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GENERAL INTRODUCTION 

Currently, chronic diseases are well recognized as major contributors to global 

mortality (1) and, by 2030, it is expected that these diseases will account for more 

than three-quarters of deaths worldwide. Within chronic diseases, cardiovascular 

disease (CVD) emerged as the leading cause of global mortality (2). In two decades, 

the total number of cardiovascular (CV) deaths raised from 14.4 million to 17.5 million 

and achieved nearly 20 million in 2015, accounting for 31% of all deaths worldwide 

(2). CVD is thought to be a problem of wealthy nations, whereas infectious diseases 

are considered the main cause of mortality in developing countries. However, a large 

body of epidemiological evidence showed that in low and middle income nations, CVD 

is responsible for more deaths than infectious diseases, poor maternal/perinatal 

conditions and nutritional disorders combined (3). Thus, CVD can be considered as the 

largest simple contributor to global mortality and, according to the World Health 

Organization (WHO), CVD will continue to dominate mortality trends in the close 

future (4). The worsening of CV health around the world reflects significant global 

changes in behavior and lifestyle. The “westernization” of dietary habits and 

decreased physical activity are now practices that also threaten developing countries. 

In addition, the decline in infectious diseases and improved childhood nutrition have 

contributed to the aging of populations resulting in an increasing number of 

individuals who survive to the age at which risk factors they accrued throughout 

childhood and early adulthood, manifest as overt disease. This has resulted in an 

epidemic of CVD in the developing countries comparable to the one that took place in 

the developed world in previous decades: CVD has global dimensions. 

Over the past years, a considerable amount has been learned about the determinants 

of CVD and a series of both modifiable and non-modifiable risk factors have been 

identified. Several risk factors [i.e. age, male gender, high levels of low density 

lipoprotein (LDL) cholesterol, smoking, diabetes, hypertension and family history of 

CVD] emerged from the Framingham Study (5) and are now well-recognized risk 

factors for CVD. However, these “traditional” risk factors only identify 70% of 
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individuals at risk for CV events pointing at new factors contributing to CVD 

development (6). Insulin resistance, inflammation and oxidative stress are emerging 

risk factors of paramount importance in CV risk, heavily affecting CV morbidity and 

mortality (7, 8, 9). They are closely related to pathophysiological processes, each of 

them being cause and consequence of the others in a self-perpetuating vicious cycle. 

The strict interconnection among them makes difficult to disentangle the effect of the 

single risk factor on CV system components. As experimental and epidemiologic 

research indicates, a close association between reactive oxygen species (ROS) and 

chronic inflammation exists (9). ROS can trigger the production of pro-inflammatory 

cytokines (TNFα, IL-1, IL-6), chemokines (IL-8) and pro-inflammatory transcription 

factors (NF-κB) (10) but, on the other hand, inflammation promotes oxidative stress 

(11). Oxidative stress can also lead to insulin resistance (12, 13, 14) but, at the same 

time, metabolic derangements induce oxidative stress and compromise inflammatory 

response (15) that, in turn, can causes alterations in insulin signaling pathway (13, 16). 

Insulin resistance, inflammation and oxidative stress are alterations that characterize 

a variety of chronic diseases. Impaired insulin sensitivity and subclinical low-grade 

inflammation are pervasive conditions in obesity (17, 18) and chronic kidney disease 

(19, 20) while oxidative stress is the main responsible for aging (21). 

 

OUTLINE OF THE THESIS 

The aim of this thesis is to investigate whether insulin resistance, inflammation and 

oxidative stress increase CV risk and affect survival in high-risk populations. To address 

this question, epidemiologic and genetic studies were carried out in obese individuals, 

elderly and patients with chronic kidney disease of various severity, who represent 

three populations with high CV risk. 

Schematically, the thesis is divided in two parts: Part I, which reports results from two 

cross-sectional studies, and Part II, which shows results from four prospective studies. 

Coming up, the findings are placed into perspective in the general discussion where 
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suggestions for future research are also addressed and, finally, a summary gives an 

overview of the thesis. 

In short: 

In Chapter 2, the expression profiles of pro-inflammatory and anti-inflammatory 

genes in abdominal subcutaneous and visceral adipose tissue in severely obese 

individuals are investigated to assess the specific contribution to inflammation of the 

two fat depots. It is recognized that important differences exist in the gene expression 

profile of subcutaneous and visceral adipose tissue but, with respect to inflammatory 

genes, results are controversial. In this respect, the basic hypothesis is that 

topography of adipose tissue accumulation is relevant for the risk of developing 

inflammation and, in turn, of enhancing the risk of CV complications. 

In Chapter 3, the hypothesis that genetic markers of insulin resistance modify the link 

between a pro-fibrotic cytokine at myocardial level, i.e. TIMP-1, and left ventricular 

(LV) mass and function in a group of dialysis patients is investigated. The background 

is based on two observations: 1) insulin resistance promotes myocardial fibrosis; 2) 

the genetic markers considered in this study were previously associated with LV 

hypertrophy in the same population of patients. 

In Chapter 4, the nature (causal vs non-causal) of the association between IL-6 and 

fatal and non-fatal CV event in a population of patients with CKD of various severity is 

determined by using the approach of Mendelian randomization to infer causality in an 

observational setting. 

Chapter 5 shows the results of a genetic association study testing whether the 

variability of the FTO gene contributes to explain mortality in 3 cohorts of patients 

with CKD of various severity. The issue is of relevance because diabetes and 

hypertension, two risk factors which have been associated to the FTO gene, rank as 

major risk factors for CKD and survival in this population. Results are presented as 

independent data referring to each cohort and as pooled data analyzed by a meta-

analytic approach. 
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Chapter 6 reports the results of a study focused on investigating the mutual 

relationship between resistin and the two major adipokines (i.e. adiponectin and 

leptin) and addressing the potential interaction between resistin and adiponectin on 

all-cause and CV mortality in a cohort of patients with kidney failure. 

Chapter 7 shows the results of an observational longitudinal study performed in a 

population-based cohort of elderly individuals (>65 years) from the Invecchiare in 

Chianti study and aimed at: 1) investigating the relationship between gamma-

glutamyltransferase (GGT), a multifaceted biomarker impinging upon oxidative stress, 

and all-cause and CV mortality; 2) assessing whether oxidized low-density lipoproteins 

(oxLDL), which co-localize with GGT in atherosclerotic plaques, modify the relationship 

between GGT and mortality. 

Chapter 8 presents a general discussion and alludes to future perspectives. 

Chapter 9 reports a compendium of the thesis. 

Chapter 10 is the summary of the thesis in Dutch. 
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ABSTRACT 

Background and Aims: Pro-inflammatory molecules produced by adipose tissue have 

been implicated in the risk of cardiovascular (CV) disease in obesity. We investigated 

the expression profile of 19 pro-inflammatory and 7 anti-inflammatory genes in 

subcutaneous adipose tissue (SAT) and in visceral adipose tissue (VAT) in 44 severely 

obese individuals who underwent bariatric surgery. 

Methods and Results: SAT and VAT expressed an identical series of pro-inflammatory 

genes. Among these genes, twelve were significantly more expressed in SAT than in 

VAT while just one (IL18) was more expressed in VAT. The remaining genes were 

equally expressed. Among pro-inflammatory cytokines, both IL6 and IL8 were about 

20 times more intensively expressed in SAT than in VAT. The expression of nine genes 

was highly associated in SAT and VAT. Only for 3 pro-inflammatory cytokines (IL8, IL18, 

SAA1) in SAT the gene expression in adipose tissue associated with the circulating 

levels of the corresponding gene products while no such an association was found as 

for VAT. 

Conclusions: The expression of critical pro-inflammatory genes is substantially higher 

in SAT than in VAT in individuals with morbid obesity. The variability in circulating 

levels of pro-inflammatory cytokines is, in small part and just for three pro-

inflammatory cytokines, explained by underlying gene expression in SAT but not in 

VAT. 

These results point to a compartment-specific adipose tissue contribution to 

inflammation in obesity and indicate that abdominal SAT contributes more than VAT 

to the pro-inflammatory milieu associated with severe obesity. 
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INTRODUCTION 

Adipose tissue is distributed throughout the body in discrete fat compartments which 

broadly cluster into two regions, a central and a peripheral one (1). The central region 

includes subcutaneous adipose tissue (SAT) of the thorax and the abdomen as well as 

intra-thoracic and intra-abdominal visceral adipose tissue (VAT), while peripheral fat 

consists of subcutaneous fat depots in the arms and the legs. The topography of 

adipose tissue accumulation is considered relevant for the risk of developing the 

metabolic and hemodynamic sequels of insulin resistance, including type 2 diabetes, 

dyslipidaemia and hypertension (2) but the issue remains controversial. Waist to hip 

circumference ratio, an established metric of abdominal obesity, consistently 

associates with hyperinsulinemia, glucose intolerance, type 2 diabetes, dyslipidaemia, 

hyperuricemia and cardiovascular disease (3). However, a large waist to hip ratio may 

encompass both increased SAT and VAT depots and therefore this metric does not 

allow a distinction of the underlying links of visceral and subcutaneous fat with 

hyperinsulinemia and attendant metabolic alterations. The issue is of relevance 

because VAT is generally held as the main determinant of metabolic risk (4) while SAT 

is considered either neutral or protective as for the same risk (5). In VAT, free fatty 

acids (FFA) generated by enhanced lipolysis directly augment lipid synthesis and 

gluconeogenesis in the liver thereby triggering insulin resistance, hypertension and 

atherosclerosclerotic complications (4). However, visceral fat is just a minor segment 

of total fat depots (less than 1/5 of whole body fat tissue) contributing to about 15% 

of the whole body FFA pool which is made up mainly by non-splanchnic adipose tissue 

(3, 6). 

Adipose tissue is also an abundant source of inflammatory cytokines and an excess of 

fat mass has been associated with a chronic subclinical inflammatory state (7). It is 

recognized that important differences exist in the gene expression profile of 

abdominal SAT and VAT (8-10) and that these two fat depots independently enhance 

the risk of CV complications (11). However, with respect to inflammatory genes, only 

few studies explored a large set of pro-inflammatory and anti-inflammatory cytokines 
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(12, 13) and the results are controversial. Further studies encompassing multiple 

inflammatory genes in SAT and VAT are of obvious relevance to clarify the relative role 

of these two adipose tissue compartments in fat-dependent inflammatory 

mechanisms in human obesity. With this background in mind, we compared the 

expression profiles of 19 major pro-inflammatory and 7 anti-inflammatory genes in 

SAT and VAT in 44 severely obese individuals. 

 

SUBJECTS AND METHODS 

The protocol of the study was approved by the local ethical committee and all subjects 

gave informed, written consent to their participation into the study.  

Subjects 

The study population was recruited from the Division of General Surgery 1 of Brescia 

and included 44 incident obese patients who underwent bariatric surgery 

(biliopancreatic diversion in 11; gastric bypass in 10; mini-gastric bypass in 22; 

abdominal plastic in 1).  

Laboratory measurements 

Blood sampling was performed early in the morning after an overnight fast and plasma 

was stored at - 80°C until batch analyses. Serum glucose, cholesterol, triglycerides, 

albumin, haemoglobin, urea, uric acid, bilirubin, GOT, GPT, creatinine and C-reactive 

protein measurements were made using standard methods implemented in a 

multichannel analyser in the routine clinical laboratory. Insulin (MP Biomedicals, NY, 

USA) as well as adiponection and leptin (Linco Reasearch, USA) were measured by 

radioimmunoassay kits. Enzyme-linked immunosorbent assays (ELISA) were applied to 

measure plasma levels of IL1, IL6, TNF, IL18, resistin, PAI, VCAM1 (R&D Systems, 

Inc., Minneapolis, USA), IL8, SAA1 (Invitrogen, Carlsbad, CA, USA) and visfatin 

(Adipogen International, Inc., San Diego, USA).  

Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated 

according the formula HOMA-IR=[fasting insulin concentration (U/mL) x fasting 

glucose concentration (mmol/L)]/22.5.  
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Adipose tissue sampling and gene expression analysis  

SAT and VAT from abdominal region was harvested at the beginning of surgical 

intervention and the adipose samples were collected in RNAlater (Ambion, Life 

Technologies, USA) and stored at -80°C until processing for RNA extraction. Total RNA 

was isolated from approximately 80-mg frozen SAT and VAT by means of the RNeasy 

Lipid Tissue Mini Kit (Qiagen Sciences, USA), according to the manufacturer’s 

instructions. Total RNA was treated with the DNA-free kit (Ambion, Austin, TX, USA) 

to digest contaminating genomic DNA. The concentration of the RNA samples was 

determined spectrophotometrically (NanoDrop ND-1000, Thermo Fisher Scientific 

Inc.). Single-stranded complementary DNA (cDNA) was synthesized using High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) 

following the manufacturer’s protocol. Pre-validated TaqMan Gene Expression Assays 

from Applied Biosystems were used to quantify the expression of pro-inflammatory 

genes (IL6, IL6R, IL8, CXCR1, CXCR2, TNF, IL1, IL1R1, TGF, MCP1, IL18, PAI, SAA1, 

TLR4, ICAM1, VCAM1, Visfatin, Resistin, Leptin) and anti-inflammatory genes (IL2, IL4, 

IL10, IL13, SOCS3, CD163, Adiponectin). The RT-PCR was performed by a 7300 Real 

Time PCR System (Applied Biosystems, Foster City, CA, USA). All genes were run in 

duplicate and negative controls were introduced in each plate. Target genes were 

considered unexpressed if the threshold cycle (Ct) value > 38. All values were 

normalized to glyceraldehyde-3-phosphate dehydrogenase (GADPH) gene expression 

to correct for variation in RNA amounts and efficiency of reverse transcription. The 

relative quantification value of the target genes was calculated using the comparative 

Ct method, expressed as 2–[delta][delta]Ct (fold difference), and reported as arbitrary units 

(AU). 

Gene expression in pooled samples  

To preliminary test the gene expression of the 26 target genes, we performed a 

pooling analysis using a SAT and VAT pool. Each pool was built using an identical 

quantity of SAT and VAT mRNA from every patient. Pooled mRNA was reverse 

transcribed and the resulting cDNA was amplified. The gene expression of the target 
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genes in the two pools was compared and only those differentially expressed in SAT 

and VAT were further analysed on individual basis. To identify differentially expressed 

target genes we adopted a conservative approach consisting of a difference in 

SAT/VAT gene expression ratio more than 50%. 

Histological analysis of adipose tissue samples 

SAT and VAT samples obtained from 14 patients were formalin-fixed and paraffin-

embedded. Four micron tissue sections were stained for hematoxylin and eosin and 

immunostained using a Bond MaxTM autostainer (Menarini Diagnostics, Florence, 

Italy). Standard immunoperoxidase staining protocols for CD45 - a pan-leukocyte 

antigen - (Clone RP2/18 and RP2/22,  Leica Microsystems, Newcastle upon Tyne, UK) 

and CD163 – an antigen for a macrophage subpopulation of major relevance for the 

anti-inflammatory response - (Clone 10D6, Thermo Scientific, Fremont, CA) were 

followed. In all the adipose tissue samples, cell automatic counting on CD163 stained 

sections was performed on digitalized slides (Aperio Scanscope, CA, USA) by analyzing 

the whole section using IHC Nuclear algorithm. Data were expressed as number of 

cells/cm2.  

Statistical analysis 

Data are expressed as mean ± SD (normally distributed data), median and inter-

quartile range (non-normally distributed data) or as percent frequency, as 

appropriate. Within groups comparisons were made by the Wilcoxon Rank test. The 

association between two continuous variables considered simultaneously was 

assessed by Pearson product moment correlation coefficients (r) and P values. 

Variables having a positively skewed distribution were log transformed (Ln) before the 

correlation study. The correlation coefficient was calculated with and without the 

exclusion of the outliers as identified by Mahalanobis distance test (14). The 

agreement between gene expression in VAT and SAT was investigated by calculating 

the shared variance (r2) of tested genes in visceral and subcutaneous fat.  Because our 

study focuses on a specific etiological hypothesis and on a strong a priori we did not 

account for multiple testing (15). 
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Study power 

In a previous paper in severe obese women (13), the ratio between SAT and VAT gene 

expression of a major inflammatory biomarker (IL6) was reported to be 3. With this 

background in mind, we calculated that by enrolling at least 44 obese individuals 

(including a 10% attrition rate) our study will achieve 80% power to detect as 

significant (alpha-error=0.01) a ratio >3 in IL6 gene expression between SAT and VAT. 

We assumed that the ratio in the gene expression between SAT and VAT of all 

inflammatory and anti-inflammatory molecules considered in the study was equal or 

greater of that calculated for IL6.  

 

RESULTS 

Demographic, somatometric and clinical characteristics of the patients 

Demographic, somatometric and clinical characteristics of the patients are reported 

in Table 1. 

The mean age of the patients was 41±9 years (11 M and 33 F). Obesity was of grade I 

(BMI ranging from 30.0 to 34.9 kg/m2) in 4 cases (9%), of grade 2 (BMI ranging from 

35.0 to 39.9 kg/m2) in 12 cases (27%) and of grade III in the remaining 28 cases (64%). 

The median value of glycemia was 99 mg/dL and only 4 were diabetic (3 on oral 

hypoglycemic drugs and 1 on insulin treatment). Serum cholesterol was on average 

199 mg/dL and was above the upper limit of the normal range (200 mg/dL) in 22 cases. 

Blood pressure (BP) was 127±8/79±8 mmHg. No patient had a BP exceeding 140/90 

mmHg and only 3 were on anti-hypertensive treatment (2 on mono-therapy with 

sartans or β-blockers or angiotensin-converting enzyme inhibitors and the remaining 

one on triple therapy with a β-blocker, an angiotensin-converting enzyme inhibitor 

and a diuretic). Six patients were habitual smokers. None of the patients was suffering 

from cancer, thyroid disease, liver disease or acute infections. 
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Table 1. Main demographic, somatometric and clinical characteristics of the study patients 

 

   (n = 44) 

Age (years) 41±9 

Male sex n. (%) 11 (25) 

BMI (kg/m
2
) 43±7 

Diabetics n. (%) 4 (9) 

Smokers n. (%) 6 (14) 

On-anti-hypertensive treatment n. (%) 3 (7) 

On anti-diabetics treatment n. (%) 4 (9) 

Systolic BP (mmHg) 127±8 

Diastolic BP (mmHg) 79±6 

Total cholesterol (mg/dL) 199±40 

Triglycerides (mg/dl)  121 (77-169) 

Haemoglobin (g/dL) 13.1±1.7 

Albumin (g/dL) 4.4±0.2 

Glucose (mmol/L) 99 (92-115) 

Insulin (µUI/mL) 37 (31-53) 

HOMA-IR (µU/mL*mmol/L) 1.26±0.8 

Azotemia (mg/dl) 33±7 

Uric acid (mg/dl) 5.6±1.6 

Total Bilirubin (mg/dl) 0.4 (0.3-0.7) 

GOT (UI/L) 16.5 (12.2-25.7) 

GPT (UI/L) 30.0 (21.2-44.0) 

CRP (mg/L) 6.4 (3.3-15.6) 

Creatinine (mg/dl) 0.69±0.15 

Data are expressed as mean± SD, median and inter-quartile 
range or as percent frequency, as appropriate 

 

Preliminary gene expression analysis in pooled samples 

From a total number of 26 cytokines tested in pooled samples (Figure 1), 13 genes 

including 12 pro-inflammatory genes (IL6, IL8, CXCR1, CXCR2, TNF, IL1, IL18, PAI, 
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SAA1, visfatin, resistin, leptin) and just one anti-inflammatory gene (adiponectin) 

resulted to be  differentially expressed in SAT compared with VAT. Ten genes were 

equally expressed (IL1R1, IL6R, IL10, TGFβ, MCP1, ICAM1, VCAM1, TLR4, SOCS3, 

CD163) in SAT and VAT and 3 anti-inflammatory genes were unexpressed (IL2, IL4 and 

IL13) in both fat compartments (Figure 1).  

 

Figure 1. Flowchart representing the process for analyzing pro and anti-inflammatory gene 

expression in paired samples of SAT and VAT from 44 severely obese individuals 

 

 

 

List of adipose tissue pro and anti-inflammatory genes tested 

Pro-inflammatory genes (n=19) 

IL1: Interleukin-1 beta; IL1R1: Interleukin 1 receptor; TNF: Tumor necrosis factor alpha; IL6: Interleukin 

6; IL6R: Interleukin 6 receptor; TGFTransforming growth factor beta; IL8: Interleukin 8; CXCR1: Interleukin 
8 receptor 1; CXCR2: Interleukin 8 receptor 2; IL18: Interleukin 18; MCP1: Monocyte chemoattractant 
protein 1; SAA1: Serum amyloid A1; TLR4: Toll-like receptor 4; ICAM1: Intercellular adhesion molecule 1; 
VCAM1: Vascular cell adhesion molecule 1; PAI: Plasminogen activator inhibitor; LEP: Leptin; RETN: Resistin; 
PBEF: Pre-B cell colony-enhancing factor/visfatin 

Anti-inflammatory genes (n=7) 

IL2: Interleukin 2; IL4: Interleukin 4; IL10: Interleukin 10; IL13: Interleukin 13; SOCS3: Suppressor of cytokine 
signaling 3; CD163: Cluster of differentiation 163; ADIPOQ: Adiponectin 

 

Gene expression analysis at individual level 

On the basis of findings in pooled samples, we undertook detailed analyses in 

individual patients. 
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Among the 13 differentially expressed genes, adiponectin, leptin, resistin and visfatin 

gene expressions were from 1.6 to 5.1 fold higher in SAT than in VAT (Table 2) and this 

was also true for all, but one inflammatory cytokine (IL18) which, instead, was 12 fold 

more expressed in VAT (Table 2).  

 

Table 2. Gene expression measurements of pro and anti-inflammatory cytokines in paired 

samples of SAT and VAT  

Gene Symbol 
SAT 

median (IQR) 

VAT 

median (IQR) 
 SAT/VAT 

P 

value 

Pro-inflammatory genes      

Tumor necrosis factor TNF  1.05 (0.71-1.57) 0.64 (0.36-1.20) 1.6 0.006 

Interleukin1  IL 1 0.46 (0.16-0.97) 0.09 (0.04-0.41) 5.1 0.001 

Interleukin 6 IL6 0.48 (0.06-1.00) 0.02 (0.003-0.325) 19.2 <0.001 

Interleukin 8 IL8 0.51 (0.14-0.99) 0.02 (0.003-0.305) 20.4 <0.001 

Interleukin 8 receptor, 
type 1 

CXCR1 0.23 (0.07-0.63) 0.05 (0.01-0.16) 4.6 <0.001 

Interleukin 8 receptor, 
type 2 

CXCR2 0.21 (0.10-0.83) 0.06 (0.01-0.20) 3.5 <0.001 

Interleukin 18 IL18 0.69 (0.50-1.03) 8.40 (3.50-15.20) 0.08 <0.001 

Serum amyloid A1 SAA1 1.00 (0.70-1.54) 0.63 (0.34-1.09) 1.6 0.03 

Plasminogen Activator 
Inhibitor  

PAI 1.07 (0.51-3.97) 0.31 (0.07-1.12) 3.5 <0.001 

Leptin LEP 0.77 (0.60-1.00) 0.24 (0.10-0.42) 3.2 <0.001 

Resistin RETN 0.71 (0.43-1.30) 0.25 (0.16-0.42) 2.8 <0.001 

Visfatin PBEF 0.51 (0.25-1.11) 0.10 (0.04-0.52) 5.1 <0.001 

Anti-inflammatory genes      

Adiponectin ADIPOQ 2.02 (1.19-3.13) 0.96 (0.58-1.76) 2.1 0.001 

Gene expression measurements (3rd and 4th columns) are expressed as arbitrary units and reported as 
median (inter-quartile range). The SAT/VAT ratio (5th column) represents the fold difference in cytokine 
gene expression measurements between SAT and VAT. In the last column the P value (Wilcoxon rank-sum 
test) of the difference between SAT and VAT gene expression measurements is also given. 

 

The expression of IL6 and IL8 genes was about 20 times higher in SAT than in VAT. Of 

note, the expression level of seven pro-inflammatory genes (IL1, IL6, IL8, CXCR1, 

CXCR2, resistin and visfatin) was strongly related (r2 ranging from 0.24 to 0.35 and 
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P<0.001) in SAT and VAT while the remaining two genes (IL18 and PAI) showed much 

weaker associations (r2 =0.10 and r2 =0.12, respectively) (Figure 2). 

Figure 2. Correlation between cytokines gene expression in SAT and VAT. Gene expression 

measurements are expressed as arbitrary, Log-transformed units (Ln AU). Data are Pearson 

correlation coefficients (r), r2 and P value 

 

 

No relationship was found between SAT and VAT gene expression for the remaining 4 

genes (adiponectin, leptin, TNF and SAA1) (P>0.20). A separate analysis by gender 

fully confirmed these results (data not shown). 

Functional link between expression of pro- and anti-inflammatory genes and 

circulating molecules  

Eleven gene products (TNFIL1, IL6, IL8, IL18, SAA1, PAI, leptin, adiponectin, 

resistin, visfatin) were measured in plasma. Among these, only four inflammatory 

cytokines (IL8, IL18, SAA1, adiponectin) correlated with the corresponding gene 

expression in SAT or VAT. Plasma IL18 and SAA1 were directly related to the 

corresponding SAT gene expression while IL8 associated inversely with the 

corresponding gene expression (Figure 3). No relationship was observed between 

plasma levels of these three pro-inflammatory molecules and VAT gene expression of 

the corresponding genes (Figure 3). Among anti-inflammatory cytokines, only 
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adiponectin gene expression in VAT showed an association with the corresponding 

gene product levels in plasma (Figure 3).  

 

Figure 3. Correlation between plasma levels of cytokines and the corresponding gene 

expression measurements in SAT or VAT. The arrows indicate the outliers identified by 

Mahalanobis distance test (see Ref. 14). The strength of these associations did not materially 

change after the inclusion of the outliers (all P≤0.02) 

 

 

Immune cells counting in SAT and VAT 

Given the specific involvement of immune cells in obesity-related inflammation, in a 

subgroup of 14 patients we counted CD163+ macrophages (a subpopulation of major 

relevance for the anti-inflammatory response) in SAT and VAT. We found that there 

was no difference in the number of CD163+ macrophages between SAT and VAT 

(3418±1353 n/cm2 vs 3732±1396 n/cm2, P=0.54), indicating that differences in the 

inflammatory status of the two fat compartments do not depend on the number of 

these cells.  

 

DISCUSSION 

In this study we quantified the gene expression of a large set of pro- and anti-

inflammatory cytokines in abdominal SAT and VAT in severe obesity. The vast majority 

of pro-inflammatory genes were more expressed in SAT than in VAT whereas just one 

pro-inflammatory gene was more expressed in VAT, suggesting a stronger 

contribution of subcutaneous adipose compartment to the low-grade obesity-related 

inflammation.  
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Gene expression in SAT and VAT 

Central adiposity is more strongly associated with adverse CV outcomes than 

peripheral adiposity (3). Although this risk excess is traditionally attributed to visceral 

fat (4), the predominant component of fat mass in central adiposity is subcutaneous 

rather than visceral (16). 

We found that SAT and VAT express the same set of inflammatory cytokines in obese 

patients and that SAT, rather than VAT, is the fat compartment expressing the higher 

pro-inflammatory profile. This was true for fundamental fat cytokines like TNF and 

IL6, the expression levels of these cytokines being from 1.6 to 20-fold greater in this 

fat compartment than in VAT (Table 2). These findings accord with previous studies 

focusing on TNF and IL6 (10, 13, 17) and add weight to the contention that IL1 gene 

expression is upregulated (10, 13), rather than downregulated (18), in SAT of obese 

patients. Furthermore, for the first time we show that IL8 is upregulated in SAT and 

that the gene expression of this chemokine is more than 20 times higher in SAT than 

in VAT. Such a remarkable increase of IL8 mRNA in SAT was paralleled by a significant 

increase of the gene expression of its corresponding receptors, i.e. CXCR1 and CXCR2, 

in the same fat compartment (Table 2), further suggesting an augmented role for IL8 

signalling in SAT than in VAT in obese individuals. We also document an upregulated 

expression in SAT of other two important pro-inflammatory molecules like SAA1 

(Table 2) which is involved in early response to injury, and PAI which is responsible for 

the negative regulation of the fibrinolytic system. 

Leptin, Resistin and Visfatin are potent pro-inflammatory peptides. Consistently with 

previous studies (10, 12), we observed a 3-fold higher leptin and resistin gene 

expression in SAT. We found a similar pattern for visfatin, an insulin-mimetic peptide 

typically expressed in VAT. Of note, adiponectin, an anti-inflammatory cytokine, 

followed the same pattern, being twice more expressed in SAT than in VAT. IL18 was 

the sole pro-inflammatory cytokine showing a reverse expression pattern, being 

upregulated in the visceral rather than in the subcutaneous fat compartment. IL18 is 

a pleiotropic molecule promoting Th1 cell differentiation, cell-mediated cytotoxicity 
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and inflammation which also induces the synthesis of the anti-inflammatory cytokine 

IL10 (19) and limits the release of chemokines such as IL8 (20). IL18-deficiency in mice 

causes hyperphagia, obesity, diabetes and atherosclerosis by massive fat deposition 

in the arterial walls (21). Thus, IL18 downregulation in SAT is in keeping with the 

hypothesis that the overall expression profile of cytokines in SAT denotes a more pro-

atherogenic, metabolically adverse attitude.  

Although in our study the expression of pro-inflammatory genes was systematically 

upregulated in SAT, we found a strong and positive correlation between SAT and VAT 

gene expression for the majority of the pro-inflammatory genes studied (i.e. IL1, IL6, 

IL18, IL8, CXCR1, CXCR2, resistin, visfatin and PAI) indicating that, though at different 

rates, the two main fat compartments undergo qualitatively similar changes in the 

expression profile of inflammatory cytokines.  

Monocytes/macrophages typically accumulate in adipose tissue and are primarily 

responsible for the release of inflammatory mediators in this tissue (13, 22). 

Macrophage infiltration is of comparable extent in SAT and VAT (23) and we show that 

the number of M2 macrophages, i.e. CD163+ macrophages with anti-inflammatory 

potential, is identical in SAT and in VAT suggesting that in obesity a higher 

transcriptional activity rather than an expansion of M2 macrophages pool explains the 

increased pro-inflammatory gene expression of subcutaneous fat compartment. 

Gene expression profile and circulating gene products 

Circulating levels of inflammatory cytokines like TNF (24), IL6 (25), IL8 (26), IL1 (27), 

IL18 (28), SAA1 (25), leptin (29) and resistin (30) are potent predictors of adverse 

cardiovascular outcomes. Adipose tissue cytokines mainly act as autacoids in the fat 

compartment. Interestingly, we found a strong association between adipose tissue 

gene expression and the corresponding plasma levels for 4 inflammatory cytokines 

(IL8, IL18, SAA1, adiponectin). Specifically, we found a positive correlation between 

SAT gene expression and plasma levels of IL18 and SAA1 and an inverse one in the 

same fat compartment between gene expression and plasma levels of IL8 (Figure 3). 

Adiponectin plasma levels were positively associated with adiponectin gene 
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expression only in VAT (Figure 3). Overall these findings provide circumstantial 

evidence that the adipose tissue in vivo may contribute to regulate circulating levels 

of, at least, some cytokines.  

A potential limitation in our study is that because patients in this series had a low 

prevalence of diabetes and hypertension, selection bias cannot be excluded. 

In conclusion, we show compartment-specific adipose tissue changes in inflammation-

related genes in obesity and support the hypothesis that abdominal SAT contributes 

to the pro-inflammatory burden of severe obesity more than VAT, an observation also 

in keeping with the association of 3 pro-inflammatory cytokine genes with the 

corresponding gene product plasma levels. Whether the augmented pro-

inflammatory profile of SAT in obese patients predicts CV events warrant further 

studies in this high risk population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Pro- and anti-inflammatory cytokine gene expression in subcutaneous and visceral fat in severe obesity 

 

37 

 

REFERENCES 

1. Frühbeck G. Overview of adipose tissue and its role in obesity and metabolic 
disorders. Methods in Molecular Biology 2008; 456: 1–22 

2. Evans DJ, Hoffman RG, Kalkhoff RK, Kissebah AH. Relationship of body fat 
topography to insulin sensitivity and metabolic profiles in premenopausal 
women. Metabolism 1984; 33: 68-75   

3. Garg A. Regional adiposity and insulin resistance. J Clin Endocrinol Metab 2004; 
89: 4206–4210 

4. Matsuzawa Y, Shimomura I, Nakamura T, et al. Pathophysiology and pathogenesis 
of visceral fat obesity. Obes Res 1995; 3 Suppl 2: 187S-194S 

5. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in 
subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin 
Endocrinol Metab 2011; 96: E1756-1760 

6. Jensen MD, Johnson CM. Contribution of leg and splanchnic free fatty acid (FFA) 
kinetics to postabsorptive flux in men and women. Metabolism 1996; 45: 662–
666 

7. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white 
adipose tissue. Br J Nutr 2004; 92: 347–355 

8. Vohl MC, Sladek R, Robitaille J, et al. A survey of genes differentially expressed in 
subcutaneous and visceral adipose tissue in men. Obes Res 2004; 12: 1217-1222 

9. Wolfs MG, Rensen SS, Bruin-Van Dijk EJ, et al. Co-expressed immune and 
metabolic genes in visceral and subcutaneous adipose tissue from severely obese 
individuals are associated with plasma HDL and glucose levels: a microarray 
study. BMC Medical Genomics 2010; 3: 34  

10. Samaras K, Botelho NK, Chisholm DJ, Lord RV. Subcutaneous and visceral adipose 
tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 
2010; 18: 884-889 

11. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous 
adipose tissue compartments: association with metabolic risk factors in the 
Framingham Heart Study. Circulation 2007; 116: 39– 48 

12. Dolinkova M, Dostalova I, Lacinova Z, et al. The endocrine profile of subcutaneous 
and visceral adipose tissue of obese patients. Mol Cell Endocrinol 2008; 291: 63-
70 

13. Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced 
in obesity and primarily by the nonfat cells: a review. Mediators Inflamm 2010; 
2010: 513948 

14. Gnanadesikan R, Kettenring JR. Robust estimates, residuals, and outlier detection 
with multiresponse data. Biometrics 1972; 28: 81-124 

15. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology 
1990; 1: 43-46 

16. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between 
visceral and subcutaneous fat. Curr Diabetes Rev 2006; 2: 367-373 

http://www.ncbi.nlm.nih.gov/pubmed?term=McLaughlin%20T%5BAuthor%5D&cauthor=true&cauthor_uid=21865361
http://www.ncbi.nlm.nih.gov/pubmed?term=Lamendola%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21865361
http://www.ncbi.nlm.nih.gov/pubmed?term=Liu%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21865361
http://www.ncbi.nlm.nih.gov/pubmed?term=Abbasi%20F%5BAuthor%5D&cauthor=true&cauthor_uid=21865361
http://www.ncbi.nlm.nih.gov/pubmed/21865361
http://www.ncbi.nlm.nih.gov/pubmed/21865361
http://www.ncbi.nlm.nih.gov/pubmed?term=Samaras%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20019678
http://www.ncbi.nlm.nih.gov/pubmed?term=Botelho%20NK%5BAuthor%5D&cauthor=true&cauthor_uid=20019678
http://www.ncbi.nlm.nih.gov/pubmed?term=Chisholm%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=20019678
http://www.ncbi.nlm.nih.gov/pubmed?term=Lord%20RV%5BAuthor%5D&cauthor=true&cauthor_uid=20019678
http://www.ncbi.nlm.nih.gov/pubmed?term=Fain%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=20508843
http://www.ncbi.nlm.nih.gov/pubmed/20508843


Chapter 2 

38 

 

17. Hube F, Birgel M, Lee YM, Hauner H. Expression pattern of tumour necrosis factor 
receptors in subcutaneous and omental human adipose tissue: role of obesity 
and non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1999; 29: 672-678 

18. Moschen AR, Molnar C, Enrich B, et al. Adipose and Liver Expression of Interleukin 
(IL)-1 Family Members in Morbid Obesity and Effects of Weight Loss. Mol Med 
2011; 17: 840–845 

19. Fehniger TA, Shah MH, Turner MJ, et al. Differential cytokine and chemokine gene 
expression by human NK cells following activation with IL-18 or IL-15 in 
combination with IL-12: implications for the innate immune response. J Immunol 
1999; 162: 4511-4520 

20. Puren AJ, Razeghi P, Fantuzzi G, Dinarello CA. Interleukin-18 enhances 
lipopolysaccharide-induced interferon-gamma production in human whole 
blood cultures. J Infect Dis 1998; 178: 1830-1834 

21. Netea MG, Joosten LA, Lewis E, et al. Deficiency of interleukin-18 in mice leads to 
hyperphagia, obesity and insulin resistance. Nat Med 2006;12: 650-656 

22. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage 
accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808 

23. Koenen TB, Stienstra R, van Tits LJ, et al. The inflammasome and caspase-1 
activation: a new mechanism underlying increased inflammatory activity in 
human visceral adipose tissue. Endocrinol 2011; 152: 3769-3778 

24. Ridker PM, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and 
increased risk of recurrent coronary events after myocardial infarction. 
Circulation 2000; 101: 2149-2153 

25. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers 
of inflammation in the prediction of cardiovascular disease in women. N Engl J 
Med 2000; 342: 836-843 

26. Rothenbacher D, Muller-Scholze S, Herder C, et al. Differential expression of 
chemokines, risk of stable coronary heart disease and correlation with 
established cardiovascular risk markers. Arterioscler Thromb Vasc Biol 2006; 26: 
194-199 

27. Di Iorio A, Ferrucci L, Sparvieri E, et al. Serum IL-1beta levels in health and disease: 
a population-based study. “The InCHIANTI study”. Cytokine 2003; 22: 198-205 

28. Blankenberg S, Luc G, Ducimetière P, et al. Interleukin-18 and the risk of coronary 
heart disease in European men: the Prospective Epidemiological Study of 
Myocardial Infarction (PRIME). Circulation 2003; 108: 2453-2459 

29. Wallace AM, McMahon AD, Packard CJ, et al. Plasma leptin and the risk of 
cardiovascular disease in the West of Scotland Coronary Prevention Study 
(WOSCOPS). Circulation 2001; 104: 3052–3056 

30. Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of 
atherosclerosis in humans. Circulation 2005; 111: 932–93 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hube%20F%5BAuthor%5D&cauthor=true&cauthor_uid=10457150
http://www.ncbi.nlm.nih.gov/pubmed?term=Birgel%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10457150
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20YM%5BAuthor%5D&cauthor=true&cauthor_uid=10457150
http://www.ncbi.nlm.nih.gov/pubmed?term=Hauner%20H%5BAuthor%5D&cauthor=true&cauthor_uid=10457150
http://www.ncbi.nlm.nih.gov/pubmed/10457150
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moschen%20AR%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Molnar%20C%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Enrich%20B%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=Fehniger%20TA%5BAuthor%5D&cauthor=true&cauthor_uid=10201989
http://www.ncbi.nlm.nih.gov/pubmed?term=Shah%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=10201989
http://www.ncbi.nlm.nih.gov/pubmed?term=Turner%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=10201989
http://www.ncbi.nlm.nih.gov/pubmed/10201989
http://www.ncbi.nlm.nih.gov/pubmed/9815245
http://www.ncbi.nlm.nih.gov/pubmed/9815245
http://www.ncbi.nlm.nih.gov/pubmed/9815245
http://www.ncbi.nlm.nih.gov/pubmed?term=Netea%20MG%5BAuthor%5D&cauthor=true&cauthor_uid=16732281
http://www.ncbi.nlm.nih.gov/pubmed?term=Joosten%20LA%5BAuthor%5D&cauthor=true&cauthor_uid=16732281
http://www.ncbi.nlm.nih.gov/pubmed?term=Lewis%20E%5BAuthor%5D&cauthor=true&cauthor_uid=16732281
http://www.ncbi.nlm.nih.gov/pubmed/16732281
http://www.ncbi.nlm.nih.gov/pubmed?term=Weisberg%20SP%5BAuthor%5D&cauthor=true&cauthor_uid=14679176
http://www.ncbi.nlm.nih.gov/pubmed?term=McCann%20D%5BAuthor%5D&cauthor=true&cauthor_uid=14679176
http://www.ncbi.nlm.nih.gov/pubmed?term=Desai%20M%5BAuthor%5D&cauthor=true&cauthor_uid=14679176
http://www.ncbi.nlm.nih.gov/pubmed/14679176
http://www.ncbi.nlm.nih.gov/pubmed?term=Ridker%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Rifai%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed?term=Pfeffer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10801754
http://www.ncbi.nlm.nih.gov/pubmed/?term=elevation+of+tumor+necrosis+factor+-+alpha+and+increased+risk+of+recurrent
http://www.ncbi.nlm.nih.gov/pubmed?term=Ridker%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=10733371
http://www.ncbi.nlm.nih.gov/pubmed?term=Hennekens%20CH%5BAuthor%5D&cauthor=true&cauthor_uid=10733371
http://www.ncbi.nlm.nih.gov/pubmed?term=Buring%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=10733371
http://www.ncbi.nlm.nih.gov/pubmed?term=Rifai%20N%5BAuthor%5D&cauthor=true&cauthor_uid=10733371
http://www.ncbi.nlm.nih.gov/pubmed/10733371
http://www.ncbi.nlm.nih.gov/pubmed/10733371
http://www.ncbi.nlm.nih.gov/pubmed?term=Di%20Iorio%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12890453
http://www.ncbi.nlm.nih.gov/pubmed?term=Ferrucci%20L%5BAuthor%5D&cauthor=true&cauthor_uid=12890453
http://www.ncbi.nlm.nih.gov/pubmed?term=Sparvieri%20E%5BAuthor%5D&cauthor=true&cauthor_uid=12890453
http://www.ncbi.nlm.nih.gov/pubmed/?term=serum+IL-1+beta+levels+in+health+and+disease%3A+a+population-based+study
http://www.ncbi.nlm.nih.gov/pubmed?term=Blankenberg%20S%5BAuthor%5D&cauthor=true&cauthor_uid=14581397
http://www.ncbi.nlm.nih.gov/pubmed?term=Luc%20G%5BAuthor%5D&cauthor=true&cauthor_uid=14581397
http://www.ncbi.nlm.nih.gov/pubmed?term=Ducimeti%C3%A8re%20P%5BAuthor%5D&cauthor=true&cauthor_uid=14581397
http://www.ncbi.nlm.nih.gov/pubmed/14581397


 

 

 

Tissue inhibitor of metalloproteinases (TIMP-1), 
genetic markers of insulin resistance and 
cardiomyopathy in patients with kidney failure 

Spoto B, Testa A, Parlongo RM, Tripepi G, D'Arrigo G, Mallamaci F, Zoccali C. 

Nephrol Dial Transplant. 2012;27:2440-244 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

http://www.ncbi.nlm.nih.gov/pubmed/22199358
http://www.ncbi.nlm.nih.gov/pubmed/22199358
http://www.ncbi.nlm.nih.gov/pubmed/22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Spoto%20B%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Testa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parlongo%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tripepi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=D%27Arrigo%20G%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mallamaci%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zoccali%20C%5BAuthor%5D&cauthor=true&cauthor_uid=22199358
http://www.ncbi.nlm.nih.gov/pubmed/?term=spoto+b+and+timp1


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TIMP-1, genetic markers of insulin resistance and cardiomyopathy in patients with kidney failure 

 

41 

 

ABSTRACT 

Background: Left ventricular hypertrophy (LVH) is a major cardiovascular (CV) 

complication in patients with kidney failure and an association between 

polymorphisms in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) 

gene, a genetic marker of insulin resistance, and LVH and LV concentric remodelling 

has been recently documented in these patients. 

Aims: Since myocardial fibrosis is a prominent feature in LVH induced by insulin 

resistance, we tested the hypothesis that the interaction between ENPP1 rs1974201 

and rs9402349 polymorphisms and the Tissue Inhibitor of Metalloproteinases (TIMP-

1) - a pro-fibrotic protein which inhibits extracellular matrix degradation - is implicated 

in concentric LVH and diastolic dysfunction in a cohort of 223 dialysis patients. 

Results: Both ENPP1 polymorphisms rs1974201 and rs9402349 were in Hardy-

Weinberg equilibrium in dialysis patients. In an analysis stratified by ENPP1 rs1974201 

polymorphism, circulating levels of TIMP-1 in GG patients were coherently associated 

with two markers of concentric remodelling (RWT and LV mass to volume ratio) as 

well as with a marker of diastolic dysfunction (E/A ratio) (P ranging from 0.005 to 0.02) 

whereas no such associations existed in CC or CG patients. These observations suggest 

that the rs1974201 modifies the relationship between TIMP-1 and LV geometry and 

diastolic dysfunction. Accordingly, in a multiple regression model, an identical increase 

of TIMP-1 (100 ng/ml) was associated with an increase of 22% in RWT, 14% in LV mass 

to volume ratio and 29% in E/A ratio in GG patients but with almost no change (from 

-0.22 to 3.78%) in these echocardiographic indices in the remaining patients (P for the 

effect modification <0.024). The rs9402349 did not modify the relationship between 

TIMP-1 and LV geometry and function. 

Conclusion: In dialysis patients, the ENPP1 rs1974201 polymorphism modifies the 

association between TIMP-1 and LV geometry and diastolic function. These results are 

consistent with the hypothesis that insulin resistance is involved not only in LVH but 

also in myocardial fibrosis, an alteration of primary importance in the high risk of this 

population. 
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INTRODUCTION 

Left ventricular hypertrophy (LVH) is a pervasive complication of kidney failure and a 

strong predictor of death and adverse clinical outcomes in this population (1). From a 

structural point of view, cardiomyopathy in kidney failure is characterized by 

cardiomyocytes hypertrophy accompanied by prominent fibrosis. LV fibrosis depends 

on an altered balance between the accumulation and breakdown of cardiac 

extracellular matrix, a process regulated by matrix metalloproteinases (MMPs), a 

series of enzymes which are in turn inhibited by specific inhibitors [tissue inhibitors of 

metalloproteinases (TIMPs)]. Over-expression of TIMP-1 was observed in parallel with 

an increased LV mass in experimental models of pressure overload (2) and circulating 

levels of TIMP-1 were associated with LVH and LV diastolic impairment in individuals 

in the general population in the Framingham heart study (3) and in hypertensive 

patients as well (4-6). TIMP-1 is currently considered as a promising marker of 

myocardial fibrosis in cardiomyopathies (7, 8). 

The ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene is a well 

characterized genetic marker of insulin resistance since it codes for a membrane 

glycoprotein that inhibits insulin receptor autophosphorylation thus altering the 

intracellular insulin signalling (9). In a recent study, we have found that two 

polymorphisms (i.e. rs1974201 and rs9402349) in the ENPP1 gene are associated with 

myocardial hypertrophy and LV concentric remodelling in dialysis patients (10). Since 

there is coherent evidence that insulin resistance promotes myocardial fibrosis (11), 

we investigated the hypothesis that genetic markers of insulin resistance in this 

population modify the link between a prototypic, pro-fibrotic cytokine at myocardial 

level like TIMP-1 and LV mass and function. To this scope, we sought whether ENPP1 

gene and TIMP-1 levels interact in determining LV geometry and function in the same 

set of patients with kidney failure in which we described the association between the 

ENPP1 gene polymorphisms and LVH (10). 
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SUBJECTS AND METHODS 

The study protocol was in conformity with the ethical guidelines of our institution and 

informed consent was obtained by each participant.  

Patients 

We studied an incident-prevalent cohort of 223 dialysis patients (125 males and 98 

females, all Caucasian) who had been on regular dialysis treatment for at least 6 

months, with left ventricular ejection fraction more than 35% and without cardiac 

circulatory congestion, major infections (fever, infected vascular access or peritonitis 

or exit site infection) or inter-current illnesses requiring hospitalization. One hundred 

and seventy-nine haemodialysis patients were being treated thrice weekly with 

standard bicarbonate dialysis (Na 138 mmol/L, HCO3 5 mmol/L, K 1.5 mmol/L, Ca 1.25 

mmol/L, Mg 0.75 mmol/L) either with Cuprophan or semi-synthetic membranes. The 

average urea Kt/V in these patients was 1.21+0.26. The remaining 44 patients were 

on chronic ambulatory peritoneal dialysis (CAPD) and the average weekly urea Kt/V 

was 1.67+0.32. Thirty-five patients were diabetics and 91 were habitual smokers 

(22±17 cigarettes/day). Ninety-five patients were treated with various anti-

hypertensive drugs (74 on mono-therapy with angiotensin-converting enzyme 

inhibitors, AT-1 antagonists, calcium channel blockers, - and β-blockers and the 

remaining 30 on double or triple therapy with various combinations of these drugs). 

One hundred and fifteen patients were on treatment with erythropoietin. The main 

clinical and biochemical characteristics of the study population are detailed in Table 

1.  

Genotyping of the ENPP1 rs1974201 and rs9402349 polymorphisms 

Allelic discrimination for the two single nucleotide polymorphisms (SNPs) of ENPP1 

gene, described under identification number rs1974201 and rs9402349, were 

performed by validated TaqMan SNP Genotyping Assays provided by Applied 

Biosystems on an ABI PRISM 7900HT Fast Real-Time PCR System, according to the 

manufacturer’s recommendations (Applied Biosystems, Foster City, CA, USA), as 
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previously reported (10). A random 10% of samples were independently repeated to 

confirm genotyping results and they were completely consistent.  

Laboratory measurements 

 Blood sampling was performed after an overnight fast always during a mid-week non-

dialysis day for haemodialysis patients and at empty abdomen for CAPD patients. 

Blood was drawn and put into tubes containing EDTA, and plasma supernatants were 

stored at –80°C until batch analyses. All analyses were done blinded to clinical 

information. Serum cholesterol, albumin, calcium, phosphate and haemoglobin 

measurements were made using standard methods in the routine clinical laboratory. 

Plasma total homocysteine, ADMA and high sensitivity C-Reactive Protein (CRP) were 

measured as previously reported (12). Circulating levels of TIMP-1 were measured by 

an ELISA with the use of a Quantikine kit (intra-assay CV: 4.4%; inter-assay CV: 4.2%; 

upper limit of the normal range: 304 ng/ml. R&D Systems Inc, MN, USA). 

Echocardiography  

These studies were performed in a non-dialysis day for hemodialysis patients or at 

empty abdomen for those on CAPD within 2 hours after blood sampling. Left 

ventricular mass (LVM) was calculated according to the Devereux formula and indexed 

to height2.7 (LVMI), as detailed in a previous study (13). Left ventricular hypertrophy 

(LVH) was defined by a LVMI of over 47 g/m2.7 in women or over 50 g/m2.7 in men. Left 

ventricular end diastolic volume (LVEDV) was calculated by the standard formula 

[(1.047*LVEDD3)/body surface area]. The relative wall thickness [RWT: 2*posterior 

wall thickness/left ventricular end diastolic diameter (LVEDD)] and the LV mass-to-

volume ratio, a ratio specifically applied in patients with kidney failure (14), were 

calculated as indexes of left ventricular concentric geometry. Values indicative of 

concentric left ventricular geometry were established on the basis of age-specific 

reference standards according to RWT (15). The ratio between early (E) and late (atrial 

- A) ventricular filling velocity (E/A ratio) was considered as an index of left ventricular 

diastolic function. 
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Statistical analysis 

Data were summarized as mean ± standard deviation (normally distributed data), 

median and inter-quartile range (non-normally distributed data) or as percent 

frequency and comparisons between to groups were made by T-test, Mann-Whitney 

U Test or Chi Square test, as appropriate.  

 The effect modification of ENPP1 rs1974201 and rs9402349 polymorphisms on the 

relationship between circulating levels of TIMP-1 and LV geometry was investigated 

by univariate and multivariate linear and logistic regression models. Into the final 

model, we included TIMP-1, ENPP1 polymorphism (rs1974201 and rs9402349) and 

their interaction term as well as all variables that were related (with P<0.05) to the 

exposures (TIMP-1 and ENPP1 polymorphisms) or to the study outcomes (RWT, LV 

mass-to-volume ratio and E/A ratio). By this strategy we constructed models of 

adequate statistical power (at least 10 patients for each variable into the models). The 

estimated raise in RWT, LV mass to volume ratio and E/A ratio corresponding to a fixed 

increase in TIMP-1 (100 ng/ml) was derived from crude and fully adjusted regression 

coefficients and expressed as percentage change (± standard error). In the logistic 

regression analysis, data were expressed as odds ratio (OR) and 95% confidence 

interval (CI) and P value.  

 Data analysis was performed by a standard statistical package (SPSS for Windows, 

Version 9.01, Chicago, Illinois, USA). 

 

RESULTS 

The ENPP1 rs1974201 and rs9402349 polymorphisms were not in linkage 

disequilibrium (D’=0.735, r2=0.203) and their genotypic distributions (CC: 13%; CG: 

42%; GG: 45% and AA: 71%; AC: 27%; CC: 2%) did not deviate from Hardy-Weinberg 

equilibrium (χ2=1.25, P=0.26 and χ2=0.11, P=0.74, respectively). 
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Demographic, clinical and biochemical characteristics of patients with kidney failure 

as characterized by the ENPP1 rs1974201 and rs9402349 polymorphisms 

The demographic and clinical characteristics of patients divided according to the 

ENPP1 rs1974201 genotypes are presented in Table 1.  

 

 Table 1. Main demographic, somatometric and clinical characteristics of the study population 

  
 ENPP1 (rs1974201) polymorphism 

 
CC or GC  
(n=123) 

GG  
(n=100) 

 
P 
 

Age (years) 59,4±15,8 60,9±14,7 0.47 
Male sex n. (%) 74 (60.2) 51 (51) 0.17 
    
Smokers n. (%) 52 (42.3) 39 (39) 0.62 
Diabetics n. (%) 16 (13) 19 (19) 0.22 
On anti-hypertensive treatment n. (%) 46 (37.4) 49(49) 0.08 
Dialysis vintage (months) 76,4±72,3 57,8±58,2 0.04 
With CV comorbidities n. (%) 59 (48) 47(47) 0.89 
    
Systolic pressure (mmHg) 130,7±22,5 136,9±21,7 0.04 
Diastolic pressure (mmHg) 74,6±12,5 75,8±11,9 0.47 
Heart rate (beats/min) 79,9±13,2 82,3±10,9 0.17 
    
BMI (kg/m2) 25,2±3,9 24,9±5 0.59 
Cholesterol (mg/dL) 205,6±53,4 211,4±57,3 0.44 
Haemoglobin (g/L) 10,9±1,8 10,5±2 0.10 
Albumin (g/L) 4±0,5 4±0,6 0.55 
Calcium *Phosphate (mMol2/L2) 4,4±1,1 4,5±1,3 0.52 
CRP (mg/L) 6,7 (3,4-16) 10,4 (1,7-4,3) 0,04 
ADMA (µMol/L) 2,8 (1,5-4,4) 3,06 (1,8-4,3) 0,67 
Homocysteine (µMol/L) 27,2 (20-38,1) 25,9 (20,2-46,47) 0,96 
    
TIMP-1 (ng/ml) 183,3 (158,7-214,7) 187,3 (168,8-217,8) 0,42 

Data are expressed as mean± SD, median and inter-quartile range or as percent frequency, as 
appropriate. Comparisons among the two groups were made by t test (continuous variables) or 
Chi-Square Test (dichotomic variables) and non parametric U di Mann-Whitney test  

 

GG homozygotes for this polymorphism had higher C reactive protein and systolic 

pressure and displayed a shorter dialysis vintage as compared to the group combining 

CG and CC genotypes. Moreover, GG patients tended to be more frequently treated 

with anti-hypertensive drugs (P=0.08). No differences were observed as for the 

remaining demographic, clinical or biochemical data (Table 1). The same analysis 

carried out for the rs9402349 polymorphism showed that AA patients had higher 
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serum cholesterol (212±58 mg/dL versus 198±48 mg/dL, P=0.03) and were more 

frequently on anti-hypertensive treatment (47% versus 32%, P=0.024) as compared to 

the group combining AC and CC patients. The two groups did not significantly differ as 

for the remaining clinical or biochemical data. 

TIMP-1, ENPP1 rs1974201 and rs9402349 polymorphisms and echocardiographic 

indicators of LV remodeling  

One hundred and eighty-seven patients out of 223 (84%) displayed LVH at 

echocardiography. Concentric LV geometry was the most frequent pattern (45%) 

(concentric LVH in 85 cases and  concentric LV remodeling in 15 cases) followed by 

eccentric LVH (n=87) (39%).  In the whole study population, TIMP-1 was directly 

associated to E/A ratio (r=0.17, P=0.014) but unrelated to RWT and LV mass-to-volume 

ratio (r ranging from 0.098 to 0.116, P=NS). A separate analysis by ENPP1 rs1974201 

genotypes, showed that in GG patients, circulating levels of TIMP-1 directly related to 

RWT (r=0.25, P=0.01), LV mass-to-volume ratio (r=0.24, P=0.02) and E/A ratio (r=0.28, 

P=0.005) while no such an association existed in patients with CG or CC genotypes. In 

a similar analysis by rs9402349 genotypes, TIMP-1 correlated with E/A ratio (r=0.19, 

P=0.02) in AA patients while no other relationships were found between this 

biomarker and the other echocardiographic indices (P=NS).   

Effect modification by ENPP1 rs1974201 polymorphism of TIMP-1-LV geometry 

relationship 

On crude analysis, the ENPP1 rs1974201 polymorphism modified the relationship 

between circulating levels of TIMP-1 and echocardiographic indicators of LV 

remodeling and E/A ratio (Fig. 1).  

Indeed, in a regression analysis stratified according to genotypes, a 100 ng/ml increase 

in circulating levels of TIMP-1 was associated with a 22% increase in RWT, 14% in LV 

mass to volume ratio and 29% in E/A ratio in patients with GG genotype but with minor 

or no change in patients with CC or CG genotypes (RWT: -0.2%; LV mass to volume 

ratio: -1.0%; E/A ratio: +3.8%) (Table 2). Data adjustment for potential confounders 

did not modify these relationships (Table 2 - Adjusted models). 
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Figure 1. Correlation analyses between circulating levels of TIMP-1 with RWT, LV mass-to-

volume ratio and E/A ratio separately in CC or CG patients versus GG patients. Data are Pearson 

product moment correlation coefficient (r) and P value. At the bottom of each couple of graphs, 

the P value for the interaction (or effect modification) is reported. 

 

 

 

Table 2. Multiple linear regression analyses of the interaction between TIMP-1 and ENPP1 

rs1974201 for explaining RWT, LV mass to volume ratio and EA ratio. 

  Regression coefficients (% change), standard errors and P values 

Crude Adjusted* 

CC+CG GG P CC+CG GG P 

TIMP-1  

(100 ng/mL 
increase) 
versus 

RWT -0.2±2.2 22.1±2.2 0.012 -0.7±2.2 22.1±2.2 0.019 

LV mass to 
volume ratio 

-1.0±3.6 14.5±3.6 0.012 
   -1.6±3.1  14.0±3.1 

0.024 

EA ratio 3.8±5.0 29.0±5.0 0.004  3.8±5.0     29.0±5.0 0.002 

* Model adjusted for: systolic blood pressure, age, anti-hypertensive treatment, smoking, ADMA, CRP and 
albumin (see Methods-Statistical Analysis for more details) 

 



TIMP-1, genetic markers of insulin resistance and cardiomyopathy in patients with kidney failure 

 

49 

 

Forcing diabetes, gender and CV comorbidities into the multivariate analyses, these 

covariates did not affect the strength of the relationships between TIMP-1 and RWT, 

LV mass to volume ratio and E/A ratio (data not shown). When a similar analysis was 

carried out for the ENPP1 rs9402349, the genotypes of this polymorphism did not 

significantly affect the association between TIMP-1 and the echocardiographic 

parameters (P=NS).  

ENPP1 rs1974201 polymorphism and TIMP-1 and the risk for LV concentric 

remodeling  

The prevalence of concentric LV geometry was significantly higher (P=0.006) in GG 

(55%) than in GC and CC patients (45%). Both on crude and fully adjusted logistic 

regression analyses (Table 3), an identical increase in circulating levels of TIMP-1 (100 

ng/ml) was associated with a higher risk for concentric LV geometry (P=0.02) in GG 

than  in CG and CC patients (Fig. 2) and this was also true for concentric LV hypertrophy 

[GG patients: adjusted OR (100 ng/ml increase in TIMP-1): 4.07, 95% CI: 1.32-12.52; 

CG and CC patients: adjusted OR (100 ng/ml increase TIMP-1): 1.09, 95% CI: 0.64-1.88) 

(P for the effect modification=0.039).  

 

Table 3. Multiple logistic regression analysis of the interaction between TIMP-1 and ENPP1 

rs1974201 for explaining concentric left ventricular geometry 

Variables 

Left ventricular concentric geometry 

Odds ratio (95% CI) and P  

Crude Adjusted 

TIMP-1 (100 ng/mL increase) 
ENPP1 rs1974201 (CC+CG=0; GG=1) 
TIMP-1 (100 ng/mL increase)*ENPP1 
rs1974201 (CC+CG=0; GG=1) interaction term 

 
P for interaction=0.02  

(see Fig.2) 
 

 
P for 

interaction= 0.022 
(see Fig.2) 

 

Systolic blood pressure (1 mmHg)  1.00(0.99-1.02), P=0.73 

Age (1 year) 0.99(0.97-1.02), P=0.59 

Anti-hypertensive treatment (0=no; 1=yes) 1.80(0.96-3.50), P=0.07 

Smoking (0=no; 1=yes) 1.05(0.57-1.91), P=0.87 

ADMA (1µmol/L) 1.22(1.06-1.41), P=0.005 

CRP (1 mg/L) 0.99(0.98-1.01), P=0.61 

Albumin (1 g/dL) 0.98(0.92-1.03), P=0.48 

Data are expressed as odds ratio, 95% confidence intervals and P value. 
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Figure 2.  Effect modification of ENPP1 rs1974201 polymorphism on the crude and adjusted 

odds ratio for left ventricular concentric geometry corresponding to a fixed increase in TIMP-1 

(100 ng/ml) in patients with and without GG genotype. Data are expressed as odds ratio and 

95% CI and P value.  

 

 

DISCUSSION 

This study shows that in dialysis patients the rs1974201 polymorphism in the ENPP1 

gene, a genetic marker of insulin resistance in this population, modifies the 

relationship between TIMP-1 and left ventricular geometry and diastolic function. 

These findings are in line with the hypothesis that fibrosis is an important component 

in LV remodeling and hypertrophy triggered by insulin resistance in this population. 

In close parallelism with studies in the remnant kidney model (16), postmortem 

studies in patients with kidney failure have coherently shown that LVH and structural 

remodeling of myocardium is characterized by hypertrophy of cardiomyocytes 

accompanied by an abnormal accumulation of fibrous tissue in the interstitium of the 

myocardium (17). Furthermore, ultrasonic myocardial characterization studies in vivo 

in patients with kidney failure (18, 19) confirmed that fibrosis is a hallmark in LVH in 

dialysis patients. Myocardial fibrosis, in the setting of LVH, is not unique to kidney 

failure and may occur in several conditions including hypertension (20), 

hyperaldosteronism (21, 22) and hyperinsulinemia and insulin resistance (23). As a 
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matter of fact, insulin sensitivity as measured by whole body glucose disposal explains 

the 19% of the variability in the muscular component of the LV in essential 

hypertensives (24). The causal implication of insulin resistance in LVH in these patients 

is also supported by the observation that regression of myocardial hypertrophy goes 

strictly along with improvement in insulin resistance in longitudinal studies (25). 

Excess of collagen at myocardial level results from a derangement in the dynamic 

balance between collagen synthesis by cardiac fibroblasts and collagen degradation 

by matrix metalloproteinases (MMPs). The proteolytic activity of MMPs is regulated 

by tissue inhibitors of metalloproteinases (TIMPs), particularly by TIMP-1 (26), and an 

unbalanced relationship between TIMP-1 and MMPs results in myocardial fibrosis. 

Indeed, in spontaneously hypertensive rats (SHRs), increased myocardial expression 

of TIMP-1 largely explains the diminished collagenase activity and excess fibrosis in 

this experimental model (2). Coherently with animal studies, it was demonstrated that 

plasma TIMP-1 is a marker of LVH and myocardial fibrosis both in individuals in the 

general population (3) and in essential hypertensives (4-6). Of note, MMP/TIMP 

balance is affected by insulin because this hormone shifts this balance toward 

reduction of extracellular matrix degradation via the phosphatidylinositol 3-kinase (PI 

3-kinase)/protein kinase Akt pathway (27, 28).   

We have recently described that two polymorphisms (i.e. rs1974201 and rs9402349) 

in the ENPP1 gene which associate with myocardial hypertrophy and LV concentric 

remodeling in dialysis patients (10). Of note, in that study the rs1974201 

polymorphism, but not the rs9402349 polymorphism, showed also a parallel 

association with insulin and glucose levels (10). Because excess of fibrosis is a hallmark 

of concentric LVH in kidney failure, it appears possible that gene polymorphisms 

conducive to insulin resistance also modify the link between TIMP-1, a pro-

hypertrophic and pro-fibrotic compound, and LVH geometry and function. In line with 

this hypothesis, we found that ESRD patients homozygous for the G allele of the ENPP1 

rs1974201 polymorphism - precisely the same polymorphism showing a link with LVMI 

and insulin levels as well (10) - exhibited a direct association between TIMP-1 and the 
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echocardiographic indices of LV geometry (RWT, LV mass-to-volume ratio) as well as 

with a fundamental marker of diastolic dysfunction like the E/A ratio. Thus, the ENPP1 

rs1974201 predisposes not only to concentric remodeling but also to a pro-fibrotic 

response to TIMP-1. The functional relevance of this relationship is underlined by the 

inverse association between TIMP-1 and E/A ratio in GG homozygous patients 

implying progressively more severe diastolic dysfunction at increasing TIMP-1 levels 

in these patients. These findings may have clinical implications because altered 

diastolic function is a death predictor in kidney failure (29, 30).  

Our study is limited in many respects. The first and the most obvious limitation is 

sample size. To avoid reporting false positive associations, large sample size and 

confirmatory analyses in diverse populations are recommended for testing genetic 

effects. However, it is important noting that the hypothesis we probed here was 

tested in an ethnically homogeneous cohort and had a strong “a priori” based on the 

previous association between concentric LV remodeling and ENPP1 gene variants in 

the same cohort (10). Furthermore, our study had also a precise biological rationale 

because insulin reduces collagen degradation by affecting the MMP/TIMP balance 

(26). Second, the cross-sectional design of the study precludes the possibility to draw 

definitive conclusions about the nature (causal/not causal) of the relationships we 

found. Third, we chose to measure plasma TIMP-1 because experimental data support 

a more important role of this enzyme compared to other tissue inhibitors of 

metalloproteinases, but we measured neither other TIMPs nor metalloproteinases.  

In conclusion, in a sizable series of dialysis patients, we show that the genetic 

variability in the ENPP1 gene, a major modulator of insulin sensitivity, modifies the 

relationship between the pro-fibrotic enzyme TIMP-1 and LV geometry and function. 

These data further support the concept that ENPP1 gene is a relevant player in the 

pathogenesis of concentric LVH and myocardial fibrosis in patients with kidney failure. 
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ABSTRACT 

Background and objectives: High serum interleukin-6 (IL-6) is a major risk factor for 

cardiovascular disease (CVD) in the general population. This cytokine is substantially 

increased in chronic kidney disease (CKD) patients but it is still unknown whether the 

link between IL-6 and CVD in CKD is causal in nature.  

Design, setting, participants and measurements: In a cohort of 755 stage 2-5 CKD 

patients, consecutively recruited from 22 Nephrology Units in Southern Italy, we 

studied the relationship of serum IL-6 with history of CVD as well as with incident 

cardiovascular (CV) events (follow up: 31±10 months) and used the functional 

polymorphism (-174 G/C) in the promoter of the IL-6 gene to investigate whether the 

IL-6-CV events link is causal in nature.   

Results: In adjusted analyses, serum IL-6 above the median value was associated with 

history of CVD (P<0.001) and predicted the incidence rate of CV events (HR:1.66, 

95%CI:1.11-2.49; P=0.01).  

Patients homozygous for the risk allele (C) of the -174 G/C polymorphism had higher 

levels of IL-6 than those with other genotypes (P=0.04). Homozygous CC patients had 

more frequently history of CVD (OR:2.15, 95%CI:1.15-4.00; P=0.02) as well as a 87% 

higher rate of incident CV events (HR:1.87, 95%CI:1.02-3.44; P= 0.04) as compared to 

other genotypes. 

Conclusions: In stage 2-5 CKD patients, high serum IL-6 is associated with history of 

CVD and predicts incident CV events. The parallel relationship with history of CVD and 

incident CV events of the -174 G/C polymorphism in the IL-6 gene suggests that IL-6 

may be causally involved in the high CV risk in this population.  
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INTRODUCTION 

Classical experimental studies by Russel Ross et al. in the nineties solidly established 

inflammation as a critical component of the atherosclerosis process (1). Over the last 

two decades, large cohort studies in the general population have shown strong links 

between biomarkers of inflammation and cardiovascular (CV) outcomes in the general 

population (2-5) and in patients with cardiovascular disease (CVD) (6, 7). 

Observational studies are methodologically vulnerable to test causality because these 

studies are open to various sources of bias and confounding. Mendelian 

randomization – i.e. the random assortment of alleles at conception – offers an 

intriguing opportunity to limit problems inherent to observational studies because 

categorization of patients according to pertinent alleles is a sort of genetic 

randomization. Genetic variants may thus be used as indicators of environmental 

exposures in the observational context (8). Large scale Mendelian randomization 

studies applying genetic polymorphisms of inflammatory cytokines (9) offer strong 

support to the hypothesis that, like in experimental animals (10, 11), the link between 

inflammation and atherosclerosis complication is causal in nature. 

Cardiovascular risk is a multifactorial problem in CKD patients (12).  Systemic 

inflammation is common in CKD patients, particularly in stage 5 CKD patients on 

dialysis (13, 14). In line with studies in the general population (5, 15), IL-6, a major pro-

inflammatory cytokine, is an established strong predictor of adverse clinical outcomes 

in stage 5D CKD patients (16-20). However, the relationship between IL-6 and CV 

disease at earlier CKD stages was investigated in just one relatively small study by 

Barreto et al. (21) which was based on a limited number of CV events (just 22 events). 

In addition, to date we lack specific proof that this relationship in the CKD population 

is causal in nature. Circulating levels of IL-6 are genetically regulated. 

Since transmission of genes is a random phenomenon, gene 

polymorphisms modulating IL-6 synthesis may represent an unbiased means for 

testing whether the link between IL-6 and CV outcomes in CKD patients is causal in 

nature (Mendelian randomization). The -174 G/C single nucleotide polymorphism is a 
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functional variant located in the promoter region of the IL-6 gene which regulates the 

rate of IL-6 gene transcription (22-28) and therefore represents a reliable research tool 

for testing the nature (causal vs non causal) of the link between IL-6 and CV outcomes 

in CKD. With this background in mind, we set out to confirm findings by Barreto et al. 

(21) in a large observational study including a carefully characterized cohort of 755 

stage 2-5 CKD patients and to test whether this relationship may underlie a causal link 

by applying the Mendelian Randomization approach i.e. by stratifying the study 

population according to the functional -174 G/C polymorphism in the IL-6 gene. 

 

METHODS 

Study protocol 

The study protocol was in conformity with the ethical guidelines of our institution and 

it was approved by ethical committees of all participating Units. Written informed 

consent was obtained from each participant.  

CKD patients 

Our study population included a genetically homogenous series of 755 Caucasian 

patients belonging to the same geographical area (Southern Italy) (29), consecutively 

recruited from 22 Nephrology Units in a period extending from October 2005 to 

September 2008. Eligible patients were age 18 to 75 years and in stable clinical 

condition. Exclusion criteria included acute or rapidly evolving renal disease, kidney 

transplant, acute inter-current infections or acute inflammatory processes, 

pregnancy, cancer or diseases in the terminal phase. This cohort was described in 

detail elsewhere (30). 

Control population 

To compare the allelic frequencies of the -174 G/C polymorphism observed in CKD 

patients, we studied a sample of 463 consecutive blood donors of the general 

population from the same geographical area of CKD patients. 
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Follow-up and study outcome  

After the initial assessment, patients were monitored for 31±10 months (range: 0.3 to 

48 months). The study end-point was fatal and non-fatal cardiovascular events as 

described elsewhere (30). These events included myocardial infarction documented 

by ECG and biomarkers of myocardial injury; heart failure defined as dyspnea in 

addition to two of the following conditions: raised jugular pressure, bi-basilar crackles, 

pulmonary venous hypertension or interstitial edema on chest x-ray requiring 

hospitalization; ECG documented arrhythmia; stroke; peripheral vascular disease; 

major arterial or venous thrombotic episodes. These events were accurately recorded 

during the follow-up period.  

The history of CVD was defined as the presence of at least one of the following 

comorbidities at enrolment: myocardial infarction, heart failure, peripheral vascular 

disease, stroke, transient ischemic attack or coronary surgery/angioplasty. 

Laboratory measurements 

In the whole study population blood sampling was performed in the early morning 

after an overnight fast and plasma was stored at - 80°C until analysis. Serum glucose, 

lipids, hemoglobin, albumin, creatinine and C-reactive Protein (CRP) were measured 

by standard methods in the routine clinical laboratory. Serum IL-6 was measured by 

enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Inc., Minneapolis, USA). 

Estimated glomerular filtration rate (eGFR) was calculated by using the 4-variables 

MDRD study equation (31) and not by CKD-EPI formula since the creatinine data were 

not IDMS traceable during the study period. All CKD patients underwent a 24h urinary 

collection for the measurement of proteinuria.  

Genotyping of -174G/C polymorphism 

Allelic discrimination of -174 G/C polymorphism was performed using a custom 

TaqMan SNP Genotyping Assay provided by Applied Biosystems (Applied Biosystems, 

Foster City, CA, USA). In this assay, primers were designed to amplify a region including 

the mutation site specifically recognized by a couple of probes able to discriminate 

wild-type and mutated alleles. The sequences of primers and probes were: 5’-
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CGACCTAAGCTGCACTTTTCC-3’ (forward primer) and 5’-

GGGCTGATTGGAAACCTTATTAAGATTG-3’ (reverse primer); 5’-

CCTTTAGCAT[G]GCAAGAC-3’ (C allele-specific probe) and 5’- 

CCTTTAGCAT[C]GCAAGAC-3’ (G allele-specific probe). Allelic discrimination was 

performed on a 7900HT Fast Real-Time PCR platform and its accompanying Sequence 

Detection System (SDS) Software version 2.4 (Applied Biosystems, Foster City, CA, 

USA). Briefly, genomic DNA was extracted from peripheral blood mononuclear cells 

using standard salting out procedure (32). The reaction system contained 20 ng of 

genomic DNA, 12.5 l of 2 X TaqMan Universal PCR Master Mix No AmpErase UNG, 

1,25 l of 40 X Assay Mix (including unlabeled PCR primers, FAM and VIC dye-labeled 

TaqMan MGB probes) and H2O for a total volume of 25 l. A random 10% of samples 

were independently repeated to confirm genotyping results. The genotype results for 

these samples were completely consistent. All analyses were done blinded to clinical 

information. 

Statistical analysis  

Data were expressed as mean ± standard deviation (SD), median and inter-quartile 

range (IQR) or as percent frequency and comparison between two groups were made 

by T Test, Mann-Whitney Test or Chi Square test, as appropriate. The comparison 

among more than two groups was performed by ANOVA for log transformed variables, 

when appropriate. The deviation from Hardy-Weinberg equilibrium was assessed by 

the Chi Square test comparing observed and expected genotype frequencies. The 95% 

confidence interval of the risk allele frequency was calculated as suggested by the 

standard method (33).  

The functional form of serum IL6 (as continuous, binary, quartiles or quintiles data) 

was formally investigated by the analysis of Martingale residuals and the binary form 

(below/above the median) provided the best data fitting.  

The relationships between serum levels of IL-6 and cardiovascular disease was 

performed by two approaches. First, we analyzed the baseline association between 

serum IL-6 with history of CVD. Second, we investigated the predictive power of serum 

http://jasn.asnjournals.org/content/17/8/2333.long#ref-12
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IL-6 in the prospective cohort study. In both logistic and survival analyses, we 

considered variables which met criteria to be confounders [i.e. variables related 

(P<0.10) to both the exposure under investigation (serum IL-6 levels below/above the 

median value) and history of CVD or incident fatal and non-fatal CV events, which are 

not an effect of the exposure and are not in the causal pathway between the exposure 

and outcome)] (34). Tested covariates included traditional risk factors (age, gender, 

smoking, diabetes and glucose, cholesterol and blood pressure), factors peculiar to 

CKD (hemoglobin, albumin, eGFR and urinary protein), anti-hypertensive treatment, 

BMI and C-reactive protein. In both logistic and Cox regression models, eGFR was 

always forced because of the strong and significant correlation between eGFR and 

serum IL-6 (Table 1a). To further investigate the causal role of IL-6 in the pathway 

leading to CV events in CKD patients, we applied a Mendelian randomization 

approach, i.e. we stratified the study population according to the -174 G/C 

polymorphism. These analyses were appropriately adjusted for variables which 

differed between CC and GC or GG patients and which appeared to be potential 

confounders (i.e. age, gender, cholesterol) for the interpretation of the link between 

the risk genotype (CC) and the study outcomes.   

In the prospective cohort study, the potential distortion on the study results due to 

the competing risks of death was assessed by comparing the incidence rate of death 

in exposed (high IL-6 levels or CC risk genotype) and unexposed patients (low IL-6 

levels or GC/GG genotype). If a difference was found, the competing risk of death was 

accounted by carrying out a survival analysis considering a combined outcome 

“death/CV events” (35). Data were expressed as odds ratio (logistic regression 

analysis), hazard ratio (Cox regression model), 95% confidence interval (CI) and P 

value. To internally validate the independent relationships of serum IL-6 and -174 G/C 

polymorphisms with history of CVD and incident CV events, a bootstrap resampling 

technique of 1,000 samples (randomly extracted from the original sample) was 

performed (36). All potential effect modifications exerted by covariates on the 

relationship between the key exposures (serum IL-6 and -174 G/C polymorphism) and 
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study outcomes were formally tested by introducing a multiplicative term into the 

models and no significant interaction was found.  

All calculations were made by using a standard statistical package (IBM SPSS Statistics 

for Windows, Version 21.0. 0.1, Armonk, NY: IBM Corp.).  

 

RESULTS 

We studied 755 patients with stages 2-5 CKD (stage 2: 3.0%; stage 3a: 22.0%; stage 

3b: 38.0%; stage 4: 34%, stage 5: 3.0%). Four hundred and fifty-three patients were 

males (60%), 263 were patients with type-2 diabetes, 98 were current smokers (13%). 

Two-hundred and twenty-one patients (29%) had history of CVD (Table 1a). One 

hundred and nine had only one past CV event while 112 of them had two or more than 

two past CV events. The first CV event in this population was myocardial infarction in 

19 cases, heart failure in 26 cases, peripheral vascular disease in 29 cases, stroke in 12 

cases, transient ischemic attack in 12 cases and coronary surgery/angioplasty in 11 

patients. Six hundred ninety-one (92%) were on antihypertensive treatment: 19% 

were treated with one medication, 29% with two medications, 28% with three 

medications and the 16% with four or more medications. Estimated GFR was on 

average 36±13 ml/min/1.73 m2 and the median 24h urinary protein was 0.6 mg/24h 

(inter-quartile range: 0.2-1.5 mg/24h). The median IL-6 was 2.5 pg/ml (inter-quartile 

range: 1.6-4.0 pg/ml).  

 

Analyses based on serum IL-6 levels  

Patients with IL-6 above the median value were significantly older, more frequently 

diabetics and had higher serum glucose and 24h urinary protein than those with IL-6 

below this threshold (Table 1). Estimated GFR, hemoglobin and albumin were lower 

in patients with higher IL-6 as compared with those with IL-6 below the median value. 

Systolic blood pressure (BP) was higher and diastolic BP lower in patients with IL-6 

levels above the median (Table 1).  
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Table 1 a. Main demographic and clinical characteristics of the study population according to 

serum IL-6 levels 

 
Whole group 

(n=755) 
Serum IL-6 <2.5 

pg/mL 
(n=380) 

Serum IL-6 ≥2.5 
pg/mL 

(n=375) 

P 

Age (years) 62±11 59±12 64±9 <0.001 
Males (%) 453 (60) 224 (59) 229 (61) 0.55 
Diabetes (%) 263 (35) 105 (28) 158 (42) <0.001 
Current Smokers (%) 98 (13) 55 (14) 43 (11) 0.22 
CV comorbidities (%) 221 (29) 82 (22) 139 (37) <0.001 
     
BMI (kg/m2) 28.2±4.7 27.3±4.3 29.0±4.8 <0.001 
Systolic BP (mmHg) 134±18 132±17 135±19 0.03 
Diastolic BP (mmHg) 78±11 79±10 77±11 0.01 
On anti-hypertensive 
treatment (%) 

691 (92) 
341 (90) 350 (93) 

0.89 

     
Glucose (mg/dL) 116±49 109±41 122±56 <0.001 
Total cholesterol (mg/dL) 187±45 189±43 184±46 0.12 
Hemoglobin (g/dL) 12.8±1.8 13.1±1.8 12.6±1.8 <0.001 
Albumin (g/dL) 4.2±0.5 4.2±0.5 4.1±0.5 0.01 
CRP (mg/L) 2.4  (1.0-5.5) 1.4  (0.7-2.8) 4.3  (1.9-9.0) <0.001 
Phosphate (mg/dL) 3.7±0.8 3.6±0.7 3.8±0.8 0.02 
eGFR (ml/min/1.73m2) 36±13 38±13 34±13 <0.001 
Urinary protein (g/24h) 0.6 (0.2-1.5) 0.5 (0.2-1 .2) 0.6 (0.2-1.7) 0.01 

Data are expressed as mean ±standard deviation, median and inter-quartile range and as percent 
frequency, as appropriate. 
Abbreviations: BMI: body mass index, CRP: C-reactive protein, eGFR: estimated glomerular filtration 
rate 

 

 

As expected, serum CRP levels were directly associated with IL-6 levels (r=0.57, 

P<0.001). On bivariate, multivariate and bootstrapping validation analyses, patients 

with IL-6 above the median were more likely to have had a history of CVD (P<0.01) 

than those with IL-6 below the median (Table 2).  
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Table 2.  Logistic regression models of history of CVD 
 

 Bivariate  Multivariate  Bootstrapping validation 
 

 OR (CI 95%)              P   OR (CI 95%)                   P      OR (CI 95%)             P  

*Serum IL-6  
[0 (<2.5 pg/mL); 
1(>2.5 pg/mL)] 

2.14 
(1.55-2.95) 

<0.001 1.58 (1.11-2.24) 0.01 1.58 (1.12-2.24) 0.01 

Age  
(years) 

  1.05 (1.03-1.07) <0.001 1.05 (1.03-1.07) <0.001 

Diabetes  
(0=no; 1=yes) 

  2.83 (1.99-4.03) <0.001 2.83 (1.97-4.08) <0.001 

Systolic BP 
(mmHg) 

  1.00 (0.99-1.01) 0.93 1.00 (0.99-1.01) 0.94 

Haemoglobin 
(g/dL) 

  1.04 (0.94-1.16) 0.47 1.04 (0.93-1.16) 0.49 

Albumin  
(g/dL) 

  0.74 (0.50-1.11) 0.15 0.74 (0.50-1.11) 0.14 

Phosphate 
(mg/dL) 

  1.02 (0.80-1.30) 0.86 1.02 (0.78-1.34) 0.87 

Urinary protein 
(mg/24h) 

  1.01 (0.89-1.13) 0.93 1.01 (0.88-1.14) 0.93 

eGFR 
(ml/min/1.73m2) 

  1.00 (0.98-1.01) 0.57 1.00 (0.98-1.01) 0.57 

*Below/above the median value (in parenthesis). The description of the model building strategy is reported in 
the Method section.  

   Abbreviations: eGFR: estimated glomerular filtration rate. 

 

During the follow-up, 42 patients died. The incidence rate of mortality was 3 times 

higher (P=0.01) in patients with IL-6 above the median (3 deaths per 100 person-years, 

95% CI: 2.0-4.1) than in those with IL-6 below this threshold (1 death per 100 person-

years, 95% CI: 0.6-2.1). Overall, 117 patients had fatal and non-fatal CV events. As 

shown in Table 3, on bivariate, multivariate and bootstrapping validation analyses, the 

incidence rate of fatal and non-fatal CV outcomes was significantly higher (P<0.02) in 

patients with IL-6 above the median (8.6 CV events per 100 person-years, 95% CI: 2.5-

5.0) than in those with IL-6 below this threshold (3.6 CV events per 100 person-years, 

95% CI: 6.9-10.8) (Figure 1, left panel). 
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Table 3.  Cox regression models of incident CV events 

 Bivariate  Multivariate  Bootstrapping validation 
  

  HR (CI 95%)           P     HR (CI 95%)               P      HR (CI 95%)             P  

*Serum IL-6  
[0 (<2.5 pg/mL); 1 
(>2.5 pg/mL)] 

2.37 
(1.61-3.51) 

<0.001 1.66 (1.11-2.49) 0.01 1.66 (1.10-2.52) 0.02 

Age 
(years) 

  1.07 (1.04-1.10) <0.001 1.07 (1.03-1.10) <0.001 

Diabetes 
(0=no; 1=yes) 

  1.59 (1.09-2.32) 0.02 1.59 (1.06-2.37) 0.02 

Systolic BP  
(mmHg) 

  1.00 (1.00-1.02) 0.31 1.00 (1.00-1.02) 0.31 

Haemoglobin  
(g/dL) 

  0.91 (0.80-1.02) 0.10 0.91 (0.81-1.02) 0.09 

Albumin 
(g/dL) 

  0.82 (0.53-1.27) 0.38 0.82 (0.52-1.29) 0.39 

Phosphate  
(mg/dL) 

  1.13 (0.88-1.44) 0.34 1.13 (0.88-1.45) 0.35 

Urinary protein 
(mg/24h) 

  1.05 (0.94-1.17) 0.38 1.05 (0.93-1.18) 0.44 

eGFR  
(ml/min/1.73m2) 

  1.01 (0.99-1.02) 0.44 1.01 (0.99-1.02) 0.49 

*Below/above the median value (in parenthesis). The description of the model building strategy is 
reported in the Method section. 
 Abbreviation:  eGFR: estimated glomerular filtration rate 

. 

 

Figure 1. Serum levels of IL-6 (left panel) and C reactive protein (right panel) according to -174 

G/C polymorphism in IL-6 gene. Data are expressed as medians. The inter-quartile ranges are 

indicated in parentheses. The comparison among groups was made by ANOVA 
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CKD stages did not modify the IL6-CV risk relationship (P for interaction=0.33). Further 

analyses investigating IL-6 as a continuous variable confirmed this biomarker as a 

strong and independent risk factor for study outcomes [History of CVD, bivariate 

analysis OR (1 pg/mL): 1.16, 95% CI: 1.10-1.26, P<0.001;   multivariate analysis OR: 

1.10, 95% CI: 1.02-1.20, P=0.02; Incident CV events, bivariate analysis HR (1 pg/mL): 

1.14, 95%CI: 1.07-1.22, P<0.001; multivariate analysis HR: 1.12, 95% CI: 1.03-1.22, 

P=0.007]. 

To account for the potential effect of competing risks due to death on the IL6-CV 

outcomes relationship, an additional adjusted analysis by considering a combined 

end-point death/CV events was performed. This multivariate analysis showed that the 

hazard ratio of the combined end point was about 1.5 times higher (HR:1.54, 95% 

CI:1.05-2.26, P=0.03) in patients with IL-6 levels above the median as compared with 

the remaining ones.  

 

Analyses based on the -174 G/C polymorphism   

In CKD patients, the genotype distribution of -174 G/C polymorphism [GG, n=333 

(44%); GC, n=370 (49%); CC n=52 (7%)] significantly deviated from Hardy-Weinberg 

Equilibrium (2=14.3, P=0.001) while this was not true in healthy subjects [GG, n=277 

(60%); GC, n=170 (37%); CC n=16 (3%)] (2=2.70, P=0.10). Of note, the frequency of 

the C risk allele was significantly higher (P<0.02) in CKD patients (31%, 95% CI: 28-34%) 

than in healthy study participants (22%, 95% CI: 18-26%).  

CKD patients with CC genotype had higher levels of IL-6 (median:2.9 pg/ml, inter-

quartile range:1.7-6.9 pg/ml) than those with GC (2.4 pg/ml, 1.6-3.8 pg/ml) and GG 

(2.5 pg/ml, 1.7-4.0 pg/ml) (P=0.04) (Figure 2, left panel) and this was also true for CRP 

(CC, median: 3.2 mg/L, IQR: 1.2-10.4 mg/L; GC, 2.2 mg/L, 1.0-5.6 mg/L; GG, 2.4 mg/L, 

1.0-5.1 mg/L) (P=0.03) (Figure 2, right panel).  

These findings show that the relationship between -174 G/C polymorphism and 

inflammatory biomarkers is well described by a recessive model of inheritance (CC 
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genotype versus GC/GG genotypes). For this reason, further data analysis was carried 

out by using the recessive model. 

 

 

Figure 2. Serum levels of IL-6 (left panel) and C reactive protein (right panel) according to -

174 G/C polymorphism in IL-6 gene. Data are expressed as medians. The inter-quartile 

ranges are indicated in parentheses. The comparison among groups was made by ANOVA 

 

As shown in Table 4 and as expected from Mendelian randomization, CC patients 

versus GC/GG patients did not differ as for demographic and clinical 

characteristics except for a slight excess of males (75% versus 59%, P=0.02) in CC 

patients and slightly lower cholesterol levels (173±43 mg/dl versus 188±45 mg/dL, 

P=0.02) in patients with the same genotype. 

The prevalence of the history of CVD was higher in CC patients (44%) than in 

GC/GG patients (28%) (P=0.01). The odds ratio for this outcome was more than 

twice higher in patients harboring the CC risk genotype (odds ratio: 2.15, 95% 

CI:1.15-4.00; P=0.02) than in those with other genotypes in a model adjusting for 

age, gender and cholesterol, i.e. the covariates which differed (P<0.10) between 

patients with CC and GC/GG genotypes (see Table 4). A bootstrapping validation 

model confirmed these results (odds ratio: 2.14, 95% CI:1.18-3.89; P=0.01). 
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Table 4. Main demographic and clinical characteristics of the study population according to -174 

G/C polymorphism 

Data are expressed as mean ±standard deviation, median and inter-quartile range and 
as percent frequency, as appropriate. 
 Abbreviation: BMI: body mass index, CRP: C-reactive protein, eGFR: estimated glomerular    
filtration rate 

 

 

In the cohort study, the incidence rate of mortality did not differ between patients 

with and without the CC risk genotype (P=0.27) indicating that the competing risk of 

death on the -174 G/C polymorphism-CV events link could be excluded. In close 

parallelism with the strong association between serum IL-6 levels and CV events, the 

incidence rate of CV outcomes in patients with CC genotype was by the 87% higher 

(HR:1.87, 95% CI:1.02-3.44; P=0.04) than in those with the GC or GG genotypes (Figure 

1, right panel) and this was also true in a bootstrapping validation model (HR:1.87, 

95% CI:1.01-3.51; P=0.05).    

 

 
CC genotype 

(n= 52) 
GC/GG genotype 

(n= 703) 
 

P 

Age (years) 59±13 62±10 0.09 
Males (%) 39 (75) 414 (59) 0.02 
Diabetes (%) 21 (40) 242 (34) 0.38 
Current Smokers (%) 9  (17) 89 (13) 0.34 
CV comorbidities (%) 23 (44) 198 (28) 0.01 
    
BMI (kg/m2) 27.9±3.8 28.2±4.7 0.54 
Systolic BP (mmHg) 132±16 134±18 0.41 
Diastolic BP (mmHg) 76±10 78±10 0.15 
On anti-hypertensive treatment 
(%) 

44 (85) 
647 (92) 0.69 

    
Glucose (mg/dL) 98 (87-127) 99 (88-120) 0.65 
Total cholesterol (mg/dL) 173±43 188±45 0.02 
Haemoglobin (g/dL) 12±2.0 13±1.8 0.29 
Albumin (g/dL) 4.1±0.4 4.2±0.5 0.53 
CRP (mg/L) 3.2 (1.2-10) 2.3 (1.0-5.4) 0.06 
Phosphate (mg/dL) 3.71±0.68 3.72±0.78 0.92 
eGFR (ml/min/1.73m2) 34±12 36±13 0.32 
Urinary protein (g/24h) 0.7 (0.2-1.6) 0.6 (0.2-1.5) 0.53 
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DISCUSSION 

In this study high serum IL-6 levels are associated with history of CVD and predict the 

risk for incident CV events in stage 2-5 CKD patients. Furthermore, the functional 

polymorphism -174 G/C in the promoter of IL-6 gene is associated with history of CVD 

and predicts the risk for future CV events in this population. These results are 

compatible with the hypothesis that this inflammatory cytokine is causally implicated 

in the high CV risk in CKD.  

Atherosclerosis is an inflammatory disease (1). Chronic inflammation is pervasive at 

all CKD stages, particularly in stage 5D CKD patients (13, 14). IL-6 is considered as an 

orchestrator of the inflammatory response (37) and a key player in atherosclerosis in 

humans (38). The IL-6 effect on the cardiovascular system might be mediated via 

downstream acute-phase proteins (39) or by IL-6 per sé. IL-6 stimulates endothelial 

activation, vascular smooth muscle cell proliferation (40) and leukocyte recruitment 

(41), thereby contributing to the process of atherosclerotic plaque growth (42) and 

instability (43). IL-6 mRNA is overexpressed in atheromatous arteries and IL-6 

expression co-localizes with macrophages in areas of plaque rupture (43). In the apoE-

deficient mice, systemic administration of IL-6 accelerates atherosclerosis (10). 

Elevated levels of IL-6 are predictive of future CV events in healthy men (15) and 

women (44) and are markers of poor prognosis in patients with chronic angina (45) 

and acute coronary syndrome (46).  IL-6 levels are markedly elevated in CKD, a 

phenomenon only in part explained by reduced renal clearance of this cytokine. 

Furthermore, the observation of a parallel increase in IL-6 and CRP in our study is in 

keeping with the notion that IL-6 drives the synthesis of CRP. High IL-6 has been solidly 

associated with mortality in stage 5 CKD patients maintained on chronic dialysis (16-

20). To the best of our knowledge, there is only one study which tested the 

relationship between IL-6 and CV mortality in CKD (21). This seminal study was carried 

out in a small cohort of 125 patients, was based on a quite limited number of CV events 

(n=22) and included also dialysis patients (34% of the whole cohort) (21). Our study, 

based on a large CKD cohort composed exclusively by pre-dialysis patients and 
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including a large number of CV events, confirmed pilot data by Barreto et al. (21) and 

showed that high IL-6 is coherently associated both with history of CVD as well as with 

incident CV events.  

Being observational in nature, findings in studies discussed above, including our 

analysis based on circulating IL-6, remain hypothesis generating and as such leave 

unresolved the critical question whether this cytokine is causally implicated in CV 

complications in pre-dialysis CKD patients. This question can only be resolved by a full-

fledged clinical trial.  

The Mendelian randomization approach is a useful step in the pathway to discovery 

in clinical research. Since genetic polymorphisms are distributed randomly at gamete 

formation and since genotypes precede phenotypes and do not change over time, 

comparing individuals harboring a given risk allele for the expression of a 

corresponding risk factor with those without the risk allele in question may allow 

unbiased assessment of the link between the attendant risk factor and relevant clinical 

outcomes. In this perspective, we used the functional polymorphism -174 G/C in the 

promoter of IL-6 gene as a marker to further investigate the link between IL-6 and CV 

events in CKD patients. The -174 G/C polymorphism is a common variant that 

regulates the serum concentration of IL-6 (22-28). In keeping with previous studies in 

patients with cardiovascular disease (28), coronary artery bypass grafting surgery (23, 

25), carotid atherosclerosis (24), abdominal aortic aneurysm (22) and patients in 

dialysis (26), we found that CKD patients with CC genotype had higher circulating 

levels of IL-6 and CRP than those harboring GC or GG genotypes specifically 

legitimating the use of this genetic marker as an unbiased means for assessing the 

causal nature of the link between the gene product (IL-6) of this polymorphism and 

CV complications in CKD. Interestingly, this analysis showed that this polymorphism is 

independently associated both with the history of CVD as well as with incident CV 

events. Such associations, which went along with the previously described 

relationships of serum IL-6 with the same outcomes, provide further strength to the 

hypothesis that IL-6 is a direct player in atherosclerotic complications in CKD. 
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Furthermore, the observation that the distribution of genotypes frequency of the -174 

G/C polymorphism in CKD patients was not in Hardy-Weinberg equilibrium and that 

the frequency of the C allele was significantly higher in CKD patients as compared with 

general population of the same geographical area, offers additional circumstantial 

evidence that IL-6 is a causal risk factor for CV events in this population (47). 

Mendelian Randomization studies support causal interpretations but do not 

constitute definitive proof for causality, which demands specific experimental 

evidence (i.e. a formal randomized clinical trial). In this respect, meta-analytic data 

from two genetic consortia exploring the effect of a polymorphism in the interleukin-

6 receptor (IL6R) on the risk of coronary artery disease, showed that the allele which 

attenuated IL-6 signaling was significantly associated with reduced risk of coronary 

heart disease (48). Notably, the relevance of this genetic association for the control of 

inflammation is showed by a meta-analysis of clinical trials testing a monoclonal 

antibody against the IL6R (Tocilizumab) in rheumatoid arthritis and documenting that 

lowering serum levels of IL-6 is an effective strategy to induce the remission of this 

chronic inflammatory disease (49).  

Some limitations should be acknowledged. First, even though our cohort study 

registered a sizeable number of cardiovascular events, the number of deaths (n=42) 

was limited, preventing adequately adjusted analyses focusing on this major outcome. 

However, the analysis of the primary outcome in this study, incident CV events, which 

was robustly based on 117 events, showed parallel links between serum IL-6 and the 

genetic marker of this cytokine with the same events. Second, although Mendelian 

randomization is a powerful approach for inferring causality in observational studies, 

there are potential limitations to its application. Genetic variants can be indicators of 

environmental exposures on condition that there is no genetic admixture, pleiotropy 

or linkage disequilibrium. However, it is reasonable to believe that in our study all 

these assumptions are fulfilled. Our population is genetically homogeneous (29) and 

the -174G/C polymorphism is a functional variant directly responsible for serum levels 

of IL-6 (22-28). Furthermore, pleiotropy seems highly unlikely because of the location 
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of -174 G/C polymorphism in the promoter region of the gene. Third, despite we 

demonstrated that our findings had high internal validity by bootstrap modeling, 

replication of the results in a second cohort is a required proof for the external 

generalizability of findings in observational studies. In this respect, our observational 

study in a large Southern European cohort is a confirmation of a small central 

European cohort (21). Furthermore, our study is the first applying a genetic marker of 

IL-6 to express the nature (causal versus not causal) of the IL6-CV events link in CKD 

patients.  

In conclusion, high serum IL-6 is associated both with history of CVD as well as with 

future CV events in CKD patients and these associations are fully confirmed by the 

application of a functional polymorphism in the IL-6 gene. Overall, this study is 

compatible with the hypothesis that the IL-6 plays a causal role in the high CV risk of 

CKD patients. 
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ABSTRACT 

Background: Polymorphisms in the FTO (fat-mass and obesity-associated) gene have 

been associated with body mass index, cancer, type 2 diabetes and hypertension.  

Methods: We investigated the relationship between 17 tag single nucleotide 

polymorphisms (SNPs) and all-cause mortality in 3 cohorts of dialysis patients (CREED-

1, North Apulian and CREED-2 cohorts; n=783) and in 1 cohort of stage 2-5 CKD 

patients (n= 757). 

Results: We first explored the association between the 17 tag SNPs and all-cause 

mortality in the CREED-1 cohort and found that patients with the A allele of the FTO 

rs708259 polymorphism had an elevated risk of mortality (HR: 1.52, 95% CI: 1.11-2.08; 

P=0.008). Similarly, the A allele was associated with an increased risk of death also in 

the other two dialysis cohorts (North Apulian cohort, risk: + 23%; CREED-2 cohort, risk: 

+21%). The elevated risk portended by this allele was even higher in the stage 2-5 CKD 

cohort (+97%). However, the risk of mortality associated with the A allele in the 3 

confirmatory cohorts failed to achieve formal statistical significance. In a meta-

analysis including the 4 cohorts (n=1540; total deaths, n=381), individuals with the A 

allele had a 42% excess risk of death (HR:1.42, 95% CI: 1.14-1.76, P=0.002).  

Conclusion: The A allele of the FTO rs708259 polymorphism is an independent 

predictor of all-cause mortality in patients with CKD of various severity. These data 

support our hypothesis that the FTO gene may be a relevant genetic risk factors for 

mortality in this population. 
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INTRODUCTION 

Obesity is an expanding epidemic and a public health priority worldwide. The causes 

of this epidemic are mainly environmental because obesity clusters with social 

contacts (1). Genetic background contributes substantially to the risk of obesity and it 

is estimated that genetic factors explain about a half of the variation in adipose tissue 

mass (2). Over the last two decades, a large series of genes associated with human 

obesity have been identified and for most of these genes the association with obesity 

has been replicated (3). Among these genes, the FTO (fat-mass and obesity-associated 

gene) appears of particular interest because, beyond obesity, polymorphisms in this 

gene have been associated with mortality (4), cancer (5, 6, 7), diabetes (8, 9, 10) and 

hypertension (11).  

Chronic kidney disease (CKD) is an emerging public health priority in economically 

developed and developing countries (12). The relationship between high body mass 

index (BMI) and survival in pre-dialysis (13) and dialysis (14) CKD patients seems to be 

complex.  At variance with the general population, where excess adiposity is directly 

and linearly associated with the risk of death, the same association in CKD and in 

dialysis patients is either U shaped or inverse, suggesting that a high body mass may 

be protective in this population. Whether genetic variability in the FTO gene associates 

with elevated mortality in patients with chronic kidney disease has not been 

investigated. The issue is of relevance because diabetes and hypertension, two risk 

factors which have been associated to the FTO gene, rank as major risk factors for CKD 

while dialysis patients have an exceedingly high risk of incident cancers and diabetic 

patients on dialysis have a short survival. With this background in mind, we have 

therefore designed a genetic association study testing whether the variability of the 

FTO gene may contribute to explain mortality in CKD patients of various severity. 
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SUBJECTS AND METHODS 

Patients 

In the present study we included three independent cohorts of dialysis patients (the 

CREED-1 cohort, the North Apulian cohort and the CREED-2 cohort) with a total 

number of 783 patients and one cohort of stage 2-5 CKD patients (see Table 1).  

 

  Table 1. Main characteristics of dialysis patients (CREED, North Apulian and CREED 2 

cohorts) and of CKD patients 

   CREED-1  
cohort 

North Apulian 
 cohort 

CREED-2  
cohort 

CKD  
cohort 

n 265 220 298 757 

Age  
(years) 

61±15 58±16 61±15 62±11 

Male gender 
(%) 

56% 53% 63% 60% 

Diabetes  
(%) 

12% 12% 24% 35% 

BMI  
(kg/m2) 

25±4 23±4 26±5 28±5 

Systolic BP 
(mmHg)  

140±24 142±19 136±22 134±18 

Diastolic BP 
(mmHg) 

77±13 82±8 74±12 78±11 

Enrolment 
period 

Jan 1997– 
Feb 1998 

Nov 1999- 
May 1999 

May 2009- 
Oct 2010 

Oct 2005- 
Nov 2007  

Data are expressed as mean ± SD or as percentage, as appropriate. 

 

 

CREED-1 (15) included an incident-prevalent cohort of 265 dialysis patients (age 61±15 

years; 56% Males) treated in the Urban Areas of Reggio Calabria (Calabria Region) and 

Catania (Sicily Region). These patients (all Caucasian) have been on regular dialysis 

treatment for at least 6 months, with left ventricular ejection fraction > 35% and 

without circulatory congestion, major infections (fever, infected vascular access or 

peritonitis or exit site infection) or inter-current illnesses requiring hospitalization. 

Two hundred and fourteen haemodialysis patients were being treated thrice weekly 

with standard bicarbonate dialysis (Na 138 mmol/L, HCO3 5 mmol/L, K 1.5 mmol/L, Ca 

1.25 mmol/L, Mg 0.75 mmol/L) either with Cuprophan or semi-synthetic membranes. 

The remaining 51 patients were on chronic ambulatory peritoneal dialysis (CAPD). One 
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hundred and five patients were habitual smokers and 109 patients were treated with 

anti-hypertensive drugs. The incident/prevalent North Apulian cohort included 220 

dialysis patients (age 58±16 years; 53% Males) (16) enrolled in the health district of 

Foggia (Puglia region). Two-hundred and ten patients were treated thrice weekly with 

standard bicarbonate dialysis (Na 138 mmol/L, HCO3 5 mmol/L, K 1.5 mmol/L, Ca 1.25 

mmol/L, Mg 0.75 mmol/L) by Cuprophan or semi-synthetic membranes and 10 

patients were on CAPD. Fifty-three patients were habitual smokers and 175 were on 

anti-hypertensive treatment. The CREED-2 cohort included 298 hemodialysis patients 

non overlapping with the CREED-1 cohort. All patients in CREED-2 were of Caucasian 

descent and were being treated in 11 dialysis units in two regions of Southern Italy 

(Calabria and Sicily) and showed the same characteristics of CREED-1 and North 

Apulian cohort patients (see Table 1). All patients had been on regular hemodialysis 

with standard bicarbonate dialysis for a median time of 42 months (inter-quartile 

range: 20-81 months) and were being treated with non-cellulosic membrane filters of 

various type. One hundred and fifty-nine patients were habitual smokers and 174 

patients were treated with anti-hypertensive drugs. The CKD cohort included 757 

consecutive patients with stage 2-5 CKD of various aetiology. These patients were 

recruited from 22 Nephrology units in Southern Italy. All patients were in stable clinical 

condition and none had intercurrent infections or acute inflammatory processes. The 

large majority of patients (97%) were being treated with anti-hypertensive drugs (51% 

were on mono/double therapy with ACE-inhibitors, calcium antagonists, angiotensin 

II receptor antagonists, diuretics, alfa and beta blockers, and clonidine and the 

remaining 49% were assuming three or more various combinations of these drugs). 

Inclusion criteria were: non acute or rapidly evolving renal diseases; age ranging from 

18 to 75 years; non-transplanted; non-pregnant, not affected by cancer or diseases in 

the terminal phase. The main characteristics of these four cohorts were given in Table 

1. 
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Follow-up study 

After the initial assessment, dialysis patients were followed up for a median time of 

44 months (range: 0.20-154 months) in the CREED-1 study, for 66 months (range: 1-

90 months) in the North Apulian cohort and for 26 months (range: 0.5-33 months) in 

the CREED-2 cohort. In the CKD cohort, patients were followed up for a median time 

of 33 months (range: 1-49 months).  In all cohorts, during the observation period, all-

cause mortality was accurately recorded and classified by trained outcome assessors.  

Haplotype structure and SNP selection 

The haploblock structure of the FTO gene for the Central European population was 

defined using Haploview (http://www.broadinstitute.org/haploview/haploview) 

(version 3.0 release R2, accessed June 2009; Whitehead Institute for Biomedical 

Research, USA). Using a minor allele frequency > 5%, a pair-wise approach and setting 

an r2 > 0.80, 16 single nucleotide polymorphisms (SNPs) (rs10163276; rs10521304; 

rs11075999; rs1125338; rs13334214; rs1078013; rs12935710; rs4784353; rs708259; 

rs7204916; rs8047395; rs860713; rs9924877; rs8044769; rs9926180; rs8050136), 

which were not in linkage disequilibrium between them, were sufficient to tag the 

haploblocks considered capturing most of the variability in the region. In addition, we 

determined the rs9939609 SNP which was in linkage disequilibrium with the 

rs8050136. This polymorphism, which maps in intron 1, has been repeatedly 

associated with fat mass in overweight and obese patients in previous large studies (8, 

17, 18, 19).  

Genotyping of the selected SNPs 

Allelic discrimination of the selected 17 SNPs was performed using TaqMan SNP 

Genotyping Assays provided by Applied Biosystems on a 7900HT Fast Real-Time PCR 

platform and its accompanying Sequence Detection System (SDS) Software version 2.4 

(Applied Biosystems, Foster City, CA, USA). Genomic DNA was extracted from 

peripheral blood leukocytes by salting-out technique (20). The reaction system 

contained 20 ng of genomic DNA, 12.5 l of 2 X TaqMan Universal PCR Master Mix No 

AmpErase UNG, 1,25 l of 40 X Assay Mix (including unlabeled PCR primers, FAM and 
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VIC dye-labeled TaqMan MGB probes) and H2O for a total volume of 25 l. A random 

10% of samples were independently repeated to confirm genotyping results. The 

genotype results for these samples were completely consistent. 

Laboratory measurements 

In the whole study population blood sampling was performed after an overnight fast 

always during a mid-week non-dialysis day for haemodialysis patients and at empty 

abdomen for CAPD patients. Blood was drawn and put into tubes containing EDTA, 

and plasma supernatants were stored at - 80°C until batch analyses. All analyses were 

done blinded to clinical information. Serum cholesterol, albumin and haemoglobin 

measurements were made using standard methods in the routine clinical laboratory.  

Statistical analysis 

Data were expressed as mean ± SD, median and inter-quartile range (IQR) or as 

percent frequency and comparisons between groups were made by independent T-

Test, Mann-Whitney U test or Chi Square Test, as appropriate. 

The relationship between FTO rs708259 polymorphism and all-cause mortality was 

investigated by Cox regression analysis in which the centre effect was accounted by a 

stratified analysis. As potential confounders we considered: Framingham risk factors 

(age, gender, smoking, diabetes, cholesterol and arterial pressure), anti-hypertensive 

treatment and factors peculiar to kidney failure (dialysis vintage, haemoglobin and 

albumin). A variable was considered as a confounder when it was related to both the 

exposure under investigation (the FTO rs708259 polymorphism) and the study 

outcome (all-cause mortality); was not an effect of the exposure and was not in the 

causal pathway between the exposure and outcome (21). For accounting for multiple 

testing, a Monte Carlo permutation analysis (10000 permutations) was done (22). This 

analysis provides an empirical P value (permuted P value) for the link between the FTO 

rs708259 polymorphism and all-cause mortality. The effect of the FTO rs708259 

polymorphism on the risk of mortality was investigated separately in the four study 

cohorts as well as by a meta-analysis of these cohorts. The heterogeneity of the hazard 

ratios for death associated to the FTO rs708259 polymorphism among the four cohorts 
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was analysed by I2 and Q-value (23).  Data were expressed as hazard ratio (HR) and 

95% confidence interval (CI) and P value. All calculations were made by using two 

standard statistical packages (SPSS for Windows – 9.01- Chicago, Illinois, USA and 

Comprehensive Meta Analysis – Version 2.2.064, BioStat, Englewood, NJ, USA). 

 

RESULTS 

We first investigated in the CREED-1 cohort study 17 SNPs (rs10163276; rs10521304; 

rs11075999; rs1125338; rs13334214; rs1078013; rs12935710; rs4784353; rs708259; 

rs7204916; rs8047395; rs860713; rs9924877; rs8044769; rs9926180; rs8050136; 

rs9939609) capturing most of the variability of the FTO gene. All these SNPs were in 

Hardy-Weinberg Equilibrium (P ranging from 0.09 to 0.98).  Among these tag SNPs, 

the FTO rs708259 polymorphism was the only one to show an association with all-

cause mortality (P=0.008) (see below) in this cohort of dialysis patients. Then, we 

extended the analysis to other two dialysis cohorts (North Apulian and CREED-2 

cohorts) and tested the relationship of the same polymorphism with mortality in a 

fourth cohort of stage 2-5 CKD patients.  

FTO rs708259 polymorphism  

The FTO rs708259 polymorphism, either in CREED-1 study   [GG, n=89 (33.0%); AG, 

n=129 (49.0%);  AA, n=47 (18.0%), χ2=0.001, P=0.98] or in North Apulian [GG, n=43 

(19.0%); AG, n=96 (44.0%);  AA, n=81 (37.0%), χ2=2.22, P=0.14] and CREED-2 cohort 

[GG, n=94 (31%); AG, n=148 (50%); AA, n=56 (19%), χ2=0.03, P=0.87] did not deviate 

from the Hardy-Weinberg Equilibrium. Similarly, in the CKD cohort (n=759), the 

genotypic distribution of the FTO rs708259 polymorphism was in Hardy-Weinberg 

Equilibrium [GG, n=257 (34.0%); AG, n=379 (50.0%); AA, n=121 (16.0%), χ2=0.91, 

P=0.34].  

In Table 2 the main demographic and clinical characteristics of patients of the three 

combined dialysis cohorts (n=783) are described according to their genotypes.  
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Patients with AA or AG genotypes did not differ from those homozygotes for the G 

allele. The same analysis carried out separately in the three dialysis cohorts provided 

similar results (data not shown). 

 

Table 2. Main demographic, somatometric and clinical characteristics of the dialysis population 

(CREED-1, North Apulian and CREED-2 cohorts) 

 
GG 

(rs708259) 
(n=226) 

AG/AA 
(rs708259) 

(n=557) 

 
P 
 

Age (years) 60±15 60±16 0.49 
Male sex n. (%) 128 (57) 325 (58) 0.66 
Smokers n. (%) 93 (41) 224 (40) 0.82 
Diabetics n. (%) 45 (20) 96 (17) 0.35 
Dialysis vintage (months) 43 (18-99) 44 (20-99) 0.91 
*BMI (kg/m2) 24.9±4.5 25.2±5.0 0.42 
    
Systolic pressure (mmHg) 140±22 139±22 0.34 
Diastolic pressure (mmHg) 77±12 77±12 0.96 
On anti-hypertensive treatment n. (%) 127 (56) 331 (59) 0.42 
    
Cholesterol (mg/dL) 181±53 180±52 0.75 
Haemoglobin (g/L) 11.3±1.7 11±1.6 0.11 
Albumin (g/L) 3.95±0.48 3.87±0.51 0.06 
Data are expressed as mean± SD. median and inter-quartile range or as percent 
frequency. as appropriate. Comparisons between groups were made by independent 
T-test, Mann Witney U test or Chi-Square Test, as appropriate.  
Symbol: 
* Available in 676 patients. 

 
 

 

FTO rs708259 polymorphism and survival in dialysis patients 

During the follow-up period (median: 44 months, range: 0.2-154 months) of the whole 

study population of dialysis patients (n=783), 339 patients died, 172 of them (51%) of 

cardiovascular causes. On univariate Cox regression analysis, the excess risk of death 

was 41% higher (hazard ratio: 1.41, 95% CI: 1.10-1.81, P=0.008; permuted P 

value=0.006) in patients with AA or AG genotypes than in those with GG genotype 

(Figure 1), and the excess risk in the three combined cohorts did not differ from that 

observed in the three cohorts considered separately (CREED-1 cohort, excess risk: + 



The fat-mass and obesity-associated gene predicts mortality in chronic kidney disease of various severity 

 

91 

 

52%; North Apulian cohort, excess risk: + 23%; CREED-2 cohort, excess risk: +21%) 

(Figure 2). 

Adjustment for albumin (which was the only variable that tended to be different 

among genotypes) (see Table 2) had no material effect on the strength of the 

association between the FTO rs708259 polymorphism and the risk of mortality 

(HR:1.41, 95% CI: 1.10-1.82, P=0.007, permuted P value=0.005).   

 

Figure 1. Kaplan-Meier survival curves of all-cause mortality in the whole dialysis population 

(CREED-1, North Apulian and CREED-2 cohorts; n=783) according to the genotypes of the FTO 

rs708259 polymorphism. Data are expressed as Hazard Ratio, 95% confidence intervals and P 

value. 

 

 

 

 

FTO rs708259 polymorphism and survival in stage 2-5 CKD patients 

During the follow-up period (33 months, range 1-49 months), 42 CKD patients died, 

31 (74%) of them of CV causes. On univariate Cox regression analysis, CKD patients 

having AA or AG genotypes of the FTO rs708259 polymorphism had an excess risk of 

death almost doubled (+97%) as compared to patients with GG genotype and this 
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excess risk did not differ (P=0.32) from that observed in dialysis patients. However, 

probably due to the small number of death cases in this cohort of pre-dialysis patients, 

such a risk excess failed to achieve formal statistical significance (HR:1.97, 95%CI: 0.94-

4.11; P=0.07) in this cohort (Figure 2).  

 

Figure 2. Hazard ratios (and 95% confidence intervals) of the FTO rs708259 polymorphism for 

all-cause mortality in the study cohorts. At the bottom of the figure, a pooled analysis of all 

cohorts based on a meta-analytic approach is reported 

 

 

 

 

Meta-analysis of the four study cohorts 

There was no effect heterogeneity (P=0.74) of FTO rs708259 polymorphism on the risk 

of mortality in patients with kidney failure and in those with stages 2-5 CKD and for 

this reason fixed- and random-effects models provided identical results. In a meta-

analysis of the four cohorts (total number of patients, n=1540; total deaths, n=381), 

AA or AG individuals had a 42% excess risk of mortality as compared to those 

homozygotes for the G allele (HR: 1.42, 95% CI: 1.14-1.76, P=0.002) (Figure 2) further 
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confirming that the A allele of the FTO rs708259 polymorphism associates with 

reduced survival in CKD patients.  

 

DISCUSSION 

This study shows an association between the A allele of the FTO rs708259 

polymorphism and all-cause mortality in pre-dialysis and dialysis patients. 

FTO gene and obesity 

The fat-mass and obesity-associated (FTO) gene has been repeatedly associated with 

various obesity traits (8, 17, 18, 19, 24), insulin resistance and type 2 diabetes (8, 9, 

10). This gene codes for an enzyme that oxidatively demethylates single-stranded DNA 

(25) and, by this mechanism, it may modulate relevant epigenetic modifications of 

other fundamental genes regulating various biological processes. A common sequence 

variant in the first intron of this gene, the rs9939609, predisposes to type 2 diabetes 

through an effect on body mass index (BMI) (8) and an association between this 

polymorphism and the BMI has been replicated in 13 external cohorts including 

38,759 European subjects (8). Furthermore, other FTO polymorphisms have been 

associated with severe obesity in individuals of French descent (18).  

FTO gene and renal disease 

Although studies performed so far have primarily focused on the association between 

the FTO gene and obesity, variants in this gene associate also with other major clinical 

conditions, including cancer (5, 6, 7), hypertension (11), Alzheimer’s disease (26) and 

kidney failure (27). The FTO is one of the largest genes (more than 4 Mb) which have 

been implicated in human health.  To study the association between genetic variants 

in FTO gene, we selected 17 tag SNPs that reflected the haploblock structure of the 

gene. Of these SNPs, none of those localized in intron 1 was associated with mortality. 

However, in the first cohort enrolled in this study (CREED-1 cohort), we identified a 

new polymorphism, the rs708259 on intron 8 of the FTO gene, which was strongly 

associated with death in dialysis patients. When we extended the analysis to two 

replication cohorts, the North Apulian and the CREED-2 cohort, which included dialysis 
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patients comparable for the main demographic and clinical characteristics to the first 

cohort, we observed again an excess risk of death (+23% and + 21%, respectively) in 

A-allele carriers. Importantly, such an association was also confirmed in a third 

independent cohort of stage 2-5 CKD patients. Although the associations between the 

rs708259 polymorphism and mortality did not attain formal statistical significance in 

the three confirmatory cohorts, a meta-analysis of the 4 cohorts showed that 

individuals harbouring the risk allele A of the FTO rs708259 polymorphism have a 

highly significant (p=0.002) 42% excess risk of death as compared to individuals 

without such an allele.  

To the best our knowledge, this is the first study investigating the role of the FTO gene 

on mortality in pre-dialysis and dialysis patients. The FTO rs708259 polymorphism in 

intron 8 is not in linkage disequilibrium with any of the SNPs in the intron 1 of the 

gene. While the association between the FTO rs708259 polymorphism and mortality 

in pre-dialysis and dialysis patients in our data is statistically robust, the functional 

significance of this SNP is unknown. Because the FTO rs708259 polymorphism is 

unrelated to BMI and diabetes, it seems unlikely that the FTO gene affects survival 

through its impact on mechanisms regulating energy balance or glucose metabolism 

in this population. We speculate that this polymorphism may exert functional effects 

by modifying the bioavailability of the transcript and/or the protein product of FTO. 

Alternatively, this polymorphism may enhance the risk of mortality via DNA 

methylation. Functional studies in appropriate models are needed to mechanistically 

interpret the association between the FTO rs708259 polymorphism and mortality in 

the CKD population.  

In conclusion, our findings generate the hypothesis that CKD patients of various 

severity with the A allele of the FTO SNP rs708259 polymorphism may have a higher 

death risk than those without such an allele. Functional studies will define the 

mechanism(s) whereby this polymorphism impacts upon survival in this population.  
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ABSTRACT 

Background: Resistin is a major adipose tissue cytokine implicated in insulin 

resistance, inflammation and vascular damage. This cytokine is raised in patients with 

End-Stage Kidney Disease (ESKD) but the relationship between resistin and major 

clinical outcomes has not been investigated in this population.  

Methods: We studied the mutual relationship between resistin and the two major 

adipokines (adiponectin and leptin) and the interaction between resistin and 

adiponectin (ADPN) and all-cause and cardiovascular (CV) mortality in a cohort of 231 

hemodialysis patients followed up for 57±44 months. 

Results: Plasma Resistin was substantially raised in ESKD patients as compared to 

healthy subjects (P<0.001). On univariate analysis, resistin was related inversely to 

ADPN (r=-0.14, P=0.04) and directly to C-Reactive Protein (r=0.15, P=0.03) but was 

largely independent of leptin (r=0.08, P=0.24) and HOMA-IR index (r=-0.04, P=0.51). 

During the follow-up, 165 patients died (96 for CV causes). On both univariate (all-

cause mortality: P=0.004; CV mortality P<0.001) and multivariate (all-cause mortality: 

P=0.01; CV mortality P<0.001) Cox regression analyses the effect of resistin on study 

outcomes was closely dependent on ADPN levels. There was a consistent excess risk 

for all-cause (P=0.002) and CV mortality (P=0.003) by plasma resistin (20 ng/mL) in 

patients in the first ADPN tertile but no risk excess for these outcomes was apparent 

in patients in the third tertile.  

Conclusion: This study indicates that resistin predicts death and fatal CV events 

depending on plasma ADPN levels. These findings underscore the importance of the 

interaction among adipokines for the prediction of adverse clinical outcomes in ESKD. 
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INTRODUCTION 

Over the past decade numerous clinical studies focusing on the relationship between 

two main adipokines, adiponectin (ADPN) and leptin, and major clinical events in end-

stage kidney disease (ESKD) patients have been published (1-5). Resistin is a cysteine 

rich molecule of the “found in inflammatory zones” (FIZZ) proteins, which is 

synthesized in the adipose tissue (6, 7) and in macrophages (8, 9). High levels of this 

peptide go along with inflammation and insulin resistance both in experimental 

models (6, 10, 11) and in vivo in man (12-14). Interest on resistin in ESKD has been 

much limited and until now no study tested the relationship between this cytokine 

and major clinical outcomes, including all-cause and cardiovascular (CV) death, in this 

population. The issue is of relevance because high resistin associated with mortality 

and incident heart failure in patients with coronary heart disease (15) or with acute 

myocardial infarction (16). Furthermore, a most risky arrhythmia like atrial fibrillation 

was predicted by resistin levels in the Framingham Heart study population (17). 

Adipose tissue cytokines have mutual inter-relationships and interact with abdominal 

obesity in determining death and CV events (4).  Furthermore, ADPN is a modifier of 

the relationship between leptin and fat mass in young individuals (18) and modulates 

the risk for type-2 diabetes by leptin in the general population (19).  

With this background in mind, we identified the functional correlates of circulating 

resistin in ESKD patients and studied the relationship between resistin, death and 

incident CV events as well as the interaction between resistin and the adipokine which 

emerged as its strongest functional correlate, adiponectin, and all-cause and CV 

mortality.  

 

SUBJECTS AND METHODS 

Protocol 

The protocol was in conformity to the ethical guidelines of our Institutions and 

informed consent was obtained from each participant. All blood samples for 
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laboratory tests were taken during a mid-week non-dialysis day, between 8 A.M. and 

1 P.M. 

Patients and controls 

We studied an incident-prevalent cohort of 231 hemodialysis patients (127 M and 104 

F) who had been on regular dialysis treatment (RDT) for at least 6 months. The 

enrolment criteria in this cohort were no history of congestive heart failure [defined 

as  dyspnea in addition to two of the following conditions - raised jugular pressure, 

bibasilar crackles, pulmonary venous hypertension or interstitial oedema on chest X 

ray, requiring hospitalization or extra ultra-ultrafiltration],  left ventricular ejection 

fraction >35% and no inter-current or terminal illnesses.  Patients were treated thrice 

weekly with standard bicarbonate dialysis (Na 138 mMol/L, HCO3 35 mMol/L, K 1.5 

mMol/L, Ca 1.25 mMol/L, Mg 0.75 mMol/L) either with cuprophan or semi-synthetic 

membranes (dialysis filters surface area: 1.1-1.7 m2).    

For comparison, we assessed resistin plasma concentration in 41 healthy volunteers. 

Laboratory measurements  

Blood sampling was performed after an overnight fast between 8.00 a.m. and 10.00 

a.m. always during a mid-week non-dialysis. After 20-30 min of quiet resting in semi-

recumbent position samples were taken into chilled EDTA vacutainers, placed 

immediately on ice, centrifuged within 30 min at -4°C and the plasma stored at -80°C 

before assay. Serum lipids, albumin, glucose, phosphate, and haemoglobin 

measurements were made using standard methods in the routine clinical laboratory. 

Plasma concentration of C-Reactive Protein (CRP), leptin and adiponectin were 

measured according to methods described elsewhere (1). Plasma levels of IL-6 and 

TNF  were measured by using commercially available kits (R&D Systems, 

Minneapolis, Minnesota). The intra-assay coefficient of variation for these molecules 

ranged from 2.6% to 4.7% and interassay coefficient of variation from 4.5 to 5.8%. 

Plasma resistin was measured by ELISA (Bio Vendor Laboratory Medicine Inc., Brno 

Czech Republic). The intra-assay coefficient of variation was 4.3% and the inter-assay 

coefficient of variation was 6.8%. The average plasma resistin in 41 healthy volunteers 
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was 10.8 + 6.2 ng/mL with a normal range spanning from 1.2 ng/mL to 29.9 ng/mL. 

Serum insulin levels were measured by using a commercially available RIA kit (Sorin 

Saluggia, Vercelli, Italy). Insulin sensitivity was estimated by using the homeostatic 

model assessment (HOMA-IR) index [i.e., plasma glucose level × (plasma insulin 

level/22.5)]. 

Follow-up study 

After the initial assessment, patients were monitored for 57 ± 44 months (range: 0.2 

to 155 months). During the follow-up period, fatal cardiovascular events (ECG 

documented myocardial infarctions, heart failure, ECG documented arrhythmia, 

strokes, peripheral vascular disease, or major arterial or venous thrombotic episodes) 

and death for other causes were accurately recorded. Each death was reviewed and 

assigned an underlying cause by a panel of five physicians. As part of the review 

process, all available medical information regarding each death was collected. This 

information always included study and hospitalization records. In the case of an out-

of-hospital death, family members were interviewed by telephone, for better 

assessment of the circumstances surrounding the death.  

Statistical analysis 

Data were expressed as mean ± standard deviation (SD), median and inter-quartile 

range (IQR) or as percent frequency, as appropriate.  Comparisons among groups were 

made by P for linear trend. The association between two continuous variables was 

assessed by the Pearson product moment correlation coefficients and between binary 

and continuous variables by the point-biserial correlation coefficient. Variables having 

a positively skewed distribution were log transformed (lg10) before the correlation 

study. The effect modification of ADPN (i.e. the interaction analysis) (20) on the 

relationship between resistin and all-cause and cardiovascular mortality was 

investigated by univariate and multivariate Cox regression analyses. In multivariate 

models we included resistin, ADPN and their interaction term [resistin (20 ng/mL 

increase) * ADPN (tertiles)] as well as traditional risk factors (age, gender, smoking, 

systolic pressure, cholesterol, diabetes, previous cardiovascular events, BMI), factors 
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peculiar to ESRD (haemoglobin, albumin, phosphate, dialysis vintage) and CRP. By this 

strategy we built up models of adequate statistical power for all-cause mortality (at 

least 1 variable every 11 deaths). In these analyses ADPN was modelled in terms of 

tertiles because this functional form was the one that optimized data fitting (21).To 

account for over-fitting for cardiovascular mortality, a shrinkage analysis was 

performed (22). The proportionality assumption was tested by analysing the 

Schoenfeld residuals and no violation was found. The hazard ratios of a fixed increase 

in Resistin (20 ng/mL) across ADPN tertiles were calculated by the linear combination 

method. Data were expressed as hazard ratios, 95% CIs and P values. All calculations 

were done by standard statistical packages (SPSS for Windows Version 9.0.1, 11 Mar-

1999, Chicago, Illinois, USA; STATA/SE 9.0 StataCorp LP, TX, USA).  

 

RESULTS 

Patients 

The study population included 231 haemodialysis patients (age: 60±15 years; Males: 

55%) on regular dialysis treatment for a median time of 41 months (inter-quartile 21-

106 months) (see Table 1).  

One hundred and fifteen patients (50%) had previous CV events, 35 were diabetic 

(15%) and 86 (37%) were habitual smokers (22±16 cigarettes/day). Eighty-four 

patients (36%) were on anti-hypertensive treatment (59 on mono-therapy with ACE 

inhibitors, AT-1 antagonists, Calcium channel blockers, alpha and beta-blockers and 

25 on double or triple therapy with various combinations of these drugs). One 

hundred and twenty six patients (55%) were treated with erythropoietin. Average 

urea Kt/V was 1.22±0.27. 

Correlates of plasma Resistin  

Plasma resistin in ESKD patients had a normal distribution with an average value of 

117.2±23.3 ng/mL which was about 11 times higher than the average normal value 

(10.8+6.2 ng/mL) and exceeded the upper limit (29.9 ng/mL) of the normal range in 

all patients (Figure 1).  
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Table 1. Demographic, somatometric and clinical data of the study population 
 

 
Whole group 

(n=231) 

Age (years) 60±15 

Male sex n. (%) 127 (55) 

BMI (kg/m2) 24.5±4.4 

Diabetics n. (%) 35 (15.2) 

Smokers n. (%) 86 (37.2) 

Patients with CV comorbidities n. (%) 115 (50%) 

Dialysis vintage  41 (21-106) 

Kt/V 1.22±0.27 

On EPO treatment n. (%) 126 (55%) 

On-anti-hypertensive treatment n. (%) 84 (36%) 

Systolic BP (mmHg) 139±25 

Diastolic BP (mmHg) 76±13 

  

Total cholesterol (mg/dL) 208.7±57.8 

Glucose (mmol/L) 5.6±3.2 

Insulin (µU/mL) 19.8(13.7-29.7) 

HOMA-IR (µU/mL*mmol/L) 4.0(2.7-6.8) 

Haemoglobin (g/dL) 10.7±1.9 

Albumin (g/dL) 4.2±0.5 

Phosfate (mg/dL) 4.5±1.1 

CRP (mg/L) 7.4 (3.4-16.3) 

IL-6 (pg/mL) 5.0 (2.8-9.2) 

TNF-(pg/mL) 5.6 (1.8-1.5) 

Resistin (ng/mL) 117.2±23.3 

Adiponectin ( g/mL) 15.0±7.7 

Leptin (ng/mL) 10.0 (4.8-30.7) 

Data are expressed as mean± SD, median and inter-quartile range or as percent 
frequency, as appropriate. 
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Figure 1. Distribution of plasma resistin in the study population. All ESKD patients exceeded the 

upper limit (29.9 ng/mL) of the normal range (the grey area to the left of the graph). 

 

 

 

Plasma resistin was weakly related to plasma ADPN (r=-0.14, P=0.04) (Figure 2a) but 

was largely unrelated with leptin (r=0.08, P=0.24) (Figure 2b) and with insulin (r=0.01, 

P=0.99) and HOMA-IR index (r=-0.04, P=0.51). Furthermore, resistin was weakly 

related with dialysis vintage (r=0.21, P=0.002), CRP (r= 0.15, P=0.03) and with age (r= 

-0.17, P=0.01). 

 

Figure 2. Correlation between plasma resistin and adipokines. 
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Survival analysis 

During the follow-up period, 165 patients died, 96 of them for CV causes. Resistin 

failed to significantly predict all-cause and CV mortality (P=NS). On univariate Cox 

regression analysis, patients in the lowest ADPN tertile had higher all-cause mortality 

rate (19 deaths/100 persons year) when compared to those in the second (11 

deaths/100 persons year) and third ADPN tertile (17 deaths/100 persons year) (P for 

trend=0.02). The same analysis carried out for CV mortality provided similar results 

(ADPN, I tertile: 13 CV deaths/100 persons year; II tertile: 6 CV deaths/100 persons 

year; III tertile: 8 CV deaths/100 persons year)(P for trend =0.02). Formal interaction 

analysis showed that ADPN is a strong modifier of the relationship between resistin 

and study outcomes both on univariate (all-cause mortality: P for effect 

modification=0.004; CV mortality: P for effect modification<0.001) or on multivariate 

Cox regression analyses (Table 2 and Figure 3).  

Indeed, the risk excess for all cause and CV mortality portended by a fixed increase in 

resistin (20 ng/mL) was apparent and highly significant (all-cause mortality: P for effect 

modification=0.01; CV mortality: P for effect modification<0.001) in patients with low 

ADPN (first ADPN tertile all-cause death, HR: 1.32, 95% CI: 1.11-1.58; CV death, HR: 

1.42, 95% CI: 1.12-1.79), slight and not significant in those in the second tertile (all-

cause death, HR: 1.10, 95% CI: 0.95-1.27; CV death, HR: 1.04, 95% CI: 0.86-1.26) and 

absent (all-cause death, HR: 0.91, 95% CI: 0.73-1.14; CV death, HR: 0.77, 95% CI: 0.57-

1.02) in patients in the third ADPN tertile (Figure 3). 

The effect modification by ADPN on the resistin-CV mortality link remained significant 

(P=0.006) also after Shrinkage correction accounting for over-fitting. No interaction was 

found between ADPN and resistin with CRP, IL-6 and TNF-α (all P=NS). Forcing plasma 

leptin, insulin and HOMA-IR into the multivariate models of all-cause and CV death did 

not affect the strength of the relationship between the resistin-ADPN interaction term 

and all-cause (P=0.01) and CV mortality (P<0.001). 
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Table 2 Multiple Cox regression model of the adiponectin- resistin interaction for all-cause and 

cardiovascular mortality 

 

Variables (units of increase) 
 All-cause mortality 

 
         CV mortality 

Hazard ratio (95% CI) P value 
 Hazard ratio (95% 

CI) 
   P value 

Resistin (20 ng/mL) 
See Fig.3 

(P for effect 
modification=0.01) 

 

See Fig.3 
(P for effect 

modification<0.001)* 
 

ADPN tertiles, g/mL (Ist ≤11.1, IInd 
11.1-16.3, IIIrd>16.3) 

 

ADPN x Resistin  

BMI (1 kg/m2) 
1.02 (0.98 to 1.06) 0.37 

 
1.05 (0.99 to 1.10) 0.09 

Framingham risk factors   
 

  

Age (1 yr) 1.04 (1.03 to 1.06) 
<0.001  

1.05 (1.02 to 1.07) <0.001 

Male gender 1.85 (1.20 to 2.86) 
0.005  

1.79 (1.01 to 3.18) 0.05 

Smoking 1.16 (0.78 to 1.74) 0.72 
 

1.47 (0.88 to 2.43) 0.14 

Systolic pressure (1 mmHg) 0.99 (0.99 to 1.01) 0.48 
 

1.00 (0.99 to 1.01) 0.40 

Cholesterol (1 mg/dL) 1.01 (0.99 to 1.01) 0.37 
 

1.00 (1.00 to 1.01) 0.10 

Diabetes  2.34 (1.50 to 3.67) <0.001 
 

2.29 (1.30 to 4.03) 0.004 

Previous cardiovascular events 1.80 (1.27 to 2.56) 0.001 
 

2.20 (1.37 to 3.52) 0.001 

Factors peculiar to ESRD   
 

  

Haemoglobin (1 g/dL) 1.09 (0.99 to1.20) 0.09 
 

1.19 (1.04-1.36) 0.01 

Albumin  (1 g/dL) 0.72 (0.50 to 1.04) 0.08 
 

0.82 (0.5 to 1.36) 0.45 

Phosphate (1 mg/dL) 1.04 (0.92 to 1.19) 0.50 
 

1.05 (0.89 to 1.25) 0.57 

Dialysis vintage (1 month) 1.00 (0.99 to 1.01) 0.80 
 

1.00 (1.00 to 1.01) 0.58 

Emerging risk factors   
 

  

CRP (1 mg/L) 1.01(1.00 to 1.01) 0.03 
 

1.00 (0.99 to 1.01) 0.75 

  Data are expressed as hazard ratio, 95% CI and P value. 
*P=0.006 after Shrinkage correction for over-fitting (see Methods-Statistical Analysis for more details).  
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Figure 3. Effect modification of plasma adiponectin (ADPN) (expressed in tertiles) on the link 

resistin-mortality. The risk excess for all-cause and CV mortality portended by a fixed increase 

in resistin (20 ng/mL) is highly significant in patients in the first ADPN tertile, slight and not 

significant in those in the second tertile and absent in patients in the third tertile. Data are 

expressed as hazard ratios, 95% CIs and P values. 

 

 

 

 

DISCUSSION 

Resistin is markedly raised in ESKD patients, is weakly related with inflammation, does 

not associate with insulin sensitivity and correlates inversely with ADPN. Furthermore, 

the association of resistin with all-cause death and fatal CV events is strongly 

dependent (effect modification) on concurrent ADPN levels, being apparent and highly 

significant only in patients with low ADPN. This finding implies that high ADPN acts as 

a factor protecting from the noxious health effects of increased resistin in this 

population.  

Adipocytes are considered as the sole source of resistin in mice (6, 7) where this 

adipokine is implicated in insulin resistance and hyperglicemia (6, 7, 10). In man this 

molecule is expressed primarily in macrophages and is involved in inflammatory 

processes (8, 13). It is interesting to note that plasma resistin correlates more closely 

with inflammation than with insulin resistance in overweight subjects as well as in 
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patients with chronic kidney disease (23-25). Plasma resistin is markedly elevated in 

ESKD (26, 27) and it is still debated if this phenomenon is a mere consequence of 

accumulation secondary to reduced renal clearance and if it may also reflect chronic 

inflammation (27). We found that, resistin in ESKD patients was not only higher than 

in normal subjects but also significantly related with serum level of CRP while it did 

not correlate with insulin resistance as assessed by circulating levels of insulin and 

HOMA-IR index, a finding confirming observations in pre-dialysis CKD patients (26). 

Resistin exerts a pro-inflammatory effect on vascular endothelial cells via up-

regulation of endothelin-1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1) and 

monocyte chemoattractant protein-1 (MCP-1) (28, 29), which are all critical mediators 

of the early steps of the atherosclerosis process (30). In diabetic and non-diabetic 

patients, plasma resistin levels associate with inflammatory markers as well as with 

coronary artery calcification (14). Of note, recent evidence points to resistin as a 

cogent predictor of incident coronary heart disease (CHD) and congestive heart failure 

(CHF) in the general population (31). High resistin is also strongly and independently 

associated with major CV events and all-cause mortality in type 2 diabetes patients 

(32). However, in patients with stable CHD, the association between resistin and 

mortality in an unadjusted analysis was largely due to confounding by traditional CV 

risk factors and CKD (15).  

Risk for all-cause and CV death associated with resistin in ESKD 

The association between resistin and major clinical outcomes like mortality and CV 

events was tested in two studies in patients with coronary heart disease (15) or fatal 

myocardial infarction (16) and in both studies high resistin signalled a high death risk 

or an increased incidence of heart failure. ESKD patients are a population with 

exceedingly high risk for death and CV events (33). Causal risk factors for such a high 

risk are still not well defined and therefore testing the hypothesis that resistin is 

implicated in this high risk is a relevant question with etiologic and prognostic 

implications. In this regard, our study is the very first investigating the relationship 

between resistin and major clinical outcomes in ESKD. We found that resistin 
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predicted death and fatal CV outcomes in individuals with low ADPN but not in those 

with normal or high ADPN. This association was statistically strong and quantitatively 

of potential clinical relevance. The effect modification by ADPN on the relationship 

between resistin and mortality and fatal CV events has biological plausibility because 

ADPN and resistin have opposite effects on endothelial function and on the 

atherosclerotic process, resistin being a noxious factor for the CV system and ADPN a 

protective one. Of note, in our study the effect modification by ADPN on the resistin-

mortality and resistin-CV mortality relationships was fully independent of potential 

confounders, including traditional CV risk factors as well as risk factors peculiar to 

ESKD, including haemoglobin, albumin and CRP.  

In conclusion, we found that in ESKD, ADPN is a modifier of the link between resistin 

and mortality. Indeed, the risk for all-cause and CV mortality portended by a fixed 

increase in plasma resistin is evident in patients with low levels of ADPN but absent in 

those with high levels of this adipokine. These data underscore the importance of 

interaction analysis among adipokines to fully capture the relevance of their 

associations with adverse clinical events in the ESKD population.   
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ABSTRACT 

Background/Objectives: Gamma-glutamyltransferase (GGT) is a biomarker of liver 

disease and oxidative stress which was associated with all-cause and cardiovascular 

(CV) mortality in the general population and in patients with high risk conditions. This 

study aims at assessing whether oxLDL modifies the relationship between GGT, all-

cause and CV mortality in elderly individuals from the general population. 

Design: Observational longitudinal study. 

Setting: Population-based cohort of older individuals (>65 years) free of liver disease.  

Participants: One thousand and thirty-eight individuals from the Invecchiare in Chianti 

(InCHIANTI) study.  

Measurements: serum GGT level, oxidized low-density lipoprotein (oxLDL), CV 

comorbidities, all-cause and CV mortality. 

Results: The median age of the study population (n=1038) was 74 years (inter-quartile 

range: 69-79), 152 individuals (15%) had past CV events. During a median follow-up of 

9 years, 401 individuals died, 168 of them (42%) for CV causes. In adjusted analyses, 

GGT predicted all-cause mortality (HR for 20U/L increase in serum GGT:1.11, 95% 

CI:1.02-1.21, P=0.02) and CV mortality (HR:1.17, 95%CI:1.03-1.33; P=0.02). 

Furthermore, in an analysis for interaction circulating oxLDL amplified the effect of 

GGT on all-cause mortality (P=0.003). 

Conclusions: Circulating oxLDL amplifies the effect of GGT on mortality in the elderly. 

The mechanism for this association remains unknown and requires further research, 

including studying the potential role of GGT in oxidative stress. These results are 

consistent with the hypothesis of a causal role of GGT in the CV morbidity and 

mortality in older individuals and indicate that oxLDL plays a crucial role in the 

interpretation of the link between GGT and the risk of adverse clinical events in this 

population. 
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INTRODUCTION 

Aging is characterized by a progressive decline of anatomic integrity and function 

across multiple tissues and organs. A number of mechanisms have been proposed to 

drive the aging process, including accumulation of damaged macromolecules due to 

oxidative stress (1). 

Gamma-glutamyltransferase (GGT),  a multifaceted  biomarker impinging upon  

oxidative  stress  (2,3), emerged as a risk factor for all-cause and cardiovascular (CV) 

mortality in population-based studies independent of liver disease and alcohol intake 

(4, 5). GGT has been detected within atherosclerotic plaques of cerebral and coronary 

arteries where it co-localizes with oxidized low-density lipoprotein (oxLDL) (6, 7). In 

theory, such a co-localization may be key to the interpretation of oxidative stress 

damage in the arterial system.  

In the sole study in an elderly cohort testing the relationship between GGT and 

mortality and CV events, this biomarker was a direct predictor of adverse clinical 

outcomes (8) which  contrasts with age-stratified analyses in community-based 

studies where GGT predicted mortality in the young and middle age strata but not in 

the elderly (9-12). Herein, we tested the relationship between GGT and all-cause and 

CV mortality in a population-based cohort of elderly individuals (n=1038) from the 

Invecchiare in Chianti study, which enrolled a random sample of people older than 65 

years living in the Chianti area in Tuscany and followed up them for a median time of 

9 years. In light of the pathophysiological relationship between GGT and oxLDL alluded 

to before (6), a pre-specified goal of the present study was testing whether oxLDL 

modifies the relationship between GGT, CV and all-cause mortality. 

 

METHODS 

Study population 

The elderly InCHIANTI (13) population included 1155 participants aged between 65 

and 102 years randomly selected from residents in the Chianti geographic area. The 

baseline data collection started in September 1998 and lasted until March 2000; 
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thereafter, participants were fully re-evaluated every 3 years and the fourth follow-

up is still ongoing.  

The present study was performed on 1038 participants out of the 1155 original cohort 

because we excluded individuals with missing serum GGT (n=112), documented liver 

disease (n=4) or because of extremely high serum level of GGT (n=1) identified as a 

statistically significant outlier (GGT=565 U/L) by Grubbs’ test (P<0.001).   

Alcohol consumption was assessed by self-reported daily intake of wine, beer and 

spirits. The content of ethyl alcohol was calculated as follows: 5 g ethyl alcohol in 100 

mL of beer, 13 g in 100 mL of wine and 50 g in 100 ml of spirits. In agreement with 

WHO Guidelines, 40 g/day ethyl alcohol for males and 20 g/day for females were taken 

as a cut-off for identifying heavy drinkers. 

Follow-up and incident study outcomes  

The primary outcomes were all-cause and CV mortality. After the enrolment, 

individuals were monitored for a median of 9 years (ranging from 0.15-10.5 years). CV 

deaths were classified following ICD9 diagnosis codes from 410 to 438. 

Laboratory measurements 

Serum GGT was measured through an enzymatic colorimetric assay using a Roche 

analyzer (Roche Diagnostics, GmbH, Mannheim, Germany). The minimum detectable 

threshold was 3 U/L and the measure range was 3-1200 U/L. The intra-assay 

coefficient of variation (CV) was 1.5% and the inter-assay CV was 1.4%. The normal 

values considered for GGT were: 10-50 U/L in men and 10-38 U/L in women.  Oxidized 

LDL was measured using an enzyme-linked immunoassay (ELISA) kit (Mercodia AB, 

Uppsale, Sweden). The intra-assay and the inter-assay CV was 6% and 5%, 

respectively.  High sensitivity C-reactive protein (CRP) was measured by a colorimetric 

competitive immunoassay that uses purified protein and polyclonal anti-CRP 

antibodies. The minimum detectable threshold was 0.03 mg/L and the inter-assay CV 

was 5%. Homocysteine were measured by fluorimetric polarized immunoassay 

method (IMX, Abbott Laboratories). The minimum detectable threshold was 0.5 

mol/L and the inter-assay CV was 4.3%.  
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Statistical analysis 

Cross-sectional data were analyzed by univariate and multiple linear, logistic and Cox 

regression analyses. Multiple models included GGT as well as traditional risk factors 

(age, gender, smoking, diabetes, LDL cholesterol and blood pressure), factors peculiar 

to liver disease (transaminases, alkaline phosphatase, alcohol consumption), BMI, 

hemoglobin, oxidized LDL, C-reactive protein (CRP), homocysteine and creatinine 

clearance. To account for over-fitting (i.e. when the number of covariates overcame 1 

variable every 10 study outcomes) a shrinkage correction was  applied to  Cox and 

logistic regression models (14). A backward elimination strategy was applied to logistic 

regression analysis. Interaction analysis was performed by the standard linear 

combination method. The proportionality assumption was tested by analyzing the 

Schoenfeld residuals and no violation was found. The functional form of key-

covariates (including interaction term) was investigated by the analysis of Martingale 

residuals and the use of both risk factor (GGT) and effect modifier (oxLDL) as 

continuous variables resulted to be the best functional form for capturing the risk of 

all-cause and CV mortality explained by this biomarker. To assess whether early deaths 

could affect the study results a sensitivity analysis excluding patients who died within 

the first year from the enrolment was carried out. Furthermore, to minimize the 

potential distortion of heavy drinking (> 40 g/day ethyl alcohol for males and 20 g/day 

for females) a sensitivity analysis excluding heavy drinkers was performed. Data were 

expressed as odds ratio (OR), hazard ratios (HR), 95% confidence intervals (CI) and P 

values, as appropriate. All analyses were performed by standard statistical packages 

(SPSS for Windows Version 9.0.1, 11 Mar-1999, Chicago, Illinois, USA; STATA/SE 9.0 

StataCorp LP, TX, USA).  

 

RESULTS 

The main demographic and clinical characteristics of the study population are 

summarized in Table 1. The study cohort included 1038 subjects (43% males) with a 

median age of 74 years (inter-quartile range: 69-79). Biochemical parameters, 
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including liver enzymes, were in the normal range and the mean value and SD of oxLDL 

was 42±13 U/L. 

 

 
 Table 1. Main Demographic, Somatometric and Clinical Characteristics of the Study Population 

 

 N=1038 

Age (years) 74 (69-79) 

Males (%) 454 (43) 

Diabetes (%) 114 (11) 

Smoking (%) 141 (14) 

CV comorbidities (%) 152 (15) 

Alcohol consumption (g/day)  8.8 (0-29.9) 

BMI (kg/m2) 27 (15-30) 

Systolic BP (mmHg) 150±20 

Diastolic BP (mmHg) 84±9 

Lipid-lowering agents 45 (4) 

Glucose (mg/dL) 89 (81-100) 

LDL cholesterol (mg/dL) 136±34 

Haemoglobin (g/dL) 13.7 ±1.4 

C reactive protein (g/mL) 2.8 (1.3-5.9) 

Alkaline phosphatase (U/L) 203 (168-246) 

 
Homocysteine (µmol/L) 14.5 (12.2-17.8) 

GGT (U/L) 19 (14-28) 

AST (U/L) 20 (17-23) 

ALT (U/L) 17 (13-22) 

oxLDL (U/L) 42±13 

 
Creatinine clearance (ml/min/1.73m2) 65±19  

Past CV events were defined as the presence of at least one of the 
following documented comorbidities at enrolment: myocardial 
infarction, angina, peripheral vascular disease, stroke or coronary 
surgery/angioplasty. 
Data are expressed as mean± SD, median and inter-quartile range or as 
percent frequency as appropriate. Abbreviations: BMI=body mass index; 
BP=blood pressure; LDL=low-density lipoproteins; GGT= gamma-
glutamyltransferase; AST= aspartate aminotransferase; ALT=alanine 
aminotransferase; oxLDL= oxidized low-density lipoproteins. 
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Clinical and functional correlates of GGT 

Serum levels of GGT had a left skewed distribution with a median value of 19 U/L 

(inter-quartile range: 14 to 28 U/L) (Figure 1).  

 

 

Figure 1. Distribution of serum GGT levels in the study population 

 

 

 

 

In a multiple linear regression model, including all univariate correlates of GGT, the 

independent correlates of this biomarker were ALT, male gender, C reactive protein, 

alcohol consumption, alkaline phosphatase, hemoglobin, CV comorbidities, oxLDL and 

homocysteine whereas AST, creatinine clearance, BMI, smoking, age, systolic BP, LDL 

cholesterol, diabetes and lipid lowering agents were not (P ranging from 0.28 to 0.99) 

(Supplementary Table I). 
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Supplementary Table I. Correlation matrix of the functional correlates of GGT and independent 

correlates of GGT 

 

Data are Pearson product moment correlation coefficients and P values. In the multiple 
linear regression model we introduced systolic BP (as an indicator of BP burden) instead of 
diastolic BP and diabetes instead of serum glucose. However, also forcing diastolic BP 
(instead of systolic BP) and serum glucose (instead of diabetes), the results remained 
materially unchanged. 
 
 

 

GGT and past CV events 

At baseline, 207 past CV events occurred in 152 individuals. In detail, myocardial 

infarction in 25 cases, coronary surgery/angioplasty in 16 cases, stroke in 36 cases, 

angina in 34 cases, peripheral vascular disease in 96 cases. In logistic regression 

analysis, GGT adjusted for age and sex was associated (P=0.03) with past CV events 

(OR:1.14, 95%CI:1.01-1.27). In a parsimonious backward logistic regression model 

adjusting for age, sex, CRP, alcohol consumption, ALT and diabetes the OR of a 20 U/L 

increase in GGT for the risk of past CV events was 1.23 (95%CI:1.06-1.43; P=0.01). 

Furthermore, the GGT-CV link was confirmed in a multiple logistic regression model 

[(OR:1.24, 95%CI:1.07-1.44; P=0.005); (shrinkage corrected OR:1.19, 95%CI:1.02-1.39; 

 
Correlation matrix   

GGT versus 

Independent correlates of 
GGT 

GGT versus 

Variables  r P Beta P 

Age  -0.07 0.03 0.03 0.38 
Male gender  0.27 <0.001 0.14 <0.001 
Diabetes 0.008 0.79 -0.01 0.70 
Smoking  0.09 0.003 0.008 0.77 
CV comorbidities  0.14 <0.001 0.09 0.001 
Alcohol consumption  0.20 <0.001 0.11 <0.001 
BMI  0.09 0.006 0.02 0.47 
Systolic BP 0.02 0.56 0.03 0.28 
Diastolic BP  -0.01 0.74 ….. …... 
Lipid-lowering agents 0.01 0.69 0.02 0.44 
Glucose  0.16 <0.001 ….. …… 
LDL cholesterol 0.03 0.35 0.03 0.31 
Haemoglobin  0.23 <0.001 0.10 0.003 
C reactive protein 0.16 <0.001 0.14 <0.001 
Alkaline Phosphatase  0.16 <0.001 0.11 <0.001 
Homocysteine  0.07 0.02 0.06 0.03 
AST  0.31 <0.001 -0.02 0.69 
ALT  0.39 <0.001 0.38 <0.001 
oxLDL  0.10 0.002 0.09 0.004 
Creatinine clearance  0.13 <0.001 0.001 0.99 
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P=0.02)] adjusting for the full list of traditional and non-traditional risk factors 

considered in this study (Supplementary Table II). 

 

Supplementary Table II. Multiple logistic regression model of past CV events 
 

 

Units of increase 

Past CV disease 

Odds ratio  
(CI 95%)  

P value 

GGT 20 U/L 1.24 (1.07-1.44)  0.005 
Age  1 year 1.03 (0.99-1.07)  0.06 
Male gender  4.05 (2.54-6.46)  0.001 
Current smokers yes/no 1.32 (0.79-2.20)  0.28 
BMI 1 Kg/m2 0.97 (0.91-1.03)  0.31 
LDL cholesterol 1 mg/dl 0.99 (0.99-1.01)  0.38 
C reactive protein 1 g/mL 1.02 (1.00-1.04)  0.05 

Systolic blood pressure 1 mmHg 1.00 (0.99-1.01)  0.94 
Alkaline phosphatase 1 U/L 1.00 (0.99-1.01)  0.55 
Haemoglobin 1 g/dL 0.97 (0.84-1.13)  0.72 
Alcohol consumption 1 g/day 0.99 (0.98-1.01)  0.05 
AST 1 U/L 0.99 (0.95-1.03)  0.55 
ALT 1 U/L 0.98 (0.95-1.01)  0.18 
Diabetes yes/no 1.55 (0.90-2.67)  0.11 
Creatinine clearance 1 ml/min/1.73m2 1.00 (0.99-1.02)  0.78 
oxLDL 1 U/L 1.01 (0.99-1.03)  0.10 
Homocysteine  µmol/L 0.98 (0.95-1.01)  0.18 

Abbreviations: GGT= gamma-glutamyltransferase; BMI=body mass index; AST= aspartate 
aminotransferase; ALT=alanine aminotransferase; oxLDL=oxidized low-density lipoproteins 

 

 

GGT, all-cause and CV mortality 

During the follow-up period (median 9 years, range 0.15- 10.5 years), 401 individuals 

died, 168 of them (42%) for cardiovascular causes. In an age and sex adjusted Cox 

regression model, 20U/L increase in serum GGT signaled a parallel 10% increase in the 

risk of all-cause mortality (HR:1.10, 95%CI:1.03-1.18, P=0.007). In a multiple Cox 

regression analysis adjusting for the same set of variables applied in the multiple 

logistic regression model (Supplementary Table III), GGT was confirmed as an 

independent risk factor of mortality [HR (20 U/L increase):1.11, 95%CI:1.02-1.21, 

P=0.02]. Similarly, GGT predicted CV mortality both in age and sex adjusted model 

(HR:1.12, 95%CI:1.01-1.24; P=0.04) and in an analysis [(HR:1.17, 95%CI:1.03-1.34; 

P=0.02); shrinkage corrected HR:1.17, 95%CI: 1.02-1.33; P=0.02)] adjusting for the 
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same set of variables applied in the multiple logistic regression model. In sensitivity 

analyses (N=937) excluding patients who died for malignancies or within 1 year from 

the enrolment, the HR of GGT for all-cause [HR (20 U/L increase):1.13, 95%CI:1.02-

1.25, P=0.02] and CV death (shrinkage corrected HR:1.17, 95%CI:1.03-1.34, P=0.02) 

remained the same.  

 
Supplementary Table III. Multiple Cox regression models of all-cause and CV mortality 
 

 
Units of increase 

All-cause mortality CV mortality 

Hazard ratio 
(CI 95%) 

P value *Hazard ratio 
(CI 95%) 

P value 

GGT 20 U/L 1.11 (1.02-1.21) P=0.02 1.17 (1.03-1.33) 0.02 
Age 1 year 1.13 (1.11-1.15) P<0.001 1.14 (1.11-1.17) <0.001 
Male gender  1.26 (0.98-1.63) P=0.08 1.55 (1.04-2.29) 0.03 
Current smokers yes/no 1.93 (1.43-2.63) P<0.001 1.22 (0.67-2.22) 0.51 
BMI 1 Kg/m2 1.01 (0.98-1.04) P=0.49 1.04 (0.99-1.09) 0.10 
LDL cholesterol 1 mg/dl 0.99 (0.98-0.99) P=0.007 1.00 (0.99-1.01) 0.36 
C reactive protein 1 g/mL 1.01 (1.01-1.02) P=0.006 1.01 (1.00-1.02) 0.02 

Systolic BP 1 mmHg 1.01 (0.99-1.01) P=0.17 1.01 (0.99-1.01) 0.10 
Alkaline phosphatase 1 U/L 1.00 (1.00-1.01) P=0.01 1.00 (0.99-1.01) 0.47 
Hemoglobin 1 g/dL 1.04 (0.96-1.13) P=0.32 1.14 (1.01-1.30) 0.04 
Alcohol consumption 1 g/day 0.99 (0.98-0.99) P=0.03 0.98 (0.97-0.99) <0.001 
AST 1 U/L 1.01 (0.99-1.04) P=0.26 1.01 (0.97-1.04) 0.79 
ALT 1 U/L 0.98 (0.96-0.99) P=0.01 0.97 (0.95-1.01) 0.11 
Diabetes yes/no 1.17 (0.85-1.61) P=0.35 1.22 (0.73-2.03) 0.45 
Creatinine clearance 1ml/min/1.73m2 1.00 (0.99-1.01) P=0.80 0.99 (0.98-1.00) 0.09 
oxLDL 1 U/L 1.01 (0.99-1.02) P=0.18 0.99 (0.98-1.01) 0.51 
Past CV events yes/no 1.48 (1.15-1.92) P=0.002 1.37 (0.92-2.05) 0.12 
Homocysteine µmol/L 1.02 (1.00-1.03) P=0.002 1.02 (1.00-1.04) 0.05 

Abbreviations: GGT= gamma-glutamyltransferase; BMI=body mass index; LDL= low-density lipoproteins; AST= 
aspartate aminotransferase; ALT=alanine aminotransferase; oxLDL= oxidized low-density lipoproteins.  
* Shrinkage corrected. 

 

GGT and clinical outcomes: effect modification by oxidized low-density lipoprotein  

Because oxLDL and GGT reflect reactive oxygen species burden, we hypothesized that 

coexistence of high oxLDL and GGT may amplify the risk for all-cause and CV mortality 

in the elderly population of the InCHIANTI study. Oxidized LDL per sé failed to show a 

meaningful link with all-cause and CV death (HR:0.99 for both outcomes). However, 

oxLDL amplified the effect of GGT on all-cause mortality both in age and sex adjusted 

Cox models (P for the effect modification=0.001) and adjusted analyses (P for 

interaction=0.003) (Table 2).  
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Table 2. Multiple Cox regression model of the oxLDL-GGT interaction for all-cause mortality 
 

 

Units of increase 

All-cause mortality 

Hazard ratio  
(CI 95%)  

P value 

GGT 
oxLDL  
GGT x oxLDL (interaction term) 

20 U/L 
1 U/L 

20 U2/L2 

 
See Figure 1 

 

 
P for interaction=0.003 

Age  1 year 1.13 (1.11-1.15)  0.001 
Male gender  1.26 (0.98-1.63)  0.07 
Current smokers yes/no 1.91 (1.41-2.59)  0.001 
BMI 1 Kg/m2 1.01 (0.98-1.04)  0.59 
LDL cholesterol 1 mg/dl 0.99 (0.98-0.99)  0.007 
C reactive protein 1 g/mL 1.01 (1.01-1.02)  0.006 

Systolic blood pressure 1 mmHg 1.00 (0.99-1.01)  0.26 
Alkaline phosphatase 1 U/L 1.00 (1.00-1.01)  0.005 
Hemoglobin 1 g/dL 1.04 (0.96-1.12)  0.34 
Alcohol consumption   1 g/day 0.99 (0.98-0.99)  0.04 
AST 1 U/L 1.01 (0.99-1.04)  0.21 
ALT 1 U/L 0.98 (0.96-0.99)  0.02 
Diabetes yes/no 1.17 (0.85-1.62)  0.33 
Creatinine clearance 1 ml/min/1.73m2 1.00 (0.99-1.01)  0.70 
Past CV events yes/no 1.43 (1.11-1.85)  0.006 
Homocysteine  µmol/L 1.02 (1.01-1.03)  0.002 

Abbreviations: GGT= gamma-glutamyltransferase; oxLDL=oxidized low-density lipoproteins; BMI=body 
mass index; LDL=low-density lipoproteins; AST= aspartate aminotransferase; ALT=alanine aminotransferase 

 

 

Figure 2. Effect modification of oxLDL levels on the GGT-mortality link (adjusted for age, gender, smoking, BMI, 
LDL cholesterol, C reactive protein, systolic BP, alkaline phosphatase, hemoglobin, alcohol consumption, AST, 
ALT, homocysteine, diabetes, creatinine clearance and past CV events). The hazard ratio for all-cause mortality 
portended by a fixed increase (20U/L) in serum GGT is reported on the left scale. The continuous line 
represents the shape of the HRs throughout oxLDL levels and the dotted lines the corresponding 95% CI. In 
the background the distribution of oxLDL is plotted and the number of patients corresponding to each column 
of the histogram is reported on the right scale.  
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As shown in Figure 2, the risk excess for all-cause mortality portended by a fixed 

increase in GGT (20 U/L) was progressively higher across increasing values of oxLDL. 

A sensitivity analysis excluding individuals who were heavy drinkers (n=194), 

confirmed the oxLDL-GGT interaction for all-cause mortality (P<0.001).  Of note, this 

interaction was specific because no similar effect modification existed for AST, ALT, 

CRP, smoking, alcohol consumption and other traditional or non-traditional risk 

factors (P ranging from 0.16 to 0.97).  

An interaction analysis carried out to test the effect modification by oxLDL on the GGT-

CV mortality link (Supplementary Table IV) showed a similar trend in age and sex 

adjusted Cox model (P for interaction=0.02) but this interaction just failed to achieve 

the formal statistical significance in both a fully adjusted analysis (P for 

interaction=0.08) and a sensitivity analysis (P=0.18) excluding heavy drinkers. 

 

 

Supplementary Table IV.  Multiple Cox regression model of the oxLDL- GGT interaction for CV 

mortality 

 
Units of increase 

CV mortality 

Hazard ratio (CI 95%)  P value 

GGT 20 U/L  
*P for interaction=0.08 oxLDL 1 U/L 

GGT x oxLDL (interaction term) 20 U2/L2 

Age  1 year 1.15 (1.11-1.18)  0.001 
Male gender  1.59 (1.07-2.36)  0.02 
Current smokers yes/no 1.22 (0.67-2.20)  0.52 
BMI 1 Kg/m2 1.04 (0.90-1.09)  0.10 
LDL cholesterol 1 mg/dl 1.00 (0.99-1.01)  0.35 
C reactive protein 1 g/mL 1.01 (1.00-1.02)  0.009 

Systolic blood pressure 1 mmHg 1.00 (0.99-1.01)  0.10 
Alkaline phosphatase 1 U/L 1.00 (0.99-1.01)  0.40 
Hemoglobin 1 g/dL 1.15 (1.02-1.30)  0.03 
Alcohol consumption   1 g/day 0.98 (0.97-0.99)  <0.001 
AST 1 U/L 1.00 (0.97-1.04)  0.69 
ALT 1 U/L 0.97 (0.94-1.01)  0.10 
Diabetes yes/no 1.26 (0.75-2.09)  0.38 
Creatinine clearance 1 ml/min/1.73m2 0.99 (0.98-1.01)  0.08 
Past CV events yes/no 1.34 (0.89-2.00)  0.16 
Homocysteine  µmol/L 1.02 (1.00-1.04)  0.04 

*Given the fact that the interaction did not achieve statistical significance (P=0.08), no shrinkage 
correction was adopted.  
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DISCUSSION 

In this cohort study conducted in older persons living in the Chianti area of Italy, serum 

GGT levels associated with history of CV disease and predicted the risk for all-cause 

and CV death independently of other risk factors, including liver disease and alcohol 

consumption. Furthermore, in a pre-specified interaction analysis circulating oxLDL 

amplified the effect of GGT on mortality. 

Meta-analyses of studies in the general population and in high risk conditions (4, 5) 

coherently showed that GGT predicts an excess risk for death and fatal CV events. 

Importantly, the excess risk by GGT for these outcomes is largely independent of liver 

disease and alcohol consumption, i.e. the two major environmental factors 

responsible for raised GGT in human diseases. Of note the strength of the association 

between GGT and all-cause mortality was second only to that by age and CRP and the 

same outcome, further emphasising the relevance of non-traditional risk factors in the 

elderly (15). The vast majority of these studies were based on cohorts of young and 

middle-aged adults (4, 5). Until now just one community study specifically focused on 

an elderly population (the Rancho Bernardo study) (8). In this elderly population, GGT 

emerged as an independent predictor of all-cause and CV death. This observation 

contrasts with age-stratified analyses in the Minnesota Heart Survey where GGT was 

unrelated to CV death in people older than 70 years (9). Similarly, GGT failed to predict 

CV mortality in men older than 55 years in the British Regional Heart study cohort (12). 

Remarkably, an age-dependent attenuation of the health risk signalled by GGT was 

registered not only for the independent risk of CV death (16) but also for the incident 

risk of cancer (17). The age-dependent attenuation of the risk by GGT on major clinical 

outcomes suggests that the duration of exposure to this risk factor is critical to explain 

its link with adverse outcomes. In other words, shorter life expectancy in elderly 

people and competing risks by other diseases may prevent capturing any underlying 

link between GGT and mortality or CV disease in the elderly.  

The InCHIANTI study is based on a cohort of prevalently healthy elderly people. Life 

expectancy in Tuscany (85 years for women and 80 years for men) is among the 
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longest worldwide and the InCHIANTI study has a quite long follow up with a median 

time of observation of 9 years. In this prevalently healthy cohort in subjects free of 

liver disease at baseline, GGT emerged as coherent predictor of death and fatal CV 

events independently of traditional (Framingham) and non-traditional risk factors 

including alcohol intake as well as CRP (18) and homocysteine (19), two established 

predictors of adverse outcomes in the elderly. High GGT is considered as a major 

biomarker of non-alcoholic fatty liver disease (NAFLD) (20) which is seen as a 

manifestation of metabolic syndrome (21). However, both in our study and in the 

Rancho Bernardo study (8) the link between GGT and mortality was largely 

independent of BMI and other variables underlying the metabolic syndrome 

suggesting  that the independent risk of GGT for adverse clinical outcomes may 

underlie mechanism other than the metabolic syndrome. 

GGT plays a crucial role in oxidative processes favouring the cellular supply of 

glutathione (GSH), the major thiol antioxidant in human body (2). GGT is ubiquitously 

expressed to the cell-surface where it promotes the extracellular catabolism of GSH, 

allowing for precursor amino acids to be internalized and reused for intracellular GSH 

synthesis in a continuous “GSH cycling” across the plasma membrane (22). 

Accordingly, GGT associates directly with F2-isoprostanes, an established marker of 

oxidative stress (23) and inversely with serum antioxidants (24, 25). On the other 

hand, experimental data exists indicating that GGT may per sé trigger the production 

of ROS via a sulphur di-aminoacid (cysteinyl-glycine) generated from GSH hydrolysis 

(22, 26). 

Because GGT in atherosclerotic plaques co-localizes with oxLDL, this co-localization 

may be critical in the pathogenesis of atherosclerosis (6), a possibility supported by 

the observation that circulating GGT is bound to LDL (25). In a pre-specified interaction 

analysis we found an effect modification by oxLDL for the risk of death predicted by 

GGT levels. We observed a similar interaction for fatal CV events but, perhaps due to 

the relatively limited number of events, this effect just failed to achieve statistical 

significance (P=0.08). Such an interaction suggests that GGT levels may underlie a 
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mechanism which amplifies the toxic effects of oxLDL on the vascular system or vice 

versa.  

In conclusion, in this cohort study in a population of relatively healthy elderly people, 

GGT is directly associated with the incident risk of all-cause and CV death 

independently of a large set of potential confounders and circulating oxLDL amplifies 

the effect of GGT on all-cause but not CV mortality in older adults. This study supports 

the contention that GGT may have a role in oxidative stress-mediated adverse health 

outcomes in the elderly. 
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DISCUSSION 

Studies included in this thesis document that insulin resistance, inflammation and 

oxidative stress are crucial pathophysiological pathways that affect survival and CV 

integrity in high-risk populations. Observations from cross-sectional studies are 

supported by prospective evidence that gives consistent insights into the role of these 

detrimental processes in the high susceptibility to mortality and adverse CV outcomes 

in obese individuals and elderly subjects as well as in patients with CKD of various 

severity, representing a useful tool for risk stratification in these populations.  

 
Expression of inflammatory molecules in abdominal fat mass of obese individuals 

Adipose tissue is distributed throughout the body in discrete fat compartments and 

the topography of its accumulation is relevant for the risk of adverse clinical outcomes. 

Adipose tissue is an abundant source of inflammatory cytokines and an excess of fat 

mass has been associated with a chronic subclinical inflammatory state. Central 

adiposity is more strongly associated with inflammation than peripheral adiposity (1) 

but a large waist encompasses both increased abdominal subcutaneous adipose tissue 

(SAT) and visceral adipose tissue (VAT) not allowing to assess the specific contribution 

of these two fat compartments to obesity-related inflammation.  By comparing the 

expression profiles of 19 major pro-inflammatory and 7 anti-inflammatory genes in 

SAT and VAT of severely obese patients, I found that these two fat compartments 

express the same set of inflammatory cytokines and that the large majority of pro-

inflammatory genes is more expressed in SAT than in VAT, suggesting a stronger 

contribution of the subcutaneous fat compartment to the low-grade obesity-related 

inflammation. This evidence seems at odds with the traditional view of VAT as the 

main determinant of risk excess for adverse clinical complications and SAT as neutral 

or even protective component as for the same risk. However, the predominant 

component of fat mass in central adiposity is subcutaneous rather than visceral (2), 

being this latter just a minor segment of total fat depots equal to less than 1/5 of 

whole body fat tissue (1, 3). In addition, our findings are consistent with previous 
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evidence showing higher gene expression of TNF IL6 and IL1(4-6) in SAT of obese 

patients rather than in VAT. I also found an upregulated expression of other two 

important pro-inflammatory molecules in SAT: SAA1 and PAI, which are responsible 

for the early response to injury and the inhibition of the fibrinolytic system, 

respectively. Moreover, I was able as first to demonstrate that IL8 is remarkably 

upregulated in SAT and that this increase was paralleled by an increase of the gene 

expression of the two IL8 receptors, pointing to an augmented IL8 signalling in SAT of 

obese individuals. In my study, IL18 was the sole pro-inflammatory cytokine showing 

a reverse expression pattern being upregulated in VAT. However, IL18 is a pleiotropic 

molecule promoting inflammation as well as the synthesis of anti-inflammatory 

cytokines such as IL10 (7). Of note, IL18-deficiency in mice causes hyperphagia, 

obesity, diabetes and atherosclerosis by massive fat deposition in the arterial walls 

(8). Thus, IL18 downregulation in SAT is in keeping with the hypothesis that the overall 

expression profile of cytokines in SAT denotes a more pro-atherogenic, metabolically 

adverse attitude.  

Likewise, leptin and resistin, two potent pro-inflammatory adipokines, are 

upregulated in SAT as well as adiponectin which is the major anti-inflammatory 

protein secreted by adipose tissue. In support of an increased pro-inflammatory gene 

expression of SAT compared to VAT, I found that macrophage infiltration was 

comparable in the two fat compartments. However, a strong and positive correlation 

between SAT and VAT gene expression for the majority of the pro-inflammatory genes 

studied indicate that, though at different rates, the two fat compartments undergo 

similar changes in the expression profile of inflammatory cytokines. Interestingly, 

although cytokines secreted by adipose tissue usually act as autacoids, I found a strong 

association between the gene expression and the corresponding plasma levels for 4 

inflammatory cytokines (IL8, IL18, SAA1, adiponectin) providing evidence that adipose 

tissue may contribute to circulating cytokine levels.  
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TIMP-1, insulin resistance and cardiomyopathy in patients with kidney failure  

Left ventricular hypertrophy (LVH) and insulin resistance (IR) are pervasive 

complications of kidney failure (9, 10). LVH is characterized by hypertrophy of 

cardiomyocytes and abnormal accumulation of fibrous tissue in the interstitium of the 

myocardium (11). Ultrasonic studies in vivo in the myocardium of patients with kidney 

failure confirmed that fibrosis is a hallmark in LVH in this population (12, 13). There is 

consistent evidence that IR promotes myocardial fibrosis (14) by altering the balance 

between the synthesis and breakdown of extracellular matrix proteins (15). Indeed, 

raised insulin secretion shifts this balance toward reduction of extracellular matrix 

degradation via the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase Akt 

pathway (16). The fibrogenic process is regulated by matrix metalloproteinases 

(MMPs) that are a family of enzymes which degrade matrix proteins in the 

extracellular environment. The proteolytic activity of MMPs is modulated by a group 

of endogenous inhibitors known as tissue inhibitors of metalloproteinases (TIMPs) 

(17). The balance between MMPs and TIMPs is critical for the eventual remodeling of 

the myocardial tissue. TIMP-1 is currently considered a promising marker of fibrosis 

(18, 19). High circulating levels of TIMP-1 have been associated with LVH in both the 

general population (20) and in hypertensive patients (21, 22) and, in experimental 

models of pressure overload, over-expression of this biomarker goes in parallel with 

an increased LV mass (23). I have shown that a polymorphism in a genetic marker, the 

ENPP1 (i.e. ectonucleotide pyrophosphatase/phosphodiesterase 1) gene, of IR 

modifies the relationship between the pro-fibrotic TIMP-1 and LV geometry and 

function in a population of dialysis patients. The ENPP1 gene codes for a membrane 

glycoprotein that alters the intracellular insulin signalling by inhibiting insulin receptor 

autophosphorylation (24). In a recent study in the same set of patients with kidney 

failure, I documented a strong and significant association between the rs1974201 

polymorphism in the ENPP1 gene and LV hypertrophy and concentric remodelling 

(25). Interestingly, in the latter study the ENPP1 rs1974201 polymorphism showed 

also a parallel association with insulin and glucose levels (46), thus providing evidence 

http://www.ncbi.nlm.nih.gov/pubmed/22199358


Chapter 8 

140 

 

of a direct involvement of carbohydrate metabolism in the pathogenesis of 

cardiomyopathy in dialysis patients. In this frame, I speculated that this 

polymorphism, which contributes to insulin resistance, can also modify the link 

between TIMP-1 and LV geometry and function. In the whole study population, TIMP-

1 was directly and significantly (P=0.014) associated to E/A ratio, a marker of LV 

function, but unrelated to LV geometry as assessed by relative wall thickness (RWT) 

and LV mass-to-volume ratio. However, a separate analysis on stratified patients 

according to ENPP1 rs1974201 genotypes, shows that homozygous patients for the G 

allele exhibit a direct association of TIMP-1 with LV dysfunction but also a significant 

relationship between the same biomarker and the echocardiographic indices RWT and 

LV mass-to-volume ratio that increase of 22% and 14% respectively for a fixed increase 

in TIMP-1 levels (100 ng/ml). This finding points to the rs1974201 polymorphism as an 

effect modifier of the TIMP1-LV geometry and function. This is consistent with the 

hypothesis that the ENPP1 gene and IR are relevant players in the pathogenesis of 

concentric LVH as well as in the development of myocardial fibrosis in patients with 

kidney failure. 

 

The causal association between inflammation and CV complications in CKD: a 

Mendelian randomization study 

CKD is a clinical condition characterized by high CV risk and chronic systemic 

inflammation (26, 27). Although inflammation and CV disease are closely associated, 

being inflammation a critical component of the atherosclerosis process (28), the 

nature (casual vs non-causal) of this link remains elusive in CKD patients. 

Observational studies, indeed, are methodologically vulnerable to test causality 

because of potential bias and confounding. In this frame, the Mendelian 

randomization approach, by exploiting functional genetic polymorphisms as indicators 

of the effect of modifiable environmental exposures on disease, may offer the 

opportunity to overcome problems inherent to non-experimental studies. The 

categorization of patients according to pertinent alleles, in fact, generates a sort of 
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“natural” randomization which mimics the effects of a randomized clinical trial. By 

using this approach, I reported a strong and significant association between 

inflammation and adverse CV events in CKD patients and, notably, offered strong 

support to the hypothesis that this link is causal in nature, this finding being relevant 

because of the presence of inflammation at all CKD stages (29). IL-6 is an orchestrator 

of the inflammatory response and high circulating levels of this cytokine are predictive 

of mortality and CV events in several populations (30, 31), including dialysis patients 

(32-36). I used a functional polymorphism, i.e. the-174 G/C, in the promoter region of 

the IL-6 gene, as a reliable research tool for testing the nature (causal vs non causal) 

of the association between inflammation and CV complications in a population of 

patients with CKD of various severity. The -174 G/C is a single nucleotide 

polymorphism (SNP) which regulates circulating levels of IL-6 by modulating the rate 

of IL-6 gene transcription (37-43). In keeping with previous studies in patients with CV 

complications (37-41, 43), I found that, by stratifing the study population according to 

the -174 G/C polymorphism, CKD patients with CC genotype had higher circulating 

levels of IL-6 than those harboring GC or GG genotypes. Interestingly, I found that this 

polymorphism was independently associated with the history of CVD as well as with 

incident CV events and such associations went along with the relationships between 

serum IL-6 and the same outcomes in our cohort, specifically legitimating the use of 

this genetic marker as an unbiased means for assessing the causal nature of the link 

between the gene product (IL-6) of this polymorphism and the CV complications in 

CKD. Further, the observation that in our patients the -174 G/C polymorphism was not 

in Hardy-Weinberg equilibrium and that the frequency of the C allele was significantly 

higher in CKD patients than in the general population from the same geographical 

area, offers additional circumstantial evidence that IL-6 is a causal risk factor for CV 

events in CKD (44). 

To the best of my knowledge, this was the first study which tested the association 

between IL-6 and CV events and investigated the causality of this link in a population 

of CKD patients not in dialysis. The only other study dealing with this issue was, in fact, 
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carried out by Barreto et al. (45) in a small CKD cohort (n=125) characterized by a quite 

limited number of CV events (n=22) and including 34% of dialysis patients. In addition, 

in the study by Barreto, the nature of the association between inflammation and CV 

outcomes was not tested because being observational in nature and based only on 

circulating IL-6, this study remains merely hypothesis generating thus leaving 

unresolved the critical question whether IL-6 is causally implicated in CV complications 

in CKD patients. Although, this issue demands specific experimental evidence (i.e. a 

formal randomized clinical trial), our Mendelian randomization study supports causal 

interpretations. As for the potential limitations to Mendelian randomization 

application, it is reasonable to believe that in our study all the assumptions required 

to consider this approach as an effective analysis strategy to infer causality in 

observational setting, are fulfilled. In fact, the -174G/C SNP is a functional 

polymorphism directly responsible for serum levels of IL-6 (37-43), our population is 

genetically homogeneous (46) and pleiotropy seems highly unlikely because of the 

location of the polymorphism in the promoter region of the gene. Remarkably, in line 

with our findings, meta-analytic data from genetic consortia exploring the effect of a 

polymorphism in the interleukin-6 receptor (IL6R) on the risk of coronary artery 

disease, showed that the allele which attenuated IL-6 signaling was significantly 

associated with reduced risk of coronary heart disease (46). Finally, a meta-analysis of 

clinical trials testing a monoclonal antibody against the IL6R (Tocilizumab) in 

rheumatoid arthritis documented that lowering serum levels of IL-6 is an effective 

strategy to induce the remission of this chronic inflammatory disease (47).  

 

Fat-mass and obesity-associated (FTO) gene and mortality in CKD  

About half of the fat mass variations is explained by genetic factors (48) and, among 

the large series of genes associated to human obesity, the FTO (fat-mass and obesity-

associated) gene is of particular interest to investigate the complex relationship 

between high body mass index (BMI) and survival. This link deserves particular 

attention in CKD patients because, unlike the general population where excess 
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adiposity is directly and linearly associated with the risk of death, in CKD the 

relationship between obesity and mortality is U shaped or inverse, suggesting a 

protective effect of a high body fat mass in this population. Herein, I report an 

association between a polymorphism in the FTO gene and all-cause mortality in 

patients with CKD of various severity. I selected 17 tag SNPs that reflected the 

haploblock structure of the gene and captured the majority of the gene variability and 

explored their potential association with mortality in a cohort (the CREED-1 cohort) of 

dialysis patients. Among these polymorphisms, the rs708259 on intron 8 of the FTO 

gene resulted to be significantly associated with death. Specifically, in the CREED-1 

cohort, patients with the A allele of the rs708259 polymorphism showed a 52% higher 

risk of mortality than patients without this allele. When I extended the analysis to 

other two dialysis cohorts, the North Apulian and the CREED-2 cohort, including 

patients comparable to those of the CREED-1 cohort as for demographic and clinical 

characteristics, I observed again excess mortality (+23% and + 21%, respectively) in A-

allele carriers. Interestingly, I found such an association also in a third independent 

cohort of stage 2-5 CKD patients where A-allele carriers had an almost double risk of 

mortality relative to patients without A allele. While the association between the 

rs708259 polymorphism and mortality in my patients is statistically robust, the 

functional significance of this polymorphism is unknown. Because the rs708259 

polymorphism is unrelated to BMI and diabetes in my patients, it seems unlikely that 

the FTO gene affects survival through its impact on mechanisms regulating energy 

balance or glucose metabolism. Interestingly, despite the well-known association of 

the FTO gene with obesity (49-53) and type 2 diabetes (49, 54-55), polymorphisms in 

this gene associate also with other major clinical conditions including cancer (56-58), 

hypertension (59), Alzheimer’s disease (60) and kidney failure (61). Functionally, this 

gene codes for an enzyme that demethylates single-stranded DNA (62) and, thus, I 

speculate that this polymorphism may modulate relevant epigenetic modifications of 

other genes regulating various biological processes. Alternatively, the rs708259 

polymorphism may exert its functional effects by modifying the bioavailability of the 
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transcript and/or the protein product of FTO but functional studies in appropriate 

models are needed to mechanistically interpret the association between this 

polymorphism and mortality in patients with CKD. 

 

The mutual relationship between resistin and adiponectin on all-cause and CV 

mortality in ESKD patients 

Resistin is a cysteine rich molecule synthesized in the adipose tissue (63, 64) and high 

levels of this peptide go along with inflammation and insulin resistance both in 

experimental models (63, 65-66) and in man (67,68). Specifically, adipocytes are 

considered the sole source of resistin in mice (63, 64) while in man this adipokine is 

expressed primarily in macrophages and its levels correlate more closely with 

inflammation than with insulin resistance (70-72). Plasma resistin is markedly elevated 

in ESKD (73, 74) but it is still debated if this phenomenon is a mere consequence of 

accumulation secondary to reduced renal clearance or if it mainly reflects chronic 

inflammation (74). In line with this evidence, in a population of ESKD patients, I found 

that resistin was not only higher than in normal subjects but also significantly related 

with serum level of C reactive protein, a recognized marker of inflammation, while it 

did not correlate with insulin resistance as assessed by circulating levels of insulin and 

HOMA-IR index.  

Since resistin induces the expression of crucial pro-atherosclerotic mediators (75, 76), 

its role in CV risk was repeatedly questioned but evidence acquired so far is conflicting. 

Plasma resistin levels have been associated with coronary artery calcification (69), CV 

events and all-cause mortality in type 2 diabetes patients (77) as well as with major 

CV complications in the general population (78). However, no association between 

resistin and mortality was reported in patients with coronary artery disease (79). ESKD 

patients are a population with exceedingly high risk for death and CV events (80), thus 

testing the hypothesis that resistin is implicated in the high CV risk of these patients is 

a relevant question. Our study is the very first investigating the relationship between 

resistin and major clinical outcomes in this population. In this respect, I found an 



Discussion 

 

145 

 

association between resistin and all-cause and CV mortality that was statistically 

strong and quantitatively of potential clinical relevance. However, the effect of resistin 

on study outcomes was closely dependent on concurrent ADPN levels, being apparent 

and highly significant only in patients with low ADPN. Indeed, by a fixed increase in 

plasma resistin, there was a consistent excess risk for death and fatal CV events in 

patients in the first ADPN tertile whereas no risk excess for these outcomes was 

apparent in patients in the third ADPN tertile. This interaction being fully independent 

of potential confounders and in line with the evidence that adipose tissue cytokines 

have mutual inter-relationships that contribute to determine death and CV 

complications (81). The effect of ADPN on the relationship between resistin and all-

cause and CV mortality has biological plausibility because ADPN and resistin have 

opposite effects on endothelial function and atherosclerotic process: resistin is a 

noxious factor for the CV system while ADPN is protective. Therefore, in ESKD patients, 

high ADPN reduces the CV risk excess sustained by high resistin levels. 

 

The role of the pro-oxidant GGT on survival in an Italian elderly population 

Gamma-glutamyltransferase (GGT) is a biomarker of liver disease (82, 83) but recent 

evidence supports an involvement of this enzyme in oxidative stress (84, 85), thus 

suggesting a potential role of GGT in the pathogenesis of CV disease (86). Since aging 

is a process heavely influenced by oxidative stress (87), eldelrly individuals provide a 

unique opportunity to study the relationship between GGT and CV outcomes. In this 

population-based cohort study conducted in people older than 65 years living in the 

Chianti area (Tuscany region) of Italy, I found that serum GGT levels associated with 

history of CV disease and predicted the risk for all-cause and CV death independently 

of a large set of risk factors, including liver disease and alcohol consumption, which 

are the two major environmental factors responsible for raised GGT levels in human 

diseases. These results are in line with meta-analyses data showing that GGT predicts 

an excess risk for death and fatal CV events in the general population and in patients 

with coronary artery disease and type 2 diabetes (82, 83). However, almost all the 
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studies included in the meta-analyses were carried out in cohorts of young and 

middle-aged adults (82, 83). Similarly, in the only community study (the Rancho 

Bernardo study) specifically focused on an elderly population (88), GGT emerged as an 

independent predictor of all-cause and CV death. In contrast, in an age-stratified 

analyses in the Minnesota Heart Survey, GGT resulted to be unrelated to CV death in 

people older than 70 years (89) and such a result was observed in the British Regional 

Heart study cohort where GGT failed to predict CV mortality in men older than 55 

years (90). Remarkably, an age-dependent attenuation of the health risk signalled by 

GGT was registered not only for the risk of CV death (91) but also for the risk of cancer 

(92). The age-dependent attenuation of the risk by GGT on major clinical outcomes 

suggests that the duration of exposure to this risk factor is critical to explain its link 

with adverse outcomes. In other words, the short life expectancy of elderly people 

and competing risks by other diseases may prevent identifying an underlying link 

between GGT and mortality or CV disease in the elderly. The InCHIANTI study is based 

on a cohort of prevalently healthy elderly people. Life expectancy in Tuscany (85 years 

for women and 80 years for men) is among the longest worldwide and the InCHIANTI 

study has a quite long follow up with a median time of observation of 9 years. In this 

cohort with subjects free of liver disease at baseline, GGT emerged as coherent 

predictor of death and fatal CV events independently of other risk factors including 

alcohol intake. High GGT is a major biomarker of non-alcoholic fatty liver disease 

(NAFLD) (93), which may be considered as the hepatic manifestation of metabolic 

syndrome (94). However, both in our study and in the Rancho Bernardo study (88), 

the link between GGT and mortality was largely independent of BMI and other 

variables underlying the metabolic syndrome, suggesting that GGT may induce 

adverse clinical outcomes via mechanism(s) other than the metabolic syndrome.  

GGT is ubiquitously expressed on the cell-surface where it promotes the extracellular 

catabolism of glutathione (GSH), allowing for precursor amino acids to be internalized 

and reused for intracellular GSH synthesis in a continuous “GSH cycling” across the 

plasma membrane (95). By favouring the cellular supply of glutathione (GSH), which is 
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a crucial antioxidant in human body (84), GGT plays a key role in oxidative processes. 

In addition, GGT may also trigger the production of ROS via a sulphur di-aminoacid 

(cysteinyl-glycine) generated from GSH hydrolysis (95, 96). Clinical evidence of the 

pro-oxidant action of GGT exists, indicating a direct correlation between GGT and F2-

isoprostanes, an established marker of oxidative stress (97), and an inverse association 

of this hepatic enzyme with serum antioxidants (98, 99). 

Recently, catalytically active GGT has been found within atherosclerotic coronary 

plaques (100) where it co-localizes with oxidized low-density lipoproteins (oxLDL). 

Serum GGT is partially adsorbed onto LDL which carry GGT inside the plaque (101), 

where this enzyme promotes the oxidation of LDL, likely contributing to oxidative 

events influencing plaque evolution and rupture (102). In light of the 

pathophysiological relationship between GGT and oxLDL, I observed that oxLDL 

modifies the risk of death predicted by GGT levels by amplifying the effect of GGT on 

all-cause and CV mortality in models controlling for potential confounders, suggesting 

that GGT levels may underlie a mechanism which amplifies the toxic effects of oxLDL 

on the vascular system or vice versa.  
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SUMMARY 

In this thesis, epidemiologic and genetic data analyses in high-risk populations for 

cardiovascular disease (CVD) and excess mortality show that insulin resistance, 

inflammation and oxidative stress are crucial pathophysiological pathways mediating 

the increased susceptibility to adverse cardiovascular (CV) outcomes and mortality. 

Specifically, findings from the cross-sectional study in severely obese subjects point to 

a prevailing role of the abdominal subcutaneous adipose tissue (SAT) on visceral 

adipose tissue (VAT) with respect to inflammatory gene expression, generating the 

hypothesis that topography of fat accumulation is relevant for the risk of inflammation 

and, consequently, of CV complications. Furthermore, a polymorphism in the 

ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene, a genetic 

marker of insulin resistance associated with myocardial hypertrophy and LV 

concentric remodeling in dialysis patients, modifies the relationship between a 

myocardial pro-fibrotic cytokine, the tissue inhibitors of metalloproteinase 1 (TIMP-

1), and left ventricular (LV) geometry and function.  

The crucial role of fat mass in the increased risk of adverse and/or fatal clinical events 

has also been prospectively investigated in both chronic kidney disease (CKD) and end-

stage kidney failure (ESKF).  In relation to the endocrine function of the adipose tissue, 

a study in a cohort of patients with kidney failure shows a mutual relationship between 

resistin and adiponectin (ADPN) in determining death and CV events. Indeed, the risk 

for all-cause and CV mortality portended by a fixed increase in plasma resistin depends 

on plasma ADPN concentration, being evident in patients with low levels of ADPN but 

absent in those with high levels of this adipokine. In line with this evidence, the 

variability of the fat mass and obesity-associated (FTO) gene, a genetic biomarker of 

diabetes and hypertension, contributed to mortality in three cohorts of patients with 

CKD.   

In the context of inflammation as a trigger of CV complications, prospective follow up 

of patients with CKD revealed a strong and significant association between interleukin-

6 (IL-6) and fatal and non-fatal CV events. Since serum IL-6 levels are genetically 
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regulated, it was obvious to use a Mendelian randomization method that exploited a 

functional polymorphism in the IL-6 gene as instrumental variable: my findings 

strongly support that the link between serum IL-6 levels and CV complications is causal 

in nature. 

Finally, the role of oxidative stress on CV risk and mortality has been investigated in a 

cohort of healthy elderly since aging is, par excellence, the result of unbalanced pro-

oxidant processes. In the participants of the Invecchiare in Chianti study, gamma-

glutamyltransferase (GGT), a multifaceted biomarker of oxidative stress, emerged as a 

risk factor for all-cause and cardiovascular (CV) mortality independently of liver disease 

and alcohol intake. In addition, circulating oxidized low-density lipoproteins (oxLDL) 

amplified the effect of GGT on the adverse health outcomes. This supports the notion 

that GGT may underlie a mechanism which enhances the toxic effects of oxLDL on the 

vascular system or, vice versa, oxLDL enhances atherogenic properties of GGT.
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SAMENVATTING 

In dit proefschrift laten epidemiologische en genetische analyses zien dat insuline 

resistentie, inflammatie en oxidatieve stress cruciale pathofysiologische paden zijn en 

een verhoogde gevoeligheid voor ongunstige cardiovasculaire (CV) uitkomsten en 

mortaliteit mediëren in hoog-risicopopulaties voor cardiovasculaire aandoeningen 

(CVZ) en overmatige mortaliteit. 

In het bijzonder, laten de bevindingen van de cross-sectionele studie zien dat de rol van 

het abdominale subcutane vetweefsel (SAT) een belangrijkere rol heeft dan het 

visceraal vetweefsel (VAT) met betrekking tot inflammatoire genexpressie. Hierbij is de 

hypothese gegenereerd dat de lokalisatie van de vetophoping relevant is voor het risico 

van inflammatie en daarmee het risico op CV-complicaties. Daarnaast is gevonden dat 

een polymorfisme in het ectonucleotide pyrofosfatase / fosfodiesterase 1 (ENPP1) gen, 

een genetische marker van insulineresistentie geassocieerd met myocardiale 

hypertrofie en LV concentrische remodellering bij dialysepatiënten, de relatie tussen 

een myocardiaal pro-fibrotisch cytokine, de weefselremmers van metalloproteinase 1 

(TIMP-1), en linker ventrikel (LV) geometrie en functie modificeert. 

De cruciale rol van vetmassa in het verhoogde risico op nadelige en/of fatale klinische 

gebeurtenissen is tevens prospectief onderzocht bij zowel personen met chronische 

nierziekte (CKD) als eind stadium nierfalen (ESKF). Met betrekking tot de endocriene 

functie van het vetweefsel, toont een onderzoek in een cohort van patiënten met 

nierfalen een wederzijds verband tussen resistine en adiponectine (ADPN) bij het 

bepalen van overlijden en CV-events. 

Het risico voor mortaliteit door alle oorzaken en de CV mortaliteit dat wordt 

weergegeven door een forse toename in plasma resistine en afhangt van de ADPN-

concentratie in het plasma, is duidelijk bij patiënten met lage niveaus van ADPN maar 

afwezig bij patiënten met hoge niveaus van deze adipokine. In overeenstemming met 

dit bewijs, droeg de variabiliteit van het vetmassa- en het obesitas-geassocieerde (FTO) 

gen, een genetische biomarker van diabetes en hypertensie, bij aan de mortaliteit in 

drie cohorten van patiënten met CKD. 
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In de context van inflammatie als een trigger voor CV-complicaties, toonde de 

prospectieve follow-up van patiënten met CKD een sterke en significante associatie 

tussen interleukine-6 (IL-6) en fatale en niet-fatale CV-gebeurtenissen. Omdat serum IL-

6 niveaus genetisch zijn gereguleerd, was het noodzakelijk om een Mendeliaanse 

randomisatiemethode te gebruiken die een functioneel polymorfisme in het IL-6-gen 

als instrumentele variabele exploiteerde: mijn bevindingen ondersteunen sterk dat de 

associatie tussen serum IL-6-niveaus en CV-complicaties causaal van aard is. 

Ten slotte is de rol van oxidatieve stress op CV-risico en mortaliteit onderzocht in een 

cohort van gezonde ouderen, omdat veroudering bij uitstek het resultaat is van 

ongebalanceerde pro-oxidantprocessen. In de deelnemers aan de Invecchiare in 

Chianti-studie kwam gamma-glutamyltransferase (GGT), een veelzijdige biomarker van 

oxidatieve stress, naar voren als een risicofactor voor mortaliteit door alle oorzaken en 

CV mortaliteit onafhankelijk van leverziekte en alcoholinname. Bovendien versterkten 

circulerende geoxideerde lipoproteïnen met lage dichtheid (oxLDL) het effect van GGT 

op de ongunstige gezondheidsresultaten. Dit ondersteunt het idee dat GGT mogelijk 

ten grondslag ligt aan een mechanisme dat de toxische effecten van oxLDL op het 

vasculaire systeem vergroot of, vice versa, dat oxLDL de atherogene eigenschappen van 

GGT vergroot. 
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