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Abstract

Background: Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) are associated with divergent
differences in grey matter volume, white matter diffusion, and functional connectivity. However, it is unknown at
what disease stage these differences emerge. Here, we investigate whether divergent differences in grey matter
volume, white matter diffusion, and functional connectivity are already apparent between cognitively healthy
carriers of pathogenic FTD mutations, and cognitively healthy carriers at increased AD risk.

Methods: We acquired multimodal magnetic resonance imaging (MRI) brain scans in cognitively healthy subjects
with (n=39) and without (n=36) microtubule-associated protein Tau (MAPT) or progranulin (GRN) mutations, and with
(n=37) and without (n=38) apolipoprotein E ε4 (APOE4) allele. We evaluated grey matter volume using voxel-based
morphometry, white matter diffusion using tract-based spatial statistics (TBSS), and region-to-network functional
connectivity using dual regression in the default mode network and salience network. We tested for differences
between the respective carriers and controls, as well as for divergence of those differences. For the divergence
contrast, we additionally performed region-of-interest TBSS analyses in known areas of white matter diffusion
differences between FTD and AD (i.e., uncinate fasciculus, forceps minor, and anterior thalamic radiation).

Results: MAPT/GRN carriers did not differ from controls in any modality. APOE4 carriers had lower fractional
anisotropy than controls in the callosal splenium and right inferior fronto-occipital fasciculus, but did not show grey
matter volume or functional connectivity differences. We found no divergent differences between both carrier-
control contrasts in any modality, even in region-of-interest analyses.
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Conclusions: Concluding, we could not find differences suggestive of divergent pathways of underlying FTD and
AD pathology in asymptomatic risk mutation carriers. Future studies should focus on asymptomatic mutation
carriers that are closer to symptom onset to capture the first specific signs that may differentiate between FTD and
AD.

Keywords: Microtubule-associated protein tau, progranulin, Apolipoprotein E4, Voxel-based morphometry (VBM),
diffusion tensor imaging (DTI), Tract-based spatial statistics (TBSS), functional connectivity, Dual Regression Analysis,
Frontotemporal dementia, Alzheimer’s disease

Background
Frontotemporal dementia (FTD) and Alzheimer’s disease
(AD) are two of the most common causes of dementia
[1–4]. In addition to distinct clinical features [5–9], FTD
and AD demonstrate different patterns of functional and
structural neurodegeneration on magnetic resonance im-
aging (MRI) [10–17]. Atrophy is more pronounced in
FTD than in AD in frontotemporal areas such as the an-
terior cingulate cortex, fronto-insula, and inferior frontal
cortex [10, 13, 15]. Conversely, AD patients have more
atrophy in the occipital gyrus and precuneus than FTD
patients [13]. In terms of white matter diffusion tensor
imaging (DTI) alterations, FTD patients have reduced
fractional anisotropy (FA) and increased radial diffusivity
(RD) compared to AD patients in the uncinate fasciculi,
forceps minor, and anterior thalamic radiation, whereas
AD patients do not show FA decreases or RD increases
compared to FTD patients [11, 13–16]. Furthermore,
functional connectivity is inversely affected in FTD and
AD. In FTD patients, functional connectivity with the
salience network is disrupted, while functional connect-
ivity with the default mode network is increased. Vice
versa, functional connectivity with the default mode net-
work is disrupted in AD patients, while functional con-
nectivity with the salience network is increased [12, 17].
Despite these different patterns of neurodegeneration,

the differentiation between FTD and AD is often de-
manding when patients first present in the memory
clinic. For example, FTD patients may first present with
memory deficits [18, 19], and as such may be misdiag-
nosed as AD patients. Conversely, AD patients may be
misdiagnosed as FTD patients due to the presentation of
behavioural symptoms [20]. Indeed, 13% of initial FTD
diagnoses were corrected to AD after two years follow-
up [21], while 10–30% of clinical FTD patients were
found to have AD pathology upon autopsy [22–24].The
current criteria for behavioural variant FTD (bvFTD) [5],
and language FTD variants [6] lack specificity to distin-
guish early-stage FTD patients from early-stage AD pa-
tients [7]. This diagnostic problem delays effective
disease management [21, 25–27], and frustrates the de-
velopment of new treatments. Considering that the po-
tential of disease-modifying drugs is highest in the stage

before atrophy occurs, the identification of early-stage
dementia patients is crucial for patient selection in clin-
ical trials [28].
To assess whether FTD- and AD-related pathological

changes are present even before symptom onset, carriers
of FTD and AD risk mutations have been studied using
structural, diffusion-weighted, and functional MRI
(fMRI). For example, mutations in microtubule-associ-
ated protein Tau (MAPT), progranulin (GRN), and re-
peat expansions in chromosome 9 open reading frame 72
(C9orf72) are known causes of genetic FTD. Presymp-
tomatic carriers of these mutations have therefore been
regularly used to investigate early-stage FTD-related
pathology [29–33]. Similarly, mutations in presenilin 1,
presenilin 2, and amyloid precursor protein are known
causes of genetic AD. However, due to its higher preva-
lence, apolipoprotein E ε4 (APOE4), the strongest risk
factor for sporadic AD, has been more extensively used
to study early-stage AD-related pathology [34–43].
Contrary to findings in clinical FTD and AD [11, 13–

16], differences in diffusion metrics associated with
asymptomatic APOE4 [39, 44–51] are more widespread
than diffusion differences associated with asymptomatic
MAPT/GRN mutation carriers [32, 33]. Functional con-
nectivity differences have also been shown in these
asymptomatic groups [32, 41]. However, a comparison
between these presymptomatic patterns of change in risk
mutation carriers for FTD and AD is lacking, even
though early-stage differences between these dementias
may aid early differential diagnosis.
To this end, we investigated multimodal MRI in

asymptomatic subjects at risk for FTD and AD. First, we
aimed to replicate early carrier-control differences found
between MAPT/GRN mutation carriers and controls,
and between APOE4 carriers and controls, respectively,
by assessing whole-brain grey matter volume, white mat-
ter DTI measures, and functional connectivity in the de-
fault mode network and salience network. Secondly, we
investigated whether MAPT/GRN carrier-control differ-
ences diverged from APOE4 carrier-control differences,
similar to FTD-AD differences. For the latter analysis,
we additionally evaluated a priori selected white matter
tracts known to be affected more strongly in FTD than
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AD (i.e., uncinate fasciculus, forceps minor, and anterior
thalamic radiation). We hypothesised that the differences
in grey matter volumes, DTI measures, and functional
connectivity seen in FTD and AD patients [10–17] may
also be present to a smaller extent before symptom-
onset in risk mutation carriers.

Materials and methods
Participants
Subjects were included retrospectively from studies car-
ried out at the Leiden University Medical Centre
(LUMC), The Netherlands, and at the Functional Mag-
netic Resonance Imaging of the Brain Centre (FMRIB),
Oxford, UK.
The Dutch sample included 39 MAPT/GRN mutation

carriers (11 MAPT, 28 GRN) and 36 controls, recruited
from a pool of 160 healthy first-degree relatives of FTD
patients with either MAPT or GRN mutation [32]. Partici-
pants were considered asymptomatic in the absence of (1)
behavioural, cognitive, or neuropsychiatric change re-
ported by the participant or knowledgeable informant, (2)
cognitive disorders on neuropsychiatric tests, (3) motor
neuron disease signs on neurologic examination, and (4)
other FTD [5, 6] or amyotrophic lateral sclerosis [52] cri-
teria. Asymptomatic non-carriers from these families and
the general population were assumed to have equal risk of
developing dementia. MAPT/GRN mutation carriers and
controls were not tested for APOE4 alleles.
Data from 37 APOE4 carriers (30 apolipoprotein E ε3/

ε4 heterozygotes, 7 apolipoprotein E ε4/ε4 homozygotes)
and 38 controls (all apolipoprotein E ε3/ε3 homozygotes)
were collected in Oxford from the general population in
Oxfordshire and were selected to match the Dutch sam-
ple in terms of age and gender. Due to the limited sam-
ple size, it was not possible to match the groups'
education level. Middle-aged and elderly APOE4 carriers
and controls underwent a pre-screening cognitive test
(Addenbrooke's Cognitive Examination-revised version
[39, 40]) to assure asymptomatic status. APOE4 carriers
and controls were not tested for MAPT/GRN mutations.
In both cohorts, participants were between 21 and 70

years old. A priori exclusion criteria included MRI con-
traindications, head injury, current or past neurologic or
psychiatric disorders, (history of) substance abuse in-
cluding alcohol, corticosteroid therapy, type I diabetes
therapy, and memory complaints.
The study was conducted in accordance with regional

regulations and the Declaration of Helsinki. Written in-
formed consent was received from all participants, and
ethical approval for data acquisition was provided by the
Medical Ethical Committees in Rotterdam and Leiden
for MAPT/GRN data, and the National Research Ethics
Service Committee South Central – Oxford C for
APOE4 data. For further details regarding the

recruitment protocols, see Dopper et al. (2014) [32] for
the Dutch sample and Filippini et al. (2011) [40] for the
English sample.

Image acquisition
MRI data were acquired with a Philips 3 T Achieva MRI
scanner using an 8-channel SENSE head coil (MAPT/
GRN mutation carriers and controls) or on a Siemens
3 T Trio scanner with a 12-channel head coil (APOE4
carriers and controls). T1-weighted data were acquired
with TR=9.8 ms, TE=4.6 ms, flip angle=8°, 140 axial
slices, and voxel size is 0.88 x 0.88 x 1.20 mm for
MAPT/GRN mutation carriers and controls, and using a
magnetisation-prepared rapid gradient echo sequence
(MPRAGE; TR=2040 ms, TE=4.7 ms, flip angle=8°, 192
axial slices, voxel size is 1 x 1 x 1 mm) in APOE4 car-
riers and controls. Diffusion-weighted images were ac-
quired in 62 directions with TR=8250-9300 ms, TE=80-
94 ms, b-value=1000 s/mm2, flip angle=90°, 65-70 axial
slices, and voxel size is 2 x 2 x 2 mm. For the resting-
state functional MRI (rs-fMRI) scan, subjects were
instructed to remain awake and keep their eyes closed
(MAPT/GRN mutation carriers and controls) or open
(APOE4 carriers and controls), and to think of nothing
in particular. We acquired 180-200 volumes with TR=
2000-2200 ms, TE=28-30 ms, flip angle=80-89°, and
voxel size is 2.75 x 2.75 x 2.75 mm + 10% interslice gap
or 3 x 3 x 3.5 mm.

Image analysis
FMRIB’s Software Library (FSL, http://www.fmrib.ox.ac.
uk/fsl) tools were used for all data analyses [53].

Grey matter volume analyses
Whole-brain voxel-wise structural analysis was carried
out with FSL-VBM [54], an optimised voxel-based
morphometry protocol [55] using FSL tools [56]. First,
we performed brain extraction and grey matter segmen-
tation, and registered images to the MNI-152 standard
space using linear (FLIRT) and non-linear registration
(FNIRT [57]). The resulting images were averaged and
flipped along the x-axis to create a study-specific grey
matter template. Native grey matter images were then
re-registered to this template, modulated using the field-
warp Jacobian, and smoothed using an isotropic Gauss-
ian kernel with a sigma of 2.5 mm (~ 6 mm full width at
half maximum).

Diffusion tensor imaging
Diffusion-weighted imaging scans were processed using
FMRIB’s Diffusion Toolbox (FDT, http://www.fmrib.ox.
ac.uk/fsl/fdt). First, we aligned raw diffusion weighted
images to the b0-volume using “eddy correct” to correct
for movement and eddy currents. Next, we fitted
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the diffusion tensor model to the images at each voxel
to create modality-specific images for fractional anisot-
ropy (FA), mean diffusivity (MD), axial diffusivity (AxD),
and radial diffusivity (RD). For voxel-wise analysis of
these images, we used tract-based spatial statistics [58].
After brain extraction, subjects’ individual FA images
were transformed to standard space using FNIRT. A
mean FA image then was created and thinned to gener-
ate a whole-brain mean FA skeleton, representing the
centres of all white matter tracts common to all subjects.
Individual aligned FA images were projected onto this
skeleton for group analysis. Similar analyses were per-
formed on MD, AxD, and RD maps using the spatial
transformation parameters that were estimated in the
FA analysis. For our region-of-interest analyses, we
masked the whole-brain skeleton with the combined
masks of the uncinate fasciculi, forceps minor, and the
bilateral anterior thalamic radiations, which have been
shown to differ between FTD and AD patients in terms
of DTI metrics [11, 13–16].

Resting-state functional MRI
Pre-statistical processing of resting-state data consisted
of motion correction [59], brain extraction, spatial
smoothing using a Gaussian kernel of 6 mm full width
at half maximum, 4D grand-mean scaling and high-pass
temporal filtering corresponding to a period of 150s (~
0.007 Hz). Registration to MNI-152 standard space was
carried out in two steps. We registered echo-planar im-
ages onto their respective T1-weighted structural images
using FLIRT and Boundary-Based Registration [59–61].
Next, we used FNIRT to align T1-weighted structural
images to MNI-152 standard space, and concatenated
the resulting registration matrices to register echo-
planar images directly to standard space. Next, we per-
formed individual Independent Component Analysis
(ICA) and voxel-wise intensity normalisation (i.e., by div-
iding all voxels by their time series’ mean values and
multiplying by 10,000).
We used FMRIB’s ICA-based X-noiseifier (FIX [62–64])

to clean up noise components and reduce rs-fMRI scan
site bias. For a detailed description and validation of FIX
as a multicentre bias reduction method, see Feis et al.
(2015) [64]. In short, we classified the individual ICA com-
ponents of a subset of the subjects as signal, noise or un-
known, trained the FIX classifier, and used a leave-one-
out test to control the algorithm’s quality. All subjects’
data were then classified using the optimal threshold (i.e.,
20 – true-positive rate 95.1%, true-negative rate 91.4%)
and structured noise components were removed.
After processing and application of FIX, rs-fMRI data

were temporally concatenated and decomposed into 25
components using FSL’s group-level ICA tool [65–67],
in order to identify large-scale patterns of functional

connectivity. The resulting group-level ICA spatial maps
were compared to previously described resting-state net-
works [67–71], and we selected default mode network
components and salience network components for dual
regression analyses. The default mode network is dis-
rupted in AD, and enhanced in FTD, while the salience
network is disrupted in FTD and enhanced in AD [12,
17]. Components that included the precuneus, posterior
cingulate cortex, angular gyrus, medial pre-frontal cortex
and hippocampus were regarded as parts of the default
mode network. Components featuring the anterior cin-
gulate cortex, supplementary motor area and insula were
considered linked to the salience network. We found
three networks resembling the default mode network
(e.g., the anterior, inferior and posterior default mode
network, Fig. 1a-c) and two networks resembling the sa-
lience network (e.g., the anterior and posterior salience
network, Fig. 1d-e). For these five resulting resting-state
networks of interest, we performed dual regression to
identify the subject-specific spatial maps corresponding
to the resting-state networks of interest [37, 72]. First,
the spatial maps derived from group-level ICA were
used as a spatial regressor in each subjects’ rs-fMRI data
to obtain subject-specific time series describing the tem-
poral dynamics for each component (Additional file 1:
Figure S1, step 1). Next, the time series found by spatial
regression were used as a temporal regressor to find the
voxels associated with those time series for each subject
(Additional file 1: Figure S1, step 2). As such, we used
the group-level ICA networks of interest to obtain
subject-specific spatial maps that allow for voxel-wise
comparison. Statistical analysis of region-to-network
functional connectivity group differences was then car-
ried out by testing for the functional connectivity be-
tween the five resting-state networks of interest and all
other grey matter voxels.

Statistical analysis
Statistical analysis of grey matter volume, DTI features,
and rs-fMRI data was performed using general linear
models, including age and education as confound regres-
sors. Additionally, we added a voxel-wise covariate for
grey matter volume to the functional connectivity ana-
lyses. We tested for differences between, respectively,
MAPT/GRN mutation carriers and controls, and differ-
ences between APOE4 carriers and controls. Additionally,
we tested for the differences between these respective
carrier-control contrasts to evaluate whether these gene
mutations have divergent effects on the brain in cogni-
tively healthy carriers that might reflect early substrates of
FTD or AD pathology. Since possible centre effects are
equivalent for carriers and controls at each site, these ef-
fects cancel out when we compared the carrier-control ef-
fect at one site to the carrier-control effect at the other
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site. Consequently, unknown confounding factors such as
scanner and population differences should have minimal
influence on our results.
Pooling MAPT and GRN mutation carriers, and

APOE4 heterozygotes and homozygotes in our carrier
samples may have increased heterogeneity in our groups.
To account for this possibility, we performed additional
analyses with covariates encoding the difference between
MAPT and GRN mutations, and between APOE4 hetero-
and homozygosity.
Voxel-wise application of these general linear models

to the data was performed using FSL randomise, a

permutation-based non-parametric test (5,000 permuta-
tions). We set the family-wise error rate at 5% across
space by using threshold-free cluster enhancement [73]
in all analyses. The alpha level required for statistical sig-
nificance was set at 0.025 for all imaging analyses, which
corresponds to an alpha level of 0.05 in a two-sided t-
test, since randomise performs the permutation equiva-
lent of a one-sided t-test. Minimal cluster size for signifi-
cant results was set at 10 voxels.
SPSS version 24 (SPSS, Chicago, IL) was used for statis-

tics performed on non-imaging (demographic) variables.
Analysis of variance (ANOVA) tests were performed on

Fig. 1 Resting-state networks. Maps illustrate the most informative slices of resting-state networks of interest that featured known default mode
network and salience network regions and that were used for statistical testing after dual regression
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normally distributed continuous variables (age and educa-
tion) and included Bonferroni post-hoc tests. A χ2 test was
performed for gender. The alpha level required for statis-
tical significance was set at 0.05.

Results
Demographics
Demographic data for all groups are shown in Table 1.
Age and gender did not differ between groups. Bonfer-
roni post-hoc tests revealed significantly lower education
level in years for MAPT/GRN mutation carriers than
APOE4 controls (p=0.001), for MAPT/GRN controls
than APOE4 controls (p<0.001), and for MAPT/GRN
controls than APOE4 carriers (p=0.001).

Grey matter volume
We found no grey matter volume differences in MAPT/
GRN mutation carriers compared to controls or APOE4
carriers and compared to controls, nor were there differ-
ences between both contrasts.

White matter diffusion
Tract-based spatial statistics revealed no FA, MD, AxD,
or RD differences between MAPT/GRN mutation car-
riers and controls. However, we found four clusters of
FA reductions in APOE4 carriers compared to controls
(Fig. 2, Table 2). Three clusters were located in the for-
ceps major, more specifically in right side of the callosal
splenium, and one cluster was located in the right infer-
ior fronto-occipital fasciculus. We found no significant
differences between the MAPT/GRN and APOE4
carrier-control contrasts in our whole-brain analysis, nor
in our region-of-interest analyses.

Functional connectivity
We found no differences in region-to-network functional
connectivity in MAPT/GRN mutation carriers compared
to controls, in APOE4 carriers compared to controls, or
between the two carrier-control contrasts in any of the
five resting-state networks.

Heterogeneity analyses
Analyses including covariates for the difference between
MAPT and GRN mutations, and between APOE4 hetero-
and homozygosity yielded similar results as our main
analyses. There were no grey matter volume differences
between MAPT/GRN mutation carriers and controls,
APOE4 carriers and controls, or between the two car-
rier-control contrasts. APOE4 carriers had reduced FA in
compared to controls (Additional file 2: Figure S2), though
only one of the four clusters remained significant. We
found no DTI differences between MAPT/GRN mutation
carriers and controls, nor between the two carrier-control
contrasts. We found no differences in region-to-network
functional connectivity in MAPT/GRN mutation carriers
compared to controls, APOE4 carriers compared to con-
trols, or between the carrier-control contrasts in any of
the five resting-state networks.

Data availability
All non-thresholded statistical images for grey matter vol-
ume, white matter diffusion, and functional connectivity
results of our default analysis can be found on NeuroVault
[74]: https://neurovault.org/collections/NXLXKVCZ/.

Discussion
Differences in atrophy, white matter diffusion, and func-
tional connectivity patterns have been repeatedly shown
between FTD and AD patients [11–16], and between
asymptomatic mutation carriers at risk for these diseases
and controls (e.g., MAPT and GRN mutation carriers
[29–33]; APOE4 carriers [34–43]). However, compari-
sons between groups at risk for FTD and groups at risk
for AD have been lacking, even though early-stage differ-
ences between these dementias are key to improve on
diagnostic standards. In this study, we aimed to replicate
previously found differences in asymptomatic mutation
carriers at risk for FTD and AD compared to their re-
spective control groups. More importantly, we investi-
gated whether carrier-control differences diverged,
similar to the divergences that exist between FTD and
AD. While we could replicate some of the previously re-
ported fractional anisotropy reductions in asymptomatic

Table 1 Participant demographics

MAPT/GRN APOE4 P-value

Carriers (n=39)a Controls (n=36) Carriers (n=37)b Controls (n=38)

Age, yc 50.5 (10.0) 49.8 (11.3) 48.6 (10.3) 50.5 (10.5) 0.855

Gender, % Female 23 (59%) 18 (50%) 20 (54%) 20 (53%) 0.885

Education, yc 14.0 (2.5) 12.6 (2.9) 15.5 (3.7) 16.8 (3.2) < 0.001*

APOE4, Apolipoprotein E ε4 carriers; MAPT/GRN, Microtubule-associated protein Tau / progranulin carriers.
a11 MAPT 28 GRN.
b30 heterozygotes, 7 homozygotes.
cValues denote mean (SD); education values were missing for three MAPT/GRN carriers and two MAPT/GRN controls.
*statistically significant at p < 0.05.
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APOE4 carriers, we found no evidence of divergence be-
tween MAPT/GRN carrier-control differences and
APOE4 carrier-control differences, even when restricting
our DTI analysis to regions which are known to differ
between FTD and AD patients. This may suggest that
the neuroimaging biomarkers measured in this study are
not sufficiently specific to differentiate between FTD-
related pathology and pathology possibly related to AD
at this early stage.

Our lack of differences between groups in grey matter
volume were unsurprising. In asymptomatic risk mutation
carriers, one would not expect dementia related atrophy
unless the carrier would be close to symptom onset. Indeed,
grey matter volume differences have not been reported in
asymptomatic MAPT/GRN mutation carriers [31, 32],
though reports in asymptomatic APOE4 carriers have been
conflicting. While some groups report no grey matter vol-
ume differences in asymptomatic APOE4 carriers [35, 39,
40, 43], others found reduced grey matter volume in the
hippocampus [36, 75], lingual gyrus [36], precuneus [36,
76], insula [76], caudate nucleus, precentral gyrus, and cere-
bellar crus [75]. These conflicting findings may in part re-
sult from methodological differences, sample sizes, and the
different age ranges between studies. Since disease modify-
ing treatments aim to prevent atrophy, one would ideally
aim to diagnose dementia patients before atrophy occurs to
maximise potential treatment effect. Accordingly, bio-
marker research should focus on detecting substrates of
neurodegeneration that precede atrophy and that may be
reversible by future disease modifying treatments.

Fig. 2 White matter FA analysis. Differences in FA (or lack thereof) are shown for each contrast (e.g., MAPT/GRN mutation carriers greater or
smaller than controls; APOE4 carriers greater or smaller than controls; MAPT/GRN carrier-control differences greater or smaller than APOE4 carrier-
control differences). Mean skeleton maps are shown in green; skeletonised significant results were thickened for better visualisation. Four clusters
of FA reductions were found in APOE4 carriers compared to controls (middle left panel). Colour bar represents significance. APOE4, apolipoprotein
E ε4; FA, fractional anisotropy; MAPT/GRN, microtubule-associated protein tau / progranulin

Table 2 Cluster information

Cluster Size Max t-
statistic

MNI coordinates L/
R

Area
(peak
voxel)

x y z

1 64 4.14 54 101 72 R IFOF

2 44 3.19 71 79 95 R Splenium

3 32 3.58 63 73 87 R Splenium

4 22 4.19 74 87 98 R Splenium

Cluster information for significant clusters of reduced FA in APOE4 carriers
compared to controls. Minimum cluster size was 10.
APOE4, Apolipoprotein E ε4 carriers; IFOF, Inferior fronto-occipital fasciculus
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White matter diffusion analyses yielded areas of re-
duced FA in APOE4 carriers compared to controls in
the splenium of the corpus callosum, and in the right in-
ferior fronto-occipital fasciculus. These results concur
with previous reports in APOE4 carriers. FA reductions
were most often reported in the corpus callosum, cingu-
lum, and inferior fronto-occipital fasciculi [39, 44–51],
while FA differences in the corticospinal tract [39, 49–
51] and superior longitudinal fasciculi [39, 50, 51] were
less frequently reported. We found no diffusion differ-
ences in MAPT/GRN mutation carriers compared to
controls, in contrast to earlier work [32, 33]. However,
this might be explained by differences in methodology.
One study found significant FA reductions only within
certain pre-specified tracts, and, similar to our current
study, found no whole-brain differences [32]. The other
study found differences at p<0.005 uncorrected for mul-
tiple comparisons across space. Our analyses were per-
formed with a more restrictive significance level, as we
corrected for multiple comparisons across space using
threshold-free cluster enhancement, and used the statis-
tical threshold appropriate for a two-sided test, which is
not a standard procedure in neuroimaging [77]. Interest-
ingly, DTI alterations are larger in FTD patients than in
AD patients [11, 13–16], while preclinical alterations in
APOE4 carriers [39, 44–51] are more widespread than in
MAPT/GRN mutation carriers [32, 33]. Recently, it has
been postulated that white matter DTI differences in
genetic FTD develop rather explosively in the years just
prior to symptom onset [78, 79]. This might explain why
in our sample, we found DTI differences in APOE4 car-
riers, but no DTI differences in MAPT/GRN mutation
carriers. Although there were FA reductions in APOE4
carriers compared to controls, the difference was not
strong enough to result in a difference between the
MAPT/GRN carrier-control contrast and the APOE4
carrier-control contrast. We also performed region-of-
interest analyses in the uncinate fasciculi, forceps minor,
or bilateral anterior thalamic radiations, which were
found to have FA reductions and RD increases in FTD
patients compared to AD patients [11, 13–16]. However,
even in these regions of interest, we could not find DTI
differences between the MAPT/GRN carrier-control
contrast and the APOE4 carrier-control contrast. As
such, we could not conclude that MAPT/GRN mutation
carriership had a different effect on white matter diffu-
sion metrics than APOE4 carriership.
It has been previously argued that the default mode

network and the salience network are inversely corre-
lated and both play a role in AD and FTD. Specifically,
functional connectivity in the default mode network was
reported to be reduced in AD patients and increased in
FTD patients, whereas functional connectivity in the sa-
lience network was reported to be inversely affected:

reduced in FTD patients and increased in AD patients
[12, 17]. In asymptomatic APOE4 carriers, this inverse
correlation was also shown. Functional connectivity with
the default mode network was decreased and functional
connectivity with the salience network was enhanced in
APOE4 carriers compared to controls [41]. In asymp-
tomatic MAPT and GRN mutation carriers, functional
connectivity was reduced in the salience network, but no
differences in the default mode network were found
[32]. Based on these results, we hypothesised that func-
tional connectivity in the default mode network and sali-
ence network would be ideal candidates to screen for
early changes in asymptomatic risk carriers. However,
we found no evidence of functional connectivity differ-
ences, either between the respective carrier and control
groups or divergent differences between the carrier-
control contrasts. This might in part be a power issue
but could also be explained by population and methodo-
logical differences. For example, our sample was on
average younger and had a broader age range than the
APOE4 sample investigated by Machulda et al. (2011)
[41]. Furthermore, we performed data-driven dual re-
gression analyses, whereas both Machulda et al. (2011)
[41] and Dopper et al. (2014) [32] performed seed-based
analyses. While small seed areas are arbitrarily placed
and may be subject to registration mismatch, dual re-
gression networks are less sensitive to these issues due
to their data-driven origin. Indeed, dual regression is
amongst the best functional MRI analysis techniques in
terms of test-retest reliability [80, 81]. Therefore, the
most likely explanation of our functional connectivity re-
sults is that our groups were on average too far from
symptom onset for functional connectivity alterations in
the default mode network and salience network to ro-
bustly appear.
Strengths of this study include its unique design to

pick up differences between FTD- and AD-related path-
ology in asymptomatic populations, and the inclusion of
control groups from both sites to deal with potential
scan site bias. We performed specific region-of-interest
analyses to increase power to find differences in DTI
metrics. Furthermore, we used FIX [62, 63] to clean up
structured noise (e.g., motion, artefacts) from rs-fMRI
data to reduce scanner-based functional connectivity dif-
ferences [64] and increase the signal-to-noise ratio. To
account for possible heterogeneity resulting from pool-
ing MAPT and GRN mutation carriers, and APOE4 het-
ero- and homozygotes, we performed additional analyses
including covariates for the different mutation types.
The results of these analyses were very similar to our
main results, suggesting that the effect of genetic hetero-
geneity in our main analyses was altogether limited.
Limitations must also be considered. Firstly, differences
in penetrance and age of onset exist between MAPT/
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GRN and APOE4. MAPT and GRN mutations have an
autosomal dominant inheritance pattern, and are highly
penetrant [82, 83]. On the other hand, APOE4 has a
dose-dependent effect on lifetime AD risk. Heterozygous
APOE4 carriers have an estimated lifetime risk for AD of
approximately 25%, while APOE4 homozygosity is associ-
ated with an estimated lifetime risk of around 55% [84].
Therefore, it is unlikely that all APOE4 carriers from our
sample will develop AD, which reduced our power to de-
tect AD-related differences. For the same reason, it cannot
be entirely ruled out that some of the differences associated
with the APOE4 carriers do not reflect presymptomatic
AD-related pathology. Information on MAPT/GRN muta-
tion carriership was not available for APOE4 carriers and
controls, and information on APOE4 carriership was not
available for MAPT/GRN mutation carriers and controls.
Due to the infrequency of MAPT and GRN mutations, it is
unlikely that APOE4 carriers or controls had an MAPT or
GRNmutation. However, the frequency of the APOE4 allele
in Caucasian populations is around 14% [85], and it is likely
that some of the MAPT and GRN mutation carriers and
controls had an APOE4 allele. As MAPT/GRN mutation
carriers and controls were from the same families, the fre-
quency of the APOE4 alleles within these groups was most
likely similar. Therefore, the effect of APOE4 on our
MAPT/GRN analyses is presumably small. The broad age
range in our groups presents another limitation. FTD- or
AD-related pathology may be absent or present in a lesser
degree in young mutation carriers than in older carriers,
who are closer to symptom-onset. However, even though a
broad age range was present in our sample, physiological
brain aging effects are unlikely to have influenced our re-
sults. The four groups were matched for age, and age was
added as confound covariate to the model. Therefore,
physiological brain aging effects should be equally distrib-
uted across groups and were accounted for in the model. In
order to increase power, future neuroimaging research
comparing FTD- and AD-related pathology in asymptom-
atic risk groups should contain clinical follow-up and con-
version information, which will enable the inclusion of a
time to onset variable to the model.
Dementias are relentlessly progressive diseases for

which no adequate treatments currently exist, and differ-
entiation between various forms of dementia is clinically
challenging. Recently, MRI has shown different patterns of
grey matter atrophy, DTI alterations and functional con-
nectivity differences in AD and FTD patients [11–17].
However, early differential identification of at-risk groups
is key to study pathophysiological processes, develop
disease-modulating drugs and, eventually, identify patient
groups that may benefit from these treatments. In the
current study, we could not find differences suggestive of
divergent pathways of underlying FTD and AD pathology
in asymptomatic risk mutation carriers.
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Additional file 1: Figure S1. Dual regression. Subject-specific spatial
maps for statistical testing are acquired from group-level ICA spatial maps
in two steps. First, group-level ICA spatial maps are used as spatial regres-
sor on each subject’s rs-fMRI data to obtain time series associated with
those ICA components (Step 1). Next, these time series are used as tem-
poral regressor to obtain subject-specific spatial maps for each compo-
nent (Step 2). These maps are then used for voxel-wise statistical testing.
GICA, group-level independent component analysis; rs-fMRI, resting-state
functional magnetic resonance imaging.

Additional file 2: Figure S2. White matter FA analysis with mutation
covariates. In this analysis, covariates were added for the difference
between MAPT and GRN mutations, and between APOE4 hetero- and
homozygosity to account for genetic heterogeneity. Differences in FA (or
lack thereof) are shown for each contrast (e.g., MAPT/GRN mutation
carriers greater or smaller than controls; APOE4 carriers greater or smaller
than controls; MAPT/GRN carrier-control differences greater or smaller
than APOE4 carrier-control differences). Mean skeleton maps are shown in
green; skeletonised significant results were thickened for better visualisa-
tion. One cluster of FA reductions was found in APOE4 carriers compared
to controls (middle left panel). Colour bar represents significance. APOE4,
apolipoprotein E ε4; FA, fractional anisotropy; MAPT/GRN, microtubule-asso-
ciated protein tau / progranulin.
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