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 Abstract. The main global threats of the biosphere on our planet, such as a global 
 biodiversity impairment, global health issues in the developing countries, associated 
 with an environmental decay, unnoticed in previous eras, the rise of greenhouse 
 gasses and global warming, urge for a new evaluation of the applicability of 
 mathematical modelling in the physical sciences and its benefits for society. In this 
 paper, we embark on a historical review of the mathematical models developed in the 
 previous century, that were devoted to the study of the geographical spread of 
 biological infections. The basic notions of connectivity, continuity and distance norm 
 as applied by successive bio-mathematicians, starting with the names of Volterra, 
 Turing and Kendall, are highlighted in order to demonstrate their usefulness in 
 several new areas of bio-mathematical research. These new areas include the well-
 known fields of community ecology and epidemiology, but also the less well-known 
 field of multicellular pathway prediction. The biological interpretation of these 
 abstract mathematical notions, as well as the methodological criteria for these 
 interpretative schemes and their corroboration with empirical evidence are discussed. 
 In particular, we will focus on the boundedness norm in polynomial Lyapunov 
 functions and its application in Markovian models for community assembly and in 
 models for cellular pathways in multicellular systems. Finally, the usefulness of 
 hybrid mathematical modelling in miscellaneous biological, environmental and 
 public health issues will be discussed.  
. 

1.  Introduction 
 
The geographical spread of infectious diseases in an inhabited area or worldwide, has been a matter of 
primary concern for a long time, not only for practitioners and health policy makers but also for 
epidemiologists and mathematical biologists. Since the formulation of Kermack and McKendrick’s 
                                                   
1  To whom any correspondence should be addressed. 
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model [1] - for the evolution in time of a contagious disease in a closed population – many adaptations 
of their model have been put forward [2,3,4]. Kermack and McKendrick’s deterministic model [1] forms 
the basis for analytical solutions for the spread of an epidemic, using a Volterra-type nonlinear integral 
equation set [5]. This model was also an inspiration for Turing’s model for morphogenesis through a 
reaction-diffusion mechanism [6,7]. Kendall’s [2] modification of this model resulted in a space-
dependent analogue leading into a set of ordinary differential equations (ODE’s). Kendall achieved this 
simplification by taking for the infectivity at each point a weighted spatial average of the density of 
infectives [4]. Kendall claims that a particular result of this model is that it predicts the conditions for 
an epidemic to develop into a pandemic, named as the ‘pandemic threshold theorem’ (PTT) [2]. 
According to this PTT, there will be a pandemic if and only if the population density s exceeds the 
threshold density r º g/b, being the ratio of the intrinsic removal (g) and infection (b) rates. In Kendall’s 
model, the removal of ‘infected-and-infectious’ individuals occurs either by recovery of the disease (by 
acquiring immunity) or by death. Moreover, Kendall [2] suggests that the ‘severity’ of the pandemic, 
indicated by the parameter z, is obtained from the equation 

     (1) 
which always has the root z= 0 and a unique positive root if and only if s > r, which is the pandemic 
threshold condition (2). According to Diekmann [4], this interpretation is similar to the hair-trigger effect 
described by Aronson and Weinberger [8]. No matter how little infectivity is introduced in an arbitrarily 
small subset of the plane, eventually there will be a large effect at every point, provided the threshold is 
exceeded [4].  
 
During the past decades, several alternative models were presented [9, 10],  including models for the 
spreading of biological populations in spatially non-uniform conditions (e.g. [11]). Also, models have 
been worked out to encompass other aspects of the propagation of infectious diseases [12,13,14]. 
Finally, new paradigms were launched for the dispersion of individuals or particles, using topologically 
distinct approaches for defining the spatial connectedness of biological phenomena [15,16,17]. 
Diekmann and Heesterbeek [18] pointed to the difficulty of combining a deterministic description for 
the development of an epidemic outbreak (and especially the end of the outbreak) and a stochastic model 
that predicts new outbreaks. Models with combined deterministic and stochastic components are called 
‘hybrid models’ [19,20]. At a demographic time scale, repeated epidemic outbreaks are well 
documented, e.g. in the case of measles and influenza [14,21,22]. Nevertheless, Diekmann and 
Heesterbeek know of only one paper in which a stochastic version of the Kermack-McKendrick ODE 
model is elaborated [20], which paper is an application of the asymptotic methods (i.e. approximate 
solutions) of the Fokker-Planck equation [18]. 
 
The impressive amount of mathematical papers found in literature, however, has not simplified the task 
of practitioners, policy makers or even biologists, in order to apply and interprete these mathematical 
tools for a given situation. And, although recent studies in mathematical and computational biology (e.g. 
[18]) have succesfully incorporated new biological, epidemiological and mathematical insights, for the 
average non-mathematical reader it is quite an elusive operation to grasp the ingredients of the 
mathematical argumentation. This is especially relevant when new outbreaks of known and unknown 
viruses are startling, like the epidemics of a recent past, like foot-and-mouth-disease (2000-2001), the 
Severe Acute Respiratory Syndrome (SARS) pandemic (2002-2003), the Avian Influenza epidemic 
(2004, 2014, …). Under these circumstances, comprehensive models to predict the geographical spread 
of infections may become matters of national priority. 
                                                   
(2) This results from the monotone nondecreasing property of e - rz /r, provided that s > r. The unique positive 

root may be found from the equation . 
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The central notion in the geographical spread of contagious diseases is called the contagion of the 
disease (e.g. between a susceptible individual and an infectious agent). For predictive modeling, the 
geographical spread of this contagion has to be translated in mathematical terms. In order to deal with 
complex biological problems at an operational level which is easier to handle, the so-called conjugacy 
principle [23] constitutes a key approach. This conjugacy principle is synonymous to the bypass 
principle, which is a way of dealing with complexity by means of constructing a bypass which promotes 
a passage of the solution of a problem in a three-stage reduction process. The first and last stages are 
each other’s inverses, so the bypass has the (abstract) form: 
 

W = S T S –1      (2) 
where W is called the conjugate of T under S 
 
Although no perfect transformation exists in nature, when a conjugate is found for a given problem, the 
bypass principle requires the symmetry of the transformation process. In the present study, inverting the 
bypass is successful if the medical consequences of for instance the contiguity between susceptible and 
infectious agent can be read off from the predicted geographical spread of contagion. However, the 
complex notion of contagion in itself can be de-composed into few basic notions, like the notions of 
norm (boundedness), continuity and connectivity.  
 
The most interesting aspect of the bypass principle is that it may be instructive when applying these 
notions from the field of epidemiology into the very different fields of biological science. Therefore, we 
will first analyse the use of these notions in mathematical models for the spread of infectious diseases 
(Section 2). Next, the biological interpretation of the theoretical outcome of some selected models will 
be explored (Section 3). In the last two sections, examples are given of the application of these notions 
in the fields of community ecology (Section 4) and multicellular pathway prediction (Section 5). 
 
 
2. Mathematical background 
 
2.1. Norm (boundedness) 
 
One of the most basic notions in mathematical modelling with respect to spatial dispersion is the notion 
of  ‘norm’. Mathematically speaking, a norm | V | , for instance of a vector or a matrix (in Ân x n ) is any 
mapping from Ân x n into the real numbers Â which has the following properties: 
 
i)  | V | = 0  if and only if  V = 0  
ii)  | V + W | £ | V |  + | W |   (triangle inequality) 
iii) | c V | = | c | . | V |  for any V in Â n  and scalar c in  Â  
          (3) 
 
Intuitively, it is understood that the norm of a vector represents its length, or, in Euclidean space  Â n , 
the euclidean norm is simply the distance between two points. When enlarging our scope to all possible 
spaces, for instance when working with matrices in Â m x n , several norms like maximum (or box norm), 
euclidean and matrix norms can be used altogether. Some very useful results may come about. For 
instance, the euclidean norm of a matrix equals the square root of the trace (tr) of A* A (and: A* is the 
transpose of matrix A). When a non-symmetric matrix, say A m x n , is multiplied by its transpose (A n x m ), 
a symmetric (n x n) matrix is the result. The trace of a symmetric matrix is the sum of the entries on its 
main diagonal. The euclidean norm, or , is a current technique in scaling analysis like )*( AAtr
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Procrustes analysis [25,26]. According to Gower [26], scaling and rotation of matrices, in order to 
minimize the residual sum-of-squares (i.e. to find the best-fit configuration), can be seen as a 
multivariate form of analysis of variance.  
 
Another important norm related to m x n matrices is the spectral norm || A ||. Let l be the largest 
eigenvalue of A*A, then || A || is given by  [24]. The spectral norm is used in the convergence 
criterion for infinite series of matrices.  

For, if  || A || £  a k  , and if converges, then  also converges. 

For R the radius of convergence of the real power series , ck being a sequence of real numbers, 

if  || A || <  R, then  converges. Since the power series 1 + x + x2 + ... converges for | x | < 1 and 

diverges for | x | > 1, the matrix power series 1 + A + A2 + ... converges if || A || < 1  [24]. The latter rule 
is called the convergence criterion further on in this paper. 
 
 
An example of the use of the supremum norm (3) for the analysis of the geographical spread of infections 
is found in Diekmann [4]. The Banach space on W (4), denoted as BC (W), is considered a convenient 
framework for this study when functions on this Banach space (CT) are equipped with the supremum 
(sup) norm: 
 

    (4) 
 
In section 3, we will further discuss the biological interpretation that can be given to this construction. 
The requirement of the sup norm is also named the boundedness criterion.  Diekmann [4] uses the sup 
norm, together with the continuity and Lipschitz condition (see section 2.1. “Continuity”), to 
demonstrate the existence of a unique solution U to the nonlinear integral equation describing the 
geographical spread of an epidemic. The Lipschitz condition and sup norm enable to construct a series 
of mappings from CT into CT: 
 
 Rf : u ® Rf u : Rf u = Q u + f 
 
                                                   
(3) The supremum norm is related to the max or Čebyšev norm: || x ||  = max ( { | x 1 |, | x 2 | ... | x n |}). Compared 
with the euclidean norm, the following relationship exists [24]: 

   max | v 1 | £   for any V in Â n with V = (v1, ... v n) 

Also, the supremum, resp. infimum, is defined by the convergence theorem of monotone increasing, resp. 
decreasing, series. 
(4) Let us recall that a Banach space is a completely normed space, i.e. a space where every fundamental or 
Cauchy sequence converges. A sequence a n is called a Cauchy sequence (or fundamental sequence) if for each e 
> 0 a natural number  n d  exists, so that d (an,am) < e for all 
 m,n ³ n d . The Banach space thus defined by Diekmann is the space of bounded continuous functions   
 f : [0,T] ® BC (W),  f equipped with the sup norm, and W being a closed subset of Â n  [4]. 
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The rationale of these mappings is pointed out when they are used in an iteration procedure. If we put  
u 0 = f , and subsequently u n+1 = Q u n + f ,  then the limit of u n for n ® ¥  in CT converges to the unique 
solution u [4]. This follows from the boundedness of the mapping as formulated in Banach’s contraction 
mapping theorem (see below). It is important to note that in the terminology of Diekmann, the function 
Q u (t) represents the Volterra part of the nonlinear differential equation: 
 

  (5) 

[4] 

with   

and   . The variables S and A in Diekmann [4] represent the density of susceptible 
individuals (S) and the infectivity (A) at a certain position x due to an infection at a position e (or the 
contagion, see below for mathematical interpretation). The parameter t is the ‘age of illness’ that one 
infective has acquired at the moment of infection [4].  
In equation (3) the Volterra part thus is of the form: 

 

The major advantage of Diekmann’s approach is that once a solution at some time T Î (0,T0] is found, 
an iteration procedure can be formulated following the steps: 
 
i)  u 0 = f 
ii) u n+1 = Q u n + f 
 
The spatial function describing the contagion - or the distance between x and e - is the more difficult 
part of Diekmann’s model. It has the nature of a radial function,  
 

W(x,x) = V (x-x) 
 
and is used by Diekmann (1978) in an iterated convolution procedure. According to Diekmann (1978) 
it can be demonstrated that the only non-divergent solution of the infinite series of convolutions of V 
with itself  (5), namely: 
 

 

implicates that v(x) º c (constant function), or, the function v(x) describing the minimum of {w(x),p} 
with w(x) a nonlinear convolution equation of the distance function V(x-x) and some threshold p, itself 
represents a constant function or w(x) º p.  
                                                   
(5) The convolution transformation on two functions f1(t), f2(t)  is an application of operational calculus that 
makes use of the product of the Laplace transforms or images (F1,F2) given by 

 

In this formula, the Laplace transform (L) relates a real valued function f(t) to the infinite integral of the complex 
function e- pt f(t) , where p = a + bi (and a > 0) (e.g. [27], p. 464). 
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Diekmann [4] believes the infimum norm p of the iteration procedure :  
p £ u = inf u[¥] (x) 

corresponds to the threshold of the epidemic (see Kendall’s pandemic threshold theorem, [2]). 
 
Thieme [3] uses a quite different approach to discriminate the geographical spread of an epidemic due 
to the contacts between infective individuals at the one hand, and the spread of an epidemic due to the 
‘self-increase’ of the infectious agents at the other hand. This distinction, needless to say, is biologically 
very important, for instance in view of the differences between bacterial and viral infections, or between 
viral and parasitic diseases requiring eukaryotic vector species for their distribution. However, also 
Thieme [3] uses the sup norm to demonstrate that a maximum bounded solution exists for the final size 
of an epidemic. 
 
 
2.2. Continuity 
 
The notion of continuity seems as difficult to grasp as it is fundamental in topology and analysis. The 
ambition to provide a rigorous foundation for the notion of continuity, as opposed to discontinuity, and 
which notion appears indispensable for infinitesimal analysis and differential calculus, dates back to the 
work of Richard Dedekind (1831-1916) and Georg Cantor (1845-1918)(6). In abstract terms, a function 
is called (locally) continuous in x, if for every environment V of f(x) an environment U of x exists, such 
that f –1 of V (f[x]) is contained in U(x). The continuity of a function f thus requires the continuity of its 
inverse f –1. Dedekind [28] is very concerned and rather dissatisfied with the lack of ‘a purely arithmetic 
and perfectly rigorous foundation for the principles of infinitesimal analysis’ and criticizes the use of 
sheer geometric evidence. Also the concept of a limiting value (shortly limit) is attributable to 
Dedekind’s inheritance, and this concept forms the basis of differential and integral calculus. 
Continuously differentiable functions can be used in an iteration procedure, in order to find a numerical 
solution of an equation when analytical solutions fail. Therefore, however, the convergence criterion 
must be fulfilled (see section 2.1). Or, the iteration function  x ® g (x) : x n+1 = g (x n)  
has a unique solution, if and only if  g(x) < 1  (convergence criterion). 
 
The pendant of convergence and continuity criteria for iteration procedures in topological spaces is 
found in Banach’s contraction mapping theorem. For a Banach space (see footnote 3), the theorem states 
that a mapping T of the metric space M to itself has a unique fixed point in M. Banach’s contraction 
mapping theorem can be applied to a set of differential equations (of continuously differentiable 
functions) to demonstrate that iteration procedures converge to a unique solution, referring to a fixed 
point of the mapping (see also [4]). Essential to the contraction mapping T is the Lipschitz condition 
[30], namely that there exists 0 < k < 1 such that d(Tx,Ty) £ k d(x,y) for all x,y in M [31]. Contraction 
mappings, i.e. fulfilling the Lipschitz condition, thus represent a class of mappings that do not increase 
distances [32]. In section 3.2. we will further comment on the biological interpretation of Diekmann’s 
[4] use of Banach’s contraction mapping theorem. 
 
2.3. Connectivity 
 
The physical or biological concept of connectivity is quite distinct from the topological concept of 
connectedness, although the latter may have some use to give a formal definition of the biological 
concept (see also [33]). In topological terms, connectedness of a space means that whenever it is 
                                                   
(6) “If space has at all a real existence it is not necessary for it to be continuous; many of its properties would 
remain the same even were it discontinuous. And if we knew for certain that space was discontinuous there 
would be nothing to prevent us, in case we so desired, from filling up its gaps, in thought, and thus making it 
continuous (...)” ([28]; fide [29], p. 575).  
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decomposed as a union A È B of two nonempty subsets, then A and B have some point in common or 
some point of A (resp. B) is a limit point of B (resp. A) [34]. The property of connectedness in general 
depends on the dimension and the homotopy type of a space [34]. For compact spaces, i.e. topological 
spaces that are both closed and bounded, n-dimensional structures can be simplicially approximated by 
an n-dimensional simplex. The advantage of a simplicial approximation sf  of a function f is that this sf is 
continuous and homotopic to f. Consequently, the continuity of the polyhedral structure, from which the 
simplex is derived, is no longer required.  
 
Simplicial approximation, like for instance used in graph theory [35], indeed may become a useful 
approach to study the connectivity of biological networks, when no complete topological 
characterization of the biological objects in these networks is possible [33]. Examples are easily found 
in the connectivity patterns of food chains, disease transmission (infectivity) or intra-species 
communication. However, the incorporation of the biological determinants related to the ‘connectivity 
process’ remains the most tedious part of mathematical modelling in these biological systems. 
 
Recently, spatial models have been worked for biological phenomena that handle with  individuals as 
discrete units and that abandon the space-averaged concentration notions that are typical of mean-field 
diffusion models [15,36,37]. These spatial individual-based models, also called correlation models, are 
kindred to probabilistic cellular automata and have some advantages compared to the more classical 
mean-field models [15]. The mathematical structure of these correlation models is based on the idea that 
two individuals are neighbours if they regularly interact with each other. This relation is the result of the 
geographical distribution of individuals (essentially two-dimensional) or “it may represent some more 
complex interaction structure such as that seen in childhood diseases like measles or sexually transmitted 
diseases like HIV/AIDS” ([15], p. 103). Therefore, Rand concludes, although the global structure is two-
dimensional the local structure can be of a higher dimension. The correlation equations are derived in a 
number of steps, including some approximations of the space-averaged numbers of neighbours of a site 
(being another site or an edge) and measures to incorporate biases in the correction terms. The latter are 
important to ensure that the remaining variation can be modeled as random noise and a stochastic 
differential equation can be obtained ([15], p. 105).  
 
A variation on the above model is found in the so-called contact process [38]. Applied to the dynamics 
of the spread of infection, the population is represented as a lattice of susceptible (S) or infected (I) 
individuals. Infection and recovery take place at a given rate, defining the transmissibility (b) and 
recovery process (n) of the disease. At a critical transmissibility b c long-range correlations become 
important and the pair approximation of the contact process is only poor. Below the critical b c the 
infection dies out [38]. According to Rand [15], comparison of different models allows for estimating 
the value of b c  for a particular disease.  
 
In other studies, the connectivity of the network is defined in terms of the probability of two nodes to 
be linked to each other [16,17]. In a scale-free network this connectivity distribution forms a continuum 
between a power law or an exponential distribution [17]. Albert and Barabási [17] found that in evolving 
networks the probability of a node i to increase its connectivity k was described by the following 
differential equation: 

     (6) 

where  p, q, m represent the probability to add new links, the probability to rewire new links and the 
number of links connecting a new node to the system, respectively. The system size N and the total 
number of links åj kj  vary with time according to a simple linear relationship, namely: 
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N (t) = m0 + (1 – p – q ) t   (with m0 the initial number of ‘isolated nodes’) 
and åj kj (t) = ( 1 – q ) 2mt – m. 
 
Assuming that ki changes continuously, and defining the unit of time in the model as one event (attempt 
to growth/rewire or new link), Albert and Barabási (2000) derive the following connectivity distribution: 

     
where k (p,q,m) = A (p,q,m) + 1  and   g (p,q,m) = B (p,q,m) + 1.  
The connectivity distribution thus follows a power law, when A and B meet certain restrictions. The 
meaning of A can be obtained from translating the restrictions set to the validity of the latter expression, 
namely that A (p,q,m) + m + 1 > 0. For fixed p and m this restriction translates into: 

       (7) 

The connectivity distribution as expressed by the power law (see above) thus only holds for q< q max, i.e. 
the connectivity does not equal or exceed the peak value of q. For q > q max, the equation for P(k) crosses 
from a scale-free (power law) regime to an exponential. The value of B is defined by the values chosen 
for p,q,m, namely: 

    (8) 

 
From the preceding analysis, we especially retain the property of an evolving network at a low 
connectivity state, corresponding to biological networks that are immature or not fully grown: in that 
case the probability distribution follows a power law instead of an exponential distribution. 
 
 
3. Biological interpretation  
 
3.1. Idealization  
 
Application of mathematical principles and models to biological systems necessarily occurs through a 
process of abstraction and idealization of the biological system [33,39,40,41]. This also holds for 
mathematical models describing the geographical spread of an epidemic, or the geographical spread of 
an invading species or biological infection [42].  
For instance, for Diekmann’s [4] application of Banach’s contraction mapping theorem, the uniform 
boundedness and continuity of the mapping functions (describing the biological infectivity) are crucial. 
To meet the requirement of boundedness (see section 2.2), the influence of boundaries has to be 
incorporated in the infectivity function. According to Diekmann [4] this means that the boundary has no 
active influence on the spread of the infection outside a certain habitat. Diekmann’s model therefore 
especially relies on infections in a bounded environment, whereas anisotropic boundary effects are 
considered less important. The continuity with respect to the geographical spread of the susceptible 
species (denoted by x) is another idealization of the Diekmann model (for a discussion see [11]). The 
geographical spread of the infectious agent (x) in the Diekmann model [4] is normalized to unity, 
suggesting that no coupling exists between the spatial parameters x and x. 
A distinct type of idealization is found in Thieme [3] in order to describe the habitat where spreading of 
the epidemic takes place. As the habitat for the susceptible population, Thieme [3] chooses a Borel 
measurable subset of Ân (n= 1,2,3,...). Borel measurable subsets mean that an infinit, countable set of 
open or closed subsets can be found (with cardinal number £ the cardinal of the natural numbers). If the 
Borel measurable subsets are also bounded, they are called Lebesgue-measurable. Bounded functions 
are measurable, even when they are not continuous, because discontinuous measurable functions can be 
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approximated by continuous ones. The use of Borel measurable subsets, enables Thieme [3] to restrict 
solutions of the epidemic to the functions on an ordered topological space (À), obtained by the union 
M+ of bounded subsets provided with the pointwise convergence topology. Using monotone increasing 
(decreasing) sequences {X (u p)} that converge towards a sequence X (u), and taking benefit of Banach’s 
contraction theorem (see section 2.3), the fixed point properties of these sequences enable to imply the 
existence of an isotonic (resp. antitonic) compact operator on the topological space À. The isotonic 
(resp. antitonic) compactness implies convergence towards a minimum (resp. maximum) solution on 
this topological space. According to Thieme [3], the extrapolation from the union of bounded 
measurable subsets M+ to Ân is biologically important in order to be able to analyse the intensity of the 
infectious influence of an epidemic when far removed from its origin. The slightly different framework 
used by Diekmann [4] is that of the Banach space of bounded continuous functions on a closed subset 
of Ân (see section 2.1). 
 
 
3.2. Functionality 
 
In biological systems, material distances between two objects are usually the euclidean distance in E3. 
When mapping functions that diminish euclidean distances are implicated (see section 2.2.), a 
‘biologically’ functional interpretation (7) of these mappings is essential for biological relevance. A 
general concern is to avoid entering infinities (singularities) into the model. Similar to the horror vacui, 
there is also the scientific horror of infinite regress ([23], p. 15). In models for the spread of epidemics, 
we prefer not to ascribe massive invasions of infectious agents to an unknown, extra-terrestrial origin, 
neither do we explain full recovery from disease to some miraculous effect or Deus ex machina. 
According to Diekmann [4], biological relevance for instance is found in the hair-trigger effect of a 
biological infection: “no matter how little infectivity is introduced in an arbitrarily small subset of W, 
eventually there will be a large effect at every point” ([4], p. 119). Both Thieme [3] and Diekmann [4] 
claim that their models demonstrate Kendall’s pandemic threshold theorem: the biological threshold to 
an all or nothing geographical spread of an epidemic. It is important to note that in Diekmann’s model 
both biological interpretations, the threshold phenomenon and the hair-trigger effect, are related to the 
same condition, namely that:   gs0 > 1 
in the equation    

Putting    , then x satisfies the homogenous equation 

    
which can only be positive for gs0 > 1 ([4], p. 118). 

Knowing that s0 = inf x Î W S0 (x) and  

indicating respectively the infimum of the density of infectives (S0) at time 0 in x, and the infimum of 
the total infectivity at x due to a homogenously distributed density of infected individuals during the 
whole course of the disease. Diekmann’s [4] model thus requires both infectivity and density of 
infectives (at homogeneity) to be non-zero and positive, in order to have a pandemic or general epidemic. 
If gs0 £ 1, the epidemic will not spread. 
 
Finally, the biological relevance of Diekmann’s [4] and Thieme’s [3] models can be inferred from the 
occurrence of traveling wave solutions. Traveling wave solutions are solutions of the form u(t,x) = w(x 
                                                   
(7) ‘Biologically’ functional has quite a different connotation than the mathematical ‘function’ concept: it is 
rather comparable to the ‘functor’ notion in algebraic topology, without the bijective property (see also [43]).  
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+ ct) , thus depending on the linear combination of the independent variables x and t. Therefore, a 
substitution of these variables of the form x = x+ct 
is recommended, which leads to the solution of the nonlinear convolution integral equation: 

  with x = x+ct  and where 

   [4] (see also footnote 4).  

H(t) denotes a non-negative distribution parameter on the time axis, for which  

The existence of a non-trivial solution for Vc depends on the value of c ([4], p. 125). 
 
Before to proceed with the extrapolation of these functionalities to any biological system, it is however 
important to validate some of the assumptions made to derive the model. Among the assumptions 
formulated in Diekmann [4], we retain the following shortlist: (a) there are no changes in the susceptible 
population due to birth or migration (p. 110); (b) the disease induces permanent immunity, or susceptible 
individuals, once infected, cannot become susceptible again (p. 116); (c) the habitat space W does not 
consist of parts which are isolated with respect to infection (p. 119); (d) there is always a fraction of the 
susceptible population that escapes from being infected (p. 117). The combination of these 4 
assumptions, taken together with the interpretation that all susceptible individuals “walk around during 
the day and return to their homes for the night” ([4], p. 110), yields a biological system which is neither 
realistic nor generally applicable (see e.g. [11,42] for more realistic approximations). 
 
 
3.3. Extrapolation 
Basically, extrapolation of results obtained from mathematical modelling is achieved in either one - or 
a combination - of the following approaches: generalizing the model by dropping one or more of the 
model assumptions (see examples in section 3.2), or extending the model by applying to a different, less 
restricted domain (or habitat, in the present case). 
 
Similarly, in the posthumously published work of A.M. Turing on morphogenesis in plants [44], the 
functions describing the geometrical patterns of leafs (phyllotaxis) on a cylinder are considered 
instrumental to describe diffusion patterns in the plane. Or, according to Turing, functions in the plane 
having the symmetry of a lattice may be considered as obtained by unrolling the surface of a cylinder 
[45]. Applications are found in the geographical spread of an epidemic, Turing suggests. The situation 
where a lattice is changing with time may not only be interesting to describe the change of a phyllotactic 
pattern during plant growth, it may also apply to a changing lattice in the plane [46]. Turing uses the 
notion of ‘flow matrices’ that can be imagined to picture the change in the lattice as being due to “leafs 
being carried over the surface of a lattice by a fluid (whose velocity is a linear function of position)” 
([44], p. 75). 
However, the calculations of the functions describing these processes, according to Turing, were very 
difficult, and, moreover, before the advent of electronic computers in the following decades, they were 
practically unsolvable (see also [7]). 
 
According to Diekmann and Heesterbeek [18], it is the combination of deterministic behaviour 
describing the fading out of an epidemic with the stochastic processes of new outbreaks, that causes the 
biggest methodological challenge. In other network models [16,17], random graphs are used to 
demonstrate that fading of an epidemic is not due to infections falling below a critical threshold. On the 
contrary, it is suggested that due to the occurrence of highly connected nodes, the latter may serve as 
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reservoirs from which new outbreaks eventually emerge. Scale-free networks are considered “extremely 
heterogeneous, their topology being dominated by a few highly connected nodes (hubs), which link the 
rest of the less connected nodes to the system” ([16], p. 651). 
 
In the following sections, the application of the previous mathematical notions and methods into very 
different fields of the biological sciences are broached, namely the fields of community ecology and 
pathway prediction in multicellular organisms. A central problem in these new applications is the 
scarcity of available empirical data to corroborate the assumptions of the theoretical models, as for 
instance in the issues of biodiversity and the predictability of tumour metastasis [47,48]. 
 
 
4. Community Ecology 

 

Two decades ago, it was already noted that “something was wrong in community ecology”, that was 
linked with the gap between theory and empirical work (reviewed in [49]). Not only the lack of 
agreement about the meaning of basic terms and the confusion about the theoretical foundations seemed 
at stake. Also the quantitative analysis, aiming at the description of the processes of how the abundance 
of one species affects the abundance of another, appeared not suitable for describing how the species of 
a community change altogether [49], leaving aside the question how biodiversity of entire ecosystems 
changed and may further evolve in the present era [47]. Only a ‘minimum’ number of species, say a few 
predators and prey species, so far could be readily modelled. Moreover, many of the issues related to 
the turnover of species in natural communities, according to Law [49], are qualitative rather than 
quantitative. Also in the theories derived from Markovian models, the description of the community 
state is essentially qualitative and even subjective, namely, it may be based on the presence or absence 
of certain indicator species [49]. However, there exist an indirect way of measuring the effect of reduced 
biodiversity in models where the skewness of antigen exposure is essential for understanding the 
development of immunoglobulin-E mediated allergic diseases [50]. A possible way out of the impasse 
described above, concerning the qualitative changes in species composition, according to Law [49], may 
be found in considering only those subsets of species (from a regional pool), that have the property of 
persistence. This means that only the species are preserved that persist, i.e. that “have more than a 
transient existence”. Taking the threat of a global declining biodiversity in mind, an alternative approach 
could envisage the interactions that are crucial for survival and to focus especially on the species that 
are threatened with extinction. It is one of our next project goals to pursue this approach to find an 
alternative method for the estimation of biodiversity or an alternative formulation of the mean species 
abundance (MSA) as an index of global biodiversity decline [47].  

Following the persistence approach, Law [49] developed criteria for coexistence of n species, using a 
system of coupled ordinary differential equations (ODE) in an n-dimensional non-negative phase space. 
The criterion for coexistence of n species, according to common practice in theoretical ecology, is to 
evaluate the Jacobian matrix (J) in order to establish the existence of an equilibrium point ẑ with the 
property of asymptotic Lyapunov stability (8). The test for asymptotic stability consists of evaluating the 
eigenvalues of J at the equilibrium point, of which the real parts should all be strictly negative: 

                                                   
(8) A solution of a differential equations used for describing dynamical systems is called Lyapunov stable if the 
solutions that start near an equilibrium point ẑ, stay near ẑ. If, moreover, a solution ẑ is Lyapunov stable 
and all solutions that start near ẑ converge to ẑ, then ẑ is called asymptotically stable. 
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J = a ij  with     (9) 

A serious drawback of this method, according to Law [49], is that the property only applies for a small 
region around the equilibrium point, where the dynamic equations can be linearized. An alternative for 
the property of asymptotic stability (in the sense of Lyapunov) is to replace it by the more powerful 
alternative of global asymptotic stability ([51]; reviewed in [49]). In this approach, the property of global 
asymptotic stability implies that “no orbit can tend from the interior to the boundary”, and the species 
therefore will coexist. Permanence of a species in this system is defined as “a ‘skin’ of thickness d > 0 
around the boundary of the phase space”. ODE’s are then said to be permanent if “all orbits not initially 
in the boundary remain at least at a distance d >  d from the boundary” [49]. Following this approach, 
some aspects of community dynamics can be predicted, as permanence forms a criterion for persistence, 
although it still has its limitations ([49], p. 152). Nevertheless, it might help explaining why invader 
species might become permanent inhabitants, or why invasion resistance might prevent them from doing 
so. Also, the permanence algorithm for community assembly is supportive to the formulation of a final 
phase of (ecological) succession, consisting of two possible kind of end states, that are also corroborated 
by ecological findings. The first is that “a resident community is uninvadeble by any other species from 
the regional pool”. The second is consistent with the “union of three or more subsets”, which are 
communities that replace one another in a cyclic sequence (or when more complicated: a heterocyclic 
sequence) ([49], p. 164-165). It is obvious that these modelling studies may become helpful in describing 
ecologically stable communities, which show a diversity similar to the wide range of ecological habitats 
of the planet. The so far unwitnessed decline of global biodiversity however, probably with an 
anthropogenic signature, remains very hard to harmonize with what may be intrinsically called ‘stability’ 
analysis.  

 

5. Pathway prediction in multicellular organisms 

The analogy of transfer, from the assembly of biological species in an ecological community to a 
‘community’ of cells in a multicellular organisms, seems logical but summons two important caveats. 
First, the stability of the multicellular organism is only a relative stability, because individuals are not 
only subject to a limited life cycle, but also diseases, dysfunctional behaviour of groups of cells or 
malignant cell proliferation may alter the survival of parts of the organism as well as of the individual 
as a whole ‘micro-cosmos’. Moreover, the stability of the multicellular organism is not a goal in itself. 
Rather its stability reflects the qualitative appearance and performance of the organism in terms of an 
individual’s well-being, and as such, it is the main purpose of medical care. One may argue that this 
approach is similar to the viewpoint that biodiversity is not solely a measure of numerical density of the 
total pool of species, but also a matter of functional performativity of ecosystem diversity, as it is 
perceived in various aspects of human culture, economy, and public health [47]. 

The question of a sustainable, healthy individual therefore surpasses the questions of morphogenesis (of 
a species and of the individual) as well as questions related to the various attempts to free the body of 
unwanted cells (of different kinds). Rather it poses the problem of sustainability of a heterogeneous, 
differentiated population of billions of cells in an functionally organized way, the healthy organism. The 
predictability of molecular and cellular transitions following distinct cellular pathways, indeed forms 
the main concern in cell reprogramming (stem cell regeneration) and the control of tumour metastasis 
[48]. 
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In order to model cell lineage transformations in a multicellular organism, the problem of state 
transitions in theory can be approached by the use of Markovian models. In mathematical terms, 
Lyapunov functions can be useful, as suggested by Law [49]: 

 reflecting the probability of a series of events, for some choice of hi  > 0. 

In the multicellular environment of an organism, an event can be defined as either a molecular 
interaction between biomolecules or as a migration event of a cell, as for instance in circulating immune 
cells or metastatic tumour cells [48]. The probability of an event, drawn from a multitude of possible 
interactions or migration steps, has to exceed a threshold value to be a real possibility. Herein, clinical 
and/or metabolic data are essential to obtain information on the incidence of possible interactions (and 
diagnostic cues for visualization of these events).  
 
In an n-dimensional Euclidean space this results in a set ℳ of n x n matrices, for which a boundedness 
norm has to be defined, similar to the problem of asymptotic stability in community ecology (see ⁋ 4). 
In practical applications, however, finding a common Lyapunov function may become increasingly hard 
as the dimension n goes up [52]. The problem is also known as the approximation method of the Joint 
Spectral Radius (JSR). The JSR represents the maximum growth rate obtained by taking arbitrary 
products of the matrices Ai from the iteration series   where the index σ(k) results from a 

mapping from the integers to a finite set of indices {1,… m}. The JSR is formally defined as: 

   (10) 

According to Parrilo & Jadbabaie [52], a sum of squares (SOS) approximation shows the best results in 
order to obtain a class of bounds on the JSR that guarantee contractiveness properties for all the matrices 
in the set ℳ (see also the notion of Banach contraction mapping, ⁋ 2.2). Namely, it seems possible to 
obtain upper bounds on the JSR by replacing norms with homogenous polynomials p (x) (of degree 2d), 
following the topological properties of compactness (of the unit ball in ℜn) and continuity of a strictly 
positive homogeneous polynomial p (x) (see also ⁋ 2.3). 

Applications of this methodology are found in the metaheuristics of Ant Colony Optimization (ACO) 
algorithms, which have been proven to be useful in complex optimization problems, such as protein 
side-chain conformation and protein-protein interaction analysis [53]. It is suggested that with a number 
of adaptations of  ACO to the context of multicellular networks, the heuristics of ACO could also 
become useful in the analysis of cellular pathway prediction [48]. 

 

6. Concluding Remarks 

Starting from a historical survey of the modelling of infectious diseases, as originally formulated in the 
days of Volterra, Turing and Kendall, we analysed the abstract notions of norm/boundedness, continuity 
and connectivity throughout several areas of bio-mathematical research. These areas are not confined to 
the classical, mathematical roots of epidemiology, but also to some more recent applications such as 
community ecology and cellular network modelling.  
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On the one hand, it may be noted that the achievements and possibilities of mathematics and 
computation technology have generated the notion of computability of almost any complex problem. 
On the other hand, the limited availability of empirical data, from the field, or from the clinic or 
metabolic data bases, still hampers the practical usefulness of the mathematical models. As mentioned 
earlier, a thorough analysis of the biological issues at stake in for instance a declining biodiversity, 
environmental degradation or individual health impairment, may become instrumental for the fine-
tuning of the bio-mathematical and computation techniques.  
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