∑

r∈R+
i ∪R

−
i

qirxr

=qi,

where we use (4) to derive the final equality by noting that qri = 0 for all r ∈ R=
i . This shows that (15)

are satisfied.

Finally, observe that for any p-step r ∈ Rp, it holds that dr + q(r) ≤ Q. Furthermore, if p-step r

includes arc (i, j) ∈ A, then dr + q(r, i) + qj ≤ dr + q(r) ≤ Q. Hence,

qjθij =
∑
r∈Rp

brijxrqj

≤
∑
r∈Rp

brijxr(Q− dr − q(r, i))

= fij ,

showing that (16) are satisfied. Similarly,

(Q− qi)θij =
∑
r∈Rp

brijxr(Q− qi)

≥
∑
r∈Rp

brijxr(Q− dr − q(r, i))

= fij ,

showing that (17) are satisfied. We conclude that the solution (θ, f) is a feasible solution for the LP

relaxation of SCF. From this, it follows that the p-step formulation is at least as strong as SCF.

We repeat Proposition 11 and provide a proof.

Proposition 11. The 1-step formulation is equally strong as SCF.

Proof. By Lemma 14 it holds that the 1-step formulation is at least as strong as SCF. What remains to

be shown is that SCF is at least as strong as the 1-step formulation, by demonstrating that any feasible

35

solution to the LP relaxation of SCF corresponds to a feasible solution to the LP relaxation of the 1-step

formulation, with the same objective value. Consider a solution to the LP relaxation of SCF. For all

(i, j) ∈ A such that θij > 0, define the 1-step

r(i, j) =

(
(i, j), Q− fij

θij
− qi

)

and let xr(i,j) = θij . From (16), it follows that

dr = Q− fij
θij
− qi

≤ Q− qjθij
θij
− qi

= Q− qi − qj .

From (17), it follows that

dr = Q− fij
θij
− qi

≥ Q− (Q− qi)θij
θij

− qi

= 0.

This shows that the 1-step ((i, j), dr) is feasible.

It is a standard result that (2) and (3) coincide with (13) and (14). It remains to be shown that the

solution satisfies (4). In order to do so, note that qir 6= 0 only if i is visited by p-step r, that is, if Pr = (i, j)

or if Pr = (j, i) for some j ∈ N . Also note that

qir(i,j) = Q− fij
θij

and

qir(j,i) = −
(
Q− fji

θji
− qj

)
− qi − qj

= −
(
Q− fji

θji
+ qi

)
.

This allows us to derive

∑
r∈Rp

qirxr =
∑
j∈N

qir(i,j)xr(i,j) +
∑
j∈N

qir(j,i)xr(j,i)

=
∑
j∈N

(
Q− fij

θij

)
θij −

∑
j∈N

(
Q− fji

θji
+ qi

)
θji

= Q
∑
j∈N

θij −Q
∑
j∈N

θji − qi
∑
j∈N

θji +
∑
j∈N

fji −
∑
j∈N

fij

= 0,

36

where the last equation follows from (13)-(15). Thus, the solution satisfies (4). Since the corresponding

solution is feasible and clearly has the same solution value as the original, SCF is at least as strong as the

1-step formulation.

We conclude that the 1-step formulation and SCF are equally strong.

E Exact labeling algorithm

Next, we describe a labeling algorithm used to solve the (s, f) pricing problem for a given choice of the

prior demand. A label L corresponds to a partial path PL such that N(L) is the terminal node, A(L) is

the number of arcs on PL, q(L) is the cumulative demand of all nodes on PL and the cumulative reduced

cost of the traversed arcs is c(L). Moreover, similar to Feillet et al. (2004) we use a vector U(L) ∈ B|N |,

such that Ui(L) indicates whether node i ∈ N is unreachable. That is, if Ui(L) = 1, PL cannot be

extended to node i because i is either already visited or a visit would result in a violation of the capacity

constraint because q(L) + qi > Q.

We distinguish between forward labels, corresponding to partial paths from s to N(L), and backward

labels, corresponding to partial paths from N(L) to f . We initialize the labeling algorithm with a forward

label L corresponding to a partial path starting at s, such that N(L) = s, A(L) = 0, q(L) = qs, Us(L) = 1

and Ui(L) = 0 for all i ∈ N\{s}, and the cumulative reduced cost is initialized as the reduced costs

constant, i.e., c(L) = Csf . Similarly we initialize a backward label corresponding to a partial path ending

at f , although we set the reduced cost of this path to 0. Note that including the reduced cost constant

in the forward label is an arbitrary choice.

Next, iteratively a label L, which has not yet been extended, is selected and extended. A partial path

PL corresponding to a forward label L from s to N(L) is extended along an arc (N(L), j) ∈ A to create

a new label L′, corresponding to a new partial path PL′ from s through N(L) to j. To describe the

extension procedure, we define the function Fi(L) for i ∈ N , that takes value 1 if q(L) + qi > Q. The

following extension functions are used to extend partial path PL, corresponding to forward label L, along

(N(L), j) ∈ A.

c(L′) =c(L) + c′N(L)j (19)

q(L′) =q(L) + qj (20)

N(L′) =j (21)

A(L′) =A(L) + 1 (22)

Ui(L
′) =

 1 if i = j

max{Ui(L), Fi(L
′)} otherwise

∀i ∈ N (23)

Analogously, a backward label L is extended in the reverse direction of an arc (j,N(L)) ∈ A.

The bi-directional labeling algorithm extends a forward label L for which A(L) < p−
⌊
p−1

2

⌋
− 1 along

37

all arcs (N(L), j) ∈ A such that Uj(L) = 0 and j 6= f , j 6= n+ 1. An exception to this is that a forward

label L is extended to f , even if f = n+ 1, in case the source s is the depot, because in this case a path

may consist of less than p arcs. A backward label L for which A(L) <
⌊
p−1

2

⌋
is extended in the reverse

direction of each arc (j,N(L)) ∈ A such that Uj(L) = 0 and j 6= s, j 6= 0. Observe that the limits we

impose on A(L) for considering the extension of L, ensures that the longest partial paths corresponding

to forward and backward labels differ in length by at most one arc. This ensures that the amount of

generated forward and backward labels are roughly the same.

When no labels are left for extension, forward and backward labels are merged to construct full paths.

By merging a forward label L for which A(L) = p−
⌊
p−1

2

⌋
− 1 and a backward label L′ for which A(L′) =⌊

p−1
2

⌋
, a feasible path from s to f is created consisting of precisely p arcs, when (N(L), N(L′)) ∈ A,

q(L) + q(L′) ≤ Qsf and L and L′ have not visited any common nodes. In our implementation, for the

purpose of assessing whether L and L′ have visits in common we also store for every label L a vector V (L),

for which Vi(L) indicates whether i ∈ N is visited or not. Note that U(L) cannot be used for this purpose,

but a backtracking procedure can alternatively be used if one does not wish to store V (L) for each label.

Furthermore, in case the start node s is the depot, the path need not have exactly p arcs. In this case, all

forward labels are considered for merging, so also each forward label L for which A(L) < p−
⌊
p−1

2

⌋
− 1.

Note that we need not consider more backward labels.

To avoid enumerating all labels, a dominance procedure is used to eliminate labels. A label L dominates

label L′ if every feasible extension of L′ is also feasible for L, while the extension of L results in lower

costs. In our labeling algorithm we apply the following sufficient conditions for dominance of L over L′.

If N(L) = N(L′), q(L) ≤ q(L′), U(L) ≤ U(L′), c(L) ≤ c(L′) and A(L) = A(L′) we eliminate label L′.

We particularly want to emphasize the condition A(L) = A(L′), which is needed due to the requirement

on the number of arcs on a path. After the construction of a new label L by extension, we perform a

dominance check. In principle, this dominance check is performed of L over any other label, and of any

other label over L. However, we can limit the amount of dominance checks as explained next.

We store the forward and backward labels in a separate dynamic programming matrix with n rows and

p+1 columns. Row i column j of the forward matrix corresponds to a list of all labels with terminal node

i and using j − 1 arcs, and the backward matrix has the same interpretation for backward labels. This

allows us to implicitly keep track of N(L) and A(L) which now no longer have to be stored separately per

label. Also, N(L) and A(L) no longer have to be checked explicitly during the dominance check, since

we only need to compare labels from the same entry in the matrix. Furthermore, we keep the lists of

labels sorted in order of reduced costs, which helps us limit the number of dominance checks we need to

perform if a new label is created. It also helps us limit the amount of merges to attempt, since we are

only interested in a merge if the resulting partial path has negative reduced costs.

We apply decremental state space relaxation which is summarized as follows. Initially, we relax the

pricing problem by allowing any cyclic path. If the optimal path does not contain a cycle, it is also optimal

for the original pricing problem. Otherwise we prevent the generation of the same cycle and resolve. We

prevent the generation of the given cycle as follows. For each node i ∈ N we generate a neighborhood

38

NGi which is initially empty. When a cycle C is observed in an optimal path, we identify the first location

j on the path which is in the cycle and add j to the neighborhoods NGi for all i ∈ C\{j}. Furthermore,

we modify the extension procedure by replacing (23) by

Ui(L
′) =

1 if i = j

max{Ui(L), Fi(L
′)} if i ∈ NGj ,

0 otherwise.

This prevents the generation of the same cycle in the next iteration of the decremental state space

procedure. This particular way of cycle elimination results in the generation of ng-paths, as introduced

by Baldacci et al. (2011), where we have neighborhoods of increasing size in each iteration of the decre-

mental state space algorithm.

Finally, we apply completion bounds to eliminate even more labels. For every entry of the dynamic

programming matrix, we find a lower bound on the additional reduced cost required for completing the

path. When creating a label such that the corresponding reduced cost plus the lower bound is non-

negative, the label cannot result in a path with a negative reduced cost, and we eliminate it. We obtain

lower bounds after each iteration of the decremental state space relaxation, by completing the extension

of backward labels to s and forward labels to f . The lowest reduced cost among the backward labels in

the dynamic programming matrix row i column j, serves as a completion bound for a forward label in

the dynamic programming matrix row i column p+ 2− j, and vice versa.

F Branch-price-and-cut details

We initialize our branch-price-and-cut algorithm with the preprocessing procedure described in Section 4.3

and by generating a limited set of p-steps. We generate these p-steps in two ways. First, we generate

a feasible solution for the CVRP instance using a greedy insertion procedure, which we decompose into

p-steps. Secondly, for each (s, f) pricing problem, we generate p-steps using a greedy insertion procedure

as well. Specifically, in accordance with Proposition 1, if s = 0 and f = n+1 we create p-steps of length 2

through p with prior demand 0. If s = 0 and f 6= n + 1, we create p-steps of length 1 through p with

prior demand 0. If s 6= 0 and f = n + 1, we create a p-step of length p with prior demand Q − q(r).

Finally, if s 6= 0 and f 6= n + 1, we create a p-step of length p with prior demand 0 and one with prior

demand Q− q(r). Observe that this way, for p = 1 all relevant p-steps are included, and no new p-steps

need to be generated anymore.

We use a column generation algorithm to compute the LP bound at each node in the branching tree.

We solve every (s, f) pricing problem that has not been eliminated in preprocessing. For each (s, f)

pricing, we first apply a local search heuristic, in which the best swap is performed at each iteration.

When s = 0, the path length may vary and we additionally consider insert and remove operations. The

local search heuristic is initialized by constructing a feasible p-step by a greedy insertion procedure. We

apply the local search heuristic an additional amount of times, once for every p-step selected in the current

39

solution. The heuristic terminates if a negative reduced cost column is found, in which case we continue

with the column generation algorithm, or no improvement is found. In the latter case, we continue by

applying a labeling heuristic. The labeling heuristic is similar to the exact labeling algorithm, but for

every customer i ∈ N ′ only the XArcs arcs (i, j) ∈ A with the lowest cost cij are considered. Furthermore,

in the labeling heuristic, unreachability is not considered when performing a dominance check.

If the labeling heuristic also fails to identify negative reduced cost columns, we first attempt to separate

valid inequalities to strengthen the LP bound before using the exact labeling algorithm. In the root

node of the branching tree, we separate the rounded capacity, framed capacity, homogeneous multistar,

strengthened comb and 2 edge hypotour inequalities using the package of heuristic separation algorithms

of Lysgaard (2003), see also Lysgaard et al. (2004). Similar to Lysgaard et al. (2004), we separate valid

inequalities as follows. We first attempt to separate rounded capacity inequalities, if it fails we attempt to

separate framed capacity inequalities, if that fails we attempt to separate, in revolving order per iteration,

the homogeneous multistar, strengthened comb and 2 edge hypotour inequalities. In all other nodes of

the branching tree, we only separate rounded capacity inequalities. When no violated valid inequalities

are identified, we use the exact labeling algorithm, otherwise we move to the next iteration of the column

generation algorithm.

Both when using the heuristic and exact labeling algorithm, only the first XColAdd found columns with

negative reduced costs are added to the RMP. Note that the state space used for decremental state space

relaxation is reset as empty only at each iteration of the column generation algorithm, so not after the

heuristic labeling algorithm has failed. Furthermore, we apply column management as follows. At every

iteration in which the solution value has strictly decreased, we remove columns in decreasing order of

reduced costs, until all columns with positive reduced costs are removed or only XColPool columns are left.

When generating columns, first the pool of removed columns is checked for negative reduced cost columns.

If they are found they are added to the RMP, and otherwise we proceed with the pricing heuristics.

If a fractional solution is found after termination of the column generation algorithm, we branch. We

use the branching procedure in the package of Lysgaard (2003) to create two child nodes. In each iteration

of the branching algorithm, we select a child of the node with the lowest lower bound to be processed

next. In our experiments, we only consider instances with integer values of cij for all (i, j) ∈ A. Therefore,

we terminate the branch-cut-and-price algorithm if the difference in value of the lower and upper bound

is strictly less than 1, since this proves optimality.

G Proof of Proposition 12

We repeat Proposition 12 and provide a proof.

Proposition 12. The undirected p-step formulation is valid for the CVRP.

Proof. In this proof we demonstrate that an optimal solution to (1)-(3), (6), (8), and (10)-(11), is an

optimal solution to the CVRP. It is easy to verify that every feasible solution of the CVRP can be

40

transformed into an edge flow that is allowed by this formulation. Therefore, we limit ourselves to

demonstrating that a binary edge flow, as described by the variables θ, corresponds to a feasible solution.

The claim easily follows from these observations.

By (1), the degree of every node in N ′ is 2, so it is connected to precisely 2 edges. Hence, the edge

flow can be decomposed in elementary paths from the starting depot 0 to the ending depot n + 1, and

potentially simple cycles not including the depot. Observe that an elementary path from 0 to n+ 1 can

only be formed if p-steps are selected which follow that path in the direction from 0 to n + 1, and no

p-steps in the reverse direction can be selected. This is due to (3) and the fact no p-steps terminate at

0, or start at n + 1. By (6), the capacity constraints are satisfied and such paths correspond to feasible

routes.

In case of a simple cycle, let C ⊆ N ′ be the nodes visited by the cycle. Observe that any selected

p-step that is part of this cycle has its start and end point on the cycle. Using (6) this allows us to derive

0 ≤
∑
i∈C

∑
r∈Rp

qirxr

=
∑
r∈Rp

(dr + qi − dr − q(r))xr.

Because qi − q(r) < 0, this shows that such a cycle cannot exist.

H LP bounds for benchmark instances

Tables 4 and 5 provide the LP bounds of the p-step formulation using Rp
CG and 2-cycle elimination for

benchmark instances. For each instance, we have computed the maximum number of customers that

would fit in one vehicle without violating the capacity constraint. The LP bounds are computed for all

values of p from 1 through that maximum plus one. For higher values of p the LP bound remains constant,

and equal to the set partitioning bound. Per instance, for higher values of p the corresponding cells in

the tables are empty. Table 4 shows the results for p is 1 through 16, while Table 5 shows the results for

p is 17 through 35. Note that a dash indicates that the LP bound could not be computed within the time

limit of 3600 seconds using our algorithm.

I Computation times of LP bounds

Tables 6 and 7 provide the computation time in seconds of computing the LP bounds of the p-step

formulation using Rp
CG and 2-cycle elimination for benchmark instances. The times correspond to our

column generation algorithm when solving the pricing problems in parallel using up to 8 threads. Like

in Appendix H, per instance we only consider the values of p from 1 through the maximum number of

customers that fit in a vehicle plus one. Per instance, for higher values of p the corresponding cells in the

tables are empty. Table 6 shows the results for p is 1 through 16, and Table 7 shows the results for p is

41

T
ab

le
4:

L
P

b
ou

n
d

s
u

si
n

g
R

p C
G

an
d

2-
cy

cl
e

el
im

in
at

io
n

(p
ar

t
1)

.

In
st
a
n
ce

\
p

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

E
-n
1
3
-k
4

2
3
9
.2
8

2
3
9
.7
1

2
4
3
.1
6

2
4
7
.0
0

2
4
7
.0
0

E
-n
2
2
-k
4

3
4
9
.9
7

3
5
0
.5
2

3
5
4
.4
9

3
5
9
.7
3

3
6
4
.8
3

3
6
9
.7
6

3
7
2
.3
6

3
7
3
.8
8

3
7
3
.8
8

3
7
3
.8
8

3
7
3
.8
8

E
-n
2
3
-k
3

5
2
9
.8
8

5
3
1
.7
6

5
3
5
.8
7

5
3
8
.8
2

5
4
3
.1
2

5
4
0
.3
7

5
4
4
.6
4

5
4
4
.9
9

5
4
6
.6
2

5
5
0
.5
5

5
5
0
.5
5

5
5
2
.5
3

5
5
7
.2
0

5
5
9
.2
0

5
5
8
.7
1

5
5
9
.1
9

E
-n
3
0
-k
3

4
4
8
.7
4

4
4
9
.8
0

4
5
1
.3
0

4
5
4
.7
8

4
5
7
.7
4

4
5
8
.5
6

4
5
9
.0
0

4
6
0
.5
3

4
6
3
.9
2

4
6
8
.2
6

4
7
1
.3
5

4
7
4
.0
9

4
7
8
.2
6

4
8
4
.2
7

4
8
4
.2
7

4
8
4
.2
7

E
-n
3
1
-k
7

3
6
3
.3
0

3
6
3
.5
7

3
6
8
.3
5

3
7
0
.1
8

3
6
8
.2
2

3
7
3
.2
9

3
7
7
.4
9

3
7
8
.2
7

3
7
8
.2
9

3
7
8
.2
9

3
7
8
.2
9

3
7
8
.2
9

3
7
8
.2
9

3
7
8
.2
9

3
7
8
.2
9

3
7
8
.2
9

E
-n
3
3
-k
4

7
8
4
.4
4

7
8
5
.8
1

7
9
3
.5
0

7
9
8
.1
8

8
0
2
.2
9

8
0
9
.0
7

8
1
1
.8
0

8
1
3
.6
1

8
1
6
.8
8

8
1
7
.7
5

8
1
9
.4
2

8
2
1
.8
1

8
2
2
.6
2

8
2
2
.6
7

8
2
2
.7
7

8
2
2
.7
7

E
-n
5
1
-k
5

4
9
9
.4
3

4
9
9
.6
4

5
0
0
.5
2

5
0
4
.1
2

5
0
3
.9
2

5
0
6
.2
5

5
0
7
.6
9

5
0
9
.7
9

5
1
1
.8
8

5
1
4
.2
6

5
1
5
.1
6

5
1
6
.7
2

5
1
7
.1
3

5
1
7
.1
4

5
1
7
.1
4

5
1
7
.1
4

E
-n
7
6
-k
7

6
4
4
.3
0

6
4
4
.7
5

6
4
6
.8
1

6
4
9
.0
2

6
5
1
.3
2

6
5
3
.9
1

6
5
5
.1
3

6
5
6
.2
8

6
5
7
.2
2

6
5
8
.6
4

6
6
0
.6
7

6
6
2
.3
7

6
6
3
.9
5

6
6
5
.0
3

6
6
5
.4
5

6
6
5
.5
8

E
-n
7
6
-k
8

6
9
0
.4
7

6
9
1
.8
7

6
9
5
.6
0

6
9
8
.9
0

7
0
3
.0
4

7
0
6
.4
4

7
0
8
.5
5

7
1
1
.3
0

7
1
2
.9
7

7
1
5
.1
3

7
1
6
.7
6

7
1
7
.8
9

7
1
8
.5
0

7
1
8
.7
8

7
1
8
.7
8

7
1
8
.7
8

E
-n
7
6
-k
1
0

7
7
1
.7
7

7
7
3
.7
4

7
7
8
.7
1

7
8
6
.3
0

7
9
2
.3
3

7
9
9
.3
0

8
0
2
.5
0

8
0
4
.4
3

8
0
7
.7
5

8
1
0
.3
9

8
1
2
.4
4

8
1
2
.4
7

8
1
2
.4
7

8
1
2
.4
7

8
1
2
.4
7

8
1
2
.4
7

E
-n
7
6
-k
1
4

9
3
3
.8
1

9
3
8
.3
8

9
4
7
.2
8

9
6
5
.7
2

9
8
1
.0
3

9
9
1
.1
9

9
9
8
.7
7

1
0
0
0
.8
7

1
0
0
2
.7
7

1
0
0
2
.7
7

1
0
0
2
.7
7

1
0
0
2
.7
7

-
1
0
0
2
.7
7

E
-n
1
0
1
-k
8

7
6
8
.9
2

7
6
9
.5
1

7
7
1
.1
9

7
7
3
.2
7

7
7
3
.9
2

7
7
5
.0
9

7
7
6
.2
5

7
7
9
.0
4

7
8
0
.8
7

7
8
2
.4
5

7
8
3
.3
0

7
8
4
.2
8

-
-

-
-

E
-n
1
0
1
-k
1
4

9
9
4
.2
7

9
9
7
.5
2

1
0
0
5
.9
3

1
0
1
4
.9
9

1
0
2
3
.8
1

1
0
2
9
.3
4

1
0
3
6
.1
6

1
0
4
1
.9
1

1
0
4
5
.9
1

1
0
4
8
.8
6

1
0
5
0
.0
8

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

A
-n
3
2
-k
5

7
0
8
.8
8

7
1
2
.6
4

7
1
6
.7
2

7
2
9
.3
0

7
3
6
.0
7

7
4
8
.6
1

7
5
2
.5
5

7
5
6
.4
1

7
6
5
.1
8

7
6
8
.6
4

7
6
9
.9
5

7
7
0
.2
9

7
7
0
.2
9

7
7
0
.2
9

7
7
0
.2
9

A
-n
3
3
-k
5

5
9
6
.7
1

6
0
0
.7
0

6
0
8
.5
8

6
1
9
.5
2

6
2
6
.9
9

6
3
1
.9
0

6
4
4
.3
8

6
5
1
.4
4

6
5
5
.3
7

6
5
6
.2
1

6
5
6
.2
1

6
5
6
.2
1

6
5
6
.2
1

6
5
6
.2
1

A
-n
3
3
-k
6

6
6
6
.0
1

6
6
6
.7
2

6
7
5
.1
9

6
8
6
.1
9

6
9
4
.7
9

7
1
2
.2
7

7
2
2
.0
5

7
2
9
.2
1

7
3
2
.1
0

7
3
2
.1
0

7
3
2
.1
0

7
3
2
.1
0

7
3
2
.1
0

A
-n
3
4
-k
5

6
8
3
.5
0

6
8
6
.6
1

6
9
5
.9
6

7
0
9
.8
6

7
1
7
.1
6

7
2
4
.1
2

7
3
3
.9
6

7
3
6
.9
3

7
4
8
.2
5

7
4
8
.9
6

7
4
8
.9
6

7
4
8
.9
6

7
4
8
.9
6

7
4
8
.9
6

7
4
8
.9
6

A
-n
3
6
-k
5

7
2
9
.3
1

7
3
1
.8
4

7
3
7
.4
0

7
4
5
.8
0

7
5
2
.5
7

7
5
7
.2
4

7
5
8
.5
1

7
7
2
.6
8

7
7
5
.8
6

7
7
6
.9
4

7
7
8
.3
8

7
7
8
.7
0

7
7
8
.7
0

7
7
8
.7
0

7
7
8
.7
0

7
7
8
.7
0

A
-n
3
7
-k
5

6
1
0
.6
7

6
1
2
.9
0

6
1
8
.1
9

6
2
2
.1
0

6
3
0
.0
2

6
3
2
.5
3

6
3
6
.7
2

6
4
1
.9
7

6
4
8
.3
1

6
5
3
.7
3

6
5
7
.2
6

6
5
8
.2
5

6
5
8
.3
4

6
5
8
.3
4

6
5
8
.3
4

6
5
8
.3
4

A
-n
3
7
-k
6

8
5
5
.2
4

8
5
9
.8
0

8
6
3
.2
4

8
7
6
.5
2

8
8
9
.0
3

8
9
7
.4
3

9
0
7
.7
2

9
2
3
.8
9

9
2
7
.5
2

9
2
8
.1
8

9
2
8
.3
4

9
2
8
.3
4

9
2
8
.3
4

9
2
8
.3
4

9
2
8
.3
4

A
-n
3
8
-k
5

6
4
4
.5
3

6
4
7
.6
4

6
5
4
.0
1

6
6
0
.9
3

6
6
3
.2
8

6
7
2
.8
0

6
8
2
.2
8

6
9
0
.5
4

6
9
4
.7
0

6
9
7
.1
9

6
9
9
.1
7

6
9
9
.1
7

6
9
9
.1
7

6
9
9
.1
7

6
9
9
.1
7

6
9
9
.1
7

A
-n
3
9
-k
5

7
4
4
.1
8

7
5
0
.1
5

7
5
9
.8
6

7
6
3
.9
3

7
7
1
.2
8

7
7
5
.5
9

7
7
8
.3
4

7
9
3
.0
8

7
9
9
.0
5

8
0
1
.3
1

8
0
1
.5
6

8
0
1
.5
6

8
0
1
.5
6

8
0
1
.5
6

8
0
1
.5
6

8
0
1
.5
6

A
-n
3
9
-k
6

7
4
5
.8
9

7
4
7
.9
7

7
5
7
.3
2

7
6
4
.6
3

7
6
8
.7
2

7
7
7
.2
5

7
8
5
.1
4

7
9
8
.7
6

8
0
7
.1
7

8
0
9
.4
0

8
0
9
.4
4

8
0
9
.4
4

8
0
9
.4
4

8
0
9
.4
4

8
0
9
.4
4

8
0
9
.4
4

A
-n
4
4
-k
6

8
4
6
.8
1

8
5
5
.5
8

8
7
4
.4
6

8
8
3
.7
4

8
9
0
.8
8

9
0
0
.5
0

9
1
1
.0
7

9
1
8
.1
4

9
2
4
.1
9

9
2
7
.6
2

9
2
7
.6
4

9
2
7
.6
4

9
2
7
.6
4

9
2
7
.6
4

9
2
7
.6
4

9
2
7
.6
4

A
-n
4
5
-k
6

8
2
7
.6
7

8
3
3
.7
0

8
4
1
.9
3

8
5
4
.4
3

8
6
6
.7
9

8
8
6
.7
5

9
0
0
.2
6

9
1
2
.1
3

9
2
4
.3
2

9
3
0
.7
4

9
3
2
.0
0

9
3
2
.0
0

9
3
2
.0
0

9
3
2
.0
0

9
3
2
.0
0

-
A
-n
4
5
-k
7

1
0
4
4
.2
3

1
0
5
4
.7
2

1
0
6
7
.3
5

1
0
7
5
.7
3

1
0
8
9
.2
6

1
0
9
8
.2
7

1
1
1
1
.2
8

1
1
2
0
.4
4

1
1
2
4
.7
8

1
1
2
4
.7
8

1
1
2
4
.7
8

1
1
2
4
.7
8

1
1
2
4
.7
8

1
1
2
4
.7
8

1
1
2
4
.7
8

1
1
2
4
.7
8

A
-n
4
6
-k
7

8
3
7
.8
0

8
4
4
.2
3

8
5
1
.6
2

8
6
0
.8
6

8
6
7
.4
1

8
7
5
.1
0

8
8
9
.7
9

9
0
1
.7
1

9
0
5
.4
7

9
0
7
.7
3

9
0
7
.8
4

9
0
7
.8
4

9
0
7
.8
4

9
0
7
.8
4

9
0
7
.8
4

9
0
7
.8
4

A
-n
4
8
-k
7

9
7
6
.6
0

9
8
3
.6
5

9
9
4
.1
4

1
0
0
6
.1
2

1
0
2
3
.2
3

1
0
3
7
.8
1

1
0
4
6
.0
3

1
0
4
8
.1
4

1
0
5
0
.4
7

1
0
5
1
.5
3

1
0
5
2
.0
1

1
0
5
3
.9
2

1
0
5
3
.9
2

1
0
5
3
.9
2

1
0
5
3
.9
2

1
0
5
3
.9
2

A
-n
5
3
-k
7

9
1
7
.3
0

9
2
2
.4
8

9
2
9
.8
8

9
3
6
.6
2

9
5
1
.5
4

9
6
4
.9
9

9
7
2
.0
4

9
8
0
.3
4

9
8
7
.3
3

9
9
2
.0
0

9
9
5
.3
6

9
9
5
.4
5

9
9
5
.4
7

9
9
5
.5
3

9
9
5
.5
3

9
9
5
.5
3

A
-n
5
4
-k
7

1
0
5
0
.6
7

1
0
5
8
.8
3

1
0
6
9
.3
9

1
0
7
8
.3
5

1
0
8
8
.3
9

1
1
0
4
.9
1

1
1
1
5
.2
4

1
1
2
5
.7
1

1
1
3
4
.2
7

1
1
3
8
.0
6

1
1
4
1
.3
5

1
1
4
1
.7
3

1
1
4
1
.7
3

1
1
4
1
.7
3

1
1
4
1
.7
3

1
1
4
1
.7
3

A
-n
5
5
-k
9

9
6
5
.3
6

9
7
0
.2
0

9
7
9
.7
3

9
8
9
.5
6

1
0
0
0
.7
0

1
0
2
0
.6
6

1
0
3
6
.0
3

1
0
5
0
.1
9

1
0
5
8
.8
2

1
0
6
0
.3
3

1
0
6
0
.3
3

1
0
6
0
.3
3

1
0
6
0
.3
3

1
0
6
0
.3
3

1
0
6
0
.3
3

A
-n
6
0
-k
9

1
2
1
1
.7
0

1
2
2
1
.3
2

1
2
3
0
.7
3

1
2
4
5
.3
4

1
2
6
0
.5
3

1
2
7
7
.9
6

1
2
9
5
.3
4

1
3
0
6
.6
7

1
3
1
9
.5
2

1
3
2
7
.5
8

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

A
-n
6
1
-k
9

9
4
6
.2
4

9
4
8
.4
5

9
5
8
.9
0

9
6
5
.8
7

9
7
2
.2
3

9
8
0
.5
4

9
9
1
.7
9

1
0
0
3
.5
9

1
0
1
1
.1
5

1
0
1
2
.4
0

1
0
1
3
.1
5

1
0
1
3
.1
5

1
0
1
3
.1
5

1
0
1
3
.1
5

-
-

A
-n
6
2
-k
8

1
1
4
6
.7
3

1
1
5
5
.4
7

1
1
6
5
.0
5

1
1
7
2
.8
7

1
1
8
4
.7
3

1
1
9
4
.8
8

1
2
0
9
.6
0

1
2
2
9
.4
4

1
2
4
1
.4
1

1
2
4
6
.9
1

1
2
4
8
.9
2

1
2
5
1
.6
5

1
2
5
4
.3
3

1
2
5
4
.8
3

1
2
5
4
.8
3

1
2
5
4
.8
3

A
-n
6
3
-k
9

1
4
8
8
.4
1

1
4
9
7
.9
2

1
5
1
0
.2
6

1
5
2
1
.7
1

1
5
3
1
.1
4

1
5
4
2
.9
1

1
5
6
5
.5
0

1
5
7
7
.2
0

1
5
8
4
.5
7

1
5
8
6
.0
2

1
5
8
7
.2
3

1
5
8
8
.1
6

1
5
8
8
.1
6

1
5
8
8
.1
6

1
5
8
8
.1
6

1
5
8
8
.1
6

A
-n
6
3
-k
1
0

1
1
8
0
.5
0

1
1
8
6
.2
7

1
1
9
5
.7
9

1
2
1
4
.5
2

1
2
3
0
.8
2

1
2
5
2
.8
7

1
2
6
7
.3
1

1
2
7
5
.8
9

1
2
8
4
.1
0

1
2
8
6
.5
3

1
2
8
6
.8
3

1
2
8
6
.8
3

1
2
8
6
.8
3

1
2
8
6
.8
3

1
2
8
6
.8
3

1
2
8
6
.8
3

A
-n
6
4
-k
9

1
2
7
7
.3
9

1
2
8
3
.6
3

1
2
9
2
.0
5

1
3
0
8
.1
5

1
3
2
7
.8
7

1
3
4
8
.4
7

1
3
6
0
.8
3

1
3
6
7
.4
6

1
3
7
3
.1
4

1
3
7
4
.4
7

1
3
7
6
.0
5

1
3
7
6
.5
4

1
3
7
6
.9
0

1
3
7
6
.9
0

1
3
7
6
.9
0

1
3
7
6
.9
0

A
-n
6
5
-k
9

1
0
8
2
.1
6

1
0
8
5
.0
1

1
0
9
4
.1
7

1
1
0
1
.4
0

1
1
1
2
.7
2

1
1
2
4
.5
2

1
1
3
1
.2
7

1
1
4
0
.0
5

1
1
4
6
.2
5

1
1
5
0
.0
9

1
1
5
0
.1
5

1
1
5
0
.1
5

1
1
5
0
.1
5

1
1
5
0
.1
5

1
1
5
0
.1
5

1
1
5
0
.1
5

A
-n
6
9
-k
9

1
0
5
4
.1
8

1
0
6
0
.5
2

1
0
6
8
.2
5

1
0
7
6
.9
4

1
0
8
5
.0
0

1
1
0
3
.6
6

1
1
1
1
.8
6

1
1
1
7
.0
5

1
1
2
4
.2
7

1
1
2
6
.1
0

1
1
2
9
.6
5

1
1
3
0
.8
2

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

A
-n
8
0
-k
1
0

1
6
1
4
.6
2

1
6
2
5
.5
9

1
6
3
4
.5
0

1
6
5
1
.5
3

1
6
6
8
.5
2

1
6
8
5
.2
6

1
7
0
1
.4
3

1
7
1
6
.9
8

1
7
2
4
.3
7

1
7
2
7
.0
0

1
7
2
8
.3
7

1
7
2
9
.2
5

1
7
3
0
.0
5

1
7
3
0
.5
9

1
7
3
1
.3
8

1
7
3
1
.5
8

42

T
ab

le
5:

L
P

b
ou

n
d

s
u

si
n

g
R

p C
G

an
d

2-
cy

cl
e

el
im

in
at

io
n

(p
ar

t
2)

.

In
st
a
n
ce

\
p

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

E
-n
1
3
-k
4

E
-n
2
2
-k
4

E
-n
2
3
-k
3

5
6
3
.5
7

5
6
5
.3
2

5
6
5
.3
2

5
6
5
.3
2

E
-n
3
0
-k
3

4
8
4
.2
7

4
8
4
.2
7

4
8
4
.2
7

4
8
4
.2
7

4
8
4
.2
7

4
8
4
.2
7

4
8
4
.2
7

E
-n
3
1
-k
7

E
-n
3
3
-k
4

8
2
2
.7
7

8
2
2
.7
7

8
2
2
.7
7

E
-n
5
1
-k
5

5
1
7
.1
4

5
1
7
.1
4

5
1
7
.1
4

5
1
7
.1
4

E
-n
7
6
-k
7

6
6
5
.5
8

6
6
5
.5
8

6
6
5
.5
8

-
6
6
5
.5
8

6
6
5
.5
8

6
6
5
.5
8

6
6
5
.5
8

E
-n
7
6
-k
8

7
1
8
.7
8

7
1
8
.7
8

7
1
8
.7
8

-
7
1
8
.7
8

E
-n
7
6
-k
1
0

8
1
2
.4
7

8
1
2
.4
7

E
-n
7
6
-k
1
4

E
-n
1
0
1
-k
8

7
9
0
.9
7

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

7
9
0
.9
9

-
7
9
0
.9
9

-
7
9
0
.9
9

7
9
0
.9
9

-
7
9
0
.9
9

E
-n
1
0
1
-k
1
4

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

1
0
5
0
.4
2

-
1
0
5
0
.4
6

A
-n
3
2
-k
5

A
-n
3
3
-k
5

A
-n
3
3
-k
6

A
-n
3
4
-k
5

A
-n
3
6
-k
5

A
-n
3
7
-k
5

6
5
8
.3
4

6
5
8
.3
4

6
5
8
.3
4

6
5
8
.3
4

6
5
8
.3
4

A
-n
3
7
-k
6

A
-n
3
8
-k
5

A
-n
3
9
-k
5

8
0
1
.5
6

8
0
1
.5
6

8
0
1
.5
6

A
-n
3
9
-k
6

8
0
9
.4
4

A
-n
4
4
-k
6

A
-n
4
5
-k
6

9
3
2
.0
0

A
-n
4
5
-k
7

A
-n
4
6
-k
7

9
0
7
.8
4

9
0
7
.8
4

A
-n
4
8
-k
7

1
0
5
3
.9
2

A
-n
5
3
-k
7

9
9
5
.5
3

9
9
5
.5
3

9
9
5
.5
3

-
9
9
5
.5
3

9
9
5
.5
3

-
9
9
5
.5
6

A
-n
5
4
-k
7

1
1
4
1
.7
3

1
1
4
1
.7
3

1
1
4
1
.7
3

1
1
4
1
.7
3

1
1
4
1
.7
3

A
-n
5
5
-k
9

A
-n
6
0
-k
9

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

1
3
2
7
.7
2

A
-n
6
1
-k
9

1
0
1
3
.1
5

A
-n
6
2
-k
8

1
2
5
4
.8
3

1
2
5
4
.8
3

1
2
5
4
.8
3

1
2
5
4
.8
3

1
2
5
4
.8
3

1
2
5
4
.8
3

-
-

1
2
5
4
.8
3

A
-n
6
3
-k
9

1
5
8
8
.1
6

1
5
8
8
.1
6

1
5
8
8
.1
6

1
5
8
8
.1
6

1
5
8
8
.1
6

A
-n
6
3
-k
1
0

1
2
8
6
.8
3

1
2
8
6
.8
3

1
2
8
6
.8
3

1
2
8
6
.8
3

A
-n
6
4
-k
9

1
3
7
6
.9
0

-
-

-
-

1
3
7
6
.9
0

A
-n
6
5
-k
9

1
1
5
0
.1
5

1
1
5
0
.1
5

1
1
5
0
.1
5

1
1
5
0
.1
5

A
-n
6
9
-k
9

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

1
1
3
1
.3
4

A
-n
8
0
-k
1
0

1
7
3
1
.5
8

-
-

-
-

-
-

-
-

-
-

43

17 through 35. Again, a dash indicates that the LP bound could not be computed within the time limit

of 3600 seconds.

J Computation times of branch-price-and-cut

Tables 8 and 9 provide the computation time in seconds of computing the optimal solutions to the CVRP

for benchmark instances. The computation times correspond to our branch-price-and-cut algorithm in

which we use the p-step formulation with Rp
CG and 2-cycle elimination and in which we solve the pricing

problems in parallel using up to 8 threads. Using our implementation, we are not able to solve all E and

A instances for all values of p. Therefore, we only report the computation times for all values of p and

all instances with no more than 51 nodes. For larger instances, the number of combinations of instances

and values of p that we can solve within the time limit is too low to draw meaningful conclusions. Like

in Appendix H, per instance we only consider the values of p from 1 through the maximum number of

customers that fit in a vehicle plus one. Per instance, for higher values of p the corresponding cells in the

tables are empty. Table 8 shows the results for p is 1 through 16, and Table 9 shows the results for p is

17 through 23. Again, a dash indicates that the LP bound could not be computed within the time limit

of 3600 seconds.

44

T
ab

le
6
:

C
o
m

p
u

ta
ti

on
ti

m
es

in
se

co
n

d
s

of
L

P
b

ou
n

d
s

u
si

n
g
R

p C
G

an
d

2-
cy

cl
e

el
im

in
at

io
n

w
it

h
8

th
re

ad
s

(p
ar

t
1)

.
In
st
a
n
ce

\
p

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

E
-n
1
3
-k
4

0
.0
1

0
.0
2

0
.0
2

0
.0
2

0
.0
2

E
-n
2
2
-k
4

0
.0
2

0
.0
4

0
.1
0

0
.1
3

0
.1
0

0
.1
1

0
.0
8

0
.0
9

0
.1
1

0
.0
9

0
.0
9

E
-n
2
3
-k
3

0
.0
2

0
.0
4

0
.0
9

0
.1
4

0
.1
7

0
.3
5

0
.5
2

0
.4
8

1
.4
9

0
.6
7

0
.7
3

0
.6
8

1
.0
2

1
.4
1

0
.9
8

8
.6
9

E
-n
3
0
-k
3

0
.0
4

0
.0
8

0
.2
7

0
.4
1

0
.4
8

1
.0
4

1
.0
8

1
.8
5

2
.4
4

3
.2
7

2
.4
3

1
.1
1

3
.0
0

1
1
.8
7

3
3
.4
8

3
8
.2
0

E
-n
3
1
-k
7

0
.0
6

0
.1
2

0
.4
1

0
.7
7

0
.9
3

1
.1
2

1
.3
4

0
.5
8

0
.4
9

0
.9
8

0
.6
8

0
.7
1

0
.5
6

0
.6
4

0
.4
2

0
.3
5

E
-n
3
3
-k
4

0
.0
6

0
.1
2

0
.4
4

0
.7
6

0
.8
7

1
.2
8

1
.7
8

1
.9
4

2
.7
4

1
.6
0

2
.6
5

5
.1
2

8
.0
6

9
.2
4

1
4
.3
3

1
5
.9
7

E
-n
5
1
-k
5

0
.2
3

0
.5
4

2
.1
0

2
.8
5

4
.0
8

5
.8
6

9
.1
5

1
2
.9
3

9
.4
0

4
.2
5

4
.9
4

7
.8
9

8
.5
9

2
3
.0
2

2
0
.1
0

2
0
.5
6

E
-n
7
6
-k
7

0
.9
4

1
.6
8

1
0
.1
2

1
8
.1
1

3
1
.1
2

4
6
.7
3

1
2
8
.9
3

1
7
1
.2
8

2
5
0
.5
2

4
8
6
.8
0

6
7
8
.4
6

1
3
7
.0
4

3
0
3
.5
5

4
2
0
.2
0

5
7
5
.9
6

7
3
9
.5
7

E
-n
7
6
-k
8

1
.3
3

2
.8
2

1
8
.7
5

2
7
.1
4

3
8
.6
9

7
1
.5
9

1
5
5
.8
3

3
1
6
.8
0

3
7
2
.3
8

1
2
4
.9
6

2
2
7
.7
7

2
4
4
.7
7

4
0
8
.8
7

6
6
5
.8
8

1
4
5
0
.6
1

1
8
4
1
.6
1

E
-n
7
6
-k
1
0

1
.3
8

3
.1
5

2
4
.7
0

3
1
.2
1

5
2
.9
8

8
6
.8
5

1
6
1
.8
0

1
7
0
.3
1

1
0
5
.6
4

1
9
5
.7
3

2
7
0
.9
1

6
1
1
.1
1

6
4
7
.1
9

6
4
5
.4
7

9
6
6
.8
3

1
3
7
9
.0
0

E
-n
7
6
-k
1
4

0
.8
2

1
.4
8

9
.8
9

2
6
.2
2

3
4
.0
7

7
9
.1
2

9
7
.5
1

1
5
8
.7
6

2
0
6
.0
1

3
0
7
.5
7

3
8
6
.1
8

9
7
2
.4
0

-
3
9
4
.4
0

E
-n
1
0
1
-k
8

2
.8
4

3
.9
8

3
6
.6
8

9
4
.1
1

1
2
0
.5
8

3
1
0
.4
5

3
7
3
.6
1

6
5
9
.2
0

1
0
7
2
.9
2

1
4
9
0
.7
3

2
2
1
2
.6
4

2
9
1
4
.2
5

-
-

-
-

E
-n
1
0
1
-k
1
4

2
.1
6

3
.8
2

3
6
.1
4

8
6
.2
5

1
4
9
.9
2

2
9
3
.1
2

5
5
8
.5
5

1
4
0
5
.0
4

1
9
6
9
.4
4

2
4
9
5
.2
2

1
6
1
3
.7
1

9
5
7
.9
8

7
7
6
.8
0

1
0
1
9
.0
5

8
8
9
.9
7

1
1
9
5
.8
4

A
-n
3
2
-k
5

0
.0
6

0
.1
0

0
.2
9

0
.5
2

0
.7
3

1
.0
9

1
.5
6

0
.4
7

0
.7
9

0
.9
5

1
.2
4

2
.3
1

2
.7
5

2
.2
2

0
.9
7

A
-n
3
3
-k
5

0
.0
6

0
.1
1

0
.3
5

0
.6
4

0
.9
2

0
.9
5

0
.4
1

0
.6
5

0
.7
9

1
.5
9

1
.0
9

1
.0
0

1
.1
2

0
.8
9

A
-n
3
3
-k
6

0
.0
6

0
.1
1

0
.3
6

0
.5
5

0
.7
0

0
.8
6

0
.3
6

0
.6
1

0
.9
2

1
.4
0

1
.4
9

1
.2
8

0
.5
9

A
-n
3
4
-k
5

0
.0
6

0
.1
0

0
.4
3

0
.6
8

0
.8
6

1
.2
5

0
.6
4

0
.5
9

1
.2
2

1
.9
7

2
.3
8

1
.8
3

2
.0
0

1
.2
1

1
.0
5

A
-n
3
6
-k
5

0
.0
9

0
.2
3

0
.5
5

0
.8
2

1
.1
5

1
.8
6

2
.2
1

1
.1
6

1
.1
9

1
.6
7

2
.6
2

5
.3
4

4
.9
7

7
.9
7

2
.7
2

4
.9
2

A
-n
3
7
-k
5

0
.0
9

0
.2
0

0
.6
2

0
.8
2

1
.3
3

2
.0
4

3
.5
1

4
.0
1

5
.2
9

3
.4
2

2
.1
5

5
.2
3

4
.4
6

4
.1
0

5
.5
5

8
.1
8

A
-n
3
7
-k
6

0
.0
9

0
.1
9

0
.6
0

0
.9
1

1
.1
3

1
.3
4

1
.1
9

1
.3
6

2
.1
3

3
.1
2

5
.3
8

4
.9
6

5
.4
0

2
.9
8

2
.3
5

A
-n
3
8
-k
5

0
.1
0

0
.1
9

0
.5
8

0
.9
4

1
.1
8

2
.4
1

2
.8
6

1
.3
5

1
.6
0

2
.5
6

2
.6
4

3
.0
5

4
.3
3

3
.0
5

2
.2
2

1
.2
8

A
-n
3
9
-k
5

0
.1
1

0
.2
4

0
.8
0

1
.1
4

1
.5
3

2
.7
3

3
.3
3

9
.4
5

7
.2
8

3
.3
3

6
.4
4

1
0
.3
4

1
4
.2
7

1
0
.3
5

1
0
.6
9

7
.8
0

A
-n
3
9
-k
6

0
.1
2

0
.2
1

0
.6
5

1
.0
2

1
.5
0

1
.9
5

3
.2
8

2
.7
3

1
.3
5

2
.6
4

4
.2
5

4
.5
8

5
.9
3

6
.7
6

4
.9
7

2
.7
1

A
-n
4
4
-k
6

0
.1
6

0
.3
3

0
.9
1

1
.6
0

2
.2
7

4
.1
7

4
.6
3

2
.1
0

2
.5
9

4
.5
9

1
0
.6
9

6
.3
1

5
.1
2

4
.4
8

3
.6
3

3
.4
1

A
-n
4
5
-k
6

0
.1
7

0
.3
1

1
.0
8

1
.5
1

2
.4
5

5
.8
7

5
.3
5

9
.1
1

7
.4
9

1
2
.5
1

2
6
.9
0

4
0
.9
8

4
8
.5
2

5
4
.6
2

1
1
0
8
.3
3

-
A
-n
4
5
-k
7

0
.1
6

0
.3
4

1
.1
7

1
.7
0

2
.6
0

3
.7
4

4
.9
9

2
.2
7

3
.1
9

7
.1
4

8
.7
0

7
.4
8

7
.1
4

1
0
.3
1

4
.8
7

3
.5
7

A
-n
4
6
-k
7

0
.1
6

0
.3
2

1
.2
3

1
.6
0

2
.8
2

5
.0
0

1
0
.3
5

7
.1
1

5
.1
8

8
.3
9

2
3
.0
5

1
9
.1
1

1
2
.8
3

1
6
.4
5

1
3
.8
4

1
6
.9
0

A
-n
4
8
-k
7

0
.1
8

0
.4
0

1
.4
0

2
.4
2

3
.2
1

6
.1
7

8
.3
1

5
.9
3

3
.2
2

6
.3
1

1
3
.6
2

2
0
.9
0

3
4
.9
1

3
7
.0
0

5
1
.3
5

4
0
.9
2

A
-n
5
3
-k
7

0
.2
3

0
.5
1

2
.0
2

3
.4
6

4
.8
8

8
.6
3

1
8
.0
2

2
5
.9
0

4
7
.6
2

5
5
.3
1

4
4
.2
7

2
3
.0
0

3
0
.2
1

3
6
.2
0

5
0
.5
4

5
5
.3
1

A
-n
5
4
-k
7

0
.2
5

0
.5
7

2
.2
1

3
.5
9

4
.4
7

8
.5
2

1
5
.5
1

2
9
.2
0

6
0
.0
7

3
3
.5
3

2
0
.0
6

2
4
.3
7

4
7
.4
2

8
8
.3
8

7
9
.0
0

6
9
.8
1

A
-n
5
5
-k
9

0
.2
6

0
.5
2

2
.1
9

3
.2
3

4
.5
3

1
0
.9
6

7
.0
7

4
.5
8

7
.0
4

1
0
.2
6

1
2
.2
4

1
8
.8
4

1
3
.4
6

8
.1
1

5
.1
4

A
-n
6
0
-k
9

0
.3
2

0
.7
1

3
.0
5

5
.7
2

8
.2
8

2
0
.7
1

3
5
.6
9

7
7
.5
9

1
0
9
.9
8

5
6
.7
1

3
4
.5
8

7
0
.6
6

9
8
.0
6

9
4
.7
3

1
1
7
.6
4

9
4
.7
9

A
-n
6
1
-k
9

0
.3
9

0
.6
8

3
.0
9

6
.4
5

7
.7
1

2
0
.9
1

4
3
.7
8

6
9
.0
8

6
0
.6
1

1
1
0
.9
0

2
0
0
.2
9

2
6
2
.8
2

2
9
4
.9
1

4
4
5
.0
2

-
-

A
-n
6
2
-k
8

0
.3
8

0
.8
5

3
.4
8

6
.3
3

1
0
.2
0

1
9
.3
6

3
4
.8
0

7
0
.1
0

1
1
6
.2
3

2
3
6
.9
3

1
1
7
.8
3

1
1
8
.0
7

6
2
.1
5

1
0
8
.8
0

1
3
4
.6
9

2
4
0
.9
2

A
-n
6
3
-k
9

0
.3
8

0
.8
2

3
.7
3

6
.9
5

1
1
.2
9

3
1
.2
0

5
2
.6
0

1
2
8
.9
5

1
7
1
.0
2

1
2
2
.9
6

1
6
0
.3
7

1
6
5
.4
7

1
7
7
.3
5

3
1
5
.5
5

4
7
9
.1
0

7
7
1
.8
2

A
-n
6
3
-k
1
0

0
.4
2

0
.7
7

3
.5
6

5
.8
3

1
0
.7
2

2
5
.7
7

5
3
.7
1

1
0
8
.8
4

1
0
6
.0
5

5
9
.8
1

1
0
6
.2
4

1
8
0
.0
4

3
0
2
.8
4

1
9
5
.2
2

3
5
9
.2
2

1
3
2
.6
6

A
-n
6
4
-k
9

0
.4
9

0
.9
0

4
.1
2

7
.8
2

1
4
.7
2

3
1
.1
8

7
8
.3
0

2
2
0
.4
4

2
4
8
.3
2

2
0
4
.6
9

1
3
6
.9
3

2
3
1
.7
3

2
8
0
.6
2

4
3
8
.2
7

5
4
4
.1
6

7
8
6
.5
6

A
-n
6
5
-k
9

0
.4
8

0
.9
5

4
.0
8

6
.1
9

1
2
.3
7

3
5
.8
6

7
8
.9
1

1
4
7
.0
7

2
4
0
.7
2

1
2
1
.3
1

1
3
6
.2
3

1
7
0
.9
3

2
3
9
.4
5

3
1
3
.0
4

3
4
7
.1
7

5
8
8
.4
3

A
-n
6
9
-k
9

0
.5
7

1
.0
8

5
.2
8

1
0
.3
5

1
8
.6
4

4
0
.8
6

8
2
.8
9

2
5
6
.5
1

4
4
0
.9
9

6
8
7
.5
8

3
2
3
.0
2

2
4
3
.2
8

5
0
8
.4
9

5
5
0
.7
4

6
9
6
.9
6

6
0
8
.2
7

A
-n
8
0
-k
1
0

1
.0
3

1
.7
8

9
.7
1

2
0
.3
0

4
1
.0
4

1
3
2
.0
4

1
6
7
.0
6

6
3
2
.1
5

1
0
5
1
.6
8

2
2
0
2
.5
0

2
2
6
8
.1
7

2
7
0
0
.7
8

1
3
8
4
.8
8

9
3
9
.5
1

1
1
5
9
.9
8

1
6
7
9
.2
4

45

T
ab

le
7
:

C
o
m

p
u

ta
ti

on
ti

m
es

in
se

co
n

d
s

of
L

P
b

ou
n

d
s

u
si

n
g
R

p C
G

an
d

2-
cy

cl
e

el
im

in
at

io
n

w
it

h
8

th
re

ad
s

(p
ar

t
2)

.

In
st
a
n
ce

\
p

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

E
-n
1
3
-k
4

E
-n
2
2
-k
4

E
-n
2
3
-k
3

5
.3
9

2
4
.8
4

1
1
.6
3

4
.4
1

E
-n
3
0
-k
3

4
3
.6
7

2
6
.7
1

2
5
.5
8

3
4
.8
6

4
7
.4
7

1
9
.3
5

2
8
.5
7

E
-n
3
1
-k
7

E
-n
3
3
-k
4

8
8
.1
6

2
4
2
.7
5

9
.2
2

E
-n
5
1
-k
5

1
9
.6
9

4
3
.1
5

1
4
.8
3

6
.1
4

E
-n
7
6
-k
7

1
4
7
8
.7
8

2
1
7
7
.1
9

1
2
6
2
.6
1

-
1
4
7
2
.5
2

2
1
6
1
.0
7

1
2
2
2
.7
6

4
3
9
.8
6

E
-n
7
6
-k
8

1
2
4
1
.5
6

2
5
6
0
.3
8

2
3
2
0
.3
9

-
3
8
6
.9
7

E
-n
7
6
-k
1
0

1
4
1
.6
2

7
4
9
.0
5

E
-n
7
6
-k
1
4

E
-n
1
0
1
-k
8

2
4
6
3
.4
7

1
8
0
6
.5
9

1
8
5
2
.5
4

3
0
6
4
.4
8

2
7
9
6
.9
1

2
4
1
5
.0
7

3
0
1
7
.8
0

2
6
8
4
.7
3

2
8
5
3
.0
3

-
2
8
2
7
.6
1

3
5
8
1
.1
2

-
2
4
3
6
.0
6

-
2
9
0
6
.8
1

3
2
3
5
.3
6

-
2
5
4
3
.5
9

E
-n
1
0
1
-k
1
4

2
3
3
2
.0
6

1
4
7
0
.6
9

1
4
0
3
.3
5

1
4
6
6
.9
2

1
0
2
7
.9
4

7
4
6
.4
3

4
3
3
.6
2

-
6
0
8
.9
6

A
-n
3
2
-k
5

A
-n
3
3
-k
5

A
-n
3
3
-k
6

A
-n
3
4
-k
5

A
-n
3
6
-k
5

A
-n
3
7
-k
5

9
.1
5

4
.5
1

4
.2
6

4
.5
2

3
.9
4

A
-n
3
7
-k
6

A
-n
3
8
-k
5

A
-n
3
9
-k
5

5
.9
7

9
.0
3

7
.8
0

A
-n
3
9
-k
6

1
.9
8

A
-n
4
4
-k
6

A
-n
4
5
-k
6

1
2
4
.7
5

A
-n
4
5
-k
7

A
-n
4
6
-k
7

1
0
.6
4

9
.5
4

A
-n
4
8
-k
7

9
.7
5

A
-n
5
3
-k
7

5
0
.1
6

9
6
.6
0

4
1
.3
3

-
4
3
.2
3

2
5
.9
7

-
1
7
.5
3

A
-n
5
4
-k
7

5
0
.9
8

1
3
1
.5
3

4
6
.9
6

3
7
.7
8

2
2
.3
8

A
-n
5
5
-k
9

A
-n
6
0
-k
9

9
9
.7
6

9
4
.4
5

7
0
.5
2

4
0
.0
3

3
4
.3
2

3
3
.1
4

A
-n
6
1
-k
9

3
5
1
.1
0

A
-n
6
2
-k
8

2
9
5
.7
9

7
8
9
.5
2

2
5
7
.6
1

4
8
9
.2
4

1
4
7
.2
2

2
1
6
.9
7

-
-

1
4
5
.6
4

A
-n
6
3
-k
9

8
7
7
.5
1

2
7
5
1
.5
3

3
3
5
.9
4

5
3
.7
8

4
1
.1
0

A
-n
6
3
-k
1
0

9
7
8
.2
2

1
2
0
.2
9

7
4
0
.7
6

3
4
.7
5

A
-n
6
4
-k
9

2
2
6
4
.9
0

-
-

-
-

6
9
6
.4
8

A
-n
6
5
-k
9

6
7
1
.4
7

8
1
0
.9
9

9
3
6
.0
1

1
2
3
.5
0

A
-n
6
9
-k
9

8
7
5
.3
3

6
7
7
.4
9

1
1
7
4
.2
2

8
5
7
.1
8

6
7
5
.0
0

4
8
8
.6
3

3
0
9
.2
2

A
-n
8
0
-k
1
0

3
5
7
4
.4
8

-
-

-
-

-
-

-
-

-
-

46

T
ab

le
8:

C
om

p
u

ta
ti

on
ti

m
es

in
se

co
n
d

s
of

b
ra

n
ch

-p
ri

ce
-a

n
d

-c
u

t
(p

ar
t

1)
.

In
st
a
n
ce

\
p

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

E
-n
1
3
-k
4

0
.3
9

0
.1
5

0
.1
1

0
.0
4

0
.0
4

E
-n
2
2
-k
4

0
.0
8

0
.1
7

0
.2
8

0
.3
5

0
.5
0

0
.3
3

0
.1
7

0
.1
3

0
.1
7

0
.1
4

0
.1
6

E
-n
2
3
-k
3

0
.0
7

0
.1
2

0
.2
3

0
.2
5

0
.3
3

0
.4
1

0
.8
2

1
.0
5

1
.9
7

0
.9
8

0
.6
1

0
.5
4

0
.6
7

1
.0
4

1
.5
1

2
.5
8

E
-n
3
0
-k
3

1
.3
5

3
.2
2

9
.2
3

1
1
.1
5

1
9
.2
5

1
6
.4
4

-
1
3
5
.8
6

6
6
.9
7

4
2
1
.9
0

2
7
.8
3

5
8
.5
8

3
5
.2
4

3
5
.4
1

1
0
0
3
.5
4

1
1
3
1
.4
3

E
-n
3
1
-k
7

2
.6
9

1
1
.4
5

2
7
.5
2

2
6
.1
2

3
5
.3
7

1
0
.1
5

4
.2
6

2
.0
9

2
.1
3

1
2
.9
7

5
.3
0

4
.5
2

3
2
.5
6

2
1
.7
9

9
3
.0
5

4
.1
1

E
-n
3
3
-k
4

2
.1
6

7
.4
7

3
0
.4
6

3
2
.6
3

2
9
.7
1

1
1
1
.5
9

3
7
0
.4
4

1
0
4
4
.9
7

6
7
1
.3
9

1
0
5
.2
0

1
6
5
8
.2
5

7
8
.0
6

1
4
3
6
.0
7

5
5
7
.2
3

1
9
7
6
.0
0

-
E
-n
5
1
-k
5

4
6
.0
4

1
6
0
.9
0

6
5
2
.9
9

1
1
2
1
.2
6

2
2
6
3
.8
8

-
-

-
3
5
6
0
.3
3

3
9
7
.1
5

1
1
2
3
.6
3

-
-

2
8
8
.0
9

-
-

A
-n
3
2
-k
5

1
.9
1

4
.4
3

9
.9
5

1
5
.4
9

9
0
.8
3

1
3
2
.6
7

2
5
0
.2
5

1
8
5
.3
9

1
6
0
.3
4

5
9
.2
5

4
.8
4

6
.7
8

5
.1
2

1
7
.8
0

2
.4
6

A
-n
3
3
-k
5

2
.7
0

1
6
.0
0

5
4
.1
1

1
0
8
.1
1

1
9
7
.5
0

1
6
3
.0
7

1
4
3
.0
9

3
7
.3
0

1
.7
4

5
.2
3

8
.4
3

4
.3
9

1
.7
8

0
.8
3

A
-n
3
3
-k
6

9
.0
2

5
1
.7
3

1
5
2
.5
5

2
6
6
.9
6

7
2
0
.1
7

3
8
2
.0
9

2
1
2
.3
3

5
4
5
.4
9

9
0
.3
8

1
7
9
.7
2

1
7
6
.8
8

1
0
0
.4
1

3
0
.4
2

A
-n
3
4
-k
5

5
.1
4

4
4
.1
3

1
8
8
.3
3

4
0
1
.2
8

5
4
9
.0
6

7
6
5
.8
9

3
9
3
.7
3

1
3
8
.0
2

2
2
5
.7
8

1
3
6
.3
6

3
8
4
.0
8

1
5
2
.9
2

9
7
3
.5
3

2
4
7
.4
8

9
4
.1
6

A
-n
3
6
-k
5

1
1
.3
0

6
6
.3
4

1
1
7
.4
0

7
8
6
.8
0

9
3
0
.2
4

6
2
8
.4
8

3
5
0
6
.7
0

5
2
9
.4
7

6
1
7
.0
2

1
6
1
3
.8
9

3
6
9
.6
0

7
2
4
.0
5

3
2
8
.1
3

-
-

1
6
5
8
.0
4

A
-n
3
7
-k
5

5
.6
4

2
7
.7
2

7
4
.9
2

1
3
4
.1
9

2
5
7
.7
5

3
3
9
.2
0

3
2
5
.1
7

6
1
1
.1
2

1
0
5
5
.7
7

3
7
5
.0
2

1
2
2
.1
4

5
7
4
.0
5

5
3
2
.0
5

-
-

-
A
-n
3
7
-k
6

-
-

-
-

-
-

-
-

-
-

-
4
2
1
.1
4

-
-

-
A
-n
3
8
-k
5

1
3
5
.7
3

2
1
9
.3
7

9
8
7
.6
2

1
1
5
0
.0
5

-
-

-
-

-
-

1
1
3
0
.5
1

1
6
2
0
.5
9

-
1
0
7
6
.5
8

-
4
1
0
.1
6

A
-n
3
9
-k
5

9
7
.9
4

1
4
2
1
.0
4

2
8
7
9
.7
3

-
-

-
-

-
1
7
8
7
.9
5

6
5
8
.2
6

5
2
6
.0
7

-
-

-
-

-
A
-n
3
9
-k
6

3
5
.8
5

2
3
6
.8
6

1
6
6
9
.1
7

1
0
1
6
.0
1

-
-

2
5
5
9
.5
8

-
8
0
2
.5
9

1
3
1
2
.3
6

1
6
6
8
.2
7

-
2
9
3
7
.9
4

2
8
0
7
.1
5

-
-

A
-n
4
4
-k
6

-
-

-
-

-
-

-
-

7
6
4
.5
1

5
0
5
.5
5

7
8
1
.4
2

1
0
6
5
.1
1

2
5
3
5
.4
1

2
7
7
4
.1
5

-
5
7
3
.3
2

A
-n
4
5
-k
6

1
8
5
.6
6

2
2
4
4
.4
3

-
-

-
-

-
-

-
1
5
0
8
.4
9

2
5
4
9
.2
0

2
5
9
.8
8

-
-

-
-

A
-n
4
5
-k
7

-
-

-
-

-
-

-
-

-
-

3
3
1
4
.1
8

-
-

-
-

1
2
0
2
.4
3

A
-n
4
6
-k
7

5
0
.2
2

2
8
2
.8
4

4
4
8
.3
8

1
1
8
8
.9
3

1
5
6
3
.4
3

3
2
1
1
.1
9

1
1
7
2
.1
0

6
6
8
.8
5

5
1
.0
0

3
7
.9
1

1
3
.8
0

5
3
.6
1

3
3
.7
2

2
6
5
.4
3

1
2
8
.5
0

2
4
0
7
.5
0

A
-n
4
8
-k
7

4
4
9
.0
7

-
-

-
-

-
-

-
-

6
3
7
.1
9

5
4
4
.4
1

8
8
6
.8
7

1
7
2
8
.4
2

1
9
9
1
.2
2

-
-

47

Table 9: Computation times in seconds of branch-price-and-cut (part 2).
Instance \ p 17 18 19 20 21 22 23

E-n13-k4
E-n22-k4
E-n23-k3 2.69 14.69 11.25 3.32
E-n30-k3 403.02 201.62 101.58 293.18 - 1620.32 98.88
E-n31-k7
E-n33-k4 - - 962.13
E-n51-k5 - - - 1835.04
A-n32-k5
A-n33-k5
A-n33-k6
A-n34-k5
A-n36-k5
A-n37-k5 3258.86 - - 95.06 -
A-n37-k6
A-n38-k5
A-n39-k5 - - -
A-n39-k6 785.67
A-n44-k6
A-n45-k6 1150.90
A-n45-k7
A-n46-k7 210.92 16.96
A-n48-k7 2095.93

48

